
SANTA FE, NEW MEXICO, D E C E M B E R 5-9, 1988 117

The Role of Modularity
in Document Authoring Systems

Janet H. Walker
Cambridge Research Lab

Digital Equipment Corporation

Abstract

Modularity is a fundamental concept in documents
and document development as well as in program-
ming. I hypothesized that the effectiveness of writ-
ing professionals could be increased by providing a
working environment to support explicit modularity
in documents and document development. This
paper briefly describes an environment designed to
enable testing this hypothesis and evaluates it by
means of discussions with professional writers who
used it for large, real-world, development projects.

Introduction

Building technical documentation is a form of en-
gineering. In taking this perspective, people about
to engage in designing software to support technical
writers will find that they share both problems and
solutions with designers of software engineering en-
virouments. The project described in this paper
abstracted techniques for managing complex system
development from local software development
practice and applied them to the problem of docu-
ment development.

Modularity and Abstraction in Software

In software development, modularity and its com-
panion, abstraction, are now widely recognized as
fundamental to managing program complexity.
Modularity is the result of designing a program as a
number of small pieces, the modules, from which
the software artifact is constructed. Abstraction is

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or t o republish, requires a fee and /o r specific permission.

© 1988 ACM 0-89791-291-8/88/0012/0117 $1.50

the act of naming something and using it for what it
does (in a problem sense) instead of for how it
works (in an implementation sense [3]).

Effective modularity is not attained by break-
ing a program into arbitrary pieces. Rather the
pieces must be designed to serve some specific,
clear purpose in the overall system. The essence of
modularity lies in designing the pieces so that each
does one thing well and can be maintained indepen-
dently of the others [5]. To achieve that clarity, the
pieces must minimize their relationships with other
pieces and make any remaining relationships ex-
plicit. Dijkstra [3] points out that clarity has a
quantitative aspect as well; something long is not
likely to be clear. These considerations suggest that
the pieces should be small and that their contents
should reflect some single, simple purpose.

When you plan to build something from pieces,
the pieces have to be designed to fit together. In
architecture, furniture, and even children's block
sets, modular parts are often essentially identical or
physically interchangeable. In the engineering of
intangibles, however, the concept of a building
block is less constrained; physical interchan-
geability, for example, is not an issue. The goal in
software is to define pieces that are small, self-
contained, mutually independent, general, and
hence easy to maintain.

Effective use of abstraction depends heavily on
choosing appropriate names for the pieces. A suc-
cessful name represents the module so that it can be
used by name to represent its functionality without
requiring that users become familiar with the
procedural details of its internals. Hence, modules
are named, not with a machine-generated ID or
some equally meaningless label, but with some
user-assigned name that reflects the essential nature
or intended usage of the piece. Good naming is es-
sential to successful use of modularity.

The work on which this paper is based was per-
formed completely while the author was employed by
Symbofics, Inc.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F62506.62526&domain=pdf&date_stamp=2000-01-01

118 ACM CONFERENCE ON DOCUMENT PROCESSING SYSTEMS

There are no automatic ways to decompose a
problem. Good modular design depends on the
skill of the human beings involved; building a
software system, even modularly, remains a lot of
work. Easing that work is a primary goal of much
current effort in constructing software development
support environments. Fortunately, it is easier to
build support environments for languages that en-
courage modular design than for monolithic ones.

Programming environments and modularity
Much research in programming environments was
actually carried out in the context of artificial intel-
ligence research [7]. By its nature, AI research
deals with large, complex problems; hence, the pro-
gramming environments that evolved to support AI
programming are particularly suited to developing
any large software system.

An AI-style programming environment derives
much of its power from knowledge about the iden-
tity and interrelationships of the modules that con-
stitute the software [12]. For example, the environ-
ment itself (rather than batch tools that the user in-
vokes manually) maintains information about the
names of all the modules and about the relation-
ships between them.

This base of knowledge can enable searches for
module names containing particular words, provide
location information for source code, and support
incremental compilation and dynamic linking of
changed modules. For example, the environment
software can continuously maintain knowledge
about which software modules call which other
software modules. As a result, a programmer can
determine easily from the environment which other
modules are affected by a proposed design change.

