
Retrieval Based On User Bchaviour

A.J. Kok
A.M. Barman

Department of Mathematics & Computer Science
Vrije Univcrsiteit

De Boeklaan 1081
108 1 l-IV Amsterdam, The Netherlands

ABSTRACT

This paper gives an overview of the ongoing research in the Active Data
Bases project at the Vrijc Universiteit, Amsterdam. In this project we are
specifying and building a system that helps a user in his search for useful and
interesting information in large, complex information systems. The system is
able to do this, because it learns from the interaction about the users and the
data it contains. The indications of the users are expressed in terms of
interests in the data, which serve as building blocks for user and data models.
These models arc then used to improve the search for interesting data.

1. Introdrrction

There is a clear trend towards information systems of an increasing size and complexity. The
associated problem is that it becomes almost impossible for a user to get a clear view of the
structure and contents of the information in these systems, and henceforth to make the proper
requests. It can be expcctcd that these systems wili bc used more than current data base sys-
tems by non-professional or casual users which makes the problem even more difficult.
These users will have even greater difficulty in exactly specifying what information they are
looking for.
The problems encountered with current interaction methods are a result of the fact that the
communication languages used are mainly designed to accommodate the machines, not the
humans using it. The systems require exact and exhaustive specifications for retrieving infor-
mation, while the user has often only a “vague” idea of what he is looking for. It has fre-
quently been noted (e.g. [SiKL78, SIKL79, KAPL82, WEBB86]) that it is very difficult for a
human to exactly describe what his interests are, how important every requirement is, and
how and when to relax constraints. For instance, someone looking for a house to buy can
probably not give a full and explicit description (query) of the house he would like. He would
definitely be served with a system allowing him to give vague queries. III [SIKL79] an exam-
ple is given about someone who wants to make a reservation by means of an airline trip sys-
tem for a certain day. The systcrn gives the rcqucsted information, but fails to point out that
lcaving a day earlier would make the trip 30% cheaper. The user just forgot to ask about the
trips with an earlier departure date, while the system did not have the capability to rcalise

Permission to copy without kc all part of this material is granted provided that the copies are not made or distri-
buted for direct commercial advantage, the ACM copyright notice and the title of the publication and its date
appear. and notice is given that copying is by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

c I988 ACM o-89791-274-8 88 0600 0343 $ I,50

-343-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F62437.62473&domain=pdf&date_stamp=1988-05-01

that the query of the user was more an indication of the preferred data than an exact request.
Even queries that look exact, e.g. the number of employees of .a department, might have
vague aspects. For instance, the definition of’ employee could be inontrivial (part-time, tern-
porary stationed, unpaid volunteer, etc.).

In human-human interactions it is self-evident that some constraints are more important than
others, and that most people are: willing to accept and cvcn expect an answer which does not
exactly meet the given requirements if it has some other, more favourable aspects (e.g. in the
case: of the airline trip a much lower price:). The above mentioned examples clearly indicate
that more active behaviour on the part of information systems is an essential requirement for
them to be really useful. A system should realize that certain items which do not meet the
constraints exactly might be more interesting than those that do, and should be shown also.

Another problem with current information systems is that they hardly use information about
preferences that the user has given earlier., This information can be used to avoid repetitious
interactions and to narrow down the amount of rctricvcd data in case of unspecific queries.
For instance, if someone asks information about a rather gcncral subject, e.g. about cars, then
information about the kind of cars this person is usually interested in can aid in deciding what
to show first. If no information about preferences of this user is known, then information
about other users can be very helpful.

An information system can improve its interaction with the user by suggesting expected
follow-up queries or even answering them. It is for instance often the case that someone who
is looking for information about cars wants to know the addresses of the persons or garages
where he can buy the most interesting ones. It is very helpful if the system suggests to
retrieve that information or even displays those addresses immediately.

An improvement would also be the showing of the output in a more “intelligent” way. A user
is seldom interested in long lists of data, so there is a definite need to summarize some of the
results of an information request. An active system as WC describe in this paper wilt typically
try to show more inFormation than a conventional system, so this need will be even greater.
The form of such a summary should depend on the characteristics and preferences of the
current user to make it as useful as possible.

The information density of the showed information increases aIso if it is made clear what the
most interesting part of all that information is, for instance by forcing an ordering on it. If the
information contains remarkable characteristics these should be shown in a way that will
make them very likely to be noted by the user. The definition of what characterist.ics are
remarkable depends of course again on the user.

All the problems mentioned above suggest that information retrieval systems would be much
more useful and helpful if their processing was more controlled by the interests of users in
data.. Modelling of these interests would also match more closely the rather “vague” terms in
which people seem to communicate. Therefore, we propose an interaction system that helps
the user in three ways to obtain the most in tcresting information in an information system:

- It allows the user to specify his preferences in a simple way, namely by indications of
interest and disinterest in information shown on the screen.

- Extra, related, information which is n’ot explicitly requested, but which is probably use-
ful, is shown.

- ‘The retrieved information is shown as ‘informative’ as possible.

