
The Power of Multimedia:
Combining Point-to-Point and Multiaccess Networks

(extended summary)

Yehuda Afek * Gad M. Landau t

Abstract

In this paper we introduce a new network
model called a muZtimedia network. It com-
bines the point-to-point message passing net-
work and the multiaccess channel. To bene-
fit from the combination we design algorithms
which consist of two stages: a local stage which
utilizes the parallelism of the point-to-point
network and a global stage which utilizes the
broadcast capability of the multiaccess chan-
nel. As a reasonable approach, one wishes to
balance the complexities of the two stages by
obtaining an efficient partition of the network

‘AT&T Bell Labs., 600 Mountain Ave., Murray Hill,
NJ 079’74.

+Courant Institute of Mathematical Sciences, 251
Mercer St., New York Univ., New York, NY 10012.
The research of this author was supported by the Ap-
plied Mathematical Sciences subprogram of the Office
of Energy Research, U. S. Department of Energy, under
contract number DE-AC02 76ERO3077

$IBM Research Division, T.J. Watson Research Cen-
ter, P.O.Box 218, .Yorktown Heights, NY 10598.

SIBM Research Division, Almaden Research Center,
650 Harry Rd., San-Jose CA 95120.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific
permission.

0 1988 ACM 0-89791-277-2/88/0007/0090 $1.50

Baruch Schieber t Moti Yung *

into O(fi connected components each of ra-
dius O(fi). To th is end we present efficient
deterministic and randomized partitioning al-
gorithms. The deterministic algorithm runs in
O(fi log* n) time and O(m + n log n log* n)
messages, where n and m are the number of
nodes and number of point-to-point links in the
network. The randomized algorithm runs in
the same time, but sends only O(m + n log’ 7~)
messages. The partitioning algorithms are
then used to obtain: (1) o(j./zogn log’n)
time deterministic and O(filog’ n) time ran-
domized algorithms for computing ylobaI sensi-
tive functions, and (2) O(fi log n) time deter-
ministic algorithm for computing a minimum
spanning tree.
An G?(n) time lower bounds for computing
global sensitive functions in both point-to-
point and multiaccess networks, are given, thus
showing that the multimedia network is more
powerful than both its separate components.
Furthermore, we prove an R(A) time lower
bound for multimedia networks, thus leaving
a small gap between our upper and lower
bounds.

1 Introduction

Two classes of data networking technologies
have emerged in recent years, the point-to-

90

http://crossmark.crossref.org/dialog/?doi=10.1145%2F62546.62564&domain=pdf&date_stamp=1988-01-01

point network (store and forward message
passing system), and the multiaccess chan-
nel (broadcast channel) [BG87,Tan81). In the
point-to-point message passing network, com-
munication lines connect pairs of processors in
an arbitrary topology. In one step, each of the
processors in the network can send a message
to each of its neighbors. In the multiaccess
channel, on the other hand, all processors are
connected to a broadcast medium (e.g., bus,
Ethernet, satellite, or radio channels). In one
step, a single message can be heard by all the
processors in the network. When more than
one processor tries to access the channel simul-
taneously, a collision occurs and is detected by
the processors. In an attempt to take advan-
tage of both the high bandwidth of the point-
to-point network and the broadcast proper-
ties of the multiaccess channel, supercomputer
designers ([FG87,ABCP87)) and network ar-
chitects ([KHS88]) h ave recently suggested to
combine these two technologies. (The Intel hy-
per cube [Int85] is a commercially available sys-
tem which contains such a combination.) We
call a network whose processors are connected
by both a point-to-point message passing sys-
tem and a multiaccess channel a multimedia
network. In this paper we, first, define the mu!-
timedia network model, and second, investigate
the algorithmic aspects of this model.

Many distributed algorithms have been
developed for both point-to-point networks,
[GHS83,Ga182,Awe85,Awe87] to mention just
a few, and multiaccess networks (Cap791
[Gre82,GL83,Wi184,GM87]. However, to the
best of our knowledge, a combination of an ar-
bitrary point-@point network with a multiac-
cess network has not been considered yet.

Bokhari [Bok84] and Stout [Sto86] consid-
ered the algorithmic aspects of adding a bus
system to a mesh connected parallel machine.
They showed that the divide-and-conquer ap-
proach leads to efficient algorithms in such a
combined model. Our algorithms use the same

approach. The main subtlety of our algorithms
lies in the “dividen stage since, in contrast
to the model considered in [Bok84,Sto86], our
network is of arbitrary topology. (In addition,
their topologies are special, their channel is as-
sumed to be preallocated, and collisions are not
allowed).

The main contributions of this paper are:
the precise definition and the examination of
the power of the multimedia model, and effi-
cient deterministic and randomized algorithms
for partitioning the multimedia network.

To benefit from both the parallelism of the
point-to-point network and the broadcast ca-
pability of the multiaccess channel we ap-
ply the divide-and-conquer (local-parallel and
global-broadcast) approach to algorithmic de-
sign in the multimedia network. To this end,
we divide the com.putation into two stages: a
local stage and a global stage. The local stage
is carried out in parallel on the point-to-point
network. In this stage the broadcast channel
is used only for synchronization. The global
stage uses the broadcast channel to combine
the partial computations of the local stage. To
balance the efforts of the two stages, we par-
tition the network by constructing a spanning
forest consisting of O(fi rooted trees each of
radius O(G). Both the deterministic and ran-
domized algorithms for constructing the for-
est run in Offi s log* n) time, thus remaining
within a log* n factor from the above balance.

The deterministic partitioning algorithm
sends O(m + n a log n e log* n) messages, where
m and it are the number of links and nodes
in the network. The algorithm constructs a
spanning forest. It uses a new technique which
simultaneously controls the radius of the trees
from above and the size of the trees from be-
low. The technique combines the tree grow-
ing techniques of [GHS83] with the symme-
try breaking method of the deterministic coin
flipping algorithm of Cole and Vishkin as was

91

suggested by Goldberg, Plotkin, and Shannon
[Cv86,GP~87].