The better the modular decomposition of the
system, the more assistance such a programming
environment can provide.

Modularity and Abstraction in Documents

The essential job of a document is to create a state
change in the mind of a reader, ideally from some
confused or uninformed state to a state of full com-
prehension. The writer is the person responsible for
providing the material that enables the reader's state
change. For complex technical material, this state
change is a highly complex, non-deterministic
process, which writers sometimes despair of even
influencing, let alone enabling.

The best the writer can do is to make assump-
tions about the initial states of various kinds of
readers, identify necessary component state changes
and the material needed to enable each of them, and
then compose a document which contains all this
material organized according to a well-designed
communications plan. The rest is, and must be, up
to the readers.

It is conventional in the field of document
processing to describe the logical structure of docu-
ments as a tree, usually consisting of chapter, sec-

tion, subsection, and other components, arranged
according to some document grammar [2,4,6].
The semantics of this structure is then expressed in
the formatting of the document. In this kind of
model, a correct document is one that conforms to
the particular tree structure defined for a document
of that type.

From a writer's point of view, however, a cor-
rect document is one that, independent of its logical
structure or appearance, enables the desired state
changes in the minds of its readers. Hence the con-
ventional view of document logical structure does
not address the essential issue for writers, which is
that of enabling the transfer of meaning.

From this alternate point of view, a document
is composed of meaning elements or modules, each
designed to contribute to desired state changes in
the minds of the readers. Thus, a module in a docu-
ment is a semantic building block rather than an ar-
bitrary physical block of content (for example, a
page or a screen). A module is a component that
says something self-contained and comprehensible.
Well-designed modules would have few connec-
tions to other moduies; the ones that they do need
(to prerequisite and subsequent modules) would be
explicit.

Titles of modules in a document reflect the
material that the modules contain. Thus, abstrac-
tion for a writer consists of being able to use the
name of a module to stand for what it is supposed to
communicate, rather than for the exact sentences
therein.

Design and Implementation of the Authoring
Environment

In undertaking this design, my hypothesis was that
writers need to manage the meaning elements of a
document independently from and in addition to its
physical appearance specification. This perspective
led in two major directions: to documents based on
modularity and to a support environment for
managing the modules.

As described earlier, the major power of a good
software development environment comes from its
knowledge of the components of the software sys-
tem. We built a support environment for docu-
ments based on analogous knowledge of document
components and the ways in which they can be con-
nected. The support environment is known as the
Concordia environment1; its features are described
in more detail elsewhere [10]. The brief description
of it in this paper concentrates on the aspects of it
that are relevant to the discussion of modularity.

The Concordia editor is a form of structure
editor that maintains modules, connections, and for-
matting markup as object-oriented data structures
instead of text [11]. Writers edit the textual parts
with standard, unconstrained text-editing coin-

IConcordia is a trademark of Symbolics, Inc.

S A N T A FE, N E W M E X I C O . D E C E M B E R 5-9. 1988 119

Concordi~ ~ E ~ P ~O
Cursor In: Section "Getting Started" (locked)

s c on s t t ng tar t s

Your system has already been configured for you at the store. Take It out
of the box, plug It in, and you are ready to go. The first thing you will do
is to log In.

include link: Logln Command (section)

Eventually, you will want to stop using your new computer. When that
finally happens:
(See the section Logout Command.

Conteats

Omdlnu

On*linir
]LLrwo~ls

a*rv~r~s
End o f "Gettln~ 5tatted" record

e c t o n 0 n o m m a n

Conumt*

O~.diau

OaQllau
g,lqtvo~t i

E~d o f 'Lo In C o m m a n d ' record

set o n ogout omman

~S~ts

[hove above and belou] ~ ' r ~ ' ~ ' | | l , ~ . T i T , . { .] ml. i r P i | | | b i i _~;(- 1 .T . i l - R . t . 1 . l f i l l ~ - i i , T T ~ I p i . i i

Editor commands
Buff era

Topics
Show Outline m-X
Hardcopy c-U s-P

Linka
S h o w Links From Record m-X
Show Links To Record m-X
Graph Links From Record m-X
Collect Record Name m-X
Create Link m-X
Find Link m-X
Reverse Find Link m-X