1.1. Activeness and impertinence
The system described in this paper, which is partially implemented, will help the user in
obtaining the most interesting information. This is done by having the system buiId a model
of its users by learning about their prcfercnces. The system aiso builds a model of the infor-
mation present in the database. These models give the system the opportunity to adapt itself
to the: current user, to let the system play a more aci.ivc role in the dialogue, and to make it

-344

possible for the system to be impertinent.

The activeness of the system as we see it, consists of giving extra information that might be
more interesting than the information asked for, remembering preferences from previous
dialogues with this user and with other users, and suggesting and answering follow-up
queries that can be expected to be interesting to the current user.
The impertinence of the system consists of warning the user when new information has
arrived at the data base that might be of interest to this user, even without a specific request
for this. If for instance new information about second-hand cars is entered in the data base
and the system notices that it contains a car that might be of interest to a certain user, it wit1
notify him. This can be done by sending him mail, by telling him about it the next time he is
using the system or by interrupting his current work, depending on the urgency. We have
called this impertinent and active information retricvai system IMPACT.

1.2. User models extracted from the interaction
The models of the users and of the data are extracted from the interactions with the users.
This means that regularities in the behaviour of people using this system are used to improve
the interaction with it. Th? system lcams about and from its users and thereby about the data
it contains, and uses this knowledge to adapt itself to every individual user. No pre-
programming of user models is necessary. We expect that for information systems to be
accepted and used on a larger scale than now, by professionals as well as non-professionals.
it is a prerequisite that they have an active and impertinent component. The systems should
not be passive command-interpreters but play a much more important role in the dialogue.

The next three sections (section 2, 3, and 4) describe the models of the user, the interaction
method, and the models of the data in more detail. Section 5 is a description of some impor-
tant and necessary extensions to the currently implemented system. It gives an overview of
what we are working on now.

2. Modelling the user
We think that certain patterns in the behaviour of people interacting with a database can be
detected and used, These patterns are a result of inherent relations in the data as well as regu-
larities in the personalities of people, resulting from social, political, or religious aspects.
Our system does noi extract or USC the reasutzs for these patterns in people’s behaviour, but
does notice the presence of a regularity and tries to express this pattern in terms of interests.
We want an active system to learn about preferences concerning the data to be able to predict
interests of the user, which can then be used to retrieve information for him.
The interests of the user in the data form the basis of the model of that user as kept by our
system. For instance, in the case of an information system with data about second-hand cars,
the user model can contain the information that this user likes red cars, with a price around
5,000 Dutch guilders. If working with data about cooking recipes, the system will build user
models containing preferences in ingredients, in cooking procedures and difficulty of the
recipes. In a library system the models would include information about favourite authors,
genres etc.
The user models need to be time dependent, because the users behaviour can change over
time. These changes can have many reasons:
- A user usually has more than one subject to talk about to the system. At one time he

inquires about second hand cars, a few moments later he could ask questions about
insurances. The fact that he now wants to talk about insurances does not mean that he
will never be interested in cars anymore, just that he is now more interested in
insurances than in cars. It seems that a user has a current fucucs of interest and sticks to
that for some time, i.e. hardly allows ‘intrusion’ of other subjects.

- The user may be looking for more than one optimal piece of information about a certain

-345-

subject for different reasons. For irwance, hc may want to retricvc information about
cars for private use and for his company+ Or he is looking for a car for his spouse and
one for himself.

- The user may find some information during his starch which he didn’t know existed or
which he didn’t think of, Due to the .activc behaviour of the system information might
be shown which is more interesting than the information he actually -asked for, which
will certainly influence his behaviour.

- ‘The user’s idea of some of the information in the data base might not agree with the
,actual information. For instance, initistlly hc might be interested in a. certain type of car,
but after having seen some examples he disappointedly realizes that it is not exactly
what he had in mind.

- The user formulates his ideas wrong. He could be l.hinking about the right notions but
using the wrong “words”. Other possible problems in this arca are typing a wrong char-
actcr or pressing a mouse button at the wrong place on the screen. The preferences of
the user are not changed in these cases, but his behaviour is. This means our modeling
strategy must allow for errors.

- External factors might influence his bchaviour, for instance a pay raise could make him
more interested in expensive cars.

- The user will have to get used to the system initially, resulting in different behaviour
during a certain learning period.

The expected frequency of these changes in interests dcpcnds on the type of change, the user,
and the domain. External changes for instance can be expected to occur seldom in the used
cars d.omain: large pay rises or law change:; favouring a certain type of car do not occur fre-
quentily. In the same domain, a car mechanic can bc expcctcd to know almost all there is to
know about cars whereas a non-professional user might not know about certiin very interest-
ing types of cars. The interests of the latter person would consequently change more often,
caused by unexpected information found in the data base. To be able to deduce statements
about both the data and the user models, we assume that the chance of a change over small
periods of time (in the order of a few interactions in a dialogue) is low and that the interests
of a user do not change within one interaction.
The fact that a user’s interests can change inuoduccs a trade-off in the modelling of a user
between how hard the system should stick to the subject and how fast it should react to
changing interests. Most user modelling systems [RICH79a, CARB79, WAHL83] assume
that the user’s characteristics are more or less constant and that the models need only be
refined, not really changed, during the dialogue. These systems usually employ large stereo-
types which cannot be changed at all or onl,y very slowly. &cause they represent an average
user of a certain type, the influence of the behaviour of one person will be low. People are
almost always classified as belonging to one type, the riced to combine information from two
or more stereotypes seldom occurs.

