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ABSTRACT 

The aim of this study is to determine 
efficient routing schemes for message 
passing in a hypercube machine. Two 
different algorithms are considered, 
namely static routing in which the path of 
a message is predetermined by the 
addresses of the source and destination 
nodes, and dynamic routing where the 
decision as to the next node in the path is 
made by the current node on the basis of 
local information regarding queue lengths. 
In addition, various different prioritization 
schemes are compared for both static and 
dynamic routing. The results show that 
dynamic routing can be up to twice as 
efficient as static routing, provided priority 
is given to messages which have only a 
few hops to traverse or were transmitted 
early in the computation sequence. 

1. INTRODUCTION 

A hypercube of order n consists of 2n 
processors interconnected in the form of a 
binary n-cube in which the individual 
processors communicate with one another by 
means of message passing. In commercially 
available hypercubes static routing of 
messages is used, that is to say, given a 
source node N, and a destination node Nd, the 
path of every message from N, to Nd is 
determinate. No matter how much congestion 
there is along the fixed path from N, to Nd, 
and irrespective of queue lengths at the 
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intermediate nodes, the message must travel 
along this path, and no other. 

Using a store-and-forward technique (as 
opposed to wormhole routing [ 11, or cut- 
through routing [2]), the static routing 
algorithm is implemented as follows. The 
addresses of the 2n processors can be 
represented using n bits. Suppose that the 
message is currently at node N, which is 
represented by bit pattern (~~-1, . . . . cl, CO), 
and that the destination node Nd is represented 
by bit pattern @,-I, . . . , dl, do). Let i denote 
the index of the rightmost bit in which N, and 
Nddiffer. Then the next node on the route 
from Ns to Nd is the node represented by bit 
pattern (en-l, . . ., cl, CO) with bit i flipped, that 
is to say, the message is routed in dimension 
i. The algorithm continues in this way until 
the message arrives at node Nd. The path 
from NC to Nd can consist of at most n hops, 
corresponding to the case in which all n bits 
have to be flipped. 

Superficially, static routing seems somewhat 
short-sighted. After all, dynamic routing (that 
is to say, allowing the message route from N, 
to Nd to vary depending on circumstances) 
must be preferable to static routing because it 
allows every message to select the (locally) 
optimal route under the current circumstances; 
any sort of choice is surely preferable to no 
choice at all. While dynamic routing does 
indeed have this advantage, there is a price to 
pay, namely the overhead of implementing 
dynamic routing. At each node calculations 
have to be performed to determine the next 
node to which the message should be routed, 
and links have to be tested to see which ones 
are free. The size of the overhead will vary 
from hypercube to hypercube. In some 
machines, the additional work can be done in 
hardware in parallel with other operations; in 
other machines, it must be done in software, 
using machine cycles that could otherwise be 
used for productive computing. 
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The purpose of this work is threefold First, 
we investigate dynamic routing empirically to 
see just how much more efficient dynamic 
routing is than static routing. Since we do not 
know what the overhead would be on a 
specific existing or future hypercube machine, 
we ignore the overhead, and simply measure 
how much faster dynamic routing is than static 
routing. If this difference is sufficiently large, 
it seems reasonable to conclude that, however 
it is implemented in practice, dynamic routing 
with all its overheads will be more efficient 
than static routing. Second, both static and 
dynamic routing can be used in conjunction 
with a number of different prioritization 
schemes, such as next transmitting the 
message with the smallest number of 
remaining hops, or the message that has been 
the longest time in the system. In this paper 
we examine the effect of various prioritization 
schemes on both static and dynamic routing. 
Third, we evaluate the effect of connecting 
nodes by means of a bidirectional link, as 
opposed to two unidirectional links. 

In this research we have restricted ourselves to 
problems which can be represented as directed 
acyclic graphs (DAGs) of processes. Each 
process receives zero or more messages, after 
which it computes, transmits zero or more 
messages, and then terminates. An example 
of this type of problem is parallel Gaussian 
elimination in which each process is 
responsible for maintaining and updating a 
single row of a large, sparse matrix. A further 
assumption is that there is a one-to-one 
correspondence between processes and 
processors. Finally, we ignore the problem of 
deadlock caused by full message buffers [3]. 

The rest of this paper is organized as follows. 
In section 2 the various routing techniques are 
outlined. In section 3 we describe the 
simulator. Results obtained using the 
simulator are given in section 4. Our 
conclusions are in section 5. 

