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1 Introduction 

Many functional languages have a construction to define in- 

ductive data types [Hoa75] (also called general :structured 

types [Pey87], structures [Lan64], datatypes [Mil84] and 

free algebras [GTWW77]). An inductive defin.ition of a 

data type can also be seen as a grammar for at language 

and the elements of the data type as the phrases of the lan- 

guage. So defining an inductive data type can be seen as 

introducing an embedded language of values into the pro- 

gramming language. This correspondence is however not 

fully exploited in existing functional languages. The ele- 

ments can presently only be written in a very restricted 

form. They are just the parse trees of the elements written 

in prefix form. A generalization, that we will consider in 

this paper, is to allow the elements to be written in a more 

general form. Instead of directly writing the parse trees of 

the embedded language, we would like to use a more con- 

crete syntactical form and let an automatically generated 

parser translate the concrete syntactical form to the corre- 

sponding parse tree. We think that this is especi.ally useful 

when we manipulate languages in programs, for example, 

when implementing compilers, interpreters, program trans- 

formation systems, and programming logics. It is also con- 

venient if we want to use the concrete syntax for other kinds 

of data in a program. 
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By allowing distfix operators in a programming lan- 

guage [Pey86], it is possible to achieve some of the goals 

we have presented above. The problem is that the symbols 

comprising the distfix operator must not interfere with the 

constructions of the programming language itself. If we 

want to represent programs of a language in the language 

itself, this problem becomes acute. For example, to rep- 

resent arithmetic expressions inside a functional language, 

it is difficult, but not impossible, to let ‘x+23’ in one sit- 

uation be an expression which evaluates to an integer and 

in another a value that represents an arithmetic expres- 

sion. We can solve this problem in at least two different 

ways. We can either say that the distfix operator must be 

built up from identifiers of the programming language or 

we can make a clear distinction between the programming 

language, the metalanguage, and the represented language, 

the object language. Of course we can relax the situation 

in the first case a little by ailowing overloaded identifiers 

and operators in the metalanguage, but it is hard to imag- 

ine how pure syntactical constructions of the metalanguage, 

for example reserved words, could be overloaded. 

2 Concrete Data Types 

We start by introducing a syntactical construction into our 

favorite functional language (ours is ML), to define a con- 

crete data type of binary numbers’ as: 

conctype BinNumber = [ 10 I] 

I Eli11 
1 [l<BinNumber>OI] 

1 []<BinNumber>ll] 
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Compare the type definition with the context free gram- 

mar for binary numbers 

<BinNumber> ::= 0 

I 1 
I <BinNumber>O 

I <BinNumber> 

Since we must not confuse the symbols of the defined lan- 

guage (the Object Language - OL) with the symbols of the 

programming language (the Meta Language - ML), we en- 

close the elements in quotation brackets, [I . . . I I. Notice 

that the nonterminals in the grammar correspond to types 

in the type definition. The intention is to introduce a data 

type for binary numbers and let the elements be written in 

the familiar way. So in a program we would like to write 

the elements as [ I101 I] and [ l1010010101]. We use the 

name quotation ezpression for this new form of expression. 

We also want to be able to define computations over 

the elements, so we need a construction that separates the 

different forms a binary number can take and selects the 

components of a particular form. The modern way to do 

this in a functional language is to use pattern matching. 

We therefore introduce a pattern matching form for the 

elements of a type defined by our new constructor. A pat- 

tern is a sentential form of the language defined by the 

concrete datatype with ordinary ML-patterns of type A in- 

stead of nonterminals A. Since our patterns may contain 

ML patterns, we use an antiquotation symbol, ‘-‘, to write 

ML variables and patterns in the object language phrases. 