One of the first prototypes of the IMPACT system [BOTM87] used a similar approach. The
initial bchaviour of people was compared with the information in a set of large stereotypes
and, in case of a reasonable match, one wa,s chosen to represent the user. When unexpected
indications were given the system adapted the stereotype or, in case of vexy unexpected indi-
cations, a new stereotype was sought or created. It turned out that everything worked fine, as
long a.s the user wanted to stick to the current subject. A change of interests of the user how-
ever le:ad to annoying and often unpredictable behaviour of the system.
From ,these results it was clear that a much more dynamic user model is needed. There are
patterns in the behaviour of people, the reasons are mentioned in the beginning of this sec-
tion, but they are much smaller than those represented by the mentioned stereotypes. A
change of context, or a change of interests of the user should lead to the collection of infor-
mation specifically suited to the new situation, instead of slowly changing the representation

--346

of the old situation.

Therefore, in the current version of the IMPACT system we store the information about the
user’s interests in smali, context dependent objects cailcd prof?les. When needed, the system
tries to determine what the current context is (or in case of undeterminable or multiple con-
texts, a set of contexts) and collects information from profiles which agree with this context.
The collection of all these pieces of information is accumulated in one large, profiJe-like
object cahcd the focus. This focus is the systems best model of the current interests of the
user.

2.1. Structure of interest

The focus contains a set of statements about the user’s amount of interest in data. An exam-
ple of such a statement is “This users interest in red cars is 0.9”. This number is called the
interest grade. The interest grade is in the interval [-l,i], where a grade of +1 means “highly
interested”, 0 means “indifferent” and - 1 means “strongly dislikes”.

These statements can be made about object types (e.g. interest in cars), objects (a specific
car), attributes (a colour-blind person is generally not interested in the colour of a car), values
(dislike of the colour red) or a combination of those elements (e.g. someone might be
interested in black BMWs, but not in black cars in gcncral or BMWs in general).
Every statement has a certainty factor attached to it. This is a number in the interval [O,l]
that reflects how certain the system is about the statement. For instance, a certainty factor of
0.9 means that the system is very sure about the correctness of the statement. A certainty of
0.1 means that the system has an indication that the statement might be true, but is hardly
sure of it.

Whenever the system can deduce some of these intcrcsts, for instance after an interaction,
one or more profiles will be created which contain these statcmcnts. The profiles have, just
like the interests, a certainty factor attached to them. This is a result of the fact that com-
mands might have more than one interpretation and that some of these interpretations are
more likely than others. The extraction of profiles from interactions will be described in
more detail in section 3.1.

A typical profile could be something like this:

Profie329:
creationtime = “US:35 07/12/87”
username = kate
last-successful-rrse = “I 0:35 14/01/&Y*
interests = {
AV: make = BMW grculc = 0.7 cf = 0.5
AV: make = Mercedes grade = 0.8 cf = 0.6
AV: make = Fiat grade = -0.6 cf = 0.8
COMB: (make = Fiuf, colour = black)

grude = 0.4 cf = 0.7
ATT: number-of-gears grade = 0.i cf = 0.4
ATT: make grade = 0.7 cf = 0.8
TABLE: curs p-udc = 0.8 cf = 0.8

I

This profile contains the information that the current user is interested in BMWs and Mer-
cedescs, but not in Fiats. However, black Fiats are a bit interesting. The number of gears of a
car is not important at all. while the make (obviously) is. If this or another user gives at a
certain time a positive indication on Mercedes then this profile can bc used as a small piece
of evidence that in rhat case BMWs are probably also interesting, while Fiats are not. Here,
the interest in Mercedes serves as context.

-347 -

2.2. Profile selection and focus creation

The focus is the centra1 component of the system. Every time new information about the
user is derived, For instance after an interaction, the focus is computed anew. The focus is
computed by selecting a set of profiles, and combining the information that ,Ihey contain. The
selection of the profiles is guided by the established context. This context is’ expressed in the
interests extracted from the last interaction.

The profiles which will be used to create the new focus WC selected as follows:

1) The newly generated profiles extracted from the last interaction are taken.

2) Profiles which were used to create the formc:r focus are used again if they are not
incompatible with the profiles from the first step.

3) Other profiles from the profile space (the collection of all the profiles of all the users)
.are used if they are compatibIe with the profiles collected in the fist step.

Two profiles arc incompatible if they contain interest statcmcnts that are incompatible. For
instance, two statements about the same piece of data both with a high certainty factor but
with very different interest grades are incompatible. Two profiles are compatible if they are
not incompatible, and they have at least one pair of compatible interests. A pair of interests is
compatible, if they are interests in the same piece of data and their grades are not incompati-
ble. Note that compatibility of profiles is a stronger constraint than non incompatibility, so
that compatible and incompatible are not complcmcntary. For instance, two completely unre-
lated profiles are not incompatible, but also not compatible!

