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1. Introduction

One of the main goals in complexity theory is to develop
proof techniques to separate complexity classes. While
it is well recognized that most separation results are
beyond today’s proof techniques, interesting progress
has been made recently on separation results for rel-
ativized complexity classes. Baker, Gill and Solovay
(2] showed that the relativized P=?NP question may
be answered both ways depending on the oracles; i.e.,
there exist sets X and Y such that P(X) = NP(X) and
P(Y) # NP(Y). Baker and Selman [3] extended it to
the second level of the polynomial time hierarchy show-
ing that there exists a set Z such that £§(Z) # ©§(2).
The proof technique of Baker and Selman’s result is a
complicated counting argument which, however, does
not seem powerful enough to be applicable to separat-
ing the third level of the relativized polynomial time
hierarchy.

More recently, Furst, Saxe and Sipser [4] and Sipser
[9] proposed the idea of applying probabilistic argu-
ments to this problem. They reduced the problem of
separating the relativized polynomial tinie hierarchy to
the problem of proving lower bounds on the size of small
depth circuits. The major breakthrough in this direc-
tion is due to Yao [12] who, based on Furst, Saxe and
Sipser’s idea, showed an exponential lower bound on the
size of small depth parity circuits and hence exhibited
an oracle A which separates the class PSPACE(A) from
PH(A). Hastad [5, 6] simplified Yao’s proof and gave
a proof for the claim made in [12] that there exists an
oracle B such that for all & > 0, PH(B) # TF(B).
We summarize the known results about the relativized
polynomial time hierarchies as follows:
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(1) VA Vk > 0 [2F(4) = nf(4) = PH(A) =
BF(A4)] (Stockmeyer [10]).

(2) 3B PSPACE(B) = PH(B) = P(B) (Baker,
Gill and Solovay [2]).

(3) AC Yk > 0 PSPACE(C) # PH(C) # 2L (C)
(Yao [12] and Hastad [5, 6]).

(4) Vk = 1,2,3Dy PH(Dy) = El}:(Dk) #

£F 1(Dy) (Baker, Gill and Solovay [2], Heller
[71)-

From the above results, the relativized polynomial
time hierarchies may have quite different structures de-
pending on the oracles. However, these results have
not exhausted all possible structures of the relativized
polynomial time hierarchies. For example, the follow-
ing question remains open: does there exist a set D
for each k > 3 such that (4) above holds? Furthermore,
if such sets D exist, can we construct them to also
separate PSPACE(D;) from PH(Dy)? In this paper,
we show that the probabilistic arguments developed by
Yao [12] and Hastad [5, 6] are powerful enough to con-
struct oracles Dy with the above required properties.
More precisely, we prove the following results.

(5) Yk > 1 3E; PSPACE(Ey) = PH(F) -

SF(E) # BE (B,
(6) 3Fy PSPACE(Fy) # PH(Fo) = P(F).
(7) Vk > 1 3F, PSPACE(F:,) # PH(F:) =
ZII:(Fk) # Ef—l(Fk)'

The proof techniques for these results are the com-
bination of the encoding scheme of Baker, Gill and Solo-
vay [2] and the probabilistic arguments of Yao [12] and
Hastad {5]. The main complication comes from the pos-
sible interference between the two constructions, which
can be handled by using slightly different formulations
of Yao and Hastad’s basic lemmas.

2. Preliminaries

lu this paper, all sets A are sets of strings over the al-
phabet ¥ - {0,1}. For each string «z, let |2] denole
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its length. Let L™ be the set of all strings of length
n. We assume that there is & one-to-one pairing fune-
tion (,...,) that encodes an arbitrary number of strings
Z1y-..,%y into a single string (z1,...,2,). We assume
that |[{z1,...,2a)| > Ty |z:|- For each set A, let x4
be its characteristic function.

We assume that the reader is familiar with oracle
TMs and related complexity classes. In particular, we
will work on the relativized complexity classes I'(A4),
NP(A), 7 (A), If(A), and PSPACE(A).

The relativized polynomial time hierarchy PH(A)
= U ,BF(A) can be characterized by alternating quan-
tifiers. Let R(A;z) be a predicate over a set variable A4
and a string variable z. We say that R(4;z) is a P1-
predicate if R is computable in polynomial time by a
deterministic oracle machine which uses set A4 as the
oracle and takes string « as the input. (The superscript
1 indicates that the predicate is on a type-1 object.) Let
k> 1. Wesayo(4;z)isa Ef‘l-predicate if there exist a
Pl.predicate R(A;z,y1,...,¥) over a set variable and
k +1 string variables, and a polynomial g, such that for
all sets A and all =z with |z]| = n, ¢(A;z) is true iff

(Byy,lu1] < q(n))(Yya, lyz) < g(n))---
(Qkyh ‘ykl < Q(n))R(A;zsyl, L ayk)v

where @ = 3if k is odd, and Q) = Vif k£ is even. It
is well known that a set B is in 3F(A) iff there exists a
Ef‘]~])re(licate o such that for all z, {z ¢ B ¢ o(A;z)]
(9}

For any complexity class C, a set A € C is <P-
complete for C if for every set B ¢ C, there exists a poly-
nomial time computable function f such that for all z,
z € B iff f(z) € A. We will use some specific complete
sets for these classes. First, we assume a fixed enumer-
ation {M;} for all polynomial time oracle TMs, a fixed
enumeration {N;} of all polynomsal time nondeterminis-
tic oracle TMs, and, for each k > 1, a fixed enumeration
{oF} of all Ef‘ -predicates. We assume that the ith ma-
chine M; or N; has its runtime bounded by the ith poly-
nomial p;, where pi(n) = n‘+4. Also assume that the ith
5 -predicate of(A;z) = (3ua, lya) < o(n))(Va, lve] <
q(n))- - (Qryr, lyx] < g(n))R(4;2,91,..., ) has the
property that both the length-bounding polynomial ¢
and the runtime of the deterministic oracle TM that
computes the predicate R are bounded by the ith poly-
nomial {p;}.