2. ROUTING TECHNIQUES 

The choice of routing scheme is a critical 
factor in the design of an interconnection 
network. While a simple routing scheme may 
not be able to exploit all the capabilities of a 

network, a complex routing scheme making 
use of detailed global knowledge about flow 
patterns and message queue lengths in every 
node will have large computational overheads. 
In this work we consider two routing 
schemes, namely static routing and dynamic 
routing. Both schemes use local knowledge 
only. In static routing, the next node to which 
a message is sent is determined using the 
algorithm described in section 1. Blocking is 
a common consequence of static routing, 
because the path to be followed by a message 
is determined solely from the source and 
destinations addresses; no account is paid to 
the current distribution of messages in the 
system. In contrast, in dynamic routing if the 
next hop (as determined by the static routing 
algorithm) is blocked, then an attempt is made 
to send the message along a different route to 
its destination. Suppose that the message is 
currently at node NC which is represented by 
bit pattern (c,- 1, , . ., c 1, CO), and the 
destination node Nd is represented by bit 
pattern Cd,+ . .., dl, do). Let the bit patterns 
representing NC and Nd differ in bit positions 
PjPj-19 s-.9 p1 with 1 <j I n-l. If the static 
algorithm is used, then the next node on the 
route from N, to Nd will be the node 
represented by bit pattern (~~-1, . . . . cl, CO) 
with the bit in position p1 flipped. It makes 
no difference if the appropriate link is in use, 
and if so, how long the queue for that link is. 
In dynamic routing, however, if the indicated 
link is blocked then an attempt is made to 
route the message along one of the other 
dimensions in which it still has to travel. 
Thus if dimension p1 link is blocked, an 
attempt is made to route it along dimension ~2, 
and so on. Only if the links in all j of the 
dimensions in which the message must still 
travel are in use can the message be 
considered to be blocked. 

A second aspect of routing is prioritization. If 
a number of messages are waiting to use a 
link, one method of choosing which message 
to transmit is on the basis of first in, first out 
(FIFO), the method used in commercial 
hypercubes. In this work we consider various 
alternative prioritization schemes, such as 
LIFO, giving priority to the message with the 
maximum number of remaining hops, or the 
minimum number of remaining hops. In 
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addition, since the processes form a DAG, 
each process can be assigned a sequence 
number such that every message is sent to a 
process with a higher sequence number than 
the sequence number of the process that 
generated the message. The sequence number 
of the generating process can then be used to 
prioritize messages. The complete list of 
prioritization schemes appears in Figure 1. 

Third, we considered two types of 
interconnecting link, namely a single 
bidirectional link between nodes (as in 
commercial hypercubes), and two 
unidirectional links, one in each direction. 

3. THE SIMULATOR 

The simulator was constructed to investigate 
routing strategies. Each message in the 
system essentially consists only of header 
fields; the data field is ignored because it is 
irrelevant from the viewpoint of routing. The 
header contains information such as source 
and destination node, as well as information 
needed when the order of transmission of 
messages is done on the basis of 
prioritization, such as sequence number, time 
generated, arrival time at the current node, and 
number of hops that still have to be traversed. 
Figure 2 depicts the structure of a message. 

The execution cycle of the simulator consists 
of three phases: message generation, message 
ordering, and message routing. During the 
message generation phase, each active process 
is checked to see if it has received all the 
messages it requires. If so, the messages it is 
to transmit are generated, and placed in the 
message buffer. The process then terminates. 
After all possible messages have been 
generated, the simulator enters the message 
ordering phase. Here, the messages in each 
buffer are ordered according to the 
prioritization scheme currently being evaluated 
(in the case of equal priorities, ties are broken 
randomly). Finally, the message routing cycle 
commences. Here, each message is fetched 
from the message buffer and an attempt is 
made to transmit it to a neighboring node. If 
static routing is being used, and the 
predetermined link is in use, then that 
particular message is blocked. When dynamic 

routing is used, an attempt is made to transmit 
the message over the first unused link that will 
move it closer to its destination. 