The information contained in the collected profiles is combined into a focus. In the combin-
ing, contradictory evidence for a statement (e.g. information that a certain user is interested
in some data and another piece of information that he is not interested in it) results in a state-
ment with a low certainty factor. Different pieces of similar evidence for a statement resutts
in a high certainty factor for that statement. The weight of each piece of evidence (a state-
ment from a profile) depends on the certainty factor of the statement, the certainty factor of
the profile it came from, the time this profile was last used successfuIly and how often it is
used successfully, how old the profile is, the “owner” of the profile (the user whose interac-
tions led to the creation of this profile) and other factors. The interest combining algorithms
used in the prototype system are based on those used in the GRUNDY system [RICH79bj,
which were based on the MYCIN certainty factor approach [BUCH84].

The profile selection and intcrcst combining algorithms have several important characteris-
tics: Step one of the selection algorithm assures that the system starts with the last .derived
infomration. This will enable it to respond quickly to changes in the interests of the user. Step
two gives all the information of previous interactions which is not explicitly refuted by the
user. In this way the user can follow a line of thought and seldom has to restate things, result-
ing in a smoother dialogue.

Step three will introduce information which was used in simiIar cases with this or possibly
with other users. Together with step one and two this assures that one can change the subject
quickly, and that information extracted earlier in the dialogue or in other dialogues and
potentiahy useful in the new context is retrieved as soon as a reference to that context is
made. A subject change is often introduced by a contradictory interaction. for instance the
user gives an item registered as uninteresting a positive mark. Step one will notice the new
object, step two will delete all disagreeing information, and step three will find older profiles
which contain possibty relevant information concerning the new subject. The active
behaviour of the system will be partly due to this mechanism.

Because of the way interests are combined and because profiles which were used to build the
current focus are dropped as soon as their information is refuted, the decision which context
is referred to is postponed as long as necessary. When it is not clear to which of the possible
contexts is referred, information from all thcsc context is used but, in cast of inconsistenties,
with very low certainty factors. As soon as a. better rcfcrence is made, the wrong contexts and

--348-

all their information is dropped immediately.

2.3. Use of the focus in the system

The focus, the systems model of the current interests of the user, is the central component in
the IMPACT system. It is used to decide what information to retrieve, what to show of this
information and how to order and present it on the screen. Furthermore, it is used to interpret
the commands of the user and can be used for scveml other purposes, e.g. to increase the cffi-
ciency of information storage.

The interest values in the focus are used to decide which information to retrieve and show to
the user. In theory we could compute the interest for every item in the database and show the
ones with the highest interest value, but this is not practical because the computation of item
interests is rather complex. Therefore we use a two step procedure: First a database query is
generated based on the main predicted interest values giving a set of favourable items which
we calI the background solution. In the second step, this background solution is analyzed
more thoroughly and reduced to a foreground solution, which is shown on the screen.
The user’s commands and indications are used to compute new profiles, which are used in
the selection and combining of profiles to create a focus. The system then decides, based on
the information in this focus, which attributes are best as a starting point for the constraints
of a SQL-query. Best candidates are the most interesting attributes, and/or those that have
large discrepancies in the interests in their values. This SQL-query is then send to the data-
base process. The number of retrieved items should bc around some optimal background
solution size. This number is a trade-off between the chance of missing an item that might
be interesting, and the costs and time of processing of all the items in the background SOILI-
tion for the more accurate interest computations. If the number of retrieved items is not near
enough to the optimal background size then constraints in the SQL-query are added or
relaxed. The optimal number can then be reached after several iterations of this process.

This point of the program is the place where the actual conversion of rather “vague” user
statements and ideas are translated to the exact specification required by current database
systems. The translation of the most striking interests to SQL clauses is rather obvious. For
instance, if a certain user is extremely interested in red BMWs then add a clause which states
those requirements. Problems arise when there are a lot of moderately graded interests of the
user present in the focus. Items with one or two of those characteristics will usually not be
interesting enough to be actually shown on the display. However, if one of the items in the
database has several of those slightly interesting characteristics, then that item will probably
be interesting enough and should not be excluded from the background solution. By choosing
the optimal background size large enough (several times the optimai foreground size) and
generating a sufficiently complex query the chance of missing such an item will be low.
When the number of items in the background solution is good enough, a more exact interest
calculation takes place. For every item in the background solution the expected interest of the
user in it is computed. Based on these interest grades the decisions are made which items are
going to be shown by the system, how much of every item (e.g. which attribute-values) will
be shown, and what summaries of information are going to be made.

If the focus does not contain information about the interest in this item (e.g. this user or other
users have not said anything about this item in the current context in the past) then other
sources for the interest computation are the interests in the characteristics of the item and the
correlation between interests in this item and other information. We assume that if the
interests in the attributes and the attribute-values of an item are known then the interest in the
item can be computed. Problems arise however when one or more of the attribute-values are
compound, e.g. the ingredients of a recipe are a set of items, each with its own interest. In
this case, set contraction functions are needed which compute the interest in the ingredients
set for a recipe from the interests in each of the ingredients itself. These functions are
described in more detail in section 5.3.