Records
Beginning s-/~
End s-E
Hark s-H
Create m-X
Edit s-.
Kill m-X
Add Record Field m-X
Rename m-X
Preview s-P
Check Spelling m-X
Shotv Records in Buffer" m-X
Reorder Records m-X
Hove Records ~mong Buffers m-
Add Patch Changed Records m-X
List Changed Records m-X

Harkup
Beginning s-(
End s-)
Create s-H
Hake Language Form s-L
Remove Markup s -^
Change Environment m-X
Kill s-K
Find Harkup m-X
Reverse Find Markup m-X

C o l l e c t e d Record N a m e s

~ Getting Started
Logln Command Section
Logout Command Section

Figure 1, A screen display from the Concordia editing environment, showing both completed modules and a
template for a newly defined module.

mands; they edit the structural framework with
special-purpose structural commands. Since the
material being edited consists of modules for a
document, rather than the document itself, the goals
of WYSIWYG editing do not apply. The editor in-
stead presents an interface that combines elements
of both WYSIWYG and generic markup, along
with the structure editing (Figure 1).

Modules
Each document module has two identifie~, an inter-
nal, machine-generated unique ID and an extemal,
writer-generated "name." From the software's
point of view, the external names need not be
unique. External names consist of a title and a type.
The title reflects the content; the module types
(section, variable, function, and so on) reflect the
writer's semantic classification of the module rather
than any characteristics related to layout.

The modules are created independently, with as
many modules per file as writers find convenient.

The placement and ordering of modules in flies is
not at all related to where or whether they actually
appear in documents.

Modules contain information besides that ap- -
pearing normally as the "subject matter" of tile
module. Information for any topic can be
categorized in several ways to include material for
end-users, keywords for indexing, and fields for
notes or status information. Figure 1 shows several
modules in the editing environment, with the dif-
ferent classes of information visible.

Connections and documents

Documents are composed from modules by means
of connections (or links) from within the contents of
a module to another module. Two operations, in-
clusion and reference, constitute the two construc-
tion operations for creating a document from its
building blocks. In the example in Figure 1, the
writer of a conventionally slructured technical
document would want to either include the descrip-

120 ACM CONFERENCE ON DOCUMENT PROCESSING SYSTEMS

tion of the login command within the section en-
titled "Getting Started" or else refer to it from there.

Inclusion means that one module can specify
that some of the contents of another be. included
within it. The writer uses a symbolic link to make
the connection to the module that is to be included.
References serve the function of conventional
cross-references but are created and manipulated
symbolically instead of being typed in simply as
text. Figure 1 contains several examples of inclu-
sion and reference operations.

The lines containing the connections are not
editable as text; they are presentations of internal
data structures rather than arrays of characters. The
writer uses commands to change the connections.
For example, a link can be changed from inclusion
to reference type using a command to edit the link.

Authoring environment '~feel"
In working on Concordia documents, writers are not
editing running text; they are working with inde-
pendent modules of the document, which vary in
size and in nature. A high-level module in a docu-
ment might be a section that contained a short intro-
ductory paragraph and a set of connections to in-
chided modules. A low-level module might be a
description of a command option that contained
several paragraphs of description, possibly with a
few references to modules describing similar op-
tions.

The differences that make one module a chap-
ter and another a low-level reference item are
simply in how the writer supplies their contents and
connections. Something can be published as a
stand-alone book or can appear as a chapter within
a larger collection, with no change to the material.
The process of following the connections at display
or publication time determines the level (chapter,
section, and so on) of a module within a document.

All modules are treated alike by the software
and all commands apply equally to any module.
For example, the writer can run the formatter inter-
actively on any module in order to see that module
on the screen as it would appear within a particular
finished document.

The Concordia environment maintains all
modules and connections as data structures that are
simply being presented conveniently, mostly as
text, for editing purposes. It maintains complete
knowledge about the location of each module
within files and within documents. It knows how
each module is connected with others. This
knowledge is the basis for the commands that en-
able writers to work as conveniently with these
structures as with text. For example, Figure 2
shows the results of a command that displays the
connections to and from a specified module. All
module names in the graphic are active and could
be clicked on to invoke various editing commands
that take modules as arguments.