Define, for each set A, the set K(A) to be {(i, z,17)]
the nondeterministic oracle TM N accepts z in j moves
when A is used as the oracle}. Then, it is obvious that
K(A) is complcte for NP(A). Furthermore, for any
string z, the question of whether z € K(A) depends
only on the set {y € A] |y| < |z|}, because = = (i, z, 17)
implies 7 < [z|. (In other words, if B agrees with A on
strings of length < |z|, then z € K(4) iff £ € K(B).)
We can extend this to Ef(A)-complete sets for k& > 1.
Let K1(A) = K(A) and K*(4) = K(K*"1(A)) for k >
1. Then, For each & > 1 and cach set 4, K*(4) is com-
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plete for Ef‘A, and the question of whether z € K*(4)
depends only on the set {y € Aj |y] < =z|} (this can
be proved by induction). Define, for each set A, the set
Q(A) to be {{i,z, 17)| the ith oracle machine M; accepts
z using at most j cells when A is used as the oracle}.
Then Q(A) is comyplete for the class PSPACE(A) and
the question of whether » ¢ @A) depends only on the
set {y C A] ly| ~ |«]}.

We will deal with ¢irenits of unbounded fanin which
have only AND and OR gates and which have variables
or its negations as inputs. A circuit is formally defined
as a tree. Each interior node of the tree is attached
with an AND gate or an OR gate, and has an unlimited
number of child nodes. It is usually assumed that the
gates alternate so that all children of an OR (or AND)
gate are AND (or OR, respectively) gates. Each leaf
is attached with a constant 0, a constant 1, a variable
z, or & negated variable Z. Each circuit computes a
boolean function on its variables. The depth of a circuit
is the length of the longest path in the tree. The size
of a circuit is the number of gates (or, the number of
interior nodes) in the tree. The fanin of a gate is the
number of children of the node. The bottom fanin of
a circuit is the maximum fanin of a gate of the lowest
level in the tree. Each circuit C has a dual circuit ¢’
which has the same tree structure as  with each AND
(OR) gate of € changed to an OR (AND, respectively)
gate, and each variable x changed to its uegation. The
dual circuit ¢' computes the negation of the function
computed by C.

Let V be the set of variables occurred in a eircuit
C. Then a restriction p of C is a mapping from V to
{0,1,%}. For each restriction p of C, C|[, denotes the
circuit C’ obtained from C by replacing each variable
z with p(z) = 0 by 0 and each y with p(y) = 1 by 1.
Assume that p' is a restriction of C{,. We write C{,
to denote (C[,)[y. We also write pp' to denote the
combined restriction on C with values pp'(z) = p(x) if
p(z) # * and with values pp'(z) = p'(z) if p(z) = . If
a restriction p of C maps no variable to x, then we say
pis an assignment of C. Let p be a restriction of C, we
say that p ecompletely determines C if C[, computes a
constant function 0 or 1. An assignment p of C always
completely determines the circuit C.

There are some specific circuits which are useful in
our proofs. One of them is the circuits defining the
functions f[* defined in [5}. Our definition of function
i is alittle different from that defined in [5]. Let CF*
be a depth-k circuit having the following properties:

m

(a) the top gate of )
Vi,

(b) the fanin of all bottom gates of C}* is /m,

is an OR gate with fanin

(c) the fanin of all other gates is m, and

(d) there are m*~! variables each occurring exactly

once in a leaf in the positive forin.

Let the function computed by CF* be fi".



The following relation between the relativized poly-
nomial time hierarchy and small depth circuits is due to
Furst, Saxe and Sipser [3].

Lemma 2.1 [3]. Let £ > 1 and g¢(n) and
r(n) be two polynomial functions. Let o(A4;z) =
Qi lyil < gV, 2| < g(n)) -+ (Qrees lyrl <
g(n)) R(A; r,y1,...,y;) bea Ef‘l~})rc(!icatc, wheren ==
|z} and R(A;z,y1, -.., yx) is computable in time r(n)
by a deterministic oracle TM M using oracle A. Then,
for each string z, there exists a circuit ¢ having the
following properties:

{a) the depthof Cis k +1,
(b) the fanin of each gate in C is < 29(")+7(n),
(c) the bottom fanin of C is < r(n),

{d) the variables of C are strings which are queried
by M on input (z,y1,...,y%) over all possible
Y1y, Yk of length < g(n) and all possible or-
acles A, and

(e) for each set A, if we use ya(z) as the input
value for each variable z in C then C outputs 1
iff o A; ) is true.

Another interesting relation between circuits and
sets in relativized polynomial time hierarchies is about
complete sets K*(A).

