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Abstract 

In this paper we introduce a new network 
model called a muZtimedia network. It com- 
bines the point-to-point message passing net- 
work and the multiaccess channel. To bene- 
fit from the combination we design algorithms 
which consist of two stages: a local stage which 
utilizes the parallelism of the point-to-point 
network and a global stage which utilizes the 
broadcast capability of the multiaccess chan- 
nel. As a reasonable approach, one wishes to 
balance the complexities of the two stages by 
obtaining an efficient partition of the network 
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into O(fi connected components each of ra- 
dius O(fi). To th is end we present efficient 
deterministic and randomized partitioning al- 
gorithms. The deterministic algorithm runs in 
O(fi log* n) time and O(m + n log n log* n) 
messages, where n and m are the number of 
nodes and number of point-to-point links in the 
network. The randomized algorithm runs in 
the same time, but sends only O( m + n log’ 7~) 
messages. The partitioning algorithms are 
then used to obtain: (1) o(j./zogn log’n) 
time deterministic and O(filog’ n) time ran- 
domized algorithms for computing ylobaI sensi- 
tive functions, and (2) O(fi log n) time deter- 
ministic algorithm for computing a minimum 
spanning tree. 
An G?(n) time lower bounds for computing 
global sensitive functions in both point-to- 
point and multiaccess networks, are given, thus 
showing that the multimedia network is more 
powerful than both its separate components. 
Furthermore, we prove an R(A) time lower 
bound for multimedia networks, thus leaving 
a small gap between our upper and lower 
bounds. 

1 Introduction 

Two classes of data networking technologies 
have emerged in recent years, the point-to- 
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point network (store and forward message 
passing system), and the multiaccess chan- 
nel (broadcast channel) [BG87,Tan81). In the 
point-to-point message passing network, com- 
munication lines connect pairs of processors in 
an arbitrary topology. In one step, each of the 
processors in the network can send a message 
to each of its neighbors. In the multiaccess 
channel, on the other hand, all processors are 
connected to a broadcast medium (e.g., bus, 
Ethernet, satellite, or radio channels). In one 
step, a single message can be heard by all the 
processors in the network. When more than 
one processor tries to access the channel simul- 
taneously, a collision occurs and is detected by 
the processors. In an attempt to take advan- 
tage of both the high bandwidth of the point- 
to-point network and the broadcast proper- 
ties of the multiaccess channel, supercomputer 
designers ([FG87,ABCP87)) and network ar- 
chitects ([KHS88]) h ave recently suggested to 
combine these two technologies. (The Intel hy- 
per cube [Int85] is a commercially available sys- 
tem which contains such a combination.) We 
call a network whose processors are connected 
by both a point-to-point message passing sys- 
tem and a multiaccess channel a multimedia 
network. In this paper we, first, define the mu!- 
timedia network model, and second, investigate 
the algorithmic aspects of this model. 

Many distributed algorithms have been 
developed for both point-to-point networks, 
[GHS83,Ga182,Awe85,Awe87] to mention just 
a few, and multiaccess networks (Cap791 
[Gre82,GL83,Wi184,GM87]. However, to the 
best of our knowledge, a combination of an ar- 
bitrary point-@point network with a multiac- 
cess network has not been considered yet. 

Bokhari [Bok84] and Stout [Sto86] consid- 
ered the algorithmic aspects of adding a bus 
system to a mesh connected parallel machine. 
They showed that the divide-and-conquer ap- 
proach leads to efficient algorithms in such a 
combined model. Our algorithms use the same 

approach. The main subtlety of our algorithms 
lies in the “dividen stage since, in contrast 
to the model considered in [Bok84,Sto86], our 
network is of arbitrary topology. (In addition, 
their topologies are special, their channel is as- 
sumed to be preallocated, and collisions are not 
allowed). 

The main contributions of this paper are: 
the precise definition and the examination of 
the power of the multimedia model, and effi- 
cient deterministic and randomized algorithms 
for partitioning the multimedia network. 

To benefit from both the parallelism of the 
point-to-point network and the broadcast ca- 
pability of the multiaccess channel we ap- 
ply the divide-and-conquer (local-parallel and 
global-broadcast) approach to algorithmic de- 
sign in the multimedia network. To this end, 
we divide the com.putation into two stages: a 
local stage and a global stage. The local stage 
is carried out in parallel on the point-to-point 
network. In this stage the broadcast channel 
is used only for synchronization. The global 
stage uses the broadcast channel to combine 
the partial computations of the local stage. To 
balance the efforts of the two stages, we par- 
tition the network by constructing a spanning 
forest consisting of O(fi rooted trees each of 
radius O(G). Both the deterministic and ran- 
domized algorithms for constructing the for- 
est run in Offi s log* n) time, thus remaining 
within a log* n factor from the above balance. 

The deterministic partitioning algorithm 
sends O(m + n a log n e log* n) messages, where 
m and it are the number of links and nodes 
in the network. The algorithm constructs a 
spanning forest. It uses a new technique which 
simultaneously controls the radius of the trees 
from above and the size of the trees from be- 
low. The technique combines the tree grow- 
ing techniques of [GHS83] with the symme- 
try breaking method of the deterministic coin 
flipping algorithm of Cole and Vishkin as was 
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suggested by Goldberg, Plotkin, and Shannon 
[Cv86,GP~87]. 

