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1. Introduction 

One of the main goals in complexity t,heory is to develop 
proof techniques to separate complexity classes. While 
it is well recognized that most separation results are 
beyond today’s proof techniques, interesting progress 
has been made recently on separation results for rel- 
ativized complexity classes. Baker, Gill and Solovay 
[2] showed that the relativized P=?NP question may 

be answered both ways depending on the oracles; i.e., 
there exist sets X and Y such that P(X) = NP(X) and 
P(Y) # NP(Y). Baker and Selman [3] extended it to 
the second level of the polynomial time hierarchy show- 
ing that there exists a set 2 such that C?(Z) # x$‘(Z). 
The proof technique of Baker and Selman’s result is a 
complicated counting argument which, however, does 
not seem powerful enough to be applicable to separat- 
ing the third level of the relativized polynomial time 
hierarchy. 

More recently, Furst, Saxe and Sipser 141 and Sipser 
[9J proposed the idea of applying probabilistic argu- 
ments t.o this problem. They rrdurrd t.he problem of 
separating the relativizcd polynon~inl t.illlc. hierzLr&y I.0 

the problem <>f proving lowrr b01111ds on t,hc size of small 
depth circuits. The nlajor breakt~hrough in this direc- 
tion is due to Yao 1121 who, based on Furst, Saxe and 
Sipser’s idea, showed an exponential lower bound on the 
size of small depth parity circuits and hence exhibited 

an oracle A which separates the class PSPACE(A) from 
PH(A). Hastad [5, 61 simplified Yao’s proof and gave 
a proof for the claim made in [12] that there exists an 
oracle B such that for all k > 0, PH(B) # C;(B). 
We summarize the known results about the relativized 

polynomial time hierarchies as follows: 

(1) VA Vk > 0 (C:(A) = @(A) + PH(A) = 
Cc(A)] (Stoc.kmeyer (lo]). 

(2) 3B PSPACE(B) = YH(13) = Y(B) (Baker, 
Gill and Solovay [2J). 

(3) 3C Vk > 0 PSPACE(C) # PH(C) # C{(C) 
(Yao [12] and Hastad [5, 6j). 

(4) ‘dk = 1,2, 301, PH(Dk) = c,p(D,) # 
E[wP_,(Da) (Baker, Gill and Solovay [2], Heller 

171). 

From the above results, the relativized polynomial 
time hierarchies may have quite different structures de- 

pending on the oracles. However, these results have 
not exhausted all possible structures of the relativized 
polynomial time hierarchies. For example, the follow- 
ing question remains open: does there exist a set DC 
for each k > 3 such that (4) above holds? Furthermore, 
if such sets DE exist, can we construct them to also 
separate PSPACE(Dk) from PH(Dk)? In this paper, 
we show that the probabilistic arguments developed by 
Yao (121 and Hastad (5, 61 are powerful enough to con- 
slruct oracles n~ with the al~ovc rquird properties. 
Marc precisely, we prove the: following rcslrlts. 

(5) Vk 1 1 EL!& PSPACR(&) .=- PH(&) 
C,p(Ek) # g-,(l;:k). 

(6) 3Fo PSPACE(F0) # PH(Fo) = P(h). 

(7) vk 2 1 3Fk pspAcE(f$) # PH(&) = 

E:kp(Fk) # x:-#-k). 

The proof techniques for these results are the com- 
bination of the encoding scheme of Baker, Gill and Solo- 

vay [2] and the probabilistic arguments of Yao [12] and 
Hastad [5]. The main complication comes from the pos- 
sible interference between the two constructions, which 
can be handled by using slightly different formulations 

of Yao and Hastad’s basic lemmas. 
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its length. Let C” be the set of all strings of length 
n. We assume that there is a one-to-one pairing func- 
tion{,... ,) that encodes an arbitrary number of striugs 

21,. . . ,zn into a single string (%I,. . . ,z~). We assume 
that 1(x,,... ,xn)l 2 Cyxl lx;!. Fbr each set A, let XA 
be its characteristic function. 

Wc assume that the reader is familirtr wi1.h ornclc 
TMs and relatod complexity rlnssc~. 111 Iurticrdnr, WC 
will work on the relativixed conlplrxity ~IH.SSVS I’( .A), 
NJ’(A), X$(A), II:(A), and PSI’ACI:‘( A). 

The relativized polynomial time hierarchy YH (A) 
= Uk”,-,c[(A) can be characterized by alternating quan- 
tifiers. Let R( A; z) be a predicate over a set variable A 
and a string variable z. We say that R(A; z) is a PI- 
predicate if R is computable in ,polynomial time by a 
deterministic oracle machine which uses set A as the 
oracle and takes string z as the input. (The superscript 
1 indicates that the predicate is on a type-l ,object.) 1Let 

k > 1. We say o(A; z) is a Cr’-predicate if there exist a 
PI-predicate R(A; z, y1 , . . . ,Yk) over a set variable and 
IE + 1 string variables, and a polynomial y, such that for 
all sets A and all z with (21 = n, o(A; z) is true iff 

(3YlJYll I q(n)PYclyz> IYZI 5 a(n)) s** 

(QkYkrIYkI < q(n))R(A;X,Yl,...,Yk), 

where Qk = 3 if k is odd, and Qk = V if k is even. It 
is well known that a set 1) is in X{(A) iff there exisl,s a 

C;‘-predicate cr such that for all z, [z (: n <> u(A; x)1 

1% 

For any complexity class C! a set A E C is 12:. 
complete for C if for every set R E, C, there exists a poly- 
nomial time computable function f such that for all I, 

x E B iff f(z) E A. We will use some specific complete 
sets for these classes. First, we a.ssume a fixed enumer- 
ation {AJi) for all polynomial time oracle TMs, a fixed 
enumeration {Ni} of all poIynom:lal time nondeterminis- 
tic oracle TMs and, for each Ic 2 1, a fixed enumeraGon 
{of} of all X21-predicates. We assume that the ith ma- 

chine M; or N; has its runtime bounded by the ith poly- 

nomial pi, where pi(n) = n’+i. Also assume that the ith 

CF1-predicate ot(A; z) = (~YI,IYIJ 5 q(n))(b, 1~21 L 

tdn))-..(QkYhiYki 5 q(n))R(A;l,Yl,...,Yk) ha the 
property that both the length-b,ounding polynomial q 

and the runtime of the deterministic oracle TM that 
computes the predicate R are bounded by the ith pc~ly- 

nomial {pi}. 