Results

This modular methodology, with several different
generations of user interface, has been in use at
Symbolics, Inc. for ~roducing technical documen-
tation since late 1983 z.

At the beginning of the project, the then-
existing document set of around 2,500 pages was
decomposed into modules in Concordia internal file
format. The standard document set, when printed in
early 1988, was about 7,000 pages. It was then
composed of roughly 12,000 modules with 23,000
inclusion and reference connections. Modules
ranged in size from several hundred characters to
over 30,000 characters, with the average size being
about 1,000 characters.

The module size provides at best a rough upper
estimate of the size of the processed text content,
since the modules are stored in binary form with a
significant amount of structural information stored
in each module. In addition, the raw module size
gives no indication of the displayed size when other
modules are to be included, because the included
modules are represented only by symbolic com-
mands. The raw module size does, however, give a
good indication of the visual size of the units that
the writers have chosen to work with.

Assessing the writers' experience

The hypothesis that a document engineering en-
vironment built around this kind of modular docu-
ment can support writers effectively has been tested
daily for over five years by the Symbolics, Inc.
documentation department. The experiences and
preferences of the writers were used to refine the
overall design and to design the final user interface.

For the purposes of this paper, I interviewed a
group of four writers. These writers averaged three
and a haft years of experience with this methodol-
ogy (minimum three years) and 14 years experience
as professional writers (minimum seven years).
The rest of this section provides a digest of their
comments about modularity and the support for it in
the engineering environment.

Modularity
What criteria did people use for breaking their sub-
ject matter into modules? Writers mentioned a
number of issues. In many cases, the most fun-
damental decomposition was dictated by the in-
herent nature of the artifact being documented be-
cause, in technical material, many of the topics in
documents mirror the structure of the software or
hardware components they describe. The writers
also thought about their readers and created
modules for topics that they believed readers would
be trying to find.

2The most recent interface was released in
mid-1988 by Symbolics, Inc. as the Concordia document
engineering environment.

SANTA FE, NEW MEXICO, DECEMBER 5-9. 1988 121

C o n c o r ' d i ~
Cursor In: Section 'Getting Started' (locked)

/ ' D e f a u l t Beheutor of Converse" Freanent

Converae ,~ '~ Talktng to O t ~ U a t n g /_~,'$endtng and Replying to Heseages utth Converse"

• 'Convevee Connanda* Section
C a n v e r s = ' - ~ ' ~ "Liap Ltetener Connanda for Converse" Section

The l ink types tnvolved are
Contantl, Expand

Ion,u~u

Ion*nan
i,~,woN,
In,Ira.x*
mend of "Gettln~ Staxted ° record

ISectlon "Login Command"
[C4ntlaat t

IC~l~tm
IO~U~

mend of "Lo~in Commend' record

ISactlon "Losout "Command"
i c ~ t $

naco 2 (Concordta F i l l) e~anple.aab >Jualker 0: = [llore above end belou]

Editor commands
Buff arm
Topics

Show Outline m-X
Hardcow c-U s-P

Links
Show Links From Record m-X
Show Links To Record m-X
Graph Links From Record m-g
Collect Record Name m-X
Create Link m-X
Find Link m-X
Reverse Find Link m-X

Racorda
Beginning e-A
End e-E
Hark s-H
Create m-~
Edit. e-.
Kill m-X
Add Record Field m-X
Rename m-X
Preview e-P
Check Spelling m-X
Show Records in Buffer m-X
Reorder Records m-g
Hove Records Among Buffers m-
Add Patch Changed Records m-X
List, Changed Records m-X

!ltarkup
Beginning s-(
End s-)
Create e-H
Hake Language Form s-L
Remove Har'kup s -^

I Change Environment. m-X
, Kill e-K
I Find Markup m-X
, Reverse Find Markup m-g

Collected Record Names

l
Gettln9 Started
Login Command Section
Logout Command Section

Figure 2. Asking to see how a particular module is connected f'mds everything that refers to it or includes it and
everything that it refers to or includes.

When a particular piece of information was
needed in several places, they would create a
separate module for it. Not necessarily self-
contained, these modules were used for redundant
information, like standard sentences describing
some ubiquitous command option. Finally, writers
subdivided sections that were getting "too large" to
be manageable and felt that they had developed a
sense for the appropriate size of modules.