The randomized partitioning algorithm
sends O(m + n - log’ n) messages. Moreover,
it is considerably simpler than the determinis-
tic one, and its probabilistic analysis is quite
subtle.

To demonstrate our techniques, and the
power of the multimedia network, we con-
sider a class of functions called global sensi-
tive. Essentially, a function is defined to be
global sensitive if a change in any of its in-
puts always changes the output value (e.g. ad-
dition). We present a randomized and a de-
terministic divide-and-conquer algorithms for
computing such functions using the forest par-
tition. The resulting deterministic algorithm
runs in 0(n log n log* n) time and sends
O(m+n-log n-log* n) messages. The expected
running time of the randomized algorithm is
O(fi - log* n) and its message complexity is
O(m + n. log’ n).

Three lower bounds on the time required
to compute global sensitive function are pre-
sented. First, we prove an n(d) time lower
bound for point-to-point networks of diame-
ter d, and an n(n) time lower bound for mul-
tiaccess networks. Together with our upper
bounds, in the case where d >_ fi (or the gen-
eral case where d is not known in advance), this
implies that the multimedia network as a whole
is more powerful than each of its parts. The
third lower bound is an n(min{d,fi>> time
for multimedia networks of diameter d. Thus,
in the general case, there is only a small gap
between our upper bound and the n(fi) lower
bound for multimedia network. (We note that
in the special case where d is known to be 5 fi
and a single node is a priori distinguished as a
leader then the time complexity of computing
a global sensitive function in both a point-to-
point and a multimedia network is Q(d).)

Finally, we show how to apply the divide-
and-conquer approach to derive a deterministic
algorithm for constructing a minimum span-
ning tree in a multimedia network. This al-
gorithm runs in O(fi log n) time, and sends
0 (r-n + n - log n - log* n) messages.

The rest of the extended summary is or-
ganized as follows: The multimedia network
model of computation and the complexity mea-
sures are presented in Section 2. In Section 3
we show how to transform the multimedia net-
work into a synchronous network and give a
deterministic and a randomized technique to
estimate n. The deterministic partitioning al-
gorithm is presented in Section 4, and the prob-
abilistic partitioning algorithm in Section 5. In
Section 6 we give the algorithms for computing
global sensitive functions, and lower bounds on
the time required to compute a global sensitive
function in each of the models. In Section 7
the minimum weight spanning tree algorithm
is presented. Some details and proofs are omit-
ted from this extended summary. The reader
is referred to the full paper (ALSYSS].

2 Model

We consider a set of processors which commu-
nicate simultaneously over two media:

1. an arbitrary topology point-to-point net-
work and

2. a broadcast media (a collision bus).

To model the multimedia network we com-
bine the standard model of asynchronous data
communication networks with the standard
model of a collision bus.

The network part is the point-to-point
message-passing model as in [Seg83,GHS83].
The network topology is described by an undi-
rected communication graph G = (V, E),

92

where V is a set of n nodes, representing the
processors of the network, and E is a set of
m links, representing the bidirectional commu-
nication lines operating between neighboring
nodes. Messages sent over a link arrive error-
free at the other end, after an arbitrary but
finite delay.

The network model is combined with a col-
lision bus by connecting all the nodes of the
network to a multiple access channel. For ease
of presentation the channel is assumed to be
slotted. In the full paper [ALSY88] it is shown
that any unslotted channel can be made slotted
if a Frequency Division Multiple Access scheme
(FDMA) is available. Every node can write
to, and read from each slot on the channel.
Each slot is in one of the following three states:
idle, success, or collision depending on whether
zero, one, or more than one processors write in
that slot, respectively. A good account of the
multiaccess model and its relation to possible
implementation is given in [~~83].

For the multimedia combination to make
sense we equate the performance parameters
of its two components (if one technology, for
example, is substantially slower than the other
one then a combination might introduce large
delays and reduce the efficiency of the system
as a whole). Specifically, we equate the follow-
ing parameters: The message size in the net-
work is assumed to be as large as the length
of the channel slot (in bits). We assume that
this size is bounded by O(logn) bits plus the
size of the maximal data element. The mes-
sage delay in the point-tGpoint network and
the slot length in the multiaccess channel are
assumed to be of the same order of magnitude.
Although it is not crucial, to make the presen-
tation lucid we also assume that all the pro-
cessor identifiers (ids) can be represented in
O(log n) bits. The ids are used in our algo-
rithms in a way similar to [CV86] and [Cap79].

When analyzing the time complexity of an
algorithm (and only then) we assume that the
message delay and the inter-message delay (the
time between successive message transmissions
on one link) in the point-to-point network is at
most one time unit. The length of one slot is
assumed to be one time unit as well. The com-
munication complexity is the total number of
messages sent over the network plus the time
complexity (this measures the information re-
ceived over both media).

3 Basic tools

Notice that certain problems are easy to solve
in the multimedia network. Obviously, broad-
casting a message is trivial. Taking a snap-
shot [CL851 in this model is easy by syn-
chronizing the check point through the bus.
Similarly, by assuming that the multiaccess
channel is fault free the problem of resetting
a dynamic network [AAGU] is also trivial-
ized. Given the conflict resolution algorithms
of [Cap79,Gre82,Mo183,GL83,Moi81] and oth-
ers, the election problem can be solved in
O(log n) time without using the point-to-point
network. As a result, a spanning tree can be
easily constructed in O(n) time and 0 (m) mes-
sages. Less obvious but not much harder, a
synchronizer [Awe851 with 0(1) time, and O(1)
messages overhead per round can be imple-
mented using the multiaccess channel as shown
in the next subsection.