Define, for each set A, the set K(A) to be {(i, z, li) ( 
the nondeterministic oracle TM <‘Vi accepts z in j moves 
when A is used as the oracle}. Then, it is obvious that 
K(A) is conlplcte for NP(A). Furthermore, for ally 
string z, the qucstiou of whc~ther 3: E h-(A) tlepc’nrls 
only ou the set {y f Al IyI < IzI}, because z = (;,.z, li) 
implies j < Iz(. (In other words. if B agrees with A on 
strings of length < 1~1, then z <: K(A) iff z E K(B).) 
We can extend this to C:(A)-complete sets for k :> I. 
Let K’(A) = K(A) and K’(A) = K(K”-‘(A)) for li > 
1. Then, For each k > 1 and each set A, Kk(A) is rom- 

plete for CFA, and the question of whether z E K”(A) 
depends only on the set {y E Al IyI < ~1) (this can 
be proved by induction). Define, for each set A, the set 
Q(A) to be {(i, I, lj) I the ith oracle machine Mi accepts 
I using at most j rrlls when A is used as the oracle}. 
Then Q(A) is coruylct~e for the class PSI’A CE( A) and 
thr qurstiou of whct.hcr s ( Q(A) dc~p~~ticls only on thr 

set (y ( Al )!/I \ IxI}* 

WC will tleal with ~*+iGl?i of unl~ouud~~d faniu which 
have only AN I) and 011 gates and wlGch hnvc- variables 
or its negatious as inputs. A circuit. is formally defined 
as a tree. Each interior node of the tree is attached 
with an AND gate or an OR gate, and has an unlimited 
number of child nodes. It is usually assumed that the 
gates alternate so that all children of an OR (or AND) 
gate are AND (or OR, respectively) gates. Each leaf 
is attached with a constant 0, a constant 1, a variable 

z, or a negated variable t. Each circuit computes a 
boolean function on its variables. The depth of a circuit 

is the length of the longest path in the tree. The size 
of a circuit is the number of gates (or, the number of 
interior nodes) in the tree. The fanin of a gate is the 
number of children of the node. The bottom fanin of 

a circuit is the maximum fanin of a gate of the lowest 
level in the tree. Each circuit C has a dual circuit C’ 
which has the same tree structure as C with each AND 
(OR) g;tt,c of C changed to an OR (AND, rcspcct,ively) 

gate, and each variable z changed to its negntion. The 
dual circuit C’ comput.es the negnt,ion of the function 
computed by C. 

Let V be the set of variables occurred in a circuit 
C. Then a restriciion p of C is a mapping from V to 
{O,l, *}. For each restriction p of C, Cl-,, denotes the 
circuit C’ obtained from C by replacing each variable 
z with p(z) = 0 by 0 and each y with cl(y) = 1 by 1. 
Assume that p’ is a restriction of CrP. We write C[,, 
to denote (C[,)[,,. We also write pp’ to denote the 
combined restriction on C with values pp’(z) = p(z) if 
p(z) # * and with values pp’(z) = p’(z) if p(z) = *. If 
a restriction p of C maps no variable to *, then we say 
p is an assignment of C. Let p be a restriction of C, we 
say that p completely determines C if C[, computes a 
constant function 0 or 1. An assignment p of C always 
completely determines the circuit C. 

There are some specific circuits which are useful in 
our proofs. One of them is the circuits defining the 
functions fr tlcfiucd iu [5]. Our defiuit,iou of fuuction 
fr is 1~ little diffrrc4 from t,hat. drfiucd iu [5]. 1~1. CL 
br a drpth-k cirruil having the following. proprrtics: 

(a) 1.h lop giLtr of CL is an OH gate with fanin 

J 1,1, 

(b) the faniu of all bottom gates of CT;:’ is fi, 

(c) the fanin of all other gates is m, and 

(d) there are mk-’ variables each occurring exactly 
0uc.f iu a leaf in the positive form. 

Let the function computed by Cr be fr. 
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The following relation between the relativized poly- 
nomial time hierarchy and small depth circuits is due to 
Furst, Saxe and Sipser 131. 

Lemma 2.1 (31. Let k > 1 and q(n) and 
r(n) be two polynomial functions. Let @(A;“) = 

(~Yl,i?/ll 5 f7(~)WYZ, lyzl 5 q(n)) .-. (dtkYk,lYkI i 

g(n)) R( A; r, ?,I,. . . , yk) bc a Cr’-prcclirntc, where TL := 
111 and R(A; z,1~i, _. , yk) is computable in time r(n) 
by a deterministic oracle TM M using oracle A. Then, 

for each string z, there exists a circuit C having the 
following properties: 

(a) the depth of C is k + 1, 

(b) the fanin of each gate in C is 5 24(“)+‘(“), 

(c) the bottom fanin of C is 5 r(n), 

(d) the variables of C are strings which are queried 
by M on input (z, yr , . . , yk) over all possible 

~1,. . . , yk of length < q(n) and all possible or- 
nclrs A, nnd 

(e) for rach set A, if we use X,+(Z) as the input 
valnr for each variable z in G then C outputs 1 
iB (r( il; .r) is t.rue. 

Another interesting relation bctwecn circuits and 
sets in relativized polynomial time hierarchies is about 
complete sets Kk(A). 