Lemma 2.2. Let & > 1. For every z of the form
(i,y,17), there is a circuit C such that

{(a) the depth of C is < 2k,
(b) the fanin of each gate in C is < 217,
{¢) the bottom fanin of C is < |z],

{d) the variables of C are strings of length < |z|,
and

(e) for each set A, if we use x4(z) as the input
value for each variable z in C then C outputs 1
iff 2 € K*(A).
Proof. We prove the lemma by induction on k. Firsi,
let & = 1. Then, z = {i,y,19) € K(A) iff the machine
N; accepts y in < j moves using A as an oracle. That
is, ¢ € K(A) iff (32,|z| € 7)R(A;y,2) for some Pl
predicate R which is computable in time < j. Thus the
initial case of £ = 1 follows from Lemma 2.1.

Assume that k > 1. Let z = (i,y,17) be given.
Then, = ¢ K*(A) iff the machine N; accepts y in < 7
moves using K* "!(A) as an oracle. By Lemmna 2.1, there
is a depth-2 circuit € such that its top gate has fanin
< 2 < 27 its bottom fanin is < j < |z), its variables
are strings of length < |z, and for each set A, if we use
Xx*-1(4)(2) as the input value for each variable z in C;

then C; outputs 1 iff = € K5(A).

Now, by the inductive hypothesis, for each variable
z in Cy of the form (i1,u,171), there is a circuit C, of
depth 2(k - 1) such that

(a) the fanin of each gate of C, is < 2/,
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(b) the bottom fanin of C, is < |z|,
(¢) the variables in C, are of length < |z|, and

(d) for any set A, if we use x 4(w) as the input value
for each variable w in C;, then C; outputs 1 iff

z € K*1(A).

For cach variable z in €y not of such a form, let C,
be the constant 0 (because z ¢ K*~1(4)). Replace each
variable z in Cy by the circuit C,. We obtain the desired
circuit C. O

3. Relativized Hierarchy Having k Levels

In this section, we prove that for each k > 1, there exists
an oracle A such that Tf(4) = Of(4) # =F_,(4).
We need a lower bound result on small depth circuits.
Hastad [5) has proved that there exists a function f*
computable by a polynomial-size depth-k circuit but not
by any depth-k circuit having subexponential size and
small bottom fanin. The following lemma is & stronger
form of this result. It states that no depth-k circuit with
small bottom fanin can compute any of an exponential
number of f{* functions. The main idea of the proof
is the same as that of Hastad’s proof. We only give
a sketch here, and leave the complete proof to the full
paper.

Recall that C* is a circuit defining the function fi".
Let CIR(k, t) be the class of depth-k circuits which have
size < 2t and bottom fanin < {.

Lemma 3.1. For every k > 2 there exists a constant
ng such that the following holds for all n > np. Let
t =nl8" m < 2t and Gy, Cy,...,Cm be m+1 circuits
each defining a f,f't function, with their variables pair-
wisely disjoint. Let C be a circuit in CIR(k,t). Then,
there exists a restriction p on C such that p completely
determines C but it does not completely determine any
C;,0<1<m.

Sketch of Proof. In Hastad’s proof of the exponential
lower bound for depth-k, small bottom-fanin circuits
for the fI* function, the following result was developed.

Lemma 3.1.1. Let C' be a circuit computing a f§
function and let g be a real number. Then there exists
a probability distribution R of restrictions on variables
in C' (called R} 5 or R_ g in [5]) such that for a random
restriction p from R,

(i) for any circuit G € CIR(1,1) with a top AND gate,
the probability that G{, is not equivalent to a cir-
cuit H € CIR(1,t) with a top OR gate is < &,
where § < 6qt, and

(ii) the probability that every subcircuit D of the lowest

two levels of C' has the property that D[, contains
at least 2*/? many undetermined children is > 2/3.
Moreover, the above lemma holds even if C' has

a larger fanin, as long as the fanin is smaller than
2!, Note that if we let C' be AND of all circuits



Co,C, -+, Cp, then we may apply the above lemmna
1o C' and obtain a restriction such that (a) by Lemina
3.1.1(i), C[,€ CIR(k—1,t) and (b) by Lemma 3.1.1(ii),
each C;[, computes a f,g?_l function. Thus, an induction
proof can be used as in Hastad’s original proof. D

Theorem 3.2. For each k > 1, there exists a set A
such that £f(4) = IF(4) # © __,(A)

Proof. The case k = 1 has been proven by Baker, Gill
and Solovay [2]. We assume that & > 2. (Actually, the
case k = 2 has been proven by Baker and Selman [3]
and Heller [7].) Let

Li(A) = {17 (3vy, [oy| = n)(Voz, |v2| = n)
- (Qrvn, v = n) 1"v3vz... 04 € A}
Note that Ly(4) is in T (4).

The construction of the oracle A will be done by
stage. At each stage a = (k + 1)n + 1, we will satisfy
the requirement

Ryp: for all strings u of length n, u ¢ K*4) &

(Fvn, 1} = n)(Voz, fvz] = n)---(Qrv, || =
n) Ouvivy...vg € A

At stage a = (k + 1)n, we will try to find a suitable
t such that the following requirement is satisfied with
ng = n.

Ry ;: there exists an n; such that 1™ € Li(A) iff
oF71(A; 1) is false,

The rcquircment Ry = 1 Ron states that K*(A)
is in IIf(A), and hence EE(A) = I (4). The re-
qmrement R = A2y Ry, states that Li(A) is nct in
£ 1(A). Therefore a set A satisfying all requirements
has the property Tf(4) = P (A) # BF_,(A).

