
MESSAGE ROUTING SCHEMES IN A HYPERCUBE MACHINE

S. Raghupathy, M. R. Leuze, and S. R. Schach
Computer Science Department

Vanderbilt University
Box 1679, Station B
Nashville, TN 37235

ABSTRACT

The aim of this study is to determine
efficient routing schemes for message
passing in a hypercube machine. Two
different algorithms are considered,
namely static routing in which the path of
a message is predetermined by the
addresses of the source and destination
nodes, and dynamic routing where the
decision as to the next node in the path is
made by the current node on the basis of
local information regarding queue lengths.
In addition, various different prioritization
schemes are compared for both static and
dynamic routing. The results show that
dynamic routing can be up to twice as
efficient as static routing, provided priority
is given to messages which have only a
few hops to traverse or were transmitted
early in the computation sequence.

1. INTRODUCTION

A hypercube of order n consists of 2n
processors interconnected in the form of a
binary n-cube in which the individual
processors communicate with one another by
means of message passing. In commercially
available hypercubes static routing of
messages is used, that is to say, given a
source node N, and a destination node Nd, the
path of every message from N, to Nd is
determinate. No matter how much congestion
there is along the fixed path from N, to Nd,
and irrespective of queue lengths at the

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 ACM 1988 0-89791-278-O/88/0007/0640 $1.50

intermediate nodes, the message must travel
along this path, and no other.

Using a store-and-forward technique (as
opposed to wormhole routing [11, or cut-
through routing [2]), the static routing
algorithm is implemented as follows. The
addresses of the 2n processors can be
represented using n bits. Suppose that the
message is currently at node N, which is
represented by bit pattern (~~-1, cl, CO),
and that the destination node Nd is represented
by bit pattern @,-I, . . . , dl, do). Let i denote
the index of the rightmost bit in which N, and
Nddiffer. Then the next node on the route
from Ns to Nd is the node represented by bit
pattern (en-l, . . ., cl, CO) with bit i flipped, that
is to say, the message is routed in dimension
i. The algorithm continues in this way until
the message arrives at node Nd. The path
from NC to Nd can consist of at most n hops,
corresponding to the case in which all n bits
have to be flipped.

Superficially, static routing seems somewhat
short-sighted. After all, dynamic routing (that
is to say, allowing the message route from N,
to Nd to vary depending on circumstances)
must be preferable to static routing because it
allows every message to select the (locally)
optimal route under the current circumstances;
any sort of choice is surely preferable to no
choice at all. While dynamic routing does
indeed have this advantage, there is a price to
pay, namely the overhead of implementing
dynamic routing. At each node calculations
have to be performed to determine the next
node to which the message should be routed,
and links have to be tested to see which ones
are free. The size of the overhead will vary
from hypercube to hypercube. In some
machines, the additional work can be done in
hardware in parallel with other operations; in
other machines, it must be done in software,
using machine cycles that could otherwise be
used for productive computing.

640

http://crossmark.crossref.org/dialog/?doi=10.1145%2F62297.62385&domain=pdf&date_stamp=1988-01-01

The purpose of this work is threefold First,
we investigate dynamic routing empirically to
see just how much more efficient dynamic
routing is than static routing. Since we do not
know what the overhead would be on a
specific existing or future hypercube machine,
we ignore the overhead, and simply measure
how much faster dynamic routing is than static
routing. If this difference is sufficiently large,
it seems reasonable to conclude that, however
it is implemented in practice, dynamic routing
with all its overheads will be more efficient
than static routing. Second, both static and
dynamic routing can be used in conjunction
with a number of different prioritization
schemes, such as next transmitting the
message with the smallest number of
remaining hops, or the message that has been
the longest time in the system. In this paper
we examine the effect of various prioritization
schemes on both static and dynamic routing.
Third, we evaluate the effect of connecting
nodes by means of a bidirectional link, as
opposed to two unidirectional links.

In this research we have restricted ourselves to
problems which can be represented as directed
acyclic graphs (DAGs) of processes. Each
process receives zero or more messages, after
which it computes, transmits zero or more
messages, and then terminates. An example
of this type of problem is parallel Gaussian
elimination in which each process is
responsible for maintaining and updating a
single row of a large, sparse matrix. A further
assumption is that there is a one-to-one
correspondence between processes and
processors. Finally, we ignore the problem of
deadlock caused by full message buffers [3].

The rest of this paper is organized as follows.
In section 2 the various routing techniques are
outlined. In section 3 we describe the
simulator. Results obtained using the
simulator are given in section 4. Our
conclusions are in section 5.