Lemma 2.2. Let, k 2 1. For every z of the form 

(i, yI I’), there is a circuit C such that 

(a) the depth of C is 5 2k, 

(b) the fanin of each gate in C is 5 21’1, 

(c) the bottom fanin of C is 5 JsJ, 

(d) the variables of C are strings of length 5 111, 
and 

(e) for each set A, if we use x4(z) as the input 
value for each variable z in G then G outputs 1 
iff Z. E ICI’(A). 

Proof. We prove the lemma by induction on 12. First, 
let k = 1. Then, z = (i,y, lj) E K(A) iff the machine 
Ni accepts r~ in 5 j moves using A as an oracle. That 
is, z E K(A) iff (3z,(z( 5 j)R(Aiy,t_) for some P’- 
predicat,c R which is computable in time 5 j. Thus the 
initial case of k := I follows from Lemma 2.1. 

ASSIII~W that A: > 1. Let .T = (i,y, Ii) be given. 
Therl, 1’ E Z<“(A) ifF tile wnrhiue Ni accepts y in 5 3 

-’ -’ moves using It (t ) 1 as an oracle. By Lemma 2.1, there 
is a depth-2 circ.uit Cl such that its top gate has fanin 
5 2j < 21’1, it.s bottom fanin is 5 j < JzJ, its variables 
are strings of length 5 )zI, and for each set A, if we use 
xK~-i(~l( Z) as the input value for each variable t in Cr 

then Cl outputs 1 iff .z E K”(A). 

Now, by the inductive hypothesis, for each variable 
z in Cr of the form (ir,u,lil), there is a circuit CZ of 
depth 2(k - 1) such that 

(a) the fanin of each gate of C, is < 21Z1, 

(b) the bottom fanin of C, is 4 1~1, 

(c) the variables in C, are of length < 1.~1, and 

(d) for any set A, if we use XA(W) as the input value 
for each variable w in C,, then C, outputs 1 iff 
.z E K’-‘(A). 

For cnch variable z in Cr not of such a form, let C, 
be the constant 0 (because z @’ I@-l(A)). Replace each 
variable z in Cl by the circuit C,. We obtain the desired 
circuit C. Cl 

3. Relativiaed Hierarchy Having k Levels 

In this section, we prove that for each k 2 1, there exists 
an oracle A such that Cc(A) = IIf # Cc-‘_,(A). 
We need a lower bound result on small depth circuits. 
Hastad [5] has proved that there exists a function j;” 
computable by a polynomial-size depth-k circuit but not 
by any depth-k circuit having subexponential size and 
snudl bottom fanin. The following lemma is a stronger 
form of this result. It states that no depth-k circuit with 
small bottom fanin can compute any of an exponential 
number of fin functions. The main idea of the proof 

is the same as that of Hastad’s proof. WC only give 
a sketch here, and leave the complete proof to the full 
paper. 

Recall that Cr is a circuit defining the function jr. 
Let CIR(k, t) be the class of depth-k circuits which have 
size _< 2” and bottom fanin 2 i. 

Lemma 3.1. For every k > 2 there exists a constant 
nk such that the following holds for all n > nk. Let 
t=n’“zn,m<2t,andGn,Cr,...,C,,,bem+1circuits 
each defining a ft”” function, with their variables pair- 
wisely disjoint. Let C be a circuit in CIR(k,t). Then, 

there exists a restriction p on C such that p completely 
determines C but it does not completely determine any 
C;, 0 5 i 5 m. 

Sketch of Proof. In Hastad’s proof of the exponential 
lower bound for depth-k, small bottom-fanin circuits 
for the jr function, the following result was developed. 

Lemma 3.1.1. Let C’ be a circuit computing a ji”” 
function and let q be a real number. Then there exists 
a probability distribution R of restrictions on variables 
in C’ (called RLs or Ris in 151) such that for a random 
restriction p from R, 

(i) for any circuit G E CJR(l,t) with a top AND gate, 
the probability that Glp is not equivalent to a cir- 
cuit H E CIR(l,t) with a top OR gate is 5 6’, 
where 6 < 6qt, and 

(ii) the probability that every subcircuit D of the lowest 

two levels of C’ has the property that Dr,, contains 

at least 2”i2 many undetermined children is 2 213. 

Moreover, the above lemma holds even if C’ has 
a larger fanin, as long as the fanin is smaller than 
2’. Note that if we let C’ be AND of all circuits 
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Co,G,*-- ,C,, then we may apply the above lemma 
to C’ and obtain a restriction such that (a) by Lenuna 
3.1.1(i), C],E CIR(k-l,t) and (1~) by Lemma 3.1.1(E), 

each C; rp computes a $, function. Thus, an induction 
proof can be used as in Hastad’s original proof. n 
Theorem 3.2. For each k > 1, there exists a set A 
such that C:(A) = II:(A) # !$-‘_,(A). 

Proof. The case k = 1 has been proven by Baker, Gill 
and Solovay [2]. We assume that k > 2. (Actually, ,the 
case k = 2 has been proven by Baker and Selman [3] 
and Heller 171.) Let 

-MA> = {I”1 (3~1, IVI I = n:~(b, I4 = n) 

a--(Qkvk,lvkI =n) l”vlv2...vk E A}. 

Note that Lk(A) is in C:(A). 

The construction of the oracle A will be done by 
stage. At each stage Q = (k + l)n + 1, we will satisfy 
the requirement 

n) 0uqv2. . . vk E A. 

At stage (Y = (k + l)n, we will try to find a suitable 

i such that the following requirement is satisfied with 
ni = n. 

RIpi: there exists an n; such that 1”’ c Lk(/1) iff 

of-‘(A; 1”‘) is false, 

The requirement Ro -= /\oU_r Ho,~ states that I<“‘( A) 
is in II:(A), and hence C{(A) = IIl( A). The re- 
quirement R1 = & RI,i states that .Lt(A) is not in 
E[-,(A). Therefore a set A satisfying all requirements 

has the property EL(A) = II:(A) # E{-,(A). 