3.1 The channel as a Synchronizer

A synchronizer [Awe851 is a mechanism which
enables the execution of synchronous algc+
rithms on an asynchronous network. Let us
first review the synchronous model of compu-
tation.

In the synchronous model of computation all

93

the nodes are connected to a global clock which
generates clock pulses (“ticks”) to all the nodes
at the same time. The time interval between
two consecutive pulses of the clock is a round.
At the beginning of each round, each node de-
cides, according to its state, what messages to
send and on which links to send them, Each
node then receives any messages sent to it in
this round and uses the received messages and
its state to decide on its next state. Note that
the only knowledge that the clock pulses pro-
vide the algorithm is that all the messages of
the algorithm sent in that round have been al-
ready received.

A synchronizer provides the nodes of an
asynchronous network with clock pulses which
provide the algorithm at each node with the
same knowledge, i.e., that all the messages sent
to it in the present simulated round have been
already received. Given this knowledge the al-
gorithm can safely proceed to the computation
and communication operations of the next sim-
ulated round.

The multimedia network is used to imple-
ment a synchronizer by first requiring each
node to acknowledge the reception of each mes-
sage of the algorithm on the point-to-point net-
work links. Second, a node is required to trans-
mit a busy-tone on the channel as long as not
all the messages the node sent has been ac-
knowledged. An idle slot on the channel is then
considered as a clock pulse.

Note that the collision channel synchronizer
at most doubles the message complexity of
the synchronous algorithm, because of the ac-
knowledgments, and multiplies the time com-
plexity of the algorithm by at most a constant
factor.

Corollary 1 The multimedia network is at
least as powerful as the corresponding syn-
chronous point-to-point network.

94

3.2 Multiaccess resolution and esti-
mation techniques

Many resolution techniques, to allocate a slot
on the channel in the event of collisions, were
developed [Can79,GL83,Mo181,Wi184]. Essen-
tially, these techniques can be viewed as sym-
metry breaking methods either by comparing
the identifier (id) bits deterministically or by
random coin flips. The reader is referred to
these papers for details.

Greenberg and Ladner [GL83] have sug-
gested a randomized algorithm to estimate the
number of processors in a multiaccess network.
The same mechanism can be used to imple-
ment our randomized algorithms when n is un-
known. We note that random bits can be used
also to generate random ids in case those are
not given.

The total number of nodes, n, can be es-
timated deterministically in O(fi . log(jidj))
time, where id is the largest identifier (id)
in the network. The detailed description of
the scheme is postponed to the full paper
[~LSy88]. E ssentially, we guess the number
of nodes in the network and run the determin-
istic algorithm for computing a global sensitive
function, to check if the guess is correct. If the
algorithm fails to finish after a corresponding
number of iterations, the guess is doubled and
checked again, etc.

4 A deterministic, partition-
ing algorithm. . .

Suppose we are given a multimedia network
where each of its links is associated a distinct
weight. (We note that this is a simplifying but
not crucial assumption.) We present a deter-
ministic algorithm for constructing a spanning
forest with the following two properties: (1)

Each tree in the spanning forest is a subtree of
the minimum spanning tree (MST) of the net-
work. (2) The size of each tree in the forest is
>_ fi and its radius is < 8fi. Our algorithm
incorporates the algorithm of [GHS83] for con-
structing a minimum spanning tree with the
techniques of (CVSS] as used in [GPS87] for
symmetry breaking.

Description of the algorithm

The algorithm proceeds in phases. At each
phase we maintain a spanning forest such that,
each of its trees is a rooted subtree of the min-
imum spanning tree (MST) of the network.
These rooted trees are called fragments and,
the root of each fragment is called the cure of
the fragment. At phase i, i = 1, . . ., v, of
the algorithm the size of each such fragment
is 2 2’ and its radius is 2 2’f3 - 1. Clearly,
after phase 9 we will have the desired parti-
tioning. We remark that our algorithm can be
slightly modified to work even if n is unknown.
See Section 6 for more details.

At each phase, the algorithm performs some
inter-fragment computations and some intra-
fragment communications. In this respect each
fragment can be viewed as a super-node in a
network and the algorithm proceeds by inter-
node computations and intra-node communi-
cation. To control the pace at which fragments
grow we use a synchronizer to run the super-
nodes in synchrony. The synchronizer is imple-
mented exactly as in Section 3.1. That is, all
the nodes will know when each phase is start-
ing (finishing).

We start the algorithm at Phase 0 by taking
the spanning forest which consists of each one
of the nodes as a core of a fragment of size one.
Each Phase i of the algorithm consists of the
following seven steps,

Step 1. Each core counts the number of
nodes in its fragment, by broadcasting a mes-

sage out to the leaves and collating it back.
Each node v collates to its parent only after
receiving a collate from all its children. Node
v then collates to its parent 1 + the sum of its
children collates.

Let the level of a fragment be the integer
part of the base two logarithm of the number
of nodes in the fragment.

Step 2. Each core whose level equals i com-
putes the minimum weight outgoing link of its
fragment by performing another broadcast and
collate on the fragment branches. Upon re-
ceiving the broadcast message each node first
forwards the message to its children and then
performs a local search for its minimum weight
outgoing link (as in [GHS83]). Note that since
there are at most 2’+’ - 1 links outgoing from
each node to the rest of the nodes in its frag-
ment, the local search will take 0(2’+‘) time
and messages. Once the local minimum weight
was found and a collate from each of the chil-
dren was received the node collates to its par-
ent with the minimum weight outgoing link of
the subtree rooted at the node. The collate
propagates in this way up to the core which
thus have computed the minimum weight out-
going link of the fragment.