The randomized partitioning algorithm 
sends O(m + n - log’ n) messages. Moreover, 
it is considerably simpler than the determinis- 
tic one, and its probabilistic analysis is quite 
subtle. 

To demonstrate our techniques, and the 
power of the multimedia network, we con- 
sider a class of functions called global sensi- 
tive. Essentially, a function is defined to be 
global sensitive if a change in any of its in- 
puts always changes the output value (e.g. ad- 
dition). We present a randomized and a de- 
terministic divide-and-conquer algorithms for 
computing such functions using the forest par- 
tition. The resulting deterministic algorithm 
runs in 0( n log n log* n) time and sends 
O(m+n-log n-log* n) messages. The expected 
running time of the randomized algorithm is 
O(fi - log* n) and its message complexity is 
O(m + n. log’ n). 

Three lower bounds on the time required 
to compute global sensitive function are pre- 
sented. First, we prove an n(d) time lower 
bound for point-to-point networks of diame- 
ter d, and an n(n) time lower bound for mul- 
tiaccess networks. Together with our upper 
bounds, in the case where d >_ fi (or the gen- 
eral case where d is not known in advance), this 
implies that the multimedia network as a whole 
is more powerful than each of its parts. The 
third lower bound is an n(min{d,fi>> time 
for multimedia networks of diameter d. Thus, 
in the general case, there is only a small gap 
between our upper bound and the n(fi) lower 
bound for multimedia network. (We note that 
in the special case where d is known to be 5 fi 
and a single node is a priori distinguished as a 
leader then the time complexity of computing 
a global sensitive function in both a point-to- 
point and a multimedia network is Q(d).) 

Finally, we show how to apply the divide- 
and-conquer approach to derive a deterministic 
algorithm for constructing a minimum span- 
ning tree in a multimedia network. This al- 
gorithm runs in O(fi log n) time, and sends 
0 (r-n + n - log n - log* n) messages. 

The rest of the extended summary is or- 
ganized as follows: The multimedia network 
model of computation and the complexity mea- 
sures are presented in Section 2. In Section 3 
we show how to transform the multimedia net- 
work into a synchronous network and give a 
deterministic and a randomized technique to 
estimate n. The deterministic partitioning al- 
gorithm is presented in Section 4, and the prob- 
abilistic partitioning algorithm in Section 5. In 
Section 6 we give the algorithms for computing 
global sensitive functions, and lower bounds on 
the time required to compute a global sensitive 
function in each of the models. In Section 7 
the minimum weight spanning tree algorithm 
is presented. Some details and proofs are omit- 
ted from this extended summary. The reader 
is referred to the full paper (ALSYSS]. 

2 Model 

We consider a set of processors which commu- 
nicate simultaneously over two media: 

1. an arbitrary topology point-to-point net- 
work and 

2. a broadcast media (a collision bus). 

To model the multimedia network we com- 
bine the standard model of asynchronous data 
communication networks with the standard 
model of a collision bus. 

The network part is the point-to-point 
message-passing model as in [Seg83,GHS83]. 
The network topology is described by an undi- 
rected communication graph G = (V, E), 
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where V is a set of n nodes, representing the 
processors of the network, and E is a set of 
m links, representing the bidirectional commu- 
nication lines operating between neighboring 
nodes. Messages sent over a link arrive error- 
free at the other end, after an arbitrary but 
finite delay. 

The network model is combined with a col- 
lision bus by connecting all the nodes of the 
network to a multiple access channel. For ease 
of presentation the channel is assumed to be 
slotted. In the full paper [ALSY88] it is shown 
that any unslotted channel can be made slotted 
if a Frequency Division Multiple Access scheme 
(FDMA) is available. Every node can write 
to, and read from each slot on the channel. 
Each slot is in one of the following three states: 
idle, success, or collision depending on whether 
zero, one, or more than one processors write in 
that slot, respectively. A good account of the 
multiaccess model and its relation to possible 
implementation is given in [~~83]. 

For the multimedia combination to make 
sense we equate the performance parameters 
of its two components (if one technology, for 
example, is substantially slower than the other 
one then a combination might introduce large 
delays and reduce the efficiency of the system 
as a whole). Specifically, we equate the follow- 
ing parameters: The message size in the net- 
work is assumed to be as large as the length 
of the channel slot (in bits). We assume that 
this size is bounded by O(logn) bits plus the 
size of the maximal data element. The mes- 
sage delay in the point-tGpoint network and 
the slot length in the multiaccess channel are 
assumed to be of the same order of magnitude. 
Although it is not crucial, to make the presen- 
tation lucid we also assume that all the pro- 
cessor identifiers (ids) can be represented in 
O(log n) bits. The ids are used in our algo- 
rithms in a way similar to [CV86] and [Cap79]. 

When analyzing the time complexity of an 
algorithm (and only then) we assume that the 
message delay and the inter-message delay (the 
time between successive message transmissions 
on one link) in the point-to-point network is at 
most one time unit. The length of one slot is 
assumed to be one time unit as well. The com- 
munication complexity is the total number of 
messages sent over the network plus the time 
complexity (this measures the information re- 
ceived over both media). 