They agreed that writing modularly, that is,
putting together material that belongs together, had
always been a goal for them in technical writing.
Part of teaching new technical writers consists of
helping them discover how to determine the logical
structure of complex material and turn that into a
document that readers can understand. The writers
mentioned that conventional writing tools make
them do all that work in their heads, providing no
support for the cognitive, logical decomposition
process that was taking place. The modular writing
methodology provided by this environment

"reinforces the need to think things through
logically" while at the same time not forcing any
particular work style.

Re-usability
As the project progressed, writers identified more
opportunities for re-using modules. It took ex-
perience and practice to recognize the opportunities,
but they felt comfortable with writing material to be
shared among different writers and documents.
Several experimental documents were built by
selecting and arranging existing material. One
writer commented, "Writers who think modularly
find creating new documents from already written
pieces, with audience appropriate introductions, to
be delightfully easy."

Module size
The writers agreed that with experience they
developed an intuitive sense for optimum module
size. When they found themselves adding extra

122 ACM CONFERENCE ON DOCUMENT PROCESSING SYSTEMS

keyword phrases (that weren't just synonyms) to a
module, it was a warning that the section should be
further decomposed. The names of modules
reflected the contents well enough that extra manual
indexing was rarer than we had anticipated.

Upon finding it confusing to work on a par-
ticular module, they would look for ways to break it
down further. At the lowest level, they worked
primarily with modules that contained one to
several paragraphs.

One writer had the opportunity to work on a
textbook as well as technical manuals. Originally,
she anticipated that modules in the book would be
larger than those in a technical manual because
readers would be working through the book linearly
and because she would want much fighter writing
style and passage flow. In the course of working on
the book, she found she had difficulty with what she
was writing because the modules were too large and
had too much material in them. After she broke
things up further, it was easier to manage the or-
ganization of the material and to have better access
to it while writing. She felt that this modularity
helped her significantly in doing the writing and did
not in any way compromise her overall style goals
for the book.

Naming
The documents produced by the writers were either
printed in hardcopy or displayed online with a spe-
cialized reading interface [9]. For usage by online
readers, the software initially required that modules
have unique external names (within their particular
type). Originally all writers viewed this as a serious
impediment because they were accustomed to using
certain standard names often, like "Introduction."
After several years of experience, they grew accus-
tomed to using highly specific names and found that
these helped them in clarifying their writing, as well
as helping readers identify topics likely to be of in-
retest.

A module has to be named at the time it is
created. Some writers had been uneasy about
giving a name for something before writing its con-
tents, in case the act of writing changed the intent of
the section. This turned out not to be a problem
since they could either work out the content
separately and then create a module containing it or
else use a command to rename modules (which
automatically updated all the connections to them).

Abstraction
The writers found that the amount of effort required
for working on a complex document was sig-
nificantly reduced. Separating content, organiza-
tion, and formatting made it easier to concentrate on
one at a time.

They could work on the structure of high-level
section modules (that is, the set of symbolic con-
nections to other modules) without regard to the ac-
tual contents of the included modules. For low-
level description modules, they could work on the

content without regard to where it fit into one or
more different documents. In effect, the modular
organization enabled writers to focus on the activity
most appropriate to the module's level of abstrac-
tion within the document.

Document organization
In a hierarchical document, the organization is
modified through reordering or moving the sym-
bolic connections to other modules. In some
respects, this kind of capability is present in out-
liners or in other document processing systems (for
example, Grif [6]).

The difference between the current system and
others lies in what happens when a writer decides to
move a section to a different level within a docu-
ment. In conventional systems, each portion of the
text is identified by its level within the document so
that moving it requires changing its syntactic iden-
tity. That is, in a standard hierarchical document,
writers have to not only cut and paste the right span
of material but also change the designations for all
of the headings. For example, to move a chapter
"down a level" in a document, they would have to
change the chapter into a section and then all the
previous sections into subsections and so on,
usually a tedious and error-prone process. In the
current system, the position of a module in a docu-
ment hierarchy is determined dynamically by the
inclusion connections encountered during display or
printing, not by some predetermined designation
that says "this is a chapter."