Variables can be written just following the antiquotation 

symbol but more complicated patterns must be enclosed in 

parentheses. Blanks after a variable are ignored. Examples 

of patterns for the concrete datatype of binary numbers are 

[IlOll], Cl”xl1, Cl-x 10111 and Cl~([llOll)lll. We 

use the name quotation pattern for this new form of pat- 

tern. By using this construction it is possible to write a 

function that takes a binary number as argument and gives 

its successor as result: 

fun succ [lOI] = Cllll 
I succ Cl111 = cl1011 

1 succ [l-b Ol] = [l-b 111 

I succ [l-b 111 = [I-(succ b)OI] 

Notice that we have used the antiquotation symbol also 

in the quotation expressions in the right hand sides of the 

function definition. In the example, there is first a quo- 

tation expression C I *b 1 I ] which is intended to construct 

a phrase from the value bound to the ML-variable b and 

the symbol 1. The variable must, of course, be bound to a 

value of type BinNumber since such a value is expected in 

this position. Secondly, there is the more complicated ex- 

pression [ I ̂  (succ b) 0 I ] where the ML-expression succ b 

is evaluated to a value of type BinNumber and this number 

is then composed with the symbol 0 to produce a binary 

number. All ML-expressions inside a quotation must eval- 

uate to complete phrases of the language and not to strings 

of characters . 

Patterns in a function definition need not directly corre- 

spond to the cases in the definition of the concrete datatype, 

as can be seen by the following example: 

fun div4 [l-x 0011 = true 

I div4 y = false 

The pattern matching using the concrete syntax is im- 

portant in our approach to representing object languages. 

Without it, one has to introduce somewhat arbitrary names 

for the operations that decides what form an element has 

and for the operations that selects the components of a com- 

pound element. Compare our quotation brackets and an- 

tiquotation symbol with the corresponding constructions in 

the Edinburgh LCF system [GMW79] and also with Quine’s 

quasi-quotation [QuiSl). 

As a second example consider implementing the deno- 

tational description of a very simple imperative language. 

We first define the language 

conctype Pgm 
= [Iprogram <Cmds> endl] 

and Cmds 
= CI<Cmd>ll 

I [I<Cmd>; <Cmds>l] 

and Cmd 
= [lif <Bexp> then <Cmds> else <Cmds> fit] 

I [Iwhile <Bexp> do <Cmds> endl] 

I Cl<Var>:=<Exp>l] 

and EXP 
= CI<Var>ll 

I tl<Integer>l] 

I C I <E~p>+<Exp> I] 

I Cl<E~p>*<E~p>ll 

I Et (<Exp>) t] 
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and Bexp 

= [l<E~p>=<~~p>ll 

I [l<Bexp>l<Bexp>l] 

1 [ I <Bexp>&<Bexp> I ] 

I C I (<Bexp>) II 

where we assume we already have defined two’ concrete 

datatypes Var and Integer and a function toint that maps 

a concrete integer to the corresponding ML value. Using 

the concrete datatype defined above, we can define an in- 

terpreter in a natural way. Notice that the definition is very 

close to how Gordon describes the denotational semantics 

of a language in [Gor79]. We assume we already have im- 

plemented an abstract data type for states, with operations 

sinit, update and valof. 

fun P [iprogram -(~a) end\] = Cs cs sini.t 

and Cs [l-cl] s =ccs 

I cs Cl-c; -csll s = cs cs CC c s) 

and C [lif -(b) then -(sl) else -(s2) fill s = 

if B b s then Cs sl s else Cs ~2 s 

1 C [Iwhile -(b) do ^(cs) end11 s = 

let fun f s = if B b s then f (Cs cs s) 

else s 

in f s 

end 

1 C [l-x:=-e11 s = 

update(x, E e s. s) 

and E [l-x!] s = valof (x,s) 

I E Cl-n11 s = toint n 

1 E [I-el+-e21] s =Eels+Ee2s 

1 E [I-el*-e21] s = E el s * E e2 s 

I E Cl(“e)ll s =Ees 

and B [ i eel=-e2 I] s = E el s = E e2 s 

I B [I-bll-b2)] s = B bl s orelse B b2 s 

I B [I-bl&-b21] s = B bl s andalso B b2 s 

1 B [I(’ s =Bbs 

This example raises a problem of how to decide what dif- 

ferent patterns means. The first and second cases in the 

definition of E just consist of ML-variables and the prob- 

lem is how to decide that the first is the variable case and 

the second the integer case. We use information from the 

type inference mechanism to choose between the two pos- 

sibilities. The pattern is not parsed until the typechecker 

already has typechecked the right hand sides of the defi- 

nition and then we know that x in the fist case must be 

of type Var and n in the second must be of type Integer. 