3 Basic tools 

Notice that certain problems are easy to solve 
in the multimedia network. Obviously, broad- 
casting a message is trivial. Taking a snap- 
shot [CL851 in this model is easy by syn- 
chronizing the check point through the bus. 
Similarly, by assuming that the multiaccess 
channel is fault free the problem of resetting 
a dynamic network [AAGU] is also trivial- 
ized. Given the conflict resolution algorithms 
of [Cap79,Gre82,Mo183,GL83,Moi81] and oth- 
ers, the election problem can be solved in 
O(log n) time without using the point-to-point 
network. As a result, a spanning tree can be 
easily constructed in O(n) time and 0 (m) mes- 
sages. Less obvious but not much harder, a 
synchronizer [Awe851 with 0( 1) time, and O(1) 
messages overhead per round can be imple- 
mented using the multiaccess channel as shown 
in the next subsection. 

3.1 The channel as a Synchronizer 

A synchronizer [Awe851 is a mechanism which 
enables the execution of synchronous algc+ 
rithms on an asynchronous network. Let us 
first review the synchronous model of compu- 
tation. 

In the synchronous model of computation all 
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the nodes are connected to a global clock which 
generates clock pulses (“ticks”) to all the nodes 
at the same time. The time interval between 
two consecutive pulses of the clock is a round. 
At the beginning of each round, each node de- 
cides, according to its state, what messages to 
send and on which links to send them, Each 
node then receives any messages sent to it in 
this round and uses the received messages and 
its state to decide on its next state. Note that 
the only knowledge that the clock pulses pro- 
vide the algorithm is that all the messages of 
the algorithm sent in that round have been al- 
ready received. 

A synchronizer provides the nodes of an 
asynchronous network with clock pulses which 
provide the algorithm at each node with the 
same knowledge, i.e., that all the messages sent 
to it in the present simulated round have been 
already received. Given this knowledge the al- 
gorithm can safely proceed to the computation 
and communication operations of the next sim- 
ulated round. 

The multimedia network is used to imple- 
ment a synchronizer by first requiring each 
node to acknowledge the reception of each mes- 
sage of the algorithm on the point-to-point net- 
work links. Second, a node is required to trans- 
mit a busy-tone on the channel as long as not 
all the messages the node sent has been ac- 
knowledged. An idle slot on the channel is then 
considered as a clock pulse. 

Note that the collision channel synchronizer 
at most doubles the message complexity of 
the synchronous algorithm, because of the ac- 
knowledgments, and multiplies the time com- 
plexity of the algorithm by at most a constant 
factor. 

Corollary 1 The multimedia network is at 
least as powerful as the corresponding syn- 
chronous point-to-point network. 
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3.2 Multiaccess resolution and esti- 
mation techniques 

Many resolution techniques, to allocate a slot 
on the channel in the event of collisions, were 
developed [Can79,GL83,Mo181,Wi184]. Essen- 
tially, these techniques can be viewed as sym- 
metry breaking methods either by comparing 
the identifier (id) bits deterministically or by 
random coin flips. The reader is referred to 
these papers for details. 

Greenberg and Ladner [GL83] have sug- 
gested a randomized algorithm to estimate the 
number of processors in a multiaccess network. 
The same mechanism can be used to imple- 
ment our randomized algorithms when n is un- 
known. We note that random bits can be used 
also to generate random ids in case those are 
not given. 

The total number of nodes, n, can be es- 
timated deterministically in O(fi . log(jidj)) 
time, where id is the largest identifier (id) 
in the network. The detailed description of 
the scheme is postponed to the full paper 
[~LSy88]. E ssentially, we guess the number 
of nodes in the network and run the determin- 
istic algorithm for computing a global sensitive 
function, to check if the guess is correct. If the 
algorithm fails to finish after a corresponding 
number of iterations, the guess is doubled and 
checked again, etc. 

4 A deterministic, partition- 
ing algorithm. . . 

Suppose we are given a multimedia network 
where each of its links is associated a distinct 
weight. (We note that this is a simplifying but 
not crucial assumption.) We present a deter- 
ministic algorithm for constructing a spanning 
forest with the following two properties: (1) 



Each tree in the spanning forest is a subtree of 
the minimum spanning tree (MST) of the net- 
work. (2) The size of each tree in the forest is 
>_ fi and its radius is < 8fi. Our algorithm 
incorporates the algorithm of [GHS83] for con- 
structing a minimum spanning tree with the 
techniques of (CVSS] as used in [GPS87] for 
symmetry breaking. 

Description of the algorithm 

The algorithm proceeds in phases. At each 
phase we maintain a spanning forest such that, 
each of its trees is a rooted subtree of the min- 
imum spanning tree (MST) of the network. 
These rooted trees are called fragments and, 
the root of each fragment is called the cure of 
the fragment. At phase i, i = 1, . . ., v, of 
the algorithm the size of each such fragment 
is 2 2’ and its radius is 2 2’f3 - 1. Clearly, 
after phase 9 we will have the desired parti- 
tioning. We remark that our algorithm can be 
slightly modified to work even if n is unknown. 
See Section 6 for more details. 