The main dificulty of the construction is that when
we try to satisfy requirement R;; in stage a = (k+1)n,
we may have to simulate some cracle machine M which
may query about strings of length longer than . We
cannot arbitrarily assign answers to the queries raade
by M because such an assignment may conflict with
requirement Rg ., for some m > n. What we need is an
assignment of answers to queries which does not conflict
with future constructions at stage o' > a. The existence
of such an assignment will be proved by using Lemma
3.1.

In each stage o, we will define a set A(a) and a set
A(a) and an integer B,. Sets A(a) and A(a) are defined
so that A(a) is always an extension of A(a — I_L__( a) i 1s
always an extension of A(a -- 1), and A(a) N A(a) =
Also, in stage a we don’t add any string of length < @
to A(a) or A(a). B4 is defined to be the length of the
longest string which is added to A(m) or A(m) in stages
m < a. When a > 841, the construction in stage o
can be done without interfering with the constructions
made in earlier stages.

Prior to stage 1, assume that 4(0) = A(0) = ¢, and
let Bp = 1. Let all integers i be uncanceled.
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Stage o, where o does not have the form a = (k +
1)n+1 or & = (k+ 1)n. Do nothing. Let A(a} :=
Al — 1), Ac) := A(e — 1) and By = Ba-1.

Stage o = (k -+ 1)n. Let i be the least integer that
is not yet canceled. If @ < B,.1 or n < ny (ng is
the constant defined in Lemma 3.1) or kpiy(n) + 1 2>
t = nl%€" then do nothing. Let A{e) :+= A(a - 1),
Ala) := A(a - 1) and By i= Ba_1.

If o > Po-yandn >ng and kpi(n) 11 <t
then consider the following circuits:

(1) For each u of length n < |u} < py(n), the circuit
Cy of depth k is defined as follows:

(a) the top gate of Cy is an OR gate,
(b) the fanin of each gate of C, is 2%,

nlog n’

(¢) the variables of C,, are exactly those in Ou)'j"‘“[,
each occurring positively in exactly one leaf of

Cy in the increasing order (under the lexico-
graphic order).

There are totally < 29" < 2t many such circuits Cy.
Note that each circuit €y has the property that for all
sets A, if we use x4(y) as the input value for each vari-
able y then C, outputs 1 iff (Jvy, [va| = {u|)}(Vos, |ve| =
fu]) -+ - (Qrvk, [vk] = |u]) Ouvyvy...vp € A. Also note
that each circuit C, contains a subcireuit computling a
function fZ".

(2) The circuit Cp has the same tree structure as
the circuit €y defined above, with |u| = n, except that
the variables of Cp are those in 1"Z*". Note that if we
use x 4(y) as the input value for each variable y then Cp
outputs 1 iff 1™ € Li(A4).

(3) The circuit C is the circuit associated with the
Ef’_ll-predica,te af"l(A;l") as defined in Lemma 2.1,
with the restriction that each variable y of length < a =
(k +1)n is replaced by the constant value X, ,_;,(y). In

particular, C has depth k, has size < 2kpi(n)+1 and
has the bottom fanin < p;(n). The variables in C are
strings of length < p;(n). For each set 4 which agrees
with A(e — 1) on strings of length < o, if we use x4(y)
as the input value for each variable y then C outputs 1
iff a?—l(A; 17) is true.

It is easy to see that each circuit €y or Cy con-
tains a subcircuit C), or G}, respectively, which defines
a f,?n function. Choose a restriction p such that for
all v, Cy, = Cy[, computes exa.ctly a f")"
Cp = Cp[, computes exactly afk function. We observe
that by the choice of n such that kp;(n) 1 1 <t~ nlog™,
C € CIR(k,t). So, C' = CJ, is also in (!ll{(k,t). Fur—
thermore, the number of circuits CJ is < 2!. Thus,
we can apply Lemma 3.1 to the circuits C§ and CY,
n < Jul < pi(n), and the circuit C' to obtain a re-
striction p' of C' such that p' completely determines
the circuit C' but not cireuit C§ nor any circuit Cj,
n < |u| < pi(n). Finally, we find an assignment p"

function and



of variables of Cf{ such that Cgfy» computes a con-
stant function 1 iff C'[, computes a constant function
0. Note that p” only assigns values to strings in 15",
and so none of Cy |, is completely determined by o

Define A(a) := A(a — 1) U {w| pp'p'(w) = 1}
and A(a) = A(a—1) U {w| pp'p"(w) = 0}. Let
Ba = max{a,pi(n) + 1} and cancel é. This completes
stage a = (k + 1)n.

Stage a = (k + 1)n + 1. For each u of length n, we
determine whether u € K*(A(a — 1)). Then, we find a
subset B C {w € 0uT*"| w ¢ A(a—1)UA(a — 1)} such
that w ¢ K*(A(a — 1)) & (Joy, los] = »)(Vop, [vz| =
n)- - (Quvk, o] = n) Quvivz...vx € A(a — 1) U B.
(We will show that such a set B always exists.) Let
A(a) = Ala — 1) U B and A(a) = A(a—1). Let
Ba = max{a,By-_1}. Stage & = (k + 1)n + 1 is com-
plete when we finish the above construction for each w
of length =n.

Let A = U3 A(a). First, we claim that in each
stage @ = (k + 1)n + 1, for each u of length n, the set
B can be found.