These chosen links define a directed “frag-
ment” graph F as follows. Each vertex in F
corresponds to a fragment in our forest. Each
edge in F corresponds to a minimum weight
outgoing link found in Step 2. That is, if such
a link is outgoing from fragment 2’1 to frag-
ment T2, then the corresponding edge in the
“fragment” graph is directed from the vertex
corresponding to Tr to the vertex correspond-
ing to T2. Define the level of a vertex in F as
the level of its corresponding fragment. Ob-
serve that each connected component of P is
in one of the following three forms: (i) A sin-
gle vertex. Note that the level of this vertex
must be at least i + 1. (ii) A rooted tree con-
sisting of vertices in level i rooted at a vertex

95

in a level > i. (Later we prove that the ra-
dius of this root is bounded by 2’f3). (iii) A
tree consisting of vertices in level i, with one
extra edge. Note that in this case one link was
selected by both its incident fragments as the
minimum weight outgoing link. We root the
tree at the vertex (fragment) with the higher
id among these two vertices (fragments) and
omit the extra edge outgoing from it. iFrom
now on F is considered a forest.

In the next five steps we manipulate the
“fragment” graph (forest). We describe the
operations as if performed between the cores
of the fragments (vertices). The message ex-
change between the cores is carried over the
branches of the fragments in the obvious way.

Step 3. Apply Cole and Vishkin [CVSS] tech-
niques as suggested in Goldberg, Plotkin and
Shannon [GPS87] to color the vertices of F in
three colors. Recall that [GPS87] give a par-
allel algorithm for coloring the vertices of a
rooted tree in three colors. Their algorithm
runs in O(log* n) time using a linear num-
ber of processors on an Exclusive Read Ex-
clusive Write Parallel RAM. It can be easily
verified that the same algorithm can be imple-
mented also in a multimedia tree network with
Ic nodes in O(log* Ic) time and O(klog* Cc) mes-
sages. Applying this algorithm to each of the
rooted trees which form F will result in the
desired three coloring.

Let the three colors be Red, Green and
Blue. Our goal in Steps 4, 5, and 6 is to com-
pute a maximal independent set (MIS) in F.
The MIS will be the set of Red nodes. The im-
plementation of Step 4 follows the techniques
of 1~~~871.

Step 4. For each rooted tree 2’~ in F and
each vertex t) in TF, excluding the root and
its children, recolor 21 with the color of its fa-
ther. If the root is Red then recolor each of its
children with a color different from Red and

the child’s color. Otherwise, recolor the root’s
children with the root’s color and the root with
Red. Note that the coloring is still legal and
that the root is always Red.

Step 5. Recolor each Blue vertex which has
no Red neighbor with Red.

Step 6. Recolor each Green vertex which has
no Red neighbor with Red.

It is not difficult to see that after Step 6 the
set of Red vertices is indeed an MIS. Hence,
the length of any path between two Red ver-
tices in F is bounded by three. This enables
us to partition each tree in F into subtrees, the
radius of each is bounded by four. Each of the
subtrees will form a new tree.in the spanning
forest of the network.

Step 7. Remove the edge outgoing from each
Red vertex which is not a leaf. For each sub-
tree thus created, join the fragments which cor-
respond to its vertices to form a new fragment.
The core of each such new fragment is the core
of the fragment corresponding to the root of
the subtree (which is the unique Red internal
vertex of F in the subtree.)

The following claims can be easily verified.

Claim 1 After Phase i the level of each frag-
ment in the spanning forest of the network is
at least i+ 1.

Proof of Claim: See the full paper [ALSY88].

Claim 2 After Phase i the radius of each frag-
ment in the spanning forest of the network is
at most 2i’4 - 1.

Proof of Claim: This claim is proved also by
a simple induction. By the inductive assump-
tion, the radius of each fragment at the begin-
ning of phase i is at most 2’+3 - 1. The subtrees
created in step 7 have radius at most four with

96

each vertex with radius at most 2’+’ - 1 except four steps.
possibly the root which might have radius at
most 2’+3 - 1. Thus the radius of the resulting
fragments is at most 2’+3 - 1 + 3 * (P’ - 1)
= 14.2’ - 4 < 2’f4. Cl

Time complexity. The time complexity of
Steps l,2 and 7 is O(2’). The time complexity
of Step 3 is O(2’ log’ n). The time complexity
of Steps 4,5 and 6 is O(1). Summing up for i =
1 , “‘I 9 we arrive at a total time complexity
of O(fi log* n).

Message complexity. Our message com-
plexity analysis differs from the analysis of
[GHS83] only in Step 3. This step con-
tributes O(nlog* n) messages per phase and
a total of O(nlogn log* n) messages. Thus
the overall message complexity equals O(m +
n log n log* n).

5 A randomized partitioning
algorithm

In this subsection we present a randomized al-
gorithm for computing a spanning forest con-
sisting of trees each of radius O(G). We prove
that the expected number of trees produced by
the algorithm is 0(,/K). The running time of
the algorithm is O(filog* n) and its message
complexity is 0(rn + n log” n). The algorithm
can be modified so that it will work when n is
unknown and the nodes are anonymous. (See
Section 3.2.)

Definition: Let EO = I and Ei = eEi-l, for
i = 1, . . . , In* n. In words, Z?i is given by raising
e to the power of e, i - 1 times.

We start the algorithm by initializing all the
nodes to be in a jree state. The algorithm pro-
ceeds in at most ln’ n + 1 iterations (assume,
w.l.0.g. that the radius > 6.) Each iter-
ation i = 0, .,., In’ n consists of the following

Step 1. All the nodes are invoked by broad-
casting an “awake” message on the broadcast
channel.

Step 2. Each free node flips a coin which has
MIN(1, 3) probability for “head”. A node
which flipped “head” becomes a foccrl center.