At each phase, the algorithm performs some 
inter-fragment computations and some intra- 
fragment communications. In this respect each 
fragment can be viewed as a super-node in a 
network and the algorithm proceeds by inter- 
node computations and intra-node communi- 
cation. To control the pace at which fragments 
grow we use a synchronizer to run the super- 
nodes in synchrony. The synchronizer is imple- 
mented exactly as in Section 3.1. That is, all 
the nodes will know when each phase is start- 
ing (finishing). 

We start the algorithm at Phase 0 by taking 
the spanning forest which consists of each one 
of the nodes as a core of a fragment of size one. 
Each Phase i of the algorithm consists of the 
following seven steps, 

Step 1. Each core counts the number of 
nodes in its fragment, by broadcasting a mes- 

sage out to the leaves and collating it back. 
Each node v collates to its parent only after 
receiving a collate from all its children. Node 
v then collates to its parent 1 + the sum of its 
children collates. 

Let the level of a fragment be the integer 
part of the base two logarithm of the number 
of nodes in the fragment. 

Step 2. Each core whose level equals i com- 
putes the minimum weight outgoing link of its 
fragment by performing another broadcast and 
collate on the fragment branches. Upon re- 
ceiving the broadcast message each node first 
forwards the message to its children and then 
performs a local search for its minimum weight 
outgoing link (as in [GHS83]). Note that since 
there are at most 2’+’ - 1 links outgoing from 
each node to the rest of the nodes in its frag- 
ment, the local search will take 0(2’+‘) time 
and messages. Once the local minimum weight 
was found and a collate from each of the chil- 
dren was received the node collates to its par- 
ent with the minimum weight outgoing link of 
the subtree rooted at the node. The collate 
propagates in this way up to the core which 
thus have computed the minimum weight out- 
going link of the fragment. 

These chosen links define a directed “frag- 
ment” graph F as follows. Each vertex in F 
corresponds to a fragment in our forest. Each 
edge in F corresponds to a minimum weight 
outgoing link found in Step 2. That is, if such 
a link is outgoing from fragment 2’1 to frag- 
ment T2, then the corresponding edge in the 
“fragment” graph is directed from the vertex 
corresponding to Tr to the vertex correspond- 
ing to T2. Define the level of a vertex in F as 
the level of its corresponding fragment. Ob- 
serve that each connected component of P is 
in one of the following three forms: (i) A sin- 
gle vertex. Note that the level of this vertex 
must be at least i + 1. (ii) A rooted tree con- 
sisting of vertices in level i rooted at a vertex 
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in a level > i. (Later we prove that the ra- 
dius of this root is bounded by 2’f3). (iii) A 
tree consisting of vertices in level i, with one 
extra edge. Note that in this case one link was 
selected by both its incident fragments as the 
minimum weight outgoing link. We root the 
tree at the vertex (fragment) with the higher 
id among these two vertices (fragments) and 
omit the extra edge outgoing from it. iFrom 
now on F is considered a forest. 

In the next five steps we manipulate the 
“fragment” graph (forest). We describe the 
operations as if performed between the cores 
of the fragments (vertices). The message ex- 
change between the cores is carried over the 
branches of the fragments in the obvious way. 

Step 3. Apply Cole and Vishkin [CVSS] tech- 
niques as suggested in Goldberg, Plotkin and 
Shannon [GPS87] to color the vertices of F in 
three colors. Recall that [GPS87] give a par- 
allel algorithm for coloring the vertices of a 
rooted tree in three colors. Their algorithm 
runs in O(log* n) time using a linear num- 
ber of processors on an Exclusive Read Ex- 
clusive Write Parallel RAM. It can be easily 
verified that the same algorithm can be imple- 
mented also in a multimedia tree network with 
Ic nodes in O(log* Ic) time and O(klog* Cc) mes- 
sages. Applying this algorithm to each of the 
rooted trees which form F will result in the 
desired three coloring. 

Let the three colors be Red, Green and 
Blue. Our goal in Steps 4, 5, and 6 is to com- 
pute a maximal independent set (MIS) in F. 
The MIS will be the set of Red nodes. The im- 
plementation of Step 4 follows the techniques 
of 1~~~871. 

Step 4. For each rooted tree 2’~ in F and 
each vertex t) in TF, excluding the root and 
its children, recolor 21 with the color of its fa- 
ther. If the root is Red then recolor each of its 
children with a color different from Red and 

the child’s color. Otherwise, recolor the root’s 
children with the root’s color and the root with 
Red. Note that the coloring is still legal and 
that the root is always Red. 

Step 5. Recolor each Blue vertex which has 
no Red neighbor with Red. 

Step 6. Recolor each Green vertex which has 
no Red neighbor with Red. 

It is not difficult to see that after Step 6 the 
set of Red vertices is indeed an MIS. Hence, 
the length of any path between two Red ver- 
tices in F is bounded by three. This enables 
us to partition each tree in F into subtrees, the 
radius of each is bounded by four. Each of the 
subtrees will form a new tree.in the spanning 
forest of the network. 

Step 7. Remove the edge outgoing from each 
Red vertex which is not a leaf. For each sub- 
tree thus created, join the fragments which cor- 
respond to its vertices to form a new fragment. 
The core of each such new fragment is the core 
of the fragment corresponding to the root of 
the subtree (which is the unique Red internal 
vertex of F in the subtree.) 