From this information it is possible to distinguish which 

case a pattern is supposed to denote. It is of course pos- 

sible to try to define a function where one can not decide 

what cases two patterns are supposed to denote. Take for 

example the definition of a function that counts the number 

of variables in an expression: 

fun Vars [l-x13 = 1 

I Vars [l*nll = 0 

I Vars [l^el+‘e2ll = Vars el + Vars e2 

I Vars [l~el*~e211 = Vars el + Vars e2 

I Vars [I(-e>ll = Vars e 

In this example it is impossible to choose between the two 

cases if we do not use the variable name to indicate its type, 

as we do in denotational descriptions and Fortran( Our 

solution is to allow the user to explicitly type the variables. 

So the first two cases in the definition must be written as: 

fun Vars [I-(x:Var) 13 = 1 

I Vars [I*(n:Integer)l] = 0 

. . . 

We consider it to be an error if we do not have enough 

information to parse a quotation pattern unambiguously. 

We have another problem if we want to define a function 

fun isadd [l-x+-y11 = true 

I isadd z = false 

because the type checker and quotation parser can not give 

a unique type to the variables x and y. They can either 

be of type Var, Integer or Exp, so the pattern is am- 

biguous and therefore erroneous. To make it unambiguous 

the user must provide type information. Notice that the 

type information distinguishes the more restrictive pattern 

[l^(x:Var)+-(y:Var)l] from [l*(x:Exp)+^(y:Exp) 11. 

Problems with ambiguities in patterns are discussed in a 

paper [DKLM84]. 

The concrete data types fit nicely into the ordinary 

typesystem in ML and we can for example define polymor- 

phic concrete data types such as trees with information in 

the nodes. 

conctype ‘A Tree = [loll 

I cI{<‘A Tree>-<‘A>-<‘A Tree>)13 

98 



with elements like 

CI{o-- (“HEJA”)-Co-- (“BARACKEN”)-0)) 11 

: String Tree 

and 

c1co-lolo-o~ll : BinNumber Tree 

and a function that swaps the left and right part of a tree 

fun swaptree [loll = [loll 

I swaptree [If-x-*y--zlll = CIC-z-*y--x>11 

As can be seen from the String Tree example above, it is 

possible to use ordinary ML types when defining concrete 

types. 

3 Lexical Analysis 

It is not obvious what should be treated as a lexical token in 

the embedded languages. In order to be flexible and allow 

as many and as different concrete data types as possible, 

we have decided to view every character as a lexical token. 

The only exceptions to this are that a sequence of blanks 

is treated as one blank and that the escape character ‘ \ ’ 

gives the following character its literal meaning. The result 

of this is that blanks are not handled nicely. If we want 

to have blanks in a quotation expression then there must 

be a blank character in the corresponding position in the 

grammar, and if a blank is present in the grammar there 

must be at least one blank in the quotation. 

Having a more sophisticated lexical analyzer give us an- 

other problem. We can not use parts of a lexical token in 

the grammar. For example if we use ML:s lexical analyzer, 

as they do in the LeML system [The85], we can not defme 

the binary numbers as we do in section 2 since a sequence 

of zeros and ones is treated as an integer in ML. 

The best solution would probably be to give the user 

the possibility to define her own lexical analyzer. 

4 Parsing and Type Derivation 

In this section we describe how the new constructions are 

translated during the compilation to ordinary data types 

and constructors. 

After the compilation nothing of the new constructions 

remains and they have therefore no effect on the execution 

speed of the new syntactical constructions. A program with 

concrete datatypes, quotations and anti-quotations runs at 

the same speed as one without them. 