In a real hypercube, each node generates 
messages as soon as it has acquired all its 
input messages. The exact order and the 
precise time at which messages are generated 
will depend on delays within the system, and 
(as with most distributed systems) will vary 
from run to run. In our simulator, messages 
are generated “in step,” that is to say, at the 
message generation phase of the cycle all 
possible messages are generated. Further, 
they are generated in a fixed order which does 
not vary from run to run. To add an element 
of randomness to the simulation, the contents 
of a message buffer are therefore randomly 
shuffled at the end of each generation phase. 
In addition, when priorities are used, after 
shuffling the contents of a buffer the first 
message of highest priority is transmitted 
next. In this way, if two or more messages 
have equal priority then shuffling has the 
effect of breaking ties randomly. 

4. RESULTS 

All possible combinations of routing scheme 
(static or dynamic), link (one bidirectional link 
or two unidirectional links), and prioritization 
scheme (see Figure 1) were simulated, a total 
of 44 different cases. Each case was run on a 
(simulated) hypercube of dimension N = 8 
(256 nodes). Each case was repeated 10 
times, and the mean computed. Each case 
was repeated many times to smooth out the 
effects of the random shuffling described at 
the end of the previous section. 

A number of different input graphs were 
considered. Since the results were very 
similar in all instances, for brevity only one 
input case is presented here. Figure 3 depicts 
the 22 cases with one bidirectional link 
between nodes, and Figure 4 shows the 22 
cases with two unidirectional links. 

Not surprisingly, dynamic routing performs 
better than static routing, but the improvement 
factor varies depending on the prioritization 
scheme. At best, the improvement is by a 
factor of two. Overall, the best results occur 
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when priority is given to messages with the 
lowest sequence number (Scheme E). Results 
almost as good are obtained when priority is 
given to messages with the fewer number of 
hops, either in the original message (Scheme 
A) or remaining to be traversed (Scheme C). 
Messages of lowest sequence number are 
essentially those transmitted earliest in the 
computation sequence. Giving priority to 
such messages essentially speeds up the rate at 
which processes can begin transmitting, and 
hence speeds up the computation as a whole. 
With regard to messages with the fewest 
numbers of hops, by giving them priority, the 
traffic congestion in the hypercube is 
decreased, thus allowing the longer messages 
to proceed with less blocking than would 
otherwise be the case. In addition, messages 
with many hops still remaining have more 
choices of routes along which to travel to their 
final destination than messages with only one 
or two hops still to complete. By giving 
priority to messages with fewer choices, the 
overall amount of blocking is decreased. 

From Figure 5 we see that two unidirectional 
links (again not surprisingly) improve 
throughput over one bidirectional link, and 
again the improvement depends on the 
prioritization scheme. What is perhaps 
unexpected is that the improvement is rarely of 
the order of more than fifteen per cent, and is 
usually much smaller. This effect may be 
caused by the fact that the problem graph is a 
DAG, thereby imposing a directionality on the 
flow of messages. 

5. CONCLUSIONS 

We have seen that the throughput of a certain 
class of problems on a hypercube can be 
increased by up an order of two through use 
of dynamic rather than static routing 
algorithms, and also by prioritizing the 
messages. However, the increased cost of 
having two unidirectional links between nodes 
(rather than a single bidirectional link) does 
not seem warranted for the class of problems 
considered here. 

A number of different prioritization schemes 
have been considered. Nevertheless, it is 
possible that other prioritization schemes 

might result in a further increase in throughput 
for this class of problems. It is likely that 
different prioritization schemes would yield 
improved throughput for other classes of 
problems. In short, although the results are 
encouraging, further research is needed to 
determine whether dynamic routing algorithms 
should be used in all hypercubes. 
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* .-. Q * .-. * Header * N Data 

Destination 
The Current Rel’ative 

Started Node Address 

Figure 1: Message format 

Priority is given to a message with : 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 

Minimum remaining number of hops 
Maximum remaining number of hops 
Minimum original number of hops 
Maximum original number of hops 
Minimum sequence number of originating process 
Maximum sequence number of originating process 
Earliest generation time 
Latest generation time 
Earliest arrival time at a node (FIFO) 
Latest arrival time at a node (LIFO) 
(No prioritization scheme) 

Figure 2: The prioritization schemes 
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Figure 3: Running time with single bidirectional link between nodes. (The letters refer to the 
prioritization schemes listed in Figure 2). 
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Figure 4: Running time with two unidirectional links between nodes. (The letters refer to the 
prioritization schemes listed in Figure 2). 
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Figure 5: Percentage improvement in running time when two unidirectional links are used. 
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