The following claims can be easily verified. 

Claim 1 After Phase i the level of each frag- 
ment in the spanning forest of the network is 
at least i+ 1. 

Proof of Claim: See the full paper [ALSY88]. 

Claim 2 After Phase i the radius of each frag- 
ment in the spanning forest of the network is 
at most 2i’4 - 1. 

Proof of Claim: This claim is proved also by 
a simple induction. By the inductive assump- 
tion, the radius of each fragment at the begin- 
ning of phase i is at most 2’+3 - 1. The subtrees 
created in step 7 have radius at most four with 
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each vertex with radius at most 2’+’ - 1 except four steps. 
possibly the root which might have radius at 
most 2’+3 - 1. Thus the radius of the resulting 
fragments is at most 2’+3 - 1 + 3 * (P’ - 1) 
= 14.2’ - 4 < 2’f4. Cl 

Time complexity. The time complexity of 
Steps l,2 and 7 is O(2’). The time complexity 
of Step 3 is O(2’ log’ n). The time complexity 
of Steps 4,5 and 6 is O(1). Summing up for i = 
1 , “‘I 9 we arrive at a total time complexity 
of O(fi log* n). 

Message complexity. Our message com- 
plexity analysis differs from the analysis of 
[GHS83] only in Step 3. This step con- 
tributes O(nlog* n) messages per phase and 
a total of O(nlogn log* n) messages. Thus 
the overall message complexity equals O(m + 
n log n log* n). 

5 A randomized partitioning 
algorithm 

In this subsection we present a randomized al- 
gorithm for computing a spanning forest con- 
sisting of trees each of radius O(G). We prove 
that the expected number of trees produced by 
the algorithm is 0(,/K). The running time of 
the algorithm is O(filog* n) and its message 
complexity is 0( rn + n log” n). The algorithm 
can be modified so that it will work when n is 
unknown and the nodes are anonymous. (See 
Section 3.2.) 

Definition: Let EO = I and Ei = eEi-l, for 
i = 1, . . . , In* n. In words, Z?i is given by raising 
e to the power of e, i - 1 times. 

We start the algorithm by initializing all the 
nodes to be in a jree state. The algorithm pro- 
ceeds in at most ln’ n + 1 iterations (assume, 
w.l.0.g. that the radius > 6.) Each iter- 
ation i = 0, .,., In’ n consists of the following 

Step 1. All the nodes are invoked by broad- 
casting an “awake” message on the broadcast 
channel. 

Step 2. Each free node flips a coin which has 
MIN( 1, 3) probability for “head”. A node 
which flipped “head” becomes a foccrl center. 

Step 3. Each local center computes a con- 
nected component by growing a BFS tree to 
distance at most 4fi. Each node in the BFS 
trees is labeled with the distance from the root 
of its tree. A node which belongs to a BFS 
tree from previous iterations switches to a new 
tree only if it reduces its label. Utilizing the 
synchronizer of section 3 this can be done in 
0(,/Z) time and O(m) messages. (See (Gal821 
for details.) To reduce the message complexity 
of the algorithm, each link which is found to 
be internal to a BFS tree is removed from the 
network for the algorithm purposes. 

Step 4. All the nodes with label 5 2fi be- 
come unfree, all the rest remain free for the 
next iteration. Note that a free node may be- 
long to a BFS tree. 

Clearly, the randomized algorithm described 
above computes a spanning forest consisting of 
trees each of radius 5 4fi. Note that in the 
last iteration all free nodes become centers with 
probability one. Next we prove: 

Theorem 2 The expected number of trees in 
the spanning forest is 0( 6). 

Proof Consider an arbitrary partition of the 
network into connected components, the size of 
each is 2 Jn and the radius of each is 5 2fi. 
Note that such a partition always exists. We 
remark that this partition is needed only for 
the proof and is not actually computed. We 
call each connected component in this partition 
a block. 
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To find the expected number of trees we 
find the expected number of local centers se- 
lected in each iteration. For this, let us first 
find the expected number of free nodes at the 
start of each iteration. We observe that if a 
node is free then no node in its block could 
have been a local center. Clearly, the proba- 
bility that no local center will be selected in 
a block in iteration 0 is < (1 - $=)fi = e-l 
independently of the other blocks. This im- 
plies that the expected number of free nodes 
at the start of iteration 1 is at most 2. In the 
same way, the probability that no local center 
will be selected in a block in iteration 1 (given 
that no local center was selected in iteration 
0) is 5 (1 - 5) fi = e-‘. This implies that 
the expected number of free nodes at the start 
of iteration 2 is at most &. In general, the 
probability that no local center will be selected 
in a block in iteration i 1 0, given that no lo- 
cal center was selected in previous iterations is 
5 (l- %)fi = emEi = &+I-‘. This implies 
that the expected number of free nodes at the 
start of iteration i is at most l--y0 Ej * Reca11 

that the probability for getting a “head” in it- 
eration i is Ei fi. Hence, the expected number 
of local centers selected at iteration i 1 1 is at 
most A. Clearly, the expected number 

of local centers selected in iteration 0 is fi. 
Summing the expected number of local centers 
over the In* n + 1 iterations gives an expected 
number of O(6) local centers. Thus, proving 
the theorem. IJ 

It is not difficult to verify that the time of the 
randomized algorithm is O(filog* n). (Note 
that this is the worst case time and not the ex- 
pected time). To count the number of messages 
transmitted by the construction of the BFS 
trees we note that after exchanging a message 
over a link either the link is added to a BFS 
tree or is removed from the network for the al- 
gorithm purposes. The latter type of message 
exchanges contributes at most Cl(m) messages 
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while the former contributes at most O(n) in 
each iteration, because the algorithm is run in 
conjunction with a synchronizer. Thus, the to- 
tal communication complexity of the algorithm 
is O(m + n log* n) messages. 