Step 3. Each local center computes a con-
nected component by growing a BFS tree to
distance at most 4fi. Each node in the BFS
trees is labeled with the distance from the root
of its tree. A node which belongs to a BFS
tree from previous iterations switches to a new
tree only if it reduces its label. Utilizing the
synchronizer of section 3 this can be done in
0(,/Z) time and O(m) messages. (See (Gal821
for details.) To reduce the message complexity
of the algorithm, each link which is found to
be internal to a BFS tree is removed from the
network for the algorithm purposes.

Step 4. All the nodes with label 5 2fi be-
come unfree, all the rest remain free for the
next iteration. Note that a free node may be-
long to a BFS tree.

Clearly, the randomized algorithm described
above computes a spanning forest consisting of
trees each of radius 5 4fi. Note that in the
last iteration all free nodes become centers with
probability one. Next we prove:

Theorem 2 The expected number of trees in
the spanning forest is 0(6).

Proof Consider an arbitrary partition of the
network into connected components, the size of
each is 2 Jn and the radius of each is 5 2fi.
Note that such a partition always exists. We
remark that this partition is needed only for
the proof and is not actually computed. We
call each connected component in this partition
a block.

97

To find the expected number of trees we
find the expected number of local centers se-
lected in each iteration. For this, let us first
find the expected number of free nodes at the
start of each iteration. We observe that if a
node is free then no node in its block could
have been a local center. Clearly, the proba-
bility that no local center will be selected in
a block in iteration 0 is < (1 - $=)fi = e-l
independently of the other blocks. This im-
plies that the expected number of free nodes
at the start of iteration 1 is at most 2. In the
same way, the probability that no local center
will be selected in a block in iteration 1 (given
that no local center was selected in iteration
0) is 5 (1 - 5) fi = e-‘. This implies that
the expected number of free nodes at the start
of iteration 2 is at most &. In general, the
probability that no local center will be selected
in a block in iteration i 1 0, given that no lo-
cal center was selected in previous iterations is
5 (l- %)fi = emEi = &+I-‘. This implies
that the expected number of free nodes at the
start of iteration i is at most l--y0 Ej * Reca11

that the probability for getting a “head” in it-
eration i is Ei fi. Hence, the expected number
of local centers selected at iteration i 1 1 is at
most A. Clearly, the expected number

of local centers selected in iteration 0 is fi.
Summing the expected number of local centers
over the In* n + 1 iterations gives an expected
number of O(6) local centers. Thus, proving
the theorem. IJ

It is not difficult to verify that the time of the
randomized algorithm is O(filog* n). (Note
that this is the worst case time and not the ex-
pected time). To count the number of messages
transmitted by the construction of the BFS
trees we note that after exchanging a message
over a link either the link is added to a BFS
tree or is removed from the network for the al-
gorithm purposes. The latter type of message
exchanges contributes at most Cl(m) messages

98

while the former contributes at most O(n) in
each iteration, because the algorithm is run in
conjunction with a synchronizer. Thus, the to-
tal communication complexity of the algorithm
is O(m + n log* n) messages.

Remark: The above algorithm is Monte-
Carlo, that is, with very small probability the
resulting spanning forest consists of more than
O(fi) trees. When the number of processors
is known we can modify the algorithm into
a Las-Vegas algorithm (which always gives a
valid partition and its expected running time is
the same as the worst case running time of the
Monte-Carlo algorithm) in the following way.
At the end of the Monte-Carlo algorithm we
check whether the number of trees is more than
2&i. This is done by applying the randomized
resolution technique of Metcalfe and Boggs
[MB761 for 8fi rounds (which takes O(fi)
time units) in an attempt to schedule the roots
of the trees on the channel. (Note that in or-
der to be able to use this resolution technique
we must assume that the number of proces-
sors is known.) The algorithm terminates if all
the roots were scheduled and their number is
5 26. Otherwise, the algorithm is restarted.
This process is continued until a valid parti-
tion is computed and verified. The expected
running time and expected message complexity
of the resulting Las-Vegas algorithm are of the
same order of magnitude as the worst case run-
ning time and worst case message complexity
of the corresponding Monte-Carlo algorithm.

6 Computing global sensitive
functions

In this section we define the class of global sen-
sitive functions, give an algorithm for comput-
ing these functions in a multimedia network
and prove three lower bounds on the time re-
quired to compute such functions in each of the

models.

Let S(X,o) be a commutative semigroup,
where X denotes the semigroup elements set
and l is the semigroup operation. Define the
function F, : X” + X in the obvious way.
That is, Fn(21, s,) = 21 l zz l . . . l zn. We
say that F, is a global sensitive function if for
each n-tuple ~1, x,, the value of F,, can not
be determined by any subset of n - 1 elements.

Observe that the class of global sensitive
functions contains many natural functions. For
example: (1) X is the set of integers and l is
addition. (2) X is the set of integers and l is
the minimum operation. (Note that when the
elements set is bounded from below then the
function is not global sensitive.) (3) X = (0, 1)
and l is addition modulo two (exclusive or).

The global sensitive functions defined here
resemble the notion of the global algorithms
of [KMZ84,Awe87] and the global queries of
[SR85]. However, our definition is more restric-
tive.

In this section we consider the problem of
computing a global sensitive function when the
inputs are distributed among the processors of
a multimedia network. That is, each one of the
n processors is given one element 5i E X as in-
put. At the end of the computation each pro-
cessor has to know the value of F,(q) .,., q).

Given the partition of the network as defined
above, we present a deterministic algorithm
and a randomized algorithm for computing Fn
in a multimedia network. In the next subsec-
tion we provide lower bounds on the time re-
quired to compute global sensitive functions in
the various network models.