-343-

If the interest in a certain datum still cannot bc computed, for instance the interest in a non-
compound attribute-value is unknown, then similarities can bc used. These similarities
represent the correIations between intere,;ts cxprcsved ih this value and in other data. If the
interests in the other data are known a good guess of the interest in this datum can be com-
puted. Similarities arc described in section 4.

The interests in the focus are also used to make decisions about what information to shown
on the display and how to show it. Summaries of the data are ma.de in accordance with the
focus. Summaries or groups arc: useful to increase the information density, e.g. the user does
not have to look over long lists of data. How the summaty is going to be made depends on
the iinterests of the user, More detailed information about groups can be found in section 5.2.

3. The interaction method

The central roIe of the user model induces an interaction method that reflects the structure of
the information in this model. In this way, the extraction of the model from the interactions
will be much easier and the user will have better control of what is going on in the system.
The main method of interaction consists therefore of indications of interest and disinterest in
information shown on the screen. In the current version of the system the user gets the infor-
mation in the form of tables on the display. Every piccc of information on the screen is made
sensitive to the mouse connected to the display. The user can indicate his interest by clicking
the mouse buttons, one button for positive interest, another one for negative. In this way the
user can indicate his interest by clicking on the item as a whole, on attributes, tables,
attribute-values or combinations of these. The combinations are indicated by first clicking a
“start combination” button, then indicating the elements of the combination and then clicking
the “end combination” button. When the user thinks hc has said enough and wants the sys-
tem to go on, he should click the “continue” button or after a waiting period the system
decides to continue with the commands given up to now. An example of a screen is given on
the next page.
Another way for a user to express his preferences is by typing a commandline to a “normal”
SQL,-interpreter. This is a good vehicIe for small and well defined queries, but for more com-
plex and less strict ones (the “vague” queries) the method working with indications is much
easier to use. Whatever method is used, in general the indications and commands are never
executed directly but are used to adapt the system’s model of the user. This modeJ is then
used to retrieve new information. This means that for both methods the system will behave
“actively”.
There seems to be a need to bc able to give “exact” specifications besides the “normai”
interest indications [LARS87]. This is for situations in which the user does know exactly
what. he is looking for. In the current version of the IhtPACT system the preferred typ of
behaviour can be obtained by choosing the active or the exact mode. It is not yet possible to
mix exact and active indications in one interaction.

3.1. Extraction of profiles from the interaction

The statements about interest are extracted in various ways from the indications. A simple
first heuristic is that most indications can be converted directly to interests. If someone gives
a positive click on “yellow” he is probabIy interested in that colour even though this is not
100% certain: he might have made a typing error or misunderstood tic information on the
scree:n. A second heuristic is that an indication in a datum probably means that the compris-
ing data are interesting too. For instance, a positive indication of the colour yellow in the
table of cars means that the attribute colour itself is probably interesting aJso, because the
user based his choice on it. These interests have of course a lower certainty than the interests
directly indicated (in this example the attribute-value yellow).
When multiple items arc indicated+ frequencies of the attributes and values of those items are
computed to determine which of them were possibly used as sclcction criteria by the user. In

-350-

I
w
WI

T-

pri]r rljdt rcrbruik vcrw~qcn
onduidtlijk #oLor-lnhoud n erk
brandstof kcurinq versnelllnqcn
bouujarr klcur)

FRCN
(garage auto)
WERE
((OR kilonersrstand in ((90q6.9 106099)))

(OR flddl * (Qdrapc-tmr mr-vc;rt
qoudsnlt-bv.
boowacsrelvecn-bu

cuLo~obrclbcdrr]f-crjrlnpa-bv
banslux-bvl)

(OR specia:isatic - "
ivu fear bw cltrocn daihatsu))
;l]dL = (n1cuu))
verbrulk I (1X:Ll))
"crtogc" . (166-pk))
onduldcltJk 1" ((11.7
brandrtaf = (lpg drctcl
kcurwq . (anub apk]

1%))
I)

1 COIIPUIINS A NEW FORESOUNO SOLUTION...

. prijs kleur bauwjaar

5950 br?ns.mct (tilometmtand 69000)
5950 beige ("&metentand 7OOOC) I

84 ficurlna an*)
82 (keuring anvb1

(kcuringanvrb)
9zso blauw-met @randstofdlcscl)
12650 blauw ar (brandstoralcrel)

-. 139s5 (brandctotlpp) (k.cutinQ cnwp) (vcnncl~ingen 51
13950 blauw-mat p.hmaterstanu 47000)

m . 32950 blsuw @rmddtof diczcl)
18995 grommet (!&meter,:cnd67000)

83 paUriflQ anulb)
(&meterstond iOOO0)

. blauw (kCUdnQ PW&)
- .- blauw 84 (kCWiflQ WV&)
- .- blauw 84 (ktUdflQ mti)
- . bluw 8b @.CurinQ anwb)
a - 900 78 ~lometentcnd6~000)

'I

this algorithm the current interests of the user and the data model described in section 4 are
also used.