Remark: The above algorithm is Monte- 
Carlo, that is, with very small probability the 
resulting spanning forest consists of more than 
O(fi) trees. When the number of processors 
is known we can modify the algorithm into 
a Las-Vegas algorithm (which always gives a 
valid partition and its expected running time is 
the same as the worst case running time of the 
Monte-Carlo algorithm) in the following way. 
At the end of the Monte-Carlo algorithm we 
check whether the number of trees is more than 
2&i. This is done by applying the randomized 
resolution technique of Metcalfe and Boggs 
[MB761 for 8fi rounds (which takes O(fi) 
time units) in an attempt to schedule the roots 
of the trees on the channel. (Note that in or- 
der to be able to use this resolution technique 
we must assume that the number of proces- 
sors is known.) The algorithm terminates if all 
the roots were scheduled and their number is 
5 26. Otherwise, the algorithm is restarted. 
This process is continued until a valid parti- 
tion is computed and verified. The expected 
running time and expected message complexity 
of the resulting Las-Vegas algorithm are of the 
same order of magnitude as the worst case run- 
ning time and worst case message complexity 
of the corresponding Monte-Carlo algorithm. 

6 Computing global sensitive 
functions 

In this section we define the class of global sen- 
sitive functions, give an algorithm for comput- 
ing these functions in a multimedia network 
and prove three lower bounds on the time re- 
quired to compute such functions in each of the 



models. 

Let S(X,o) be a commutative semigroup, 
where X denotes the semigroup elements set 
and l is the semigroup operation. Define the 
function F, : X” + X in the obvious way. 
That is, Fn( 21, . . . . s,) = 21 l zz l . . . l zn. We 
say that F, is a global sensitive function if for 
each n-tuple ~1, . . . . x,, the value of F,, can not 
be determined by any subset of n - 1 elements. 

Observe that the class of global sensitive 
functions contains many natural functions. For 
example: (1) X is the set of integers and l is 
addition. (2) X is the set of integers and l is 
the minimum operation. (Note that when the 
elements set is bounded from below then the 
function is not global sensitive.) (3) X = (0, 1) 
and l is addition modulo two (exclusive or). 

The global sensitive functions defined here 
resemble the notion of the global algorithms 
of [KMZ84,Awe87] and the global queries of 
[SR85]. However, our definition is more restric- 
tive. 

In this section we consider the problem of 
computing a global sensitive function when the 
inputs are distributed among the processors of 
a multimedia network. That is, each one of the 
n processors is given one element 5i E X as in- 
put. At the end of the computation each pro- 
cessor has to know the value of F,(q) .,., q). 

Given the partition of the network as defined 
above, we present a deterministic algorithm 
and a randomized algorithm for computing Fn 
in a multimedia network. In the next subsec- 
tion we provide lower bounds on the time re- 
quired to compute global sensitive functions in 
the various network models. 

In the local computation we compute in par- 
allel the value of the function for each of the 
components defined by the partition. The lo- 
cal computation is done by a simple broadcast 
and colIate aIong the trees links [Seg83]. This 
broadcast takes O(fi) time and O(M) mes- 
sages. Upon the completion of the local com- 
putation each root has the partial result of the 
function computed for the inputs in its com- 
ponent. In the global computation we broad- 
cast all the partial results on the broadcast 
channel. The global computation is done by 
scheduling each one of the roots of the trees 
on the channel. In the deterministic algorithm 
this scheduling can be done by applying the 
resolution techniques of [Cap791 in 0( fi log n) 
time. In the randomized algorithm this can 
be done in O(1) expected time per root (see 
section 3.2), which gives a total of O(fi) ex- 
pected time. (Note that since we have an es- 
timation on the number of the roots it is not 
necessary to use the sophisticated techniques 
of [Wil84] for the scheduling.) 

We note that the running time of the de- 
terministic algorithm can be improved a lit- 
tle by tightening the balance between the time 
of the local computation and the time of the 
global computation. To this end, the deter- 
ministic partitioning algorithm is run for at 

most log & phases. Thus constructing If- 
a forest with O(de) trees each of ra- 

dius O(dz). It can be readily verified 
that the running time of the partitioning al- 
gorithm is 0(4/n log n log’ n), while its mes- 
sage complexity remains O(m + n log n log” n). 
The total running time of the global compu- 

tation will now also be 0( d-log rz) = 

O(Jn logn log* n). 