The writers made organizational changes
heavily, particularly during early stages of docu-
ment design, and commented on the ease of making
and evaluating these experiments with structure.

Environment

Perhaps the largest number of comments were re-
lated to the usability of the structure editor com-
ponent of the system. In the early days of the sys-
tem, the writers used the same modular methodol-
ogy, but a different user interface that was im-
plementedby an embedded command language for
marking the structural boundaries, connections, and
formatting directives [8]. The change from em-
bedded, textual commands to a true structure editor
made the editor more usable by eliminating all the
preventable errors in specifying structure and
markup. The writers commented that simulating
structure with embedded commands makes them do
more work because the structure exists only in their
minds, without technological support from the en-
vironment. Essentially, it was not using a markup
language itself that caused early difficulties, but
rather the lack of high-level knowledge and debug-
ging support in the environment.

Document style
Early in the project, there was significant concern
among both readers and writers that the modular
methodology would cause a decline in writing
quality. The issues most often mentioned were

SANTA FE. NEW MEXICO. DECEMBER 5-9. 1988 123

flow and mixing of styles from different writers.
These early concerns have been allayed.

The writers recognized that technical material
is not designed for beginning-to-end re.ading and
that people use the manuals idiosyncratically, by
starting anywhere and reading only as much as
seems relevant [1]. As a result, they felt that seam-
less, flowing prose was most important within a
module and that trying to connect modules tightly
and seamlessly was not a good idea anyhow; the
reader has to have some textual hints about when to
stop. Despite their early fears, the writers now feel
that the documents produced with this style of writ-
ing development are consistent with normal stan-
dards for running prose.

Early in the project, the writers became what
they described as "cross-reference happy." (Those
cross-references were not typed in as text sentences
but were created by the display software as a result
of processing a reference link.) The writers found
these kinds of automatically generated cross-
reference sentences intrusive. They proposed
changes in the system to enable integrating sym-
bolic references into text sentences, which enabled
better running prose. Although the prose is smoo-
ther, the current design does not support sophis-
ticated presentation of cross-references based on the
reader's context. This is an open research issue.

Readers and writers hearing about this technol-
ogy for the first time comment on the potential for
readers being distracted by a mixture of voices in a
document hierarchy that contains pieces written by
many writers. The writers interviewed felt that the
concern is real but that it had not been a problem in
practice. This group, like most professional
documentation groups, has a "house style" that
mandates basic things about passive voice, impera-
tives, tense, terminology, and so on, which takes
care of basic coordination between writers. The
further problems of several writers writing modules
to fit several purposes were bandied by the editors
and writers involved, who cooperated in finding a
solution that all could be satisfied with.

Group writing
The current system was designed to support a group
of writers, working together on a document set, as
opposed to individuals, all working independently
on their own book(s).

Most of these writers had experienced situa-
tions where the software engineer associated with a
project handed them either "bottom-level" modules
or complete draft documents. The writers then ei-
ther organized, reorganized, or reconceptualized the
material. They all found this to be a very satisfying
way to work because they could concentrate on
"adding value" to basic material.

The writers mentioned that the modular or-
ganization of documents and the facilities in the
editor for locating modules made it easier to main-
rain existing books. In addition, all the writers had
experience taking over a partially completed book

from another writer. In these cases, the tools for
examining the structure of a document made it
easier to understand the original writer's design.
Also, they tended to make prototype books more
complete, with many empty modules in place just to
help them keep the overall structure in mind.

Quality
Writers felt that they produced documents of higher
quality using this system. This perception is an in-
direct result of treating document development as
an overall engineering process like software
development. The integration with the engineering
process aided writers sociologically in that their
work methods were thereby understood (and
respected) by engineers.

Because the document database was installed
and maintained incrementally as a integrated part of
the software environment, documents were in use
by the development community from very early in
the prototype stage. As a result, they had been
through an unusual amount of informal usability
testing long before any formal reviews took place.

Work style
One of the writers worked primarily top down,
creating an overall organization of empty modules
before she wrote much content. Others worked
primarily bottom up, creating a module for each
fact that they uncovered before or while working on
the overall document organization. Another used
both styles at different times. According to the
writers, the system accommodated both styles of
working equally well.