At the moment we are working on profile abstraction methods. These methods can be used as
interest extraction algorithms. The general idea is to translate the given indications directly to
profiles, and to define methods which abs;tract new profiles from these profiles. The algo-
rithms that now extract profiles from indicittions in an indirect way (like the frequency count-
ing algorithm) will then be subsumed by these.

4. Data model - similarities
At various places in the system WC riced to know how “similar” two pieces of data are to each
other. ExampIes arc:

- To compute the interest of a datum based on the known interests of other data. If no
information is available about the interest in this datum in the current context, then its
interest can hc computed from similar data of which the interests are known.

- To interpretate the user commands in the intcrcst extraction algorithms. For instance.
the system needs a metric on the attribute price to recognize the situation in which a
user only chooses “cheap” cars.

- To determine whether a certain indica,tion is “out of character”.

- To generate summaries of data. The classification of values of an attribute should be
based on how similar those values are to each other, so that for instance all the dark
colours will be in one group.

The similarity of two pieces of data can bc obtained by computing correlations in the indica-
tions of users. These correlations indicate the direction and strength of similarities in
appraisal of people in these data. For cxarnple, when white and yellow cars are often graded
the same (e.g. people indicate them both positively or both negatively) then white and yellow
will obtain a high similarity value. Also, when people often approve of red and disapprove of
pink cars then pink and red will get a negative similarity value. Similarities can in this way
describe which colours look alike and whjch are diffcrcnt. It can also describe that prices of
$990 and $995 are “closer” to each other than $1001 and $998. The system would observe
different behaviour concerning those two pairs, but would never ponder about the psycholog-
ical reasons for this.

The correlation in grading between two objects is a number between +I and -I, with +I
meaning that the objects are always graded the same and -1 meaning they are always given
opposite interest indications. A similarity of 0 means that there is no evidence for a correla-
tion at all in the expressed or deduced interests in those two data.

At the moment, the similarities describe how the avcragc user sees the data or, more pre-
cisely, what the consensus of the users about the resemblance of the data is. Personalized
views of the data are not represented in the current similarities. However, personal differ-
ences in interest in the data are adequately reprexnted in the profile space.

4.1. Computation of similarities
Since the similarities give a more general view of the data model and therefore can not be
expected to change fast, it is not necessary to update this model after every interaction.
Instead the rather complex algorithm is executed in idle time, for instance at night. For every
possible pair of data, all the interest grades of every user in that pair are collected. This gives
a list of pairs (interest in datuml, interest in datum2) together with a weight for every pair.
This weight is an indication of how much. this pair should contribute to the correlation com-
putation.

The weight of the interest pair depends on several factors. For instance, how far apart in time
the IWO data were valuated. Another factor is how sure the system is of the intercst.s. If the

-3s2-

certainty factor of one or both of the interests is low, then it should be considered less con-
vincing evidence than with two very certain interests. Several of these heuristics are used to
compute the weight of the interest pair.
The difference in knowledge represented by profiles and by similarities should be clear by
now. The profiles contain information about what the interest of the user in a certain datum
was in a certain context, according to the system, while the similarities express a rcndency in
the valuations of two pieces of data.
A similarity can in principle be computed between any pair of objects. In the current version
of the IMPACT system, only the similarity between attribute-value pairs on the same dimen-
sion is computed. This enormously reduces the complexity of the algorithm and the storage
needed for the similarities, and seems to be enough for our current uses of them.

When IMPACT cannot find a similarity value it needs, it can resort to some default algo-
rithms. These can depend on the type of the value. For instance, for the year of construction
of a car, an integer value, the difference function can be used. The similarity between
addresses can be based on the zipcode, etc. These defaults make the behaviour of the system
in the fist period of use, when it has not learned much yet, somewhat less erratic. Default
similarity functions can be given by the database administrator, thereby taking a role some-
what similar to a knowledge engineer.

Similarities represent a very simple data model, in fact nothing more than a metric on the
dab. At the moment we seem to be able to do enough with only this kind of knowledge. We
specifically do not want to abstract rules or derive other kinds of “deep” knowledge as we
think that real problem solving is a task for the underlying information system, and UlPACT
is only the interface to it. The IMPACT system might however be helpful in choosing the
right problem solving method, in searching for the relevant attributes, etc.

5. Current work

This section describes some of the issues we are working on at the moment.

5.1. Computed attributes
Information is not always stored as pure data. To get a specific piece of information from an
information base, systems sometimes have to perform transformations, calculations or use
rules to derive the answer. In this view, expert systems, knowledge bases, as well as ordinary
databases are all information systems. To be able to handle these kinds of information
IMPACT uses computed attributes. The computation of such an attribute can, depending on
its type, be executed within IMPACT, the underlying database system or an external agent. A
“normal” attribute can be viewed as a degenerate cast of a computed attribute, viz. a simple
computation (lookup) executed in the underlying database. Other examples of computed
attributes are: showing data in other units (miles versus kilometers, degrees versus radians),
computing prices in other currencies using stored exchange rates, averaging or summing of
values (for instance, the average age of women in each department). More complex compu-
tations could be invoking numerical algorithms or expcn systems, accessing distant informa-
tion bases, etc. These functions can be brought in beforehand by the daabase administrator
or they can be generated by the IMPACT system itself, using these predefined functions and
the interests as building blocks. For example, if a user seems to be interested in the age of
people in a certain group, then it could suggest to compute the average age of them, etc.
Every computed attribute will have a cost factor associated with it, which is an indication of
the amount of time, space and/or money it will take to compute this value. When the value of
an attribute should probably be shown but the system is not sure it is interesting enough to
compute its value considering the costs, the system will show a special token in its place. If
the user gives a positive indication on this (not yet computed) value, it will become more
interesting and will consequently be computed. If on the other hand the value is ignored or

-353-

given a negative indication then it will not be compukd and will disappear eventually.