The main difficulty of the construction is that when 
we try to satisfy requirement Rl,i in stage a = (k + l)n, 
we may have to simulate some aracle machine M which 
may query about strings of length longer than 0~. We 

cannot arbitrarily assign answers to the queries made 
by M because such an assignment may conflict with 
requirement I2+,., for some m > n. What we need is an 
assignment of answers to queries which does not conflict 

with future constructions at stage (I’ > a. The exisl.ence 
of such an assignment will be proved by using Le:mma 
3.1. 

In each stage a, we will define a set A(a) and a set 
A(a) and an integer 0,. Sets A( a) and A(o) are defined -- 
so that A(a) is always an extension of .4(a- l),,a) is ___- 
always an extension of A(n -. I), and A(u) n A(a) = 0. 
Also, in stage u we don’t add auy string of length < a 
to A(a) or A(a). ,& is defined to be the length of the 
longest string which is added to A(m) or A(m) in stages 
m < a. When a > Pa-r, the construction in stage a 
can be done without interferinlg with the constructions 
made in earlier stages. 

Prior to stage 1, assume that A(0) = A(0) = 0, and 
let po = 1. Let all integers i be uncanceled. 

Stage a, where a does not have the form a = (k $ 
1)n + 1 or a = (k + 1)~. Do nothing. Let A(a) := 
A(a - l), A(a) := A(n - 1) and p, := pa-l. 

Stage a = (k -I- 1)n. Let i be the least integer that 
is not yet canceled. If o 5 PO-r or n < nk (l1.k is 
the constant defined in Lemma 3.1) or kpi(rZ) + 1 2 
t = n’OK” thrn do uothiug. Let A(U) : -- A(n - I), __. .-L- _. 
A(a) := d(a - 1) .wd /I<? := ,&-I. 

If o > p-,-r aud 11 > 7tk and k*pi(lt,) t L < f =- nl”sn, 
then consider the following circuits: 

(1) For each u of length n 5 (u] 5 pi(rt), the circuit 
C, of depth k is defined as follows: 

(a) the top gate of C,, is an OR gate, 

(b) the fanin of each gate of C,, is 21’1, 

(c) the variables of C, are exactly those in OuCklU’, 
each occurring positively in exactly one leaf of 

C,, in the increasing order (under the lexico- 
graphic order). 

There are totally 5 2pi(“) < 2t many suc.h circuits CU. 

Note that each circuit C,, has the property that for all 
sets A, if we use xa(y) as the input value for each vari- 
able y then C,, outputs 1 iff (3~1, ],urI = /u[)(Vn~, (.tt2j = 
(l’().‘.(QkVk,I”kI -= (,,I) 0UUrV2...Vk E :t. Ah IlOte 
that each circuit C,, contains a subcircuil, rorripuling a 
function ji”“. 

(2) The rirruit Ce has the same trrr struct,ure as 
the circuit C,, defined above, with 1.1~ 1 - ~2, except t.hat 

the variables of Co are those in lnCkr’. Note that if we 
use x~(y) as the input value for each variable y then Co 
outputs 1 iff In E Lk(A). 

(3) The circuit C is the circuit associated with the 
-y,’ k-l-predicate &‘(A;l”) as defined in Lemma 2.1, 
with the restriction that each variable y of length < a = 
(k + l)n is replaced by the constant value xacaml)(y). In 

particular, C has depth k, has size < 2kri(n)+1, and 

has the bottom fanin 2 pi(n). The variables in C are 
strings of length 5 pi(n). For each set .4 which agrees 

with A(a - 1) on strings of length < a, if we use xa(y) 
as the input value for each variable y then C outputs 1 
iff af-l(A; 1”) is true. 

It is easy to see that each circuit C,, or Co con- 
tains a subcircuit CL or Ch, respectively, which tlelincs 
a $” function. Choose a restriction I) such that for 

all u, Ch = C,,[, computes exactly a f:” function and 

CA = Go 1, computes exactly a fi” function. We observe 
thllt by the choice Of 7L Slldl tllRt k~Ji(lt~) { 1 < 1 Itlogn, 

C E CIR(k,1). So, C’ =- C[, is also iu C:lll(k,t). Pur- 
thermore, the number of circuits 15‘: is < 2’. Thus, 
we can apply Lemma 3.1 to the circuits CA and CL, 
n < ]u] 5 pi(n), and the circuit C’ to obtain a re- 
striction p’ of C’ such that p’ completely determines 
the circuit C’ but not circuit CA nor auy circuit Ch, 
n _< ]u] < pi(n). Finally, we find an. assignment p” 
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of variables of CL rPt such that CA [PeP*a computes a con- 
stant function 1 iff C’[fl computes a constant function 

0. Note that p” only assigns values to strings in lnx”‘, 
and so none of C: [d is completely determined by p”. 

Define A(a) := A(a - 1) LJ {WI pp’p”(w) - 1) 
and A(a) := A(CY - 1) U {WI pp’p”(w) = 0). Let 
/3= = max{a,pi(n) + 1) and cancel i. This completes 
stage a = (k + 1)n. 

Stage c1= (k f l)n f 1. For each u of length n, we 
determine whether u f K’( A( (Y - 1)). Then, we find a 
subset B & {UJ E DuEEn/ ‘w @ A(u - 1)U ,4(a - 1)) such 
that zc @’ K’(A(a - 1)) w (Zlvl,lvll == n)(Vw~,IwzI = 
R). . . (Qkwk, JwkJ = n) Ouwlwz.. . wk E A(” -- 1) u B. 
(We will show that such a set B always exists.) Let, --- 
A(a) = A(” - 1) U B and A(a) = A(a - 1). Let 
/Ia = max(cr,&-1). Stage a = (k + 1)n + 1 is com- 
plete when we finish the above construction for each u 
of length n. 

Let A = U&A(a). First, we claim that in each 
stage Q = (k + 1)n + 1, for each u of length n, the set 
B can be found. 