6.1 Overview of the algorithms 
6.2 The lower bounds 

We divide the computation into two parts a 
local computation and a global computation. In this subsection we prove: 
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Theorem 3 The computation of a global sen- 
sitive junction requires R(d) time in a point- 
to-point network of diameter d, n(n) time in a 
broadcast network and !2(MIN{d,fi}) time 
in a multimedia network of diameter d. 

Pro of: 

The point-to-point network: The lower 
bound follows from the fact that at least one 
node has to get a message from every other 
node [ALSY88]. 

The lower bound for a broadcast net- 
work Suppose we are given an algorithm 
for computing a global sensitive function in 
a broadcast network. We show that there is 
at least one input instance for which the al- 
gorithm runs in n(n) time. The proof uses 
adversary arguments. We view the algorithm 
as a game between the adversary and each of 
the processors. Initially, each processor knows 
only its input. As the algorithm proceeds it 
gets information about other inputs, Accord- 
ing to the definition of global sensitive func- 
tions at the end of the computation it must 
have information which depends on all the in- 
puts. The goal of the adversary is to reveal as 
few inputs as possible at each step, thus forc- 
ing the algorithm to run for a long time. We 
assume that the adversary has unlimited com- 
putation power and that at any step it can fix 
the inputs in any way which is consistent with 
previous steps. 

We show that an adversary can fix only 2t in- 
puts after t steps of the algorithm. That is, the 
algorithm will broadcast the same messages in 
the first t steps, no matter what are the values 
of the rest of the inputs. Note that since the 
value of the global sensitive function depends 
on all the 12 inputs, when the algorithm ter- 
minates all the inputs should be fixed. This 
implies the desired st(n) time lower bound. 

Let us show how the adversary can fix at 
most two inputs at each step t of the algo- 
rithm. The adversary partitions the processors 
into three sets: (i) All the processors which 
will not try to broadcast at step t. (ii) All 
the processors rrith fixed inputs which will try 
to broadcast at step t given the computation in 
the first t- 1 steps of the algorithm. (iii) All the 
processors which will try to broadcast at step 
t depending on their input. I.e., the input of 
each of these processors is not fixed up to step 
t and for some consistent inputs the processor 
may try to broadcast. We distinguish between 
three cases depending on the size of the third 
set. Case A: The third set is empty. Observe 
that in this case the behavior of the algorithm 
(i.e., the broadcast) at step t does not depend 
on any of the unfixed inputs. Hence, the adver- 
sary does not fix any additional inputs. Case 
B: The third set consists of a single processor. 
Observe that in this case the behavior of the al- 
gorithm at step t depends only on the input of 
this single processor. The adversary fixes the 
input of this processor causing it to broadcast. 
Case C: There are at least two processors in 
the third set. In this case the adversary fixes 
the inputs of at most two processors in the set 
in such a way that they will try to broadcast, 
causing a collision on the channel. Note that 
we will have a collision on the channel inde- 
pendent of the values of the rest of the unfixed 
inputs. Thus, proving our claim. 

The lower bound for a multimedia net- 
work The lower bound proof for a multi- 
media network is similar to the lower bound 
for the broadcast network, given above. Our 
lower bound proof resembles two other lower 
bound proofs given for different models: 
(1) The n(fi) t ime lower bound given in 
[Bok84,Sto86] for the time needed to add num- 
bers in a linear mesh with a bus, and (2) The 
n(fi) time lower bound given in [VW831 for 
the time needed to add numbers in a parallel 
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RAM with one cell of shared memory. 

Consider computing a global sensitive func- 
tion F, in a multimedia network of diameter 
d with a star topology. That is, the point- 
to-point part of the network consists one ver- 
tex, the center, from which 2nld vertex disjoint 
paths each of length d/2 emanate. We show 
that there is at least one input instance for 
which the algorithm runs in n(MIN{d, fi}) 
time. As in the lower bound proof for the 
broadcast network this proof also uses adver- 
sary arguments. The only difference between 
the two proofs is that here we have to take into 
account the information each processor gains 
using the point-to-point network. Define the t- 
neighborhood of a processor p as the set of ail 
processors at distance 5 t from p (including p). 

We show that an adversary can fix only 
1 + Pnt/d + 4 X$=1 j inputs after t steps of the 
algorithm. That is, the algorithm will broad- 
cast the same messages in the first t steps, no 
matter what are the values of the rest of the in- 
puts. Again, since the value of the global sensi- 
tive function depends on all the n inputs, when 
the algorithm terminates all the inputs should 
be fixed. Hence, if the algorithm terminates af- 
ter t steps, 1+2nt/d+4 C&1 j must be at least 
n. This implies the desired R(MIN{d, fi}) 
time lower bound. 