Proof of Claim. If none of strings in 0uT*" has been
assigned to A(a — 1) or A(a — 1), then certainly such a
set B exists. Assume that some strings in 0uL*" have
been assigned to A{a — 1) or A(a — 1). Then, by the
choice of B4, there is at most one stage o’ = (k- 1)m <
a in which these assignments are made.

In that stage, the assignments are made such that
the corresponding circuit Cy, after applying the restric-
tion pp'p", is not completely determined. Note that
the circuit Oy and the predicate 7(A;u) - (Jvy,|v1] =
n)(Vua, Jvg| = n) - (Qrop, [vp] = n) Ouvivg...vp € A
has the rclation that when assigning value ya(y) to
each variable y, eircuit C, outputs 1 iff the predicate
r{A;u) is true. The fact that the restriction pp'p" does
not completely determine C, implies that there exist as-
signments pg and p; such that C,f,y»,, outputs 0 and
Culpypp, outputs 1. Let By = {w € 0uZk?| pp'p"(w) =
x,po(w) = 1} and By = {w € 0uZt"| pp'p"(w) =
*,p1i{w) = 1}. Then, By and By are disjoint from
A{a — 1) and A{a —1) and 7(A{e - 1)U Bp;1") = 0
and 7(A(a — 1)U By;1") = 1. This proves the claim. O

Next we observe that after stage o, we never add
any string of length < « to A(a) or A(a). From this
observation and the fact that the question of z € K*(4)
does not depend on the sirings of length > [z|, we see

that each stage (k + 1)n + 1 satisfies requirement Rg .

Finally, for each ¢, we observe that eventually we
will cancel it in some stage a == (k -+ 1)n, since the
inequality kpy(n)+ 1 <t = n'°8% holds for almost all

n. In that stage, we add strings to A(a) or A(a) (by
pp'p") so that when we use x 4(y) as the input value for
cach variable y, the circuits ¢ and Cp are completely
determined and circuit ¢ outputs 1 iff circuit Cp out-
puts 0. By the relation between circuit C and predicate

o¥~1(4;1™) and the relation between circuit Cp and the
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predicate 1 € Ly(A), we know that af—l(A; 1") is true
iff 1™ & Ly(A). This shows that the requirement R, is
satisfied by A and n; = n. This completes the proof of
Theorem 3.2. O

The above proof can easily be modified 1o con-
struct an oracle A such that PSPACE(A) = £f(A) #
= 1(A). All we need to do is to replace the set K*(A)

by the set Q(A) which is <Z-complete for PSPACE(A).

Carollary 3.3. For each k& > 1, there exists a set A
such that PSPACE(A) = £f(4A) # £ ,(A).

4. Relativized Hierarchies and PSPACE

In this section, we show that for each k > 1, there exists
an oracle 4 such that £f(4) = If(4) # £f_,(A4) and
also PSPACE(A) # PH(A). The proof also uses the
lower bound results on small depth circuits developed
by Yao [12] and Hastad [5]. The following lemma is
from [5]. We say a circuit C computes the parity of n
inputs if C has n variables and for all inputs to those

variables, C outputs 1 iff the number of 1’s in the input
is odd.

Lemma 4.1 {5]. There exist an integer ny and a real
number e > 0 such that for any k > 0and any n > (nj))*,
no depth-k circuit C of < gent/(+71)
the parity of n inputs.

gates can compute

Corollary 4.2. For any constant ¢, there is an n), such
that for all » > nl, no depth-k, k = cloglog =, circuit C
of < 200V
Proof. Let ml, be the smallest integer m such that

m > (nh)°loelos™  where nj) is the absolute coustant
of Lemma 4.1. O

) gates can compute the parity of n inputs.

We first consider the simplest case that the rela-
tivized polynomisl time hierarchy collapses to the class

P,

Theorem 4.3. There exists a set A such that
PSPACE(A) # NP(A) = P(A).

Proof. Recall that {N;} is an enumeration of all poly-
nomial time nondeterministic oracle TMs, and the ma-
chine N; has its runtime bounded by polynomial pi(n).
Without loss of generality, we assume that pi(n) < n'.
Let Lygq9(A) = {1™| the number of strings of length
n which are in 4 is odd}. Note that L,qa(4) is in
PSPACE(A).

The construction of A is done by stage. At stage
n = 2t, we want to satisfy the requirement

Ry ,: For eachuoflengtht, u € K(A) iff Otu € A.
At stage n = 2t + 1, we will try to find a suitable ¢ such
that the following requirement is satisfied with m; = n.
Ry ;: there exists an m; such that 1™ € L,qa(A)
iff N; rejects 1™

'The requirement Rp = A2y Rp, states that K{A4)is
in P(A), and hence NP(A) = P(A). The requirement



Ry = A2; Ry, states that Loqa(4) is not in NP(A).
Therefore a set A satisfying all requirements has the
property PSPACE(A) # NP(A) = P(A).

In each stage n, we will define a set A(n) and a set

A(n) and an integer By,. Sets A(n) and A(n) are defined
so that A(n) is always an extension of A(n—1), A(n) is
always an extension of A(n — 1), and A(r)N A(n) = 0.
Also, in stage n we don’t add any string of length < n
to A(n) or A(n). B, is defined to be the length of the
longest string which is added to A(m) or A(m) in stages
m < n. When n > (8,1, the construction in stage n
can be done without interfering with the constructions
made in earlier stages.