2. ROUTING TECHNIQUES

The choice of routing scheme is a critical
factor in the design of an interconnection
network. While a simple routing scheme may
not be able to exploit all the capabilities of a

network, a complex routing scheme making
use of detailed global knowledge about flow
patterns and message queue lengths in every
node will have large computational overheads.
In this work we consider two routing
schemes, namely static routing and dynamic
routing. Both schemes use local knowledge
only. In static routing, the next node to which
a message is sent is determined using the
algorithm described in section 1. Blocking is
a common consequence of static routing,
because the path to be followed by a message
is determined solely from the source and
destinations addresses; no account is paid to
the current distribution of messages in the
system. In contrast, in dynamic routing if the
next hop (as determined by the static routing
algorithm) is blocked, then an attempt is made
to send the message along a different route to
its destination. Suppose that the message is
currently at node NC which is represented by
bit pattern (c,- 1, , . ., c 1, CO), and the
destination node Nd is represented by bit
pattern Cd,+ . .., dl, do). Let the bit patterns
representing NC and Nd differ in bit positions
PjPj-19 s-.9 p1 with 1 <j I n-l. If the static
algorithm is used, then the next node on the
route from N, to Nd will be the node
represented by bit pattern (~~-1, cl, CO)
with the bit in position p1 flipped. It makes
no difference if the appropriate link is in use,
and if so, how long the queue for that link is.
In dynamic routing, however, if the indicated
link is blocked then an attempt is made to
route the message along one of the other
dimensions in which it still has to travel.
Thus if dimension p1 link is blocked, an
attempt is made to route it along dimension ~2,
and so on. Only if the links in all j of the
dimensions in which the message must still
travel are in use can the message be
considered to be blocked.

A second aspect of routing is prioritization. If
a number of messages are waiting to use a
link, one method of choosing which message
to transmit is on the basis of first in, first out
(FIFO), the method used in commercial
hypercubes. In this work we consider various
alternative prioritization schemes, such as
LIFO, giving priority to the message with the
maximum number of remaining hops, or the
minimum number of remaining hops. In

641

addition, since the processes form a DAG,
each process can be assigned a sequence
number such that every message is sent to a
process with a higher sequence number than
the sequence number of the process that
generated the message. The sequence number
of the generating process can then be used to
prioritize messages. The complete list of
prioritization schemes appears in Figure 1.

Third, we considered two types of
interconnecting link, namely a single
bidirectional link between nodes (as in
commercial hypercubes), and two
unidirectional links, one in each direction.

3. THE SIMULATOR

The simulator was constructed to investigate
routing strategies. Each message in the
system essentially consists only of header
fields; the data field is ignored because it is
irrelevant from the viewpoint of routing. The
header contains information such as source
and destination node, as well as information
needed when the order of transmission of
messages is done on the basis of
prioritization, such as sequence number, time
generated, arrival time at the current node, and
number of hops that still have to be traversed.
Figure 2 depicts the structure of a message.

The execution cycle of the simulator consists
of three phases: message generation, message
ordering, and message routing. During the
message generation phase, each active process
is checked to see if it has received all the
messages it requires. If so, the messages it is
to transmit are generated, and placed in the
message buffer. The process then terminates.
After all possible messages have been
generated, the simulator enters the message
ordering phase. Here, the messages in each
buffer are ordered according to the
prioritization scheme currently being evaluated
(in the case of equal priorities, ties are broken
randomly). Finally, the message routing cycle
commences. Here, each message is fetched
from the message buffer and an attempt is
made to transmit it to a neighboring node. If
static routing is being used, and the
predetermined link is in use, then that
particular message is blocked. When dynamic

routing is used, an attempt is made to transmit
the message over the first unused link that will
move it closer to its destination.

In a real hypercube, each node generates
messages as soon as it has acquired all its
input messages. The exact order and the
precise time at which messages are generated
will depend on delays within the system, and
(as with most distributed systems) will vary
from run to run. In our simulator, messages
are generated “in step,” that is to say, at the
message generation phase of the cycle all
possible messages are generated. Further,
they are generated in a fixed order which does
not vary from run to run. To add an element
of randomness to the simulation, the contents
of a message buffer are therefore randomly
shuffled at the end of each generation phase.
In addition, when priorities are used, after
shuffling the contents of a buffer the first
message of highest priority is transmitted
next. In this way, if two or more messages
have equal priority then shuffling has the
effect of breaking ties randomly.