Let us give an overview of the translation process. A 

concrete datatype is translated into the following objects. 

s A datatype definition, which could be seen as the type 

of parse trees for the language defined by the grammar 

in the concrete datatype. 

l A parser that recognizes the language described by 

the grammar and translates a phrase of the language 

into the parse tree. 

s A (pretty?) printer that prints elements of the con- 

crete datatype using the concrete syntax. 

The type definition of binary numbers, 

conctype BinNumber = CIOII 

I c1111 

I [I<BinNumber>Ol] 

I [l<BinNumber>ll] 

will be translated into the following datatype definition. 

datatype BinNumber = BinNumber 

I BinNumber 

I BinNumber of BinNumber 

I BinNumber of BinNumber 

and a parser that, for example, translates C I101 II to 

BinNumber4(BinNumber3(BinNumberZ)) 

The parser is used in the compiler to translate quota- 

tion patterns and quotation expressions to ordinary pat- 

terns and expressions. For example, the function 

fun succ [loll = Cllll 

I succ El111 = clloll 

I succ [I-b 011 = [t-b It] 

I succ [l-b 111 = [I-(succ b)Oll 

is translated to 

fun succ (BinNumberl) = BinNumber 

I succ (BinNumber2) = BinNumber BinNumber 

I succ (BinNumber b) = BinNumber b 

I succ (BinNumber b) = BinNumber (succ b) 
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Usually the syntax of an ML program is checked in two 

distinct steps. First it is parsed with a context free parser 

and then typechecked with a type checker utilizing Milner’s 

algorithm [Mi178]. This simple sequence is no longer pos- 

sible when concrete data types are added to ML since the 

parsing of a concrete element depends of its type. That is, 

if a concrete expression is in a context where an ‘element of 

type A is expected it should be parsed with A as the start 

symbol. Correspondingly, the type of an ML expression in 

a quotation is dependent on the parsing of the quotation. 

To achieve this, we have to integrate the parsing of the con- 

crete elements with Milner’s type derivation algorithm. We 

have built the parser around a generalized versilon of Ear- 

ley’s algorithm [Ear70]. It is generalized for two reasons: 

l Concrete data types seen as grammars are more pow- 

erful than context free grammars for which Earley’s 

algorithm is constructed. This stems frorn the fact 

that we can have polymorphic concrete data types. 

A simple example of a language that can 'be defined 

by a polymorphic data type but not with a context 

free grammar are the trees introduced in section 2. 

l A parser defined with Earley’s algorithm usually takes 

a sequence of lexical tokens as input and gives a parse 

tree as output. However, the parser that; we want 

should take a sequence of lexical tokens and unquoted 

ML objects as input and give an ML expression as 

output. 

The algorithm we have developed differs from IEarley’s in 

that we can have type variables in the nonterminals and 

these can be instantiated during parsing. For example, 

given the conctype 

conctype 'A List = [I$I] 

I CI<'AX~A List>11 

and 

conctype D = CIOII I [I111 

and the input I: IO$ II, ‘A will be instantiated to D. To sup- 

port this, each item in Earley’s algorithm contains, apart 

from the dotted production and the item set pointer, a type 

substitution. The substitutions are handled in the following 

way by the parsing operations: 

l In the predict operation in Earley’s alg0rith.m an item 

is added only once even though it might be predicted 

from more than one item. In our version each new 

item is created with an initial substitution. The more 

information we let this substitution inherit from the 

predicting item the less is the chance that we can 

share it. To assure maximal sharing we let each item 

start with the empty substitution. When the dot is 

to the left of an uninstantiated type variable all conc- 

types known in the context are predicted. 

l In the completion of an item I, we return to the 

item set pointed to and add updated versions of all 

items I’ which have a type T’ to the right of the 

dot that can be unified with the type T we have 

just completed. Since there can be more than one 

item with this property we have to make sure that we 

use fresh variables for the type variables in T before 

unification. We update I’ by moving the dot one 

step to the right and compose the substitution with 

the substitution in I. 