In the local computation we compute in par-
allel the value of the function for each of the
components defined by the partition. The lo-
cal computation is done by a simple broadcast
and colIate aIong the trees links [Seg83]. This
broadcast takes O(fi) time and O(M) mes-
sages. Upon the completion of the local com-
putation each root has the partial result of the
function computed for the inputs in its com-
ponent. In the global computation we broad-
cast all the partial results on the broadcast
channel. The global computation is done by
scheduling each one of the roots of the trees
on the channel. In the deterministic algorithm
this scheduling can be done by applying the
resolution techniques of [Cap791 in 0(fi log n)
time. In the randomized algorithm this can
be done in O(1) expected time per root (see
section 3.2), which gives a total of O(fi) ex-
pected time. (Note that since we have an es-
timation on the number of the roots it is not
necessary to use the sophisticated techniques
of [Wil84] for the scheduling.)

We note that the running time of the de-
terministic algorithm can be improved a lit-
tle by tightening the balance between the time
of the local computation and the time of the
global computation. To this end, the deter-
ministic partitioning algorithm is run for at

most log & phases. Thus constructing If-
a forest with O(de) trees each of ra-

dius O(dz). It can be readily verified
that the running time of the partitioning al-
gorithm is 0(4/n log n log’ n), while its mes-
sage complexity remains O(m + n log n log” n).
The total running time of the global compu-

tation will now also be 0(d-log rz) =

O(Jn logn log* n).

6.1 Overview of the algorithms
6.2 The lower bounds

We divide the computation into two parts a
local computation and a global computation. In this subsection we prove:

99

Theorem 3 The computation of a global sen-
sitive junction requires R(d) time in a point-
to-point network of diameter d, n(n) time in a
broadcast network and !2(MIN{d,fi}) time
in a multimedia network of diameter d.

Pro of:

The point-to-point network: The lower
bound follows from the fact that at least one
node has to get a message from every other
node [ALSY88].

The lower bound for a broadcast net-
work Suppose we are given an algorithm
for computing a global sensitive function in
a broadcast network. We show that there is
at least one input instance for which the al-
gorithm runs in n(n) time. The proof uses
adversary arguments. We view the algorithm
as a game between the adversary and each of
the processors. Initially, each processor knows
only its input. As the algorithm proceeds it
gets information about other inputs, Accord-
ing to the definition of global sensitive func-
tions at the end of the computation it must
have information which depends on all the in-
puts. The goal of the adversary is to reveal as
few inputs as possible at each step, thus forc-
ing the algorithm to run for a long time. We
assume that the adversary has unlimited com-
putation power and that at any step it can fix
the inputs in any way which is consistent with
previous steps.

We show that an adversary can fix only 2t in-
puts after t steps of the algorithm. That is, the
algorithm will broadcast the same messages in
the first t steps, no matter what are the values
of the rest of the inputs. Note that since the
value of the global sensitive function depends
on all the 12 inputs, when the algorithm ter-
minates all the inputs should be fixed. This
implies the desired st(n) time lower bound.

Let us show how the adversary can fix at
most two inputs at each step t of the algo-
rithm. The adversary partitions the processors
into three sets: (i) All the processors which
will not try to broadcast at step t. (ii) All
the processors rrith fixed inputs which will try
to broadcast at step t given the computation in
the first t- 1 steps of the algorithm. (iii) All the
processors which will try to broadcast at step
t depending on their input. I.e., the input of
each of these processors is not fixed up to step
t and for some consistent inputs the processor
may try to broadcast. We distinguish between
three cases depending on the size of the third
set. Case A: The third set is empty. Observe
that in this case the behavior of the algorithm
(i.e., the broadcast) at step t does not depend
on any of the unfixed inputs. Hence, the adver-
sary does not fix any additional inputs. Case
B: The third set consists of a single processor.
Observe that in this case the behavior of the al-
gorithm at step t depends only on the input of
this single processor. The adversary fixes the
input of this processor causing it to broadcast.
Case C: There are at least two processors in
the third set. In this case the adversary fixes
the inputs of at most two processors in the set
in such a way that they will try to broadcast,
causing a collision on the channel. Note that
we will have a collision on the channel inde-
pendent of the values of the rest of the unfixed
inputs. Thus, proving our claim.

The lower bound for a multimedia net-
work The lower bound proof for a multi-
media network is similar to the lower bound
for the broadcast network, given above. Our
lower bound proof resembles two other lower
bound proofs given for different models:
(1) The n(fi) t ime lower bound given in
[Bok84,Sto86] for the time needed to add num-
bers in a linear mesh with a bus, and (2) The
n(fi) time lower bound given in [VW831 for
the time needed to add numbers in a parallel

100

RAM with one cell of shared memory.

Consider computing a global sensitive func-
tion F, in a multimedia network of diameter
d with a star topology. That is, the point-
to-point part of the network consists one ver-
tex, the center, from which 2nld vertex disjoint
paths each of length d/2 emanate. We show
that there is at least one input instance for
which the algorithm runs in n(MIN{d, fi})
time. As in the lower bound proof for the
broadcast network this proof also uses adver-
sary arguments. The only difference between
the two proofs is that here we have to take into
account the information each processor gains
using the point-to-point network. Define the t-
neighborhood of a processor p as the set of ail
processors at distance 5 t from p (including p).

We show that an adversary can fix only
1 + Pnt/d + 4 X$=1 j inputs after t steps of the
algorithm. That is, the algorithm will broad-
cast the same messages in the first t steps, no
matter what are the values of the rest of the in-
puts. Again, since the value of the global sensi-
tive function depends on all the n inputs, when
the algorithm terminates all the inputs should
be fixed. Hence, if the algorithm terminates af-
ter t steps, 1+2nt/d+4 C&1 j must be at least
n. This implies the desired R(MIN{d, fi})
time lower bound.