Proof of Claim. If none of strings in OuCE” has been 
assigned to A(o - 1) or A(CY - l), then certainly such a 
set B exists. Assume that some strings in OuCk” have 
been assigned to A(cz - 1) or A(a - 1). Then, by the 
choice of &, there is at most one stage o’ = (k + 1)m < 
a in which these assignments are made. 

In that stage, the assignnit~nts arc lIli&! such that 
thr cotrcsponding circuit C,,, aft.cr applying the restric- 
tion PP’$‘, is not completely dt+r~~~incd. Note that 
the circuit C,, nurl f,hc* predicat,e T(A; II.) ( Iul, [7)11 =-= 
n)(ha,)‘f*21 = ‘,f).*‘(Qk’Uk, IflkI = 11) hf~l71~ . ..‘“k E A 
has t,lie relation that when a.ssigniug value ,vn(y) to 
each variable y, circuit. C,, out.put,s I iff thcx predicate 
r(A;u) is true. The fact. that the resl.ric-tion pp’p” does 
not completely determine C, implies that there exist as- 
signments po and p1 such that C, [Pp’PttPO outputs 0 and 

cu rPp’Pt)P1 outputs 1. Let Bo = {.w E OuPI pp’p”(w) = 

*,po(w) = 1) and B1 = (w E OuCknI pp’p”(w) = 
*,pl(zu) = 1). Then, II0 and B1 are disjoint from 

A(a - 1) and A(a - 1) and 7(A(a - 1) U Bo; 1”) = 0 
and T(A(a - l)U&; 1”) = 1. This proves the claim. 0 

Next we observe that after stage-e never add 
any string of length < (Y to A(a) or A(a). From this 
observation and the fact that the question of 2 E K”(A) 
does not depend on the strings of length 1 1x1, we see 
that each stage (k + 1)n + 1 satisfies requirement &,,. 

Finally, for each i, we observe that eventually we 
will cnriccl it irl sonic stage n == (k -t l)n, since the 
inequa!ity kpi(?‘) t 1 < 1 = ll”‘s” holds for almost all 
n. In that stage, we add strings to A(a) or A(a) (by 
pp’p”) so that when we use x~(y) as the input value for 
each variable y, thr circuits C and Co are completely 
tlrtt~rlrGlictl anti circuit C outputs I ilf circuit Co out- 
puts 0. By the relation between circuit C and predicate 
o~-‘(A; 1”) and the relation between circuit Co and the I 

predicate 1” E &(A), we know that &‘(A; 1”) is true 
iff 1” $$ &(A). This shows that the rlquirement Rl,i is 
satisfied by A and ni = n. This completes the proof of 
Theorem 3.2. 0 

The above proof can easily be modified to con- 
struct an oracle A such that PSPACE(A) = C:(A) # 
I$-,(A). All we need to do is to replace the set Kk(A) 
by the set Q(A) which is <$-complete for PSPACE(A). 

Corollary 3.3. For each k 2 1, there exists a set A 
such that PSPACE(A) = Cf(A) # CL-,(A). 

4. Relativized Hierarchies and PSPACE 

In this section, we show that for each k 2 1, there exists 
an oracle A such that XL(A) = II:(A) # X:-‘_,(A) and 
also PSPACE(A) # PH(A). The proof also uses the 
lower bound results on small depth circuits developed 
by Yao [12] and Hastad [5]. The following lemma is 
from [5]. We say a circuit C computes the parity of n 

inputs if C has n variables and for all inputs to those 
variables, C outputs 1 iff the number of l’s in the input 
is odd. 

Lemma 4.1 [5]. There exist an integer r& and a real 
number E > 0 such that for any k > 0 and any n > (nb)‘, 

no depth-k circuit C of 5 2c”1’(k-1) gates can compute 
the parity of n inputs. 

Corollary 4.2. For any constant c, there is an n: such 
that for all n > n:, no depth-k, Jc = clog log n, circuit C 
of < 2”L’/(*-‘) gates can compute the parity of n inputs. 

Proof. I& n: be the smallest integer no such that 
7n > (7()p’o~m, where nb is the absolute constant 
of Lemma 4.1. 0 

WC first consider the simplest case that the rela- 
tivizcd polynomial time hierarchy collapses to the class 
P. 

Theorem 4.3. There exists a set A such that 
PSPACE(A) # NP(A) = P(A). 

Proof. Recall that {Ni} is an enumeration of ail poly- 

nomial time nondeterministic oracle TMs, and the ma- 
chine IVi has its runtime bounded by polynomial pi(n)- 
Without loss of generality, we assume that pi(n) < n’. 
Let &,&A) = {l”l the number of strings of length 
n which are in A is odd}. Note that L,,dd(A) is in 
PSPACE(A). 

The construction of A is done by stage. At stage 
n = 2t, we want to satisfy the requirement 

&,t: For each u of length t, u E K(A) iff 0’21 E A. 

At stage n = 2t+ 1, we will try to find a suitable i such 
that the following requirement is satisfied with m; = n. 

RI,;: there exists an m; such that lm’ E &,&+(A) 
iff Ni rejects 1%. 

The requirement RXJ = AZ1 &,, states that K(A) is 
in P(A), and hence NP(A) = P(A). The requirement 
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RI = & Rl,i states that L,,ad(,4) is not in NP(A:I. 
Therefore a set A satisfying all requirements has the 
property J’SPACE(A) # NJ’(A) -: P(A). 

In each stage n, we will define a set At(n) and a set -- 
A(n) and an integer /3,.,. Sets A@) and A(n) are defined 

so that A(n) is always an extension of A(n - l),(n) is -. 
always an extension of A(n - l), and A(n) n A(n) = 0. 
Also, in stage n we don’t add any string of length < ‘n 
to A(n) or A(n). /3,, is defined to be the length of the -- 
longest string which is added to A(m) or A(m) in stages 
m 5 n. When n > /$,-I, the construction in stage n 
can be done without interfering with the Iconstructions 
made in earlier stages. 