Prior to stage 1, assume that 4(0) = A(0) = 0, and
let Bp = 2. Let all integers 7 be uncanceled.

Stage n = 2¢, t > 0. We will satisfy requirement
Roy. For each string u of length t, we determine whether
u € K(A(n —1)). Then, we let A(n) = A(n ~ 1)U
{O‘u} and A(n) = A(n-—-1)ifu € K! A(n — 1)); and
A(n) - A(n — 1) and A(n) = A(n - 1)U {0*u} if u ¢
K(A(n —1)). After this is done for all u of length ¢, let
Bn = max{n,Bn_1}.

Stage n = 2L + 1. Let i be the least integer which
has not been canceled. Let m = 2ilogn. If n < Bn
or 2" < nf; or eanf/(m-1) < (m 4 1)pi(n) (where n}, is
the constant defined in Corollary 4.2), then do nothing.
Let A(n) = A(n—1), A(n) = A(n — 1), and B, = -1

I n > Bny and 2" > nb; and 2™ > (m +
1)pi(n), then consider the machine N; on input 1",
From Lemma 2.1, we know that for machine N; and
input 1%, there is a cireuit C of depth 2 such that

(a) the top gate of C is an OR gate with fanin

< 2pil7)

(b) the bottom fanin of C is < pi(n),

(c) the variables in C are strings which are queried
by N; on input z over all possible oracles A,
and

(d) for each set A, if we use x4(y) as the input
value for each variable y then C outputs 1 iff
NA accepts 1™

We are going to modify this circuit to a new circuit

C' having the following properties. During the modifi-
cation of C to C', we also define a set B.

(a') C' has depth < m = 2ilogn.
(b') The number of gates in ' is < 2(m+1)pi(n),
(c') The variables of C' are strings of length n.

(Circuit C' and set B also have nice properties related
to the computation of N;(1") and set Lygq(A). We will
prove them later.)

Recall that m = 2ilogn. The modification of the
circuit C is done in m/2 steps. Let C; = C. In each
step 7 < m/2 -1, assume that a circuit C; is given. For
each variable y in C; which is of length > n and is of
the form y = 0/ for some u, we do the following.
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By Lemma 2.2, there is a depth-2 circuit Cy such
that

(a") the top fanin of Oy is < 2lul]
(8") the bottom fanin of Cy is < ful,
(") the variables ‘n Cj, are of length < [u|, and

(d") for any set A, if we use x4(z) as the input value
for each variable z in Cj, then C, outputs 1 iff
u € K(A).

Replace y by the circuit Cy. (That is, the leaf node of
C; with variable y is replaced by the tree Cy, and the
leaf node with the negation § of variable y is replaced
by the tree of the dual circuit of Cy.) Let 41 be the
new circuit with all such variables y in C; replaced by
circuit Cy,.

Assume that a variable y = 0l*lu in C; is replace by
C;,. Then, by Lemma 2.2, each variable w in circuit C;
is of length |w| < |ul < |y|/2. Note that all variables y in
C'q =+ C have length < pi(n) = n'. So, after log(pi(n)) -
1:=dlogn--1= m/2- 1 steps, there is no variable y
of length > n in €, /3 which is of the form pluly for any
w. (Note that n > fp = 2.)

In step m/2, we replace each variable y in Cpyy
which is of length < n by the constant x g(n-1)(¥), and
replace each variable y in C,, /5 which is of length > n
but not of the form 0'*/u by a constant 0. {Also, each §is
replaced by the opposite value.) Let C' be the resuiting
circuit, and let B = {y| |yl > n, y occurs in Cy, 2 and y

is not of the form 0*lu}.

We verify that the final circuit C' satisfies the
properties (a')—(c') listed above. First, in each step
j < m/2—1, we replaced some variables in C; by depth-
2 circuits. So, C;41 has depth two plus the depth of C;.
Thus, Cyp,; has depth at most m. Since we only re-
placed variables in Cy,,;; by constants, the final circuit
(" also has depth at most m.

Next, to check (b'), we note that every gate in
C has fanin < 27{"), Furthermore, by Lemma 2.2,
every gate in circuit C, has the same bound for its
fanin. Therefore, without combining adjacent gates
of the same type, cach gate of €' has fanin < apiln),
That is, the total number of gates in ' is al most
(2pitnlymit olmt Dpi(n)

For condition (c'), we note that all variables of

length not equal to n are replaced by constants or other
circuits. So, the only variables left in C' are of length

n.

Now from the inequality €2%/(™~1) > (m + 1)pi(n),
we can apply Corollary 4.2 to circuit C' and conclude
that C' does not compute the parity of the 2" vari-
ables ¢ € L™, So, we can find a set D C X" such that
1" € Loaa(D) iff C' outputs 0 when variables z are given
values x p(z).

Define A(n) = A(n -~ 1)U D, A(n) = A(n - 1)U B,
Bn = max{n,pi(n) + 1}, and cancel i. Stage n = 2{ +1



is complete.