Let us illustrate this with an example: Corresponding to 

the input [ I $$I] and the conctype 

conctype ‘A List = [I$11 
I EI<JAx'A List>11 

we get the item sets: 

4 

<s> 
..- . ..- < ‘A List > , so, 0 

< ‘A List > ::= .$, 11, cl 
< ‘A List > ::= . < ‘A > < ‘A List > , [I, 0 

(1) 

I1 

< ‘A List > ::= $., [I, 0 (2) 
<S> .a- ..- < ‘A List> ., se [‘A ++ ‘XI], 0 (3) 

< ‘A List > ::= <‘A >. <‘A List>, 

[‘A H ‘Xz List], 0 

< ‘A List > ::= .$, [I, 1 

<‘A List> ::= . < ‘A > < ‘A List > , [], 1 
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< ‘A List > ::= $.) [I, 1 

< ‘A List > ::= < ‘A > < ‘A List > . , 

[‘A H ‘X2 List, 

‘X, H ‘X2 List], 0 

< ‘A List > ::= < ‘A > . < ‘A List > , 

[‘A H ‘X4 List], 1 

<s> ..- ..- <‘A List> .so[‘A H ‘X5, 
‘Xg l-b ‘X2 List, 

‘X3 H ‘X2 List], 0 

< ‘A List > ::= <‘A>. <‘A List>, 

[‘A H ‘X6 List, 

‘X, H ‘X2 List, 

‘X, t-9 ‘X2 List], 0 

< ‘A List > ::= *$, [I, 2 
< ‘A List > ::= . < ‘A > < ‘A List > , [], 2 

The composition of substitutions s and 8’ is written SS’. 

ss is the substitution obtained from Milner’s type deriva- 

tion algorithm applied to the ML parts of the program. 

Notice that before we unify the left hand side of the 

production in (2) with the type to the right of the dot in 

(1) to get (3) we substitute a new variable ‘X, for ‘A in 

(2). 
We now explain what to do with unquoted expressions 

in the input. An unquoted expression of type T can be 

viewed as an already parsed part of the input that can be 

accepted whenever we have an item in the item set with 

the dot to the left of a type that can be unified with T. 

We illustrate this with the same grammar as above and the 

input [J-(x:Int>$ll 

IO 
<s> ..- ..- . < ‘A List > , SO, 0 

< ‘A List > ::= .$, [I, 0 

< ‘A List > ::= . <‘A> <‘A List>, [],O 

11 

< ‘A List > ::= <‘A>.<‘A List>,[‘A H Int],O 

< ‘A List > ::= .$, II, 1 
< ‘A List > ::= . < ‘A > < ‘A List > , [I, 1 

12 

< ‘A List > ::= $., [I, 1 

< ‘A List > ::= <‘A> <‘A List>., [‘A H Int, 

‘Xi H Int], 0 

< ‘A List > ::= < ‘A > . < ‘A List > , 

[‘A H ‘X2 List], 1 

<s> ::= < ‘A List > , sc [‘A ++ ‘X3, 

‘X3 H Int, 

‘Xi H Int], 0 

< ‘A List > ::= <‘A>,<‘AList>,[‘A H IntList, 

‘X4 H Int, ‘Xi H Int], 0 

< ‘A List > ::= .$, [I, 2 
< ‘A List > ::= . < ‘A > < ‘A List > , [I, 2 

5 User Defined Representation 

In the previous section we have described how the elements 

of the concrete datatypes are represented. Sometimes this 

representation is a bit inconvenient because we often want 

to represent sequences as ML lists and sometimes we would 

like to “forget” some productions in the grammar. These 

differences in representation should be indicated by con- 

structions in the definition of conctypes. 

Productions containing terminals whose only purpose 

are to indicate the structure of a sentence are of course un- 

necessary when the sentence is represented as a tree. Take 

for example parentheses in arithmetic expressions. In the 

denotational description in section 2 we have the clauses 

C I (<Exp>) I1 and [I (<Bexp>) I ] because we want to have 

parentheses in elements of the concrete datatypes Exp and 

Bexp. These productions remain in the representation and 

we must therefore have the cases: 

E [I(-e>l] s = E e s 

B [l(-b>l] s = B b s 

in the interpreter. To eliminate these let us introduce the 

notation 

A = [ll...cA>...ll] 

to indicate that the production should not remain in the 

representation. The dots stands for arbitrary terminal sym- 

bols. Our denotational example would then be written: 
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Exp = . . . 