Prior to stage 1, assume that ,4(O) = A(0) = 0, and 
let PO = 2. Let all integers i be uncanceled. 

Stage n = 21, t > 0. We will satisfy requirement 
Q. For each string u of length t, we determine whether 
u E K(A(n - 1)). Then, we let A(n) =: A(n - 1) U 
(Otu} and A(n) = A(n -- 1) if u EA(n - 1)); and 
A(n) -= A(n - 1) and A(n) 2 kTr~ -- 1) U (0’~) if u $! 
K(A(n - 1)). After this is done for all u of length t, Ict 

A = max{n,b-1). 

Sluge n = 21 + 1. Let i be the least integer which 
has not been canceled. Let m = Zilogn. If n < &I 
or Zn 5 7& or 62 n/(m-l) 5 (m + l)pi(n) (where ni; is 
the constant defined in Corollary ~1.2), then do nothing. ___ __- 
Let A(n) = A(n - l), A(n) = A(n - l), and pn = &-I. 

If n > &-~ and 2” > nk; and ~2”/(~-‘) > (m + 
l)p;(n), then consider the machine N; on input 1”. 

From Lemma 2.1, we know that for machine Ni and 
input l”, there is a circuit C of depth 2 such that 

(a) “,“;pt;‘; gate of C is an OR gate with fanin 
‘” - 

(b) the botiom fanin of C is 5 p;(n), 

(c) the variables in C are strings which are queried 

by Ni on input z over all possible oracles A, 
and 

(d) for each set A, if we use xa(y) as the input 
value for each variable y then C outputs 1 iff 
Ni” accepts In. 

We are going to modify this circuit to a new circuit 
C’ having the following properties. During the modifi- 
cation of C to C’, we nlso define a set B. 

(a’) C’ has depth < m = 2ilogn. 

(b’) The number of gates in C’ is 5 2(mf’)p’(“). 

(c’) The variables of C’ are strings of length n. 

(Circuit C’ and set B also have nice properties related 
to the computation of Ni(1”) and set &d(A). We will 
prove them later.) 

Recall that m = 2i log n. The modification of the 
circuit C is done in m/2 steps. Let Cl = C. In each 
step i < m/2 - 1, assume that a circuit C, is given. For 
each variable y in Cj which is of length > n and is of 

the form ,y = OIUlu for some u, we do the following. 

By Lemma 2.2, there is a depth-2 circuit Ch such 
that 

(a”) the top fnni~~ of (7: is 5 21”1, 

(b”) the bottom fanin of C!, is < 1~1, 

(c”) the variables ;n CL are of length 5 /u[, and 

(d”) for any set A, if we use XA(.Z) as the input value 
for each variable z in CL then CL outputs 1 iff 

u E K(A). 

Replace y by the circuit CL. (That is, the leaf node of 
Cj with variable y is replaced by the tree Cb, and the 
leaf node with the negation g of variable y is replaced 

by the tree of the dual circuit of Ch.) Let Cj+l be the 
new circuit with all such variables y in Cj replaced by 
circuit Ck. 

Assume that a variable y = Ol“lu in Cj is replace by 
Ci. Then, by Lemma 2.2, each variable w in circuit Ch 
is of length 1~11 < 1~1 < 1y\/2. Note that all variables y in 

(7, I C have= lertgt,h < pi( 1L) = 7X,i. So, aftcar log(&(?!)) 
1 = ilogn -. 1 =. m/2 - 1 st,eps, there is 110 vnrii%hlC y 

of tcttgth .b IL itt (:,rl,l which is of the Corn] O1’L1~b for any 

u. (Note that 71. > 130 --_ 2.) 

In step m/2, we replace each variable! .v in C,,,/, 

which is of length < n by the constant x~(,+l)(y), and 
replace each variable y in C,,,/, which is of length > n 

but not of the form OIUlv by a constant 0. (Also, each 3 is 
replaced by the opposite value.) Let C’ be the resulting 
circuit, and let i? = {yl Iyl > n, y occurs in C,+ and y 

is not of the form @‘lu}. 

‘b 

We verify that the final circuit C’ satisfies the 
properties (a’)-(~‘) listed above. First, in each step 
i 5 m/2 - 1, we replaced some variables in Ci by depth- 

2 circuits. So, Cj+l has depth two ~1~s the depth of Cj. 

Thus, Cm,, has depth at most m. Since we only re- 

placed variables in C,,,,, by constants, the final circuit 

C’ also has depth at most m. 

Next, to check (b’), we note that every gate in 

C has fanin 5 Y’(“). Furthermore, by Lemma 2.2, 
every gate in circuit Cb has the same bound for its 
faniu. Therefore, without combining ndjaccnt gates 
of the same t.y~)c, cacti gate of C’ has fnnin 5 Yi(“). 
‘I’lral is, the lOt,iLl nuulbrr of gates in C’ is at most 
(2Pit")) m I 1 ~~ 2(“’ t l)pi(rI)* 

For condition (c’), we note that all variables of 
length not equal to n are replaced by constants or other 
circuits. So, the only variables left in C’ are of Iength 

n. 

Now from the inequality ~2”/(~-‘) > (m + l)pi(n), 
we can apply Corollary 4.2 to circuit C’ and conclude 
that C’ does not compute the parity of the 2” vari- 
ables z E En. So, we can find a set D C_ C” such that 
1” E ,&d(D) iff c’ outputs 0 when variables z are given 

values x1,( %). 

Define A(n) :- A(n -. 1) U U, A(n) .= A(,#t 1: i) U fl, 

Pn = max{n,zx(n) -t I), and cancel i. Stage n = 25 + 1 

250 



is complete. 