5.2. Groups

The classification of values into groups has several advantages. It can increase the informa-
tion density of the shown information, it enables the user to give more global indications so
that larger “steps” in his search can bc taken, and it enables the user to give indications about
values that are not present in the shown list of items.
In [WIED84] a good example of fruitful use of summarizing is given. A question is posed to
a system with information about ship movements:

Which ships rravclledfrom Shanghai lo /long Kong last week:?

Since: the result turned out to contain 318 vessels, a more informative response was given by
classifying these:

318 ships
--------__*_

I frcighrcr, /MANi/ MARU
3 I 7 fishing bats

IMPACT will be able to make these summaries based on the user and data models. The most
interesting attribute is the best candidate to make a summary on. The actual classification of
the value set into groups is aIso based on interests and similarities, e.g. the most interesting
values are put in separate groups, not so interesting and similar values are put in the same
group, etc. The decision what to show of the elements is again guided by the user’s interests.
Since the system recognizes that the fishing boats arc not interesting at all, nothing is shown
about them except for their type, in contrast to the intcrcsting freighter. Finally, the order in
which the information is shown is also based on the user model.
From this example not only the importance of groups is clear but also the strength of the use
of a model of the user’s interests. This model is used hcrc for four decisions: on which attri-
bute to base the summary, how to make thrLt summary, what to show of the items in the dif-
ferent groups and in what order to show the groups,

5.3. Contraction functions

. How do we predict the amount of interest a. person has for a particular item in the database?
If the user has expressed his interest for this item in the past, we can use that as a starting
value. But in any nontrivial database, we must assume that the user has not seen or indicated
most of the items. We would Iikc to have a method to predict in general what the interest in
an itern is.

We assume that a good prediction of the interest in an item can be computed from the
interesxs in its characteristics. E.g. the interest in a car can be computed frem the interest in
its colour, make, age, price etc. It is obvious that not cvcry attribute has the same influence,
and that the relative importance of attributes may vary bclween persons. In the current ver-
sion of the IMPACT system we compute I.he interest in an item by taking the sum of the
interes.ts in the value of each attribute weighted by the importance of that attribute. As impor-
tance of an attribute we take its interest value, under the assumption that a person is
interested in the attributes he thinks are important and vice versa.

An alternative to splitting the interest grades over attributes and values is to use orr1y the
interest grades of values. However, this has the disadvantage that when a person changes the
subjecl the system would have to change interest values for every possible car colour. In our
scheme we only have to change the interest. in the attribute. It is also cioser to our opinion
that the interest distribution is context dcpendcnt but that his interest in the various colours of
a car remains the same, even though this part of his irrtcrcst distribution is not active at the

---3 54-

moment. Therefore it is better to disable the context, by decreasing the interest in the attri-
bute colour itself, instead of the interests in the colour values.

With this model of interest we can describe and predict to a fair extent the interest in simple
items. But it is not rich enough to describe the interest in compound objects, objects with a
sef of values for a certain attribute. Take for example the amount of interest a person has in a
compact disc. Clearly some attributes which are influential are its cover-picture, price, state
of the box etc., but the most important components of a disc are the songs on it. A problem is
how to compute the interest in a set of songs. Is a set of 2 good songs and 10 bad songs less
or more interesting than a set of 12 mediocre songs ? Another example is the interests in
cooking rccipcs, which obviously depend on the intcrcsts in the various ingredients. A per-
son could like a recipe if it contains only a few tasty ingredients, or he could require that he
likes ali the ingredients. Another person would bc satisfied when a dish contains no
ingredients that he strongly dislikes. People on a low-salt or low-fat diet have again other
constraints.
We try to model the interest in compound objects by defining set contraction functions.
These are functions which compute the interest of a set of items from the interest values of
the elements of that set. Some example functions are

- The average interest of the elements.
- The maximum interest of the elements,

- The minimum interest of the elements.