1 [il(<Exp>>lll 

Bexp = . . . 

1 ClI(<Bexp>)lll 

The parentheses may only occur in quotation expressions. 

They are eliminated during parsing and must not appear 

in quotation patterns. The only situation when it is possi- 

ble to forget productions in this way is of course when the 

clause just contains one nonterminal and this is the same 

as the conctype just being defined. 

In grammars, we often use a special notati0.n for se- 

quences. 

Cmds ::= Cmd {;Cmd}* 

In the conctypes described so far we have used rec:ursion to 

define sequences. For example in the denotational descrip- 

tion in section 2 where a sequence of commands is defined 

by: 

conctype Cmds = [ l<Cmd> I] 

I [l<Cmd>; <Cmds>l] 

A sequence of commands cl;c2;c3 is represented by the 

term: 

Cmds2(cl,Cmds2(c2,Cmdsl ~3)) 

Having this representation we must use explicit recursion 

when defining computations over the elements. If we in- 

stead represent the sequences as ML lists it is possible to 

use predehned list handling functions. When representing 

sequences as ML lists it is necessary to exclude the ter- 

minals which separate the elements. We therefore use a 

somewhat different notation for sequences than in. ordinary 

grammar descriptions. 

{<Cmd>; . ..I+ 

The nonterminal inside the curly brackets defines the el- 

ements in the sequence. The terminals between the non- 

terminal and the three dots are the separators between the 

elements in the sequence. We use + to denote repet.ition one 

or more times. It is also possible to use * to denot,e zero or 

more times. Using this notation the command sequence in 

the denotational description could be defined 

conctype Pgm = [lprogram {<Cmd>; . . .I+ end11 

The conctype Cmds is then no longer necessary. Neither is 

the function Cs in the interpreter. Instead we define the 

function P thus 

fun P [Iprogram -(cs) endl] = foldleft C sinit cs 

where f oldleft is a predefined list handling function. 

The conctype Pgm is translated to the datatype: 

datatype Pgm = Pgml of Cmd list 

Using list notation, the definition of a language by conc- 

types becomes more comprehensible. A procedure head in 

a simple imperative language could with list notation be 

defined as: 

;... 3+) ; II 

conctype procedurehead 

= [lPROC <Id>;11 

I [ 1 PROC <Id> ({<Parlist> 

and Parlist 

= [l{<Id>, . ..)+:<TypeId> ,I1 

where Id and Typeid are two already defined conctypes. An 

element of this type is [ 1 PROC P(a, b: int ; ch: char) ; 1 I 

and a function that counts the number of parameters is: 

fun countpars [IPROC *id;11 =o 

I countpars ClPROC -id (‘ps) ; I] = 

sum (map (fn Cl-ids:^tl] => (length ids)) ps) 

where sum, map and length are predefined list handling 

functions. Without list notation the conctype definition 

must be defined as: 

conctype Prochead 

= ClPROC <Id>;11 

I C IPROC <Id>(<Parlist>) ; I] 

and Parlist 

= [l<Idlist>:<Typeid>l] 

I [l<Idlist>:<Typeid>;<Parlist>l] 

and Idlist 

= [l<Id>l] 

I [l<Id>,<Idlist>l] 

and the function that counts the number of parameters: 
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fun countpars [ IPBOC *id; II =o 

I countpars [IPROC ^id(*ps); I1 = countpar ps 

fun countpar [ I -ids : ^t II = countids ids 

I countpar [I-ids:-t;-psll = 

countids ids + countpar ps 

fun countids [l-id11 = 1 

I countids [I-id,-ids11 = 1 + countids ids 

As previously mentioned, it is considered to be an er- 

ror if a quotation expression can not be parsed uniquely. 