Let A = UFzP,,A,,. We need to verify that A satisfies 
every requirement Rqr, 1 > 0, and RI,;, i > 0. For 
requirement Rg,t, t > 0, we note that in Stage n = 2, 
we have assigned all strings O*U, 1’1~1 = t, to A(n) or 
A(n) such that u E K(A(n - 1)) (j 0% E A(n). Since 
A agrees with A(n - 1) on strings of length < 7t, we 

have u E K(A(n - 1)) ($ u E K(A). Furthermore, once 
a string 0% is added to A(n) or A(n), its membership 
in A is never changed in later stages. So, 0% E A(n) e+ 
0% E A. The only thing left to check is that in earlier 
stages n’ < n, no striug of the form O’?L, with it&( = 1, 
has been put in A(n’) or A(n’). This is true because in 
an even stage n! = 2t’ we never add auy string of length 
longer than 1~’ to A(?t’) or A(7t’) and in au odd stage 
n’ = 2t’ + 1 we only add strings of length n! or strings 
which are not of the form OI”(u. to A(n’) or A(d). 

To verify requirement RI,;, we note t.hat the inequal- 

ity c2”/(m-‘) > (m. + l)p;(n) is satisfied by almost all 
integer n. Therefore, each integer i will eventually be 
canceled. Assume that i is canceled in stage n = 21-t 1. 
We want to show that I” E L,,dd(A) iff Nt rejects 1”. 
To show this, we note that circuit C’ constructed in 
stage n satisfies the following property. 

(8) When we use xA(w) as the input value for each 
variable 20 in C’, C’ outputs 1 iff N,” accepts lR. 
(Note that the set A here is the fixed set defined 
by A = u&A,, which satisfies requirements 
Ro,t for all t > 0.) 

This property can be proved by induction by show- 
ing that all circuits Cj, 1 5 j 5 m/2, constructed in 
stage n satisfy it. We omit the details. 

Now, observe that, in st,age ?L, the set D is chosen 
such t.hat, In E Lodd(D) iff C’ outputs 0 when each 
variable z is given the input value x0(z). Since we have 
added set D to A, the following holds when each variable 

Z is given the input value ,%A( 2): 

1” i-&&l(A) is 1” C’ h,,,(n) 

X+ C’ outputs 0 + NiA rejects 1”. 

Thus requirement R,,i is satisfied when i is canceled. 
This completes the proof of Theorem 4.3. q 

Now we extend Theorem 4.3 to more general cases. 

Theorem 4.4. For each Ic > 0, there exists a set A 
such that PSPACE(A) # E{(A) =@(A) # Ciel(A). 

Proof. The proof is a combination of the constructions 
in the proofs of Theorems 3.2 and 4.3. We only give an 
outline of the proof. We consider only the cases when 

k > 1. (The case Ic = 1 needs a different but simpler 
proof, we omit its proof.) We will construct a set A to 
satisfy three sets of requirements: 

no,,,: for all strings 11, of lc*rigt,h ),, II t$ li”( A) XY 
(JOI, (U]( 7l)(VPl~,(l~~( -- Yl)...(f&V~,(U~( = 
n) OU’] 1Q . . IQ t A. 

RI,;: there exists an ni such that 1”’ E Lb(A) iff the 

ith Cc2)I_11-predicate ,;k-’ (A; lw) is false. 

R2,j: There exists an mj such that lmj E &d(A) iff 

the jth Cc1 -predicate &A; l”j) is false. 

As we argued before, the requirement Ro = 
/\F& R+ implies E:(A) = II%(A) and the requirement 
RI = AZ1 Rl,i implies that C{(A) # C&1(A). Fur- 
thermore, the requirement Rz = /\$E2 Rz,j implies that 

&d(A) $ X:(A) and hence PB’ACE(A) # C:(A); 

In our construction, we will consider three types 
of stages. At stage a = (k + l)n, we try to satisfy 
requirement Rl,i for the integer i such that 22’ is the least 
uncanceled integer. (If the least uncanceled integer is 
an odd integer, then do nothing.) Assume that 2i is 
the least uncanceled integer and cy is sufficiently large. 
Then, we satisfy RI+, with n; = n, by doing almost the 
same thing as in stage 0 of the construction in the proof 
of Theorem 3.2; the only difference is that at the end of 

the stage, we turn on a flag: F = true, and cancel the 
integer 2i (instead of i), 

At stage QI = (k: + 1)n + 2, we try to satisfy require- 
ment R2,j for the integer j such that 2j + 1 is the least 
uncanceled integer. The action in this stage is similar to 
the construction in an odd stage of the proof of Theorem 
4.3. 

That is, when cy is sufficiently large and 01 > 

Pa-l, we consider the jth C;‘-predicate $(A; 1”). 

By Lemma 2.1, there is a circuit C associated with 
u$(A; lp) having the following properties: 

(4 
lb) 
Cc) 
(d) 

(e) 

thedepthofCis<Ic+l, 

each gate of C has fanin 5 2pj@), 

the bottom fanin of C is 5 pi(a), 

the variables in C are strings of length 5 pj(a), 
and 

for every set A, if every variable y in C is given 
the value x~(?J), then C outputs I iff $(,4; lo) 
is true. 

Similarly to the construction in Theorem 4.3, we 
modify circuit. C into C’ such that it satisfies the fol- 
lowing properties: 

(u’) the depth of C’ is 5 m = 21clogpj(a), 

(b’) the number of gates in C’ is 5 2(m+1)pj(a), and 

(c’) all variables in C’ are strings of length (Y. 