Let A = U2, A,,. We need to verify that A satisfies
every requirement Rpy, t > 0, and Ry, ¢ > 0. For
requirement Ro4, t > 0, we note that in Stage n = 2t,
we have assigned all strings O'w, |u| = £, to A(n) or
A(n) such that w € K(A(n — 1)) & 0'u € A(n). Since
A agrees with A(n — 1) on strings of length < n, we
have u € K(A(n —1)) & u € K(A). Furthermore, once
a string 0%z is added to A(n) or A{n), its membership
in A is never changed in later stages. So, 0tz € A(n) &
0'u € A. The only thing left to check is that in earlier
stages n' < n, no string of the form 0%, with ju| = ¢,
has been put in A(r') or A(n'). This is truc because in
an even stage n' = 2t we never add any string of length
longer than n' to A(n') or A(n') and in an odd stage
n' = 2#' + 1 we only add strings of length n' or strings
which are not of the form 0%y to A(n') or A(n').

To verify requirement 13 ;, we note that the inequal-
ity €2®/(m-1) 5 (m 4 1)pi(n) is satisfied by almost all
integer n. Therefore, each integer 7 will eventually be
canceled. Assume that 7 is canceled in stage n = 2¢+ 1.
We want to show that 1™ € L,q4(A) iff N,-A rejects 17,
To show this, we note that circuit C' constructed in
stage n satisfies the following property.

(d') When we use x a{w) as the input value for each
variable w in €', C’ outputs 1iff N2 accepts 1.
(Note that the set A here is the fixed set defined
by A = UjZgAs which satisfies requirements
Ry for all t > 0.)

This property can be proved by induction by show-
ing that all circuits C;, 1 < j < m/2, constructed in
stage n satisfy it. We omit the details.

Now, observe that, in stage n, the set I} is chosen
such that 1™ € Lggq(D) iff ¢ outputs 0 when each
variable z is given the input value x p(z). Since we have
added set D to A, the following holds when each variable

z 1s given the input value x4(2):
1" CLoga(A) & 1™ € Loga( D)
& ' outputs 0 & NiA rejects 1™,

Thus requirement R;; is satisfied when i is canceled.
This completes the proof of Theorem 4.3. O

Now we extend Theorem 4.3 to more general cases.

Theorem 4.4. For each k > 0, there exists a set 4
such that PSPACE(A) # ©f(4) = If (4) # £F_,(4).

Proof. The proof is a combination of the constructions
in the proofs of Theorems 3.2 and 4.3. We only give an
outline of the proof. We consider only the cases when
k > 1. (The case £ = 1 needs a different but simpler
proof, we omit its proof.) We will construct a set 4 to
satisfy three sets of requirements:

Roy: for alt strings « of length n, u ¢ K*A) &

(Jog, for] = n)Nog, [va] — n) - (Qrog, e
n) Ouvyvy .. .v; € A
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R, ;: there exists an n; such that 1™ € Li(A) iff the

ith Efj_]]-predicate o¥71(4;1™) is false.
R; ;: There exists an m; such that 1™ € L,q4(A) iff
the jth Ef‘l-predicate O';-C(A; 1™i) is false.

As we argued before, the requirement Ry =
A%, Ro,y implies £F (4) = TIF(A4) and the requirement
Ry = AR, Ry; implies that Tf(4) # =F_(4). Fur-
thermore, the requirement RB; = /\;?‘;2 R3 ; implies that
Load(A4) ¢ F (A) and hence PSPACE(A) # T (A):

In our construction, we will consider three types
of stages. At stage a = (k + 1)n, we try to satisfy
requirement R ; for the integer ¢ such that 27 is the least
uncanceled integer. (If the least uncanceled integer is
an odd integer, then do nothing.) Assume that 2i is
the least uncanceled integer and « is sufficiently large.
Then, we satisfy Ry;, with n; = n, by doing almost the
same thing as in stage « of the construction in the proof
of Theorem 3.2; the only difference is that at the end of
the stage, we turn on a flag: F = true, and cancel the
integer 21 (instead of 7).

At stage a = (k+1)n+ 2, we try to satisfy require-
ment Ry ; for the integer 7 such that 25 + 1 is the least
uncanceled integer. The action in this stage is similar to
the construction in an odd stage of the proof of Theorem
4.3.

That is, when a is sufficiently large and o« >
Bua—1, we consider the jth Ef’l-predicate o-}‘(A;l"‘).
By Lemma 2.1, there is a circuilt C associated with
af(A; 1%) having the following properties:

(a) the depthof Cis <k +1,
) each gate of C has fanin < opi{a),
(c) the bottom fanin of C is < p;(a),
)

the variables in C' are strings of length < p;(«a),
and

(e) for every set A, if every variable y in C is given
the value x 4(y), then C outputs 1 iff o;‘(A;l")
is true.

Similarly to the comstruction in Theorem 4.3, we
modify circuit C into C' such that it satisfies the fol-
lowing properties:

(d') the depth of C' is < m = 2klog p;(),
(¥') the number of gates in C' is < 2(™+1)pile) and
(c') all variables in C' are strings of length c.