- The average of the highest 25%.
- The average of the highest 30% minus the avcragc of the lowest 30%
.*
We are investigating two possible ways of dynamicahy obtaining these’functions: the “back-
ground” and “foreground” approach (this has nothing to do with the background and fore-
ground solution!). In the background approach WC see these functions as belonging to the
data model. For every compound attribute there is a function which describes the interest
relation for a particular user between the “main” structure and the components. Analogous to
the computation of similarities, there is an algorithm running in the background which tries
to find a pattern in the interest values of the major and compound structures. WC think that a
good algorithm for this is one using “genetic programming” strategies [GREF85], requiring
functions like the ones above as buitding blocks. The algorithm continuously creates small
mutations of these functions and tries them out. A drawback of this approach is that it needs
several test cases to reach some conclusions, which means that it takes a while for the system
to notice a pattern.
The foreground approach tries to find the contraction function during the dialogue with the
user. It consists of adding beforehand for each compound attribute a set of new computed
attributes each of which computes the interest in the set defied by the compound attribute.
In principle, the indication of the user of such a computed attribute leads to the use of the
corresponding contraction function. However, it is not necessary that the user himself
chooses it because the proper computed attribute can be chosen by the system without even
showing it to the user. This is because the system, when processing the user commands, can
check also the non-visible but possibly important attributes for correlation with the users
indications of interest. If such a correlation is found, the attribute will gain importance
automatically. This has the advantage of giving the user a way of checking and possibly
more explicitly influencing the system in the refinement of his model. This method also has
the advantage that it will probably find a contraction function faster than the background
method, but at the cost of greater ovcrhcad during the dialogue. An advantage of the back-
ground method is that it will probably find a better solution on the Long run as it will always
try to improve on the functions and uses more data to cheek them on.

-355-

5.4. Impertinence

The current version of the IMPACT system assumes Ithat the data base does not change. We
are currently working on extending this to a data base in which new data is entered and data
is deleted. One of the consequence of the entrance of new data is that the: system should be
imperlinent. It should check the new data and related dati in the data base to see if some of
it has become interesting enough for a certain user to warn him about it. ‘The information in
the focus is in itself not enough to recognize such a siluation, because, the focus contains only
information about current interests of the user. If the user is now talking about cars, then all
the information about his interests in houses will be absent from the: focus. Lf however new
data about a house that exactly meets his requirements enters t.he information system, then
this user would probably want to be told <about this. This indicates that some profiles or
groups of profiles remain important even when they arc not used to create the current focus.
New data should be compared with the information in these “important” profiles, and if the
match is successful and the profiles important enough then the user should be warned.

6. Conclusions
The interaction with information systems in large and complex domains needs improvement.
This can be obtained by letting the system play a more active role in the dialogue with its
users. For this, the system needs models of its users and of the data it contains. The results in
working with the prototype version of IMPACT indicate that adding an active component to
an infiormation system can be really helpful in retrieving the most interesting information.

Acknowledgements

Professor Laurent Sikl&ssy supervises this project. It is partially supported by the Nether-
lands Organization for Scientific Research (NW(I) under grant 612-319-008 to Prof.
SiJcl6trsy.

-356-

References

[BOTM87]. Botman, A.M., Kok, A.J., and Sikl6ssy, L., “Using user models and automatic
expertise acquisition in man-machine interaction,” pp. 389-398 in Proc. Expert Systems and
their Applications, Avignon (1987).
[BUCH84]. Buchanan, B.C. and Shortliffc, E.H., Rule-based expert systems: The MYCIN
experiments of the Stanford Heuristic Programming Project, Addison-Wesley Company,
Reading, Massachusets (1984).
[CARB79]. Carbonell, J.G., “Subjective understanding: Computer models of belief sys-
tems,” (Research report #150), PhD thesis, Yak University (1979).
[GRJZFSS]. Grefenstette, J.J.(ed.), Proc. of an Inc. Cortf. on Genetic Algorithms and their
Applications, CMU, Pittsburgh, PA (1985).
[KAPLSZ]. Kaplan, S.J., “Cooperative responses from a portable natural language query
system,” Artificial Intelligence 19 , pp. 165-187 (1982).
[LARS87]. Larsen, H-L., “Knowledge representation in IRIS, an information retrieval
intermediary system,” pp- 529-548 in Proc. Expert Systems and their Applications, Avignon
(1987).
[RXCH79a]. Rich, E., “Building and exploiting user mod&,” pp. 720-722 in Proc. of the
int. Joint Conf. On Artificial intelligence (IJCAI) (1979).

[RICH79b]. Rich, E., “Building and exploiting user models,” (CMU-CS-79-119), PhD
thesis, Carnegie-Mellon University (1979).
[SIKL78]. Siklbssy, L., ‘ ‘Impertinent question-answering systems: justification and
theory,” pp. 3944 in Proc. of the 1978 ACM Annual Conference, Washington DC (1978).
[SIKL79]. Siklbssy, L., “Passive vs. active question-answering,” pp. 271-276 in Proc. of
the First Int. Symp. on Policy Analysis and information Systems, Durham, N.C. (1979).
[WAHL83]. Wahlster, W., “Overanswering Yes-No questions: extended repsonses in a NL
interface to a vision systems,” in Proc. of the Int. Joint Corrf. On Artificial Intelligence
(MXI) (1983).
[WEBB86]. Webber, B.L., “Questions, answers and responses: interacting with
knowledge-base systems,” pp. 365-402 in On knowledge base management systems, ed. J.
Mylopouios (1986).
[WIED84]. Wiederhold, Gio, “Knowledge and database management,” pp. 63-73 in IEEE
Software (Jan. 1984).

-357-