Initially, the adversary fixes the input of the 
processor in the center of the network. At each 
step t of the algorithm the adversary fixes at 
most 2n/d + 4t additional inputs. The 2n/d 
term is due to the inputs of the processors 
which are at distance t from the center. These 
inputs are fixed at step t. To decide which 
additional inputs to fix the adversary parti- 
tions the processors into three sets: (i) All the 
processors which will not try to broadcast at 
step t. (ii) All the processors satisfying the fol- 
lowing two conditions: (a) The inputs of the 
processors in their t-neighborhood are already 
fized, and (b) Given these fixed inputs the pro- 

cessors will try to broadcast at step t. (iii) 
All the processors which will try to broadcast 
at step t given the inputs of the processors in 
their t-neighborhood. (Some of which have not 
yet been fixed.) We distinguish between three 
cases depending on the size of the third set. 
Case A: The third set is empty. In this case 
the behavior of the algorithm (i.e., the broad- 
cast) at step t does not depend on any of the 
unfixed inputs. Hence, the adversary does not 
fix any additional inputs. Case B: The third 
set consists of a single processor, p. In this case 
the behavior of the algorithm at step t depends 
on the unfixed inputs among the inputs of the 
processors in p’s t-neighborhood. Since all the 
inputs of the processors at distance 5 t from 
the center are already fixed, the number of un- 
fixed inputs among these inputs is at most 2t. 
The adversary fixes these unfixed inputs, caus- 
ing p to broadcast. Case C: There are at least 
two processors in the third set. Again, since 
all the inputs of the processors of distance _< t 
from the center are already fixed, the adversary 
can fix the inputs of at most 4t additional in- 
puts in such a way that at least two processors 
in the set will try to broadcast, causing a col- 
lision on the channel. Note that we will have 
a collision on the channel independent of the 
values of the rest of the unfixed inputs. Thus, 
proving our claim. 

Corollary 4 The computation of a global sen- 
sitive function requires n(n) time in an arbi- 
trary point-to-point network and in a broadcast 
network and n(G) time in an arbitrary mul- 
timedia network. 

7 Computing a minimum 

spanning tree 

In this section we present a deterministic al- 
gorithm for constructing a minimum spanning 
tree (MST) in a multimedia network where 
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each of its links is associated a distinct weight. 
(Again, we note that this simplifying assump- 
tion is not crucial.) Our algorithm is actually 
an implementation of the sequential algorithm 
of [Kru56]. It has three stages. In the first 
stage we compute a spanning forest using the 
deterministic partitioning algorithm given in 
Section 4. Recall that this spanning forest has 
the following two properties: (1) Each tree in 
the spanning forest is a rooted subtree of the 
MST of the network. These trees are called ini- 
tial fragments. (2) The size of each fragment 
is > &i and its radius is < 86. In the sec- 
ond stage we compute a scheduling of the roots 
of these fragments, for accessing the channel. 
This is done using the resolution technique of 
[Cap79]. In the third stage we join the ini- 
tial fragments to get the MST of the network. 
Below, we describe the third stage of the algo- 
rithm. 

The third stage has two parts. First, each 
node finds out which initial fragment is on the 
other side of each of its incident links. This 
first part takes O(1) time and O(m) messages. 
The second part proceeds in phases. The in- 
put to each phase is a spanning forest consist- 
ing of rooted fragments of the MST. We call 
these fragments the current fragments. In each 
phase each current fragment computes its min- 
imum weight outgoing link and then, the cur- 
rent fragments are merged along their selected 
minimum weight outgoing links to form bigger 
current fragments. The output of each phase 
is thus another spanning forest with at most 
half as many current fragments as the input to 
the phase. The computation is done using the 
initial fragments computed in the partitioning 
algorithm which remain the same throughout 
this stage. Thus, at each phase each node be- 
longs to some initial fragment and to some car- 
rent fragment. Moreover, inductively, in the 
beginning of each phase every node knows the 
names of all the initial fragments in its current 
fragment. Before the first phase each initial 

fragment is a current fragment. Each phase 
consists of the following two steps: 

Step 1. The nodes of each initial fragment 
compute, using the point-to-point network, the 
minimum weight outgoing link from their ini- 
tial fragment to a node that is not part of their 
current fragment. This is done by a simple 
broadcast and collate on the initial fragment. 
Note, that since each node knows which initial 
fragment is on the other side of each of its inci- 
dent links, this step requires no inter-fragment 
communication. 

Step 2. All the cores of the initial fragments 
broadcast, using the computed schedule on the 
broadcast channel, the weight of the minimum 
weight outgoing link that has been found in 
Step 1. Each core implicitly broadcasts the 
following information: (i) the id of its initial 
fragment, (ii) the id of its current fragment, 
(iii) the weight of the link, (iv) the id of the I 
current fragment to which the link is incoming, 
and (v) the ids of the nodes in both sides of this 
link. To this end only (iii) and (iv) are explic- 
itly broadcasted the rest can be simulated in 
each node’s memory. 

Observe that after this information is broad- 
casted each node can compute 1ocaZly the min- 
imum weight link outgoing from every current 
fragment. All these links are part of the MST. 
Hence each node can compute locally all the 
newly added MST links and, in particular, all 
the newly added MST links among its links. 
Note that by adding all these links to the span- 
ning forest the number of current fragments is 
at least halved. 

Complexity. Computing the initial sub- 
trees takes O(J;ilog* rz) time and O(m+ 
n logn log* n) messages using the algorithm 
given in Section 4. It takes O(filogn) time, 
to schedule the roots on the channel using 
the techniques of [Cap79]. In each phase 
the number of current fragments is at least 
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halved; therefore, there are at most O(logn) 
phases. Step 1 of each phase takes O(G) 
time and O(n) messages. Step 2 of each phase 
takes O(fi) time. We conclude that the al- 
gorithm runs in O(filog n) time and sends 
O(m + n log n log* rz) messages. 
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