The modification of C into C' is similar to the mod-
ification in an odd stage of the construction in Theorem
4.3. The main idea is to replace each variable y of length
> a and of the form y = Ouv, |v| = kju|, by the dual
circuit of the circuit Cy, where Cy, is a depth-(2k) circuit
satisfying conditions of Lemma 2.2 (with respect to the
string u). (The reason of using the dual circuil of C
instead of C;, itself is that we want to get the relation

u ¢ K*(A) & y € A.) Note that for each y of the form



Ouv, with |v| = k|u|, the variables in circuit C} are of
length < |u| < |y|/(k+ 1) < |y}/2. Thus, as argued
in the proof of Theorem 4.3, the circuit C will be ex-
panded into a new circuit with no variable y of length
> a having the form y = Ouv, |v| = k|u|, and with depth
< 2klog pj(a). By replacing all other variables of length
> a by constant 0 (and form the set B) and all other
vatiables z of length < a by value x 4(q-1)(2), we obiain
a new circuit C’ satisfying the above conditions (a'}—
(¢'). Choose a set D C I such that 1" € Lyqq(D) iff
C' outputs 0 when each variable z is given value xp(z).
Let A(a) = A(a —1)U D, A(a) = A(a — 1)U B, and
Ba = max{a, pj(a)+1}. Finally, we cancel integer 25 +1
and turn off the flag: F = false.

We can prove, similarly to the case in the proof
of Theorem 4.3, that circuit C’' satisfies the following
property:

(d') Assume that A4 is an extemsion of A(a) and
AN A(a) = 0. Also assume that for all u of

length = < [u] < pj(a)/(k + 1), v ¢ K¥(4) &

(Yv, |v] = k|u|)0uv € A. Then, if we give xa(z)
as input value for each variable z in ¢', then C'
outputs 1 iff tr;-‘(A; 1%) is true.

Note that, in the above, without the assumption
that u ¢ K*¥(A) & (W, || = k|u|)0uv € A, the circuit
C' may not compute exactly the predicate a}‘(A;l"),
because we replaced each variable y of the form Ouv by
a circuit computing the value 1 — x gu(4y(u) which is
not necessarily equal to x 4(y) even if set A satisfies the
requirements Ry |,. Therefore, we need this stronger
assumption. We will show later that this stronger as-
sumption can indeed be satisfied in our construction.

At stage a = (k + 1)n + 1, we satisfy requirement
Ryy. For each u of length n, we determine whether
u € K¥(A(a — 1)), and try to find a set B C 0uX*®
such that

(%) u gK*(A(a — 1)) & (Foy,loa| = n) -
(kak’ Ivkl = n)()mu VR € B.

This set B will be determined as follows: if the flag F
is true, then search for a set B satisfying both (*) and
Bn(A(a— 1)U A(a —1))) = 8; il the flag is false, then
let B = 0 when u € K*¥(A(a—1)) and B = 0uZ*® when
u ¢ K*(A(a — 1)). Finally, let A(e) = A(a — 1)U B,
Ale) = A(a - 1).

Note that the flag F is turned on whenever an even
integer 2¢ is canceled. When 2i is canceled in stage o,
some strings of the form Ouv, |u| = n and |v| = kn,
may have been added to set A(a') or A(a'). However,
later in stage @ = (k + 1)n + 1, before the flag F is
turned off, a set B satisfying both (*) and BN (A(a —
1)U A(a —1))) = @ can always be found, as proved by
Lemma 3.1. (Note the by setting 5, to be the length
of the longest string added to A(a') or A{a'), we know
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that the flag F' will not be turned off until in some stage
a>fy.)

The flag F will be turned off when we cancel an odd
integer 25 + 1. Suppose we cancel 2j + 1 at stage a",
then we must have " > fB,n_;, and hence no strings of
length > o are in set A(a” ~ 1) or in set A(a" —1).
Thus, in later stage o« = (& | 1)n + 1, before the flag is
turned on, we have 0u3*" N (A(a— 1)U A(a~1))) =0
for all u of length n. So, in stage a, the choice of the set
B can be made free from interference of earlier stages.

This completes the construction of set A. Note that
by setting B4 to be the length of the longest string added
to A(m) or A(m) for all m < «, we prevent the possible
interference between stages (k+1)n and stages (k-+1)n+
2. By the discussions in the construction, set A satisfies
requirements Ry, for all n and Rj; for all i. The only
thing left to check for requirement Rj; is that set A
satisfies the stronger assumption of (d'): for all u of
length n < Ju| < pj(a)/(k+1),u & K*(4) & (Yo, v] =
klu|)Ouv € A. We note that by the definition of S the
flag F is off at stage o' = (k + 1)|u| + 1. Therefore,
in stage o', we satisfy the requirement Ry ju| by letting
0us*vl C Aifu @ K¥(A) and OuS*vin g4 = 0ifu €
K¥(A). This shows that the assumption, and hence
the conclusion, of property (d') of stage « is satisfied
by A. As a consequence, requirement R ; is satisfied
when 25 41 is canceled. This completes the proof of the
theorem. )

5. Open Questions

In this paper, we have constructed oracles which col-
lapses the polynomial time hierarchy to exactly the kth
level. Furthermore, relative to different oracles, the
class PSPACE may either collapse to the kth level of
the polynomial-time hierarchy or may be different from
the polynomial time hierarchy. Several questions about
the relativized polynomial time hierarchy however re-
main open. First, note that the set L,g4(4) is actually
in the class D# P(A) (see, for definition, Angluin [1]).
Thus, our results together with Yao’s [12] result actu-
ally showed that relative to some oracles, the class D#P
may be separated from the polynomial time hierarchy
while the hierarchy may have either finite or infinite lev-
els. An interesting question here is to find an oracle to
separate the class PSPACE from D#P.

Heller [7] has constructed oracles X and Y such that
¥F(X) = I(X) # AP(X) and ZE(Y) = AP(Y) #
2P(Y). It would be interesting to scc whether these
resulls could be extended to the kth level of the poly-
nomial time hierarchy.
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