The modification of C into C’ is similar to the mod- 
ification in an odd stage of the construction in Theorem 

4.3. The main idea is to replace each variable y of length 
> QI and of the form y = OUD, 1~) = IcluJ, by the dual 
circuit of the circuit Cb, where Cb is a depth-(2lc) circuit 
satisfying conditions of Lemma 2.2 (with respect to the 
string u). (The reason of using the dual circuit of Cb 
instead of Ch itself is that we want to get the relation 

‘1~ $! K’(A) 6 y E A.) Note that for each y of the form 
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OUY, with 1~1 = Icluj, the variables in circuit CL are of 
length _< ]uI 5 lul/(k + 1) 5 Iyl/Z. Thus, a.s argued 
in the proof of Theorem 4.3, the circuit C will be ex- 
panded into a new circuit with no variable y of length 

> a having the formy = OOV, 1~1 := klul, and with depth 
5 2hlogpj(a). By replacing all other variables of len~;th 
> a by constant 0 (and form the set B) and all other 
variables z of length < Q by value xa(,,-l],( z), we obtilin 
a new circuit C’ satisfying the above conditions (a’:~-- 
(c’). Choose a set D c C” such that 1” E &d(D) iff 
C’ outputs 0 when each variable z: is given value x~(z). ___ -- 
Let A(a) = A(& - 1) U D, A(a) = A(a - 1) U B, and 
PO = max{a,pj(a)+l}. Finally, we cancel integer 2j +-1 

and turn off the flag: F = false. 

We can prove, similarly to lthe case in the proof 
of Theorem 4.3, that circuit C’ satisfies the followi.ng 
property: 

(d’) Assume that A is an extension of A(a) a.nd 
A n A(a) = 0. Also assume that for all u of 

length TZ < 1~) 5 pj(a)/(k + l), ‘1~ $ I@(A) w 
(VW, Iv1 = kluj)Ouv E A. Then, if we give xa(t)’ 
as input value for each variable z in C’, then C’ 
outputs 1 iff $(A; 1”) is true. 

Note that, in the above, wi,thout the assumption 
that u $ K’(A) + (Vv,IvI = klu~)Ouv E A, the circuit 
C’ may not compute exactly the predicate $(A; la), 
because we replaced each variable y of the form OUV by 
a circuit computing the value 1 - xK~~A)(~L) which is 

not necessarily equal to XA(Y) even if set A satisfies the 
requirements &,I%I. Therefore, ‘we need this stronger 
assumption. We will show later that this stronger as- 
sumption can indeed be satisfied in our construction. 

At stage a = (k + 1)n + 1, we satisfy requirement 

Ro,n- For each u of length R, we determine whet her 
u E I@(A(a - l)), and try to find a set B g OoCL” 
such that 

(*I 
u @(A(~-1)) M (3v:,,lq( =n)... 

(f&g, ItJkl = n)oUV, . . .Vk E B. 

This set B will be determined as follows: if the flag F 
is true, then search for a set B satisfying both (*) and 
B n (A(a - 1) U A(a - 1))) = 0; if the flag is false, then 
let B = 0 when u E Kk(A(a - 1)) and B = OuC’” when 
u $! K”(A(a - I)). Finally, let A(o) = A((Y - I) U B, 
A(a) = A(” - 1). 

Note that the flag F is turned on whenever an even 
integer 2i is canceled. When 2i is canceled in stage [I’, 
some strings of the form Ouv, lzll = n and Iv1 = h:n, 
may have been added to set A(Q’) or A(&‘). However, 
later in stage a = (k + 1)~ + 1, before the flag F is 
turned off, a set B satisfying both (*) and B n (A(a - 
1) U A(a - 1))) = 0 can always be found, as proved by 
Lemma 3.1. (Note the by setting & to be the length -- 
of the longest string added to A(a’) or A(&), we know 

that the flag F will not be turned off until in some stage 

a > Pd.) 

The flag F will be turned ofiwhen we cancel an odd 
integer 2j + 1. Suppose we cancel 2j + 1 at stage a”, 
then we must have cl” > /3,,~-1, and hence no strings of 
length > a” are ilh set A(a” - 1) or in set A(a” - 1). 
Thus, in l&r stage tl (A: f l)n -I- 1, befi.>rc the flag is 
turned ou we 11~vvc~ OPLC’” 

_--_- 
‘ n(A(a-l)uA(a-1)))=0 

for all .U 0; length 1). So, in stage c~, the choice of the set 
B can be made free from interference of earlier stages. 

This completes the construction of set A. Note that 
by setting & to be the length of the longest string added 
to A(m) or A(m) for all m < cy, we prevent the possible 
interference between stages (k+l)n and stages (k+l)n+ 
2. By the discussions in the construction, set A satisfies 
requirements Ro,,, for all n and RI,; for all i. The only 
thing left to check for requirement Rz,j is that set A 
satisfies the stronger assumption of (d’): for all u of 

length n < lul 5 pJa)/(k + l), u +! Kk(A) cs (t/v, [VI = 
klul)Ouv E A. We note that by the definition of & the 
flag F is off at stage a’ = (k + l)lul + 1. Therefore, 
in stage a’, we satisfy the requirement Ro,lul by letting 

OuCEIUl C A if u @’ K’(A) and OuC”I”I n A = 0 if u E 
K’(A). This shows that the assumption, aud hence 
the conclusion, of property (d’) of stage (z is satisfied 
by A. AS H consequence, requirement Rl,j is satisfied 
when 2j i- 1 is canceled. This completes the proof of the 
theorem. u 

5. Open Questions 

In this paper, we have constructed oracles which col- 
lapses the polynomial time hierarchy to exactly the kth 
level. Furthermore, relative to different oracles, the 
class PSPACE may either collapse to the kth level of 
the polynomial-time hierarchy or may be different from 

the polynomial time hierarchy. Several questions about 
the relativized polynomial time hierarchy however re- 
main open. First, note that the set L&A) is actually 
in the class D#P(A) (see, for definition, Angluin [l]). 

Thus, our results together with Yao’s [12] result actu- 
ally showed that relative to some oracles, the class D#P 
may be separated from the polynomial time hierarchy 
while the hierarchy may have either finite or infinite lev- 

els. An interesting question here is to find an oracle to 
separate the class PSPACE from D#P. 

Iieller [7] has constructed oracles X a~1 I’ such that 
X[(X) = II{(X) f A;(X) and C{(Y) = Ar(Y) # 
C:(Y). It would be interesting to see whet.her these 
res111ts roulcl Iw c~xtclldcd to th- k1.11 Irvrl of 1~lW ply- 
uominl time Iiicri~rrhy. 
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