One writer commented that the system helped
her avoid writer's block because there was never
any danger of sitting looking at an empty screen,
wondering how to start; you always knew
something and could start by creating a module for
it.

Conclusions

Experienced software technical writers have few
problems mastering the modularity discipline, as it
simply reflects how they think. The writers inter-
viewed for this paper expressed strong preference
for this environment, which supports how they ap-
proach their task, that is, modularly, with a need to
separate issues of content, organization, and ap-
pearance.

The Concordia project is an example of how
conventional document sets can be produced using
a modular methodology and a supportive, inter-
active development environment. Successful use of
this system at Symbolics, Inc. and elsewhere sug-
gests that major improvements in document produc-
tion can be realized by importing concepts from
other branches of engineering. Whether this
methodology offers unique advantages over other
approaches to structured documents, like that of
Grif [6], is a question for further research into the
needs and practices of technical writers.

124 ACM C O N F E R E N C E ON D O C U M E N T P R O C E S S I N G SYSTEMS

Acknowledgements

Thanks to all the document engineers at Symbolics,
Inc., who helped me investigate the strengths and
weaknesses of modularity in technical documen-
tation, with special thanks to Ellen Golden, Tom
Parmenter, Sonya Keene, and Jackie Covo. The
Concordia structure editor was designed by Rick
Bryan and implemented with assistance from Bill
York and Dennis Doughty. Management commit-
ment from Ilene Lang and Tom Diaz made the
project possible. Discussions with Brian Reid,
Mary-Claire van Leunen, and Craig Schaffert
helped shape this paper. Dick Beane and Andrew
Black provided helpful editorial comments.

References

1. Carroll, J. M., Smith-Kerker, P. L., Ford, J. R.,
& Mazur-Rimetz, S.A. "The Minimal Manual".
Human-Computer Interaction 3, 2 (1987-1988),
123-153.

2. Chamberlin, D. D., Hasseimeier, H. F.,
Luniewski, A. W., Paris, D. P., Wade, B. W., &
Zolliker, M.L. Quill: An Extensible System for
Editing Documents of Mixed Type. Proceedings of
the Twenty-First Annual Hawaii International Con-
ference on System Sciences, Vol H, The Computer
Society of the IEEE, 1988.

3. Dijkstra, E. W.. Notes on Structured
Programming. Academic Press, London, 1972.

4. Furuta, R. An Integrated, but not Exact-
Representation, Editor/Formatter. In J. C. van
Vliet, Ed., Text processing and document
manipulation, Cambridge University Press,
Cambridge, England, 1986.

5. Kernighan, B. W. & Plauger, P. J.. The Ele-
ments of Programming Style. McGraw-Hill, New
York, 1978.

6. Quint, v. , Vatton, I. Grif: An Interactive System
for Structured Document Manipulation. In
J. C. van Vliet, Ed., Text processing and document
manipulation, Cambridge University Press,
Cambridge, England, 1986.

7. Sandewall, E. "Programming in an Interactive
Environment: The LISP Experience". ACM Com-
puting Surveys 10, 1 (1978), 35-71.

8. Walker, J. H. Symbolics Sage: A Documen-
tation Support System. Intellectual Leverage: The
Driving Technologies, IEEE Spring Compcon84,
San Francisco, 1984, pp. 478-483.

9. Walker, J. H. Document Examiner: Delivery In-
terface for Hypertext Documents. Proceedings of
the Hypertext '87 Workshop, Chapel Hill, N. C.,

November 1987.

10. Walker, J.H. "Supporting Document Develop-
ment with Concordia". IEEE Computer 21, 1
(1988), 48-59.

U. Walker, J. H. & Bryan, R. L. An Editor for
Structured Technical Documents. In J. J. H. Miller,
Ed., Protext IV: Proceedings of the 4th Inter-
national Conference on Text Processing Systems,
Boole Press Limited, Dublin, Ireland, 1987, pp.
145-150.

12. Walker, J. H., Moon, D. A., Weinreb, D. L. &
McMahon, M. "Symbolics Genera Programming
Environment". IEEE Software 4, 6 (1987), 36-45.