It is therefore desirable to have unambiguous conctypes. 

Consider arithmetic expressions. An unambiguous conc- 

type would contain a lot of nonterminals and productions 

which are irrelevant in the representation. Many function 

definitions thus become quite complicated. Using prece- 

dences and associativity rules which resolve ambiguities, 

we can define the same language with a less complicated 

conctype, and have more natural patterns. A desirable ex- 

tension is therefore to give the user the possibility of giving 

precedence and associativity rules, to productions in the 

conctypes. 

A completely different representation could be obtained 

by defining a datatype and a function that maps the con- 

crete object to the new representation. If we for example 

want to represent binary numbers as integers we could de- 

fine a function bintoint which maps the concrete data type 

BinNumber to the corresponding integer. 

fun bintoint [loll = 0 

I bintoint [Ill] = 1 

I bintoint [l-x 011 = 2 * bintoint x 

I bintoint Cl-x 1 II = 2 * bintoint x + 1 

Compare this with the following definition in YACC. 

binnumb: ZERO C$$ = 0;) 

I ONE C$$ = 1;) 

I binnumb ZERO i$$ = $1*2;1 

I binnumb ONE C$$ = $1*2+1;) 

6 Implement at ion 

The constructions we described in section 2 have been im- 

plemented in the functional language LML [AJ87,Aug84] 

and all examples in that section have been tested in the 

implementation. The constructions described in section 5 

are not implemented yet. 

LML has no input and output for user defined datatypes 

so we have not bothered to generate pretty printers for 

conctypes in our implementation. 

7 Related Work 

One system with an explicit notion of metalanguage and 

object language is the Edinburgh LCF system [GMW79]. 

In contrast to our proposal, LCF contains only one fixed 

object language. Furthermore, the object language is rep- 

resented by an abstract type that defines the abstract syn- 

tax of the language, so the concrete syntax in quotations is 

seen just as a convenient way for the user to enter elements 

of this type. To define computations that uses the object 

language one has to use the constructors and selectors of 

the abstract syntax and the user must therefore remember 

both the concrete and the abstract syntax of the object 

language. 

In the LeML system from INRIA [The85,Hue86], the 

user can easily define his own object language by using an 

interface with an ML version of YACC. But the concrete 

syntax must still be seen as a convenient form to write 

abstract syntax trees since all computations must be ex- 

pressed in terms of the constructors and selectors of the 

abstract syntax. Nothing like our quotation patterns is 

available. Wand [Wan841 has implemented a similar sys- 

tem for Scheme also using YACC to generate the parser 

that translates from concrete to abstract syntax. 

A more limited way to define an object language is to 

use infix operators as constructors, as we can do in ML 

[Mi184]. A type declaration for arithmetic expressions in- 

volving integers and the operators + and * can in ML be 

defined as 

infix ++ ** 

datatype Expr = NUN of int 

I OP ++ of Expr * Expr 

1 op ** of Expr * Expr 

A function which evaluates such an expression is: 

fun E (NUN n> =n 

1 E (el ++ e2) = E el + E e2 

I E (el *+ e2) = E el * E e2 
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This way of making the elements of a datatype more con- 

crete has a number of disadvantages. Since ML does not 

allow overloading we can not use the symbols + and * as 

constructors. We have to choose other symbols, for exam- 

ple ++ and ** as in the example above. We must also have 

a constructor for each part of the new language we want to 

define, even for those parts which do not have a constructor 

in the concrete syntax, like the integer case in the example 

above. The expression 2*3+4 must therefore be written 

(NUM 2)**(NUM J)++(NuM 4). If we want to write expres- 

sions in a more familiar way we must write a parser which 

translates strings to elements in the datatype. 

8 Future Work 

In the future we will implement the constructions described 

in the section on user defined representation. We will also 

define and implement constructions for expressing priorities 

and associativity. The problems with the lexical analyzer 

also have to be further investigated. Another interesting 

question is if the notion of subtype [FM881 could resolve 

some of the problems with ambiguities in patterns we have 

described. 
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