Initially, the adversary fixes the input of the
processor in the center of the network. At each
step t of the algorithm the adversary fixes at
most 2n/d + 4t additional inputs. The 2n/d
term is due to the inputs of the processors
which are at distance t from the center. These
inputs are fixed at step t. To decide which
additional inputs to fix the adversary parti-
tions the processors into three sets: (i) All the
processors which will not try to broadcast at
step t. (ii) All the processors satisfying the fol-
lowing two conditions: (a) The inputs of the
processors in their t-neighborhood are already
fized, and (b) Given these fixed inputs the pro-

cessors will try to broadcast at step t. (iii)
All the processors which will try to broadcast
at step t given the inputs of the processors in
their t-neighborhood. (Some of which have not
yet been fixed.) We distinguish between three
cases depending on the size of the third set.
Case A: The third set is empty. In this case
the behavior of the algorithm (i.e., the broad-
cast) at step t does not depend on any of the
unfixed inputs. Hence, the adversary does not
fix any additional inputs. Case B: The third
set consists of a single processor, p. In this case
the behavior of the algorithm at step t depends
on the unfixed inputs among the inputs of the
processors in p’s t-neighborhood. Since all the
inputs of the processors at distance 5 t from
the center are already fixed, the number of un-
fixed inputs among these inputs is at most 2t.
The adversary fixes these unfixed inputs, caus-
ing p to broadcast. Case C: There are at least
two processors in the third set. Again, since
all the inputs of the processors of distance _< t
from the center are already fixed, the adversary
can fix the inputs of at most 4t additional in-
puts in such a way that at least two processors
in the set will try to broadcast, causing a col-
lision on the channel. Note that we will have
a collision on the channel independent of the
values of the rest of the unfixed inputs. Thus,
proving our claim.

Corollary 4 The computation of a global sen-
sitive function requires n(n) time in an arbi-
trary point-to-point network and in a broadcast
network and n(G) time in an arbitrary mul-
timedia network.

7 Computing a minimum

spanning tree

In this section we present a deterministic al-
gorithm for constructing a minimum spanning
tree (MST) in a multimedia network where

101

each of its links is associated a distinct weight.
(Again, we note that this simplifying assump-
tion is not crucial.) Our algorithm is actually
an implementation of the sequential algorithm
of [Kru56]. It has three stages. In the first
stage we compute a spanning forest using the
deterministic partitioning algorithm given in
Section 4. Recall that this spanning forest has
the following two properties: (1) Each tree in
the spanning forest is a rooted subtree of the
MST of the network. These trees are called ini-
tial fragments. (2) The size of each fragment
is > &i and its radius is < 86. In the sec-
ond stage we compute a scheduling of the roots
of these fragments, for accessing the channel.
This is done using the resolution technique of
[Cap79]. In the third stage we join the ini-
tial fragments to get the MST of the network.
Below, we describe the third stage of the algo-
rithm.

The third stage has two parts. First, each
node finds out which initial fragment is on the
other side of each of its incident links. This
first part takes O(1) time and O(m) messages.
The second part proceeds in phases. The in-
put to each phase is a spanning forest consist-
ing of rooted fragments of the MST. We call
these fragments the current fragments. In each
phase each current fragment computes its min-
imum weight outgoing link and then, the cur-
rent fragments are merged along their selected
minimum weight outgoing links to form bigger
current fragments. The output of each phase
is thus another spanning forest with at most
half as many current fragments as the input to
the phase. The computation is done using the
initial fragments computed in the partitioning
algorithm which remain the same throughout
this stage. Thus, at each phase each node be-
longs to some initial fragment and to some car-
rent fragment. Moreover, inductively, in the
beginning of each phase every node knows the
names of all the initial fragments in its current
fragment. Before the first phase each initial

fragment is a current fragment. Each phase
consists of the following two steps:

Step 1. The nodes of each initial fragment
compute, using the point-to-point network, the
minimum weight outgoing link from their ini-
tial fragment to a node that is not part of their
current fragment. This is done by a simple
broadcast and collate on the initial fragment.
Note, that since each node knows which initial
fragment is on the other side of each of its inci-
dent links, this step requires no inter-fragment
communication.

Step 2. All the cores of the initial fragments
broadcast, using the computed schedule on the
broadcast channel, the weight of the minimum
weight outgoing link that has been found in
Step 1. Each core implicitly broadcasts the
following information: (i) the id of its initial
fragment, (ii) the id of its current fragment,
(iii) the weight of the link, (iv) the id of the I
current fragment to which the link is incoming,
and (v) the ids of the nodes in both sides of this
link. To this end only (iii) and (iv) are explic-
itly broadcasted the rest can be simulated in
each node’s memory.

Observe that after this information is broad-
casted each node can compute 1ocaZly the min-
imum weight link outgoing from every current
fragment. All these links are part of the MST.
Hence each node can compute locally all the
newly added MST links and, in particular, all
the newly added MST links among its links.
Note that by adding all these links to the span-
ning forest the number of current fragments is
at least halved.

Complexity. Computing the initial sub-
trees takes O(J;ilog* rz) time and O(m+
n logn log* n) messages using the algorithm
given in Section 4. It takes O(filogn) time,
to schedule the roots on the channel using
the techniques of [Cap79]. In each phase
the number of current fragments is at least

102

halved; therefore, there are at most O(logn)
phases. Step 1 of each phase takes O(G)
time and O(n) messages. Step 2 of each phase
takes O(fi) time. We conclude that the al-
gorithm runs in O(filog n) time and sends
O(m + n log n log* rz) messages.

Acknowledgments. We are grateful to Noga
Alon, Don Coppersmith, John M. Marberg,
Michael Rabin, and Avi Wigderson for help-
ful discussions and remarks.

References

[AAG87) Y. Afek, B. Awerbuch, and E.
Gafni. Applying static network
protocols to dynamic networks. In
Proc. of the 28th IEEE Annual
Symp. on Foundation of Computer
Science, pages 358-370, October
1987.