4. RESULTS

All possible combinations of routing scheme
(static or dynamic), link (one bidirectional link
or two unidirectional links), and prioritization
scheme (see Figure 1) were simulated, a total
of 44 different cases. Each case was run on a
(simulated) hypercube of dimension N = 8
(256 nodes). Each case was repeated 10
times, and the mean computed. Each case
was repeated many times to smooth out the
effects of the random shuffling described at
the end of the previous section.

A number of different input graphs were
considered. Since the results were very
similar in all instances, for brevity only one
input case is presented here. Figure 3 depicts
the 22 cases with one bidirectional link
between nodes, and Figure 4 shows the 22
cases with two unidirectional links.

Not surprisingly, dynamic routing performs
better than static routing, but the improvement
factor varies depending on the prioritization
scheme. At best, the improvement is by a
factor of two. Overall, the best results occur

642

when priority is given to messages with the
lowest sequence number (Scheme E). Results
almost as good are obtained when priority is
given to messages with the fewer number of
hops, either in the original message (Scheme
A) or remaining to be traversed (Scheme C).
Messages of lowest sequence number are
essentially those transmitted earliest in the
computation sequence. Giving priority to
such messages essentially speeds up the rate at
which processes can begin transmitting, and
hence speeds up the computation as a whole.
With regard to messages with the fewest
numbers of hops, by giving them priority, the
traffic congestion in the hypercube is
decreased, thus allowing the longer messages
to proceed with less blocking than would
otherwise be the case. In addition, messages
with many hops still remaining have more
choices of routes along which to travel to their
final destination than messages with only one
or two hops still to complete. By giving
priority to messages with fewer choices, the
overall amount of blocking is decreased.

From Figure 5 we see that two unidirectional
links (again not surprisingly) improve
throughput over one bidirectional link, and
again the improvement depends on the
prioritization scheme. What is perhaps
unexpected is that the improvement is rarely of
the order of more than fifteen per cent, and is
usually much smaller. This effect may be
caused by the fact that the problem graph is a
DAG, thereby imposing a directionality on the
flow of messages.

5. CONCLUSIONS

We have seen that the throughput of a certain
class of problems on a hypercube can be
increased by up an order of two through use
of dynamic rather than static routing
algorithms, and also by prioritizing the
messages. However, the increased cost of
having two unidirectional links between nodes
(rather than a single bidirectional link) does
not seem warranted for the class of problems
considered here.

A number of different prioritization schemes
have been considered. Nevertheless, it is
possible that other prioritization schemes

might result in a further increase in throughput
for this class of problems. It is likely that
different prioritization schemes would yield
improved throughput for other classes of
problems. In short, although the results are
encouraging, further research is needed to
determine whether dynamic routing algorithms
should be used in all hypercubes.

REFERENCES

[l] William J. Dally, “A VLSI Architecture
for Concurrent Data Structures,” Ph.D.
Thesis, Computer Science Department,
California Institute of Technology, Technical
Report 5209:TR:86,1986.

[2] Pat-viz Kermani and Leonard Kleinrock,
“Virtual cut-through: A new computer
communications switching technique,”
Computer Networks vol. 3, pp. 267-286,
1979.

[3] William J. Dally and Charles L. Seitz,
“Deadlock-free message routing in
multiprocessor interconnection networks,”
Computer Science Department, California
Institute of Technology, Technical Report
5231:TR:86, 1986.

643

* .-. Q * .-. * Header * N Data

Destination
The Current Rel’ative

Started Node Address

Figure 1: Message format

Priority is given to a message with :

A
B
C
D
E
F
G
H
I
J
K

Minimum remaining number of hops
Maximum remaining number of hops
Minimum original number of hops
Maximum original number of hops
Minimum sequence number of originating process
Maximum sequence number of originating process
Earliest generation time
Latest generation time
Earliest arrival time at a node (FIFO)
Latest arrival time at a node (LIFO)
(No prioritization scheme)

Figure 2: The prioritization schemes

644

300

250

200
Time ,50
Taken

100

50

0
ABCDEFGHIJK

Prioritization Scheme

Figure 3: Running time with single bidirectional link between nodes. (The letters refer to the
prioritization schemes listed in Figure 2).

200
Time , 5o
Taken

100
q Dynamic Routing

ABCDEFGHIJK
Prioritization Schemes

Figure 4: Running time with two unidirectional links between nodes. (The letters refer to the
prioritization schemes listed in Figure 2).

645

15.00

Percentage , o o.
Improvement ’

5.00

q Dynamic Routing

0.00
ABCDEFGHIJK

Prioritization Scheme

Figure 5: Percentage improvement in running time when two unidirectional links are used.

646