(ABCP87] A. Asthana, C. J. Briggs, M. R.
Cravatts, and K. Padmanabhan. A
high speed multiple pipeline func-
tion unit as a building block for par-
allel architectures. In Proc. of the
International Conf. on Computer
Design, 1987.

[ALSY88] Y. Afek, G. M. Landau, B.

[Awe851

[Awe871

Schieber, and M. Yung. The power
of multimedia: combining point-
topoint and multiaccess networks.
February 1988. Submitted for
Journal Publication.

B. Awerbuch. Complexity of net-
work synchronization. Journal of
the A CM, 32(4):804-823, October
1985.

B. Awerbuch. Linear time dis-
tributed algorithms for minimum
spanning trees, leader election,
counting and related problems.
In Proc. of the 19th Ann. ACM

[BG87]

[Bok84]

FW91

[CL85)

[cvss]

(~G87]

[Gal821

[GHS83]

[GL83!

Symp. on Theory of Computing,
pages 230-240, May 1987.

D. P. Bertsekaa and R. G. Gal-
lager. Data Networks. Prantice
Hall, 1987.

K. E. Bokhari. Finding maxi-
mum on an array processor with a
global bus. IEEE Trans. Comput-
ers, 33:836-840, 1984.

J. Capetanakis. Tree algorithms for
packet broadcast channels. IEEE
Trans. on Information Theory, IT-
25(5):505-515, September 1979.

K. M. Chandy and L. Lamport.
Distributed snapshots: determin-
ing global states of distributed sys-
tems. ACM Trans. on Computer

Systems, 3(1):63-75, January 1985.

R. Cole and U. Vishkin. Determin-
istic coin tossing and accelerating
cascades: micro and macro tech-
niques for designing parallel algo-
rithms. In Proc. of the 16th Ann.
ACM Symp. on Theory of Comput-
ing, pages 206-219, May 1986.

P. A. Franaszek and C. J. Georgiou.
Multipath hierarchies in intercon-
nection networks. In Proc. of the
International Conference on Super-
computers, 1987.

R. G. Gallager. Distributed Min-
imum Hop Algorithms. Technical
Report LIDS-P-l 175, M.I.T. Lab
for Information and Decision Sys-
tems, January 1982.

R. G. Gallager, P. A. Humblet, and
P. M. Spira. A distributed algo-
rithm for minimum weight span-
ning trees. ACM Trans. Program.
Lang. Syst., 5:66-77, January 1983.

A. G. Greenberg and R. Ladner.
Estimating the multiplicity of con-
flicts in multiple access channels.
In Proc. of the 24th IEEE Annual

103

[GM871

[GPS87]

[Gre82]

fInt85]

[KHS88]

[KM2841

[Kru56]

[MB761

Symp. on Foundation of Computer cal computer networks. Communi-
Science, pages 384-392, October cation of the ACM, 19(7):395-403,
1983. 1976.
Y. Gold and S. Moran. Dis-
tributed algorithms for construct-
ing the minimum weight spanning
tree in broadcast networks. Dis-
tributed Computing, 2(3):139-148,
1987.

[M0181]

(M0183]

A. V. Goldberg, Serge A. Plotkin,
and Gregory E. Shannon. Par-
allel symmetry-breaking in sparse
graphs. In Proc. of the 19th Ann.
ACM Symp. on Theory of Comput-
ing, pages 315-324, May 1987.

A. G. Greenberg. On the time
complexity of broadcast communi-
cation schemes. In Proc. of the
14th Ann. ACM Symp. on Theory
of Computing, pages 354-364, May
1982.

!Seg83]

M. Molle. Unification and Ezten-
sions of the Multiple Access Com-
m&cations Problem. PhD thesis,
UCLA, July 1981.

IM. Molle. A simulation study
of retransmission strategies for the
asynchronous virtual time csma
protocol. In Performance 83, May
1983.
A. Segall. Distributed network
protocols. IEEE Trans. on I&r-
nation Theory, IT-29(l), January
1983.

(SR85]

[Sto86]
Intel. Ipsc: intel’s personal super-
computer preliminary data sheet.
1985.

Y. J. Kang, J. H. Herzog, and J.
Spragins. Fishnet: a distributed
architecture for high-performance
local computer networks. IEEE
Trans. on Computers, 37(1):119-
123, January 1988.

L. Shrira and M. Rodeh. Method-
ological Construction of Reliable
Distributed Algorithms. Technical
Report, Technion, March 1985.

Q. F. Stout. Meshes with mul-
tiple buses. In Proc. of the 27th
IEEE Annual Symp. on Foundation
of Computer Science, pages 264-
273, October 1986.

[Tan811

[VW831

E. Korach, S. Moran, and S. Zaks.
Tight lower and upper bounds for
some distributed algorithms for a
complete network of processors. In
Proc. of the ACM Symp. on Prin-
ciples of Distributed Computing,
pages 199-207, August 1984.

[Wi184]

J. B. Jr. KruskaI. On the short-
est spanning subtree of a graph and
the traveling salesman problem. In
AM!?, pages 48-50, 1956.

R. M. Metcalfe and D. R. Boggs.
Ethernet:
distributed packet switching for lc+

A. S. Tanenbaum. Computer Net-
works. Prentice-Hall, 198 1.
U. Vishkin
and A. Wigderson. Trade-offs be-
tween depth and width in parallel
computation. In Proc. of the 24th
IEEE Annual Symp. on Foundation
of Computer Science, pages 146-
153, October 1983.

D. E. Willard. Loglogarithmic pro-
tocols for resolving ethernet and
semaphore protocols. In Proc. of
the 15th Ann. ACM Symp. on The-
ory of Computing, pages 512-521,
May 1984.

104

,

