
Concrete ‘Syntax for Data Objects
in Functional Languages

Ann&a Aasa Kent Petersson Dan Synek

Programming Methodology Group
Dept. of Computer Science,

Univ. of GGteborg and Chalmers,
S-412 96 GGteborg,

Sweden

1 Introduction

Many functional languages have a construction to define in-

ductive data types [Hoa75] (also called general :structured

types [Pey87], structures [Lan64], datatypes [Mil84] and

free algebras [GTWW77]). An inductive defin.ition of a

data type can also be seen as a grammar for at language

and the elements of the data type as the phrases of the lan-

guage. So defining an inductive data type can be seen as

introducing an embedded language of values into the pro-

gramming language. This correspondence is however not

fully exploited in existing functional languages. The ele-

ments can presently only be written in a very restricted

form. They are just the parse trees of the elements written

in prefix form. A generalization, that we will consider in

this paper, is to allow the elements to be written in a more

general form. Instead of directly writing the parse trees of

the embedded language, we would like to use a more con-

crete syntactical form and let an automatically generated

parser translate the concrete syntactical form to the corre-

sponding parse tree. We think that this is especi.ally useful

when we manipulate languages in programs, for example,

when implementing compilers, interpreters, program trans-

formation systems, and programming logics. It is also con-

venient if we want to use the concrete syntax for other kinds

of data in a program.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

@ 1988 ACM 0-89791-273-X/88/0007/0096 $1.50

By allowing distfix operators in a programming lan-

guage [Pey86], it is possible to achieve some of the goals

we have presented above. The problem is that the symbols

comprising the distfix operator must not interfere with the

constructions of the programming language itself. If we

want to represent programs of a language in the language

itself, this problem becomes acute. For example, to rep-

resent arithmetic expressions inside a functional language,

it is difficult, but not impossible, to let ‘x+23’ in one sit-

uation be an expression which evaluates to an integer and

in another a value that represents an arithmetic expres-

sion. We can solve this problem in at least two different

ways. We can either say that the distfix operator must be

built up from identifiers of the programming language or

we can make a clear distinction between the programming

language, the metalanguage, and the represented language,

the object language. Of course we can relax the situation

in the first case a little by ailowing overloaded identifiers

and operators in the metalanguage, but it is hard to imag-

ine how pure syntactical constructions of the metalanguage,

for example reserved words, could be overloaded.

2 Concrete Data Types

We start by introducing a syntactical construction into our

favorite functional language (ours is ML), to define a con-

crete data type of binary numbers’ as:

conctype BinNumber = [10 I]

I Eli11
1 [l<BinNumber>OI]

1 []<BinNumber>ll]

96

http://crossmark.crossref.org/dialog/?doi=10.1145%2F62678.62688&domain=pdf&date_stamp=1988-01-01

Compare the type definition with the context free gram-

mar for binary numbers

<BinNumber> ::= 0

I 1
I <BinNumber>O

I <BinNumber>

Since we must not confuse the symbols of the defined lan-

guage (the Object Language - OL) with the symbols of the

programming language (the Meta Language - ML), we en-

close the elements in quotation brackets, [I . . . I I. Notice

that the nonterminals in the grammar correspond to types

in the type definition. The intention is to introduce a data

type for binary numbers and let the elements be written in

the familiar way. So in a program we would like to write

the elements as [I101 I] and [l1010010101]. We use the

name quotation ezpression for this new form of expression.

We also want to be able to define computations over

the elements, so we need a construction that separates the

different forms a binary number can take and selects the

components of a particular form. The modern way to do

this in a functional language is to use pattern matching.

We therefore introduce a pattern matching form for the

elements of a type defined by our new constructor. A pat-

tern is a sentential form of the language defined by the

concrete datatype with ordinary ML-patterns of type A in-

stead of nonterminals A. Since our patterns may contain

ML patterns, we use an antiquotation symbol, ‘-‘, to write

ML variables and patterns in the object language phrases.

Variables can be written just following the antiquotation

symbol but more complicated patterns must be enclosed in

parentheses. Blanks after a variable are ignored. Examples

of patterns for the concrete datatype of binary numbers are

[IlOll], Cl”xl1, Cl-x 10111 and Cl~([llOll)lll. We

use the name quotation pattern for this new form of pat-

tern. By using this construction it is possible to write a

function that takes a binary number as argument and gives

its successor as result:

fun succ [lOI] = Cllll
I succ Cl111 = cl1011

1 succ [l-b Ol] = [l-b 111

I succ [l-b 111 = [I-(succ b)OI]

Notice that we have used the antiquotation symbol also

in the quotation expressions in the right hand sides of the

function definition. In the example, there is first a quo-

tation expression C I *b 1 I] which is intended to construct

a phrase from the value bound to the ML-variable b and

the symbol 1. The variable must, of course, be bound to a

value of type BinNumber since such a value is expected in

this position. Secondly, there is the more complicated ex-

pression [I ̂ (succ b) 0 I] where the ML-expression succ b

is evaluated to a value of type BinNumber and this number

is then composed with the symbol 0 to produce a binary

number. All ML-expressions inside a quotation must eval-

uate to complete phrases of the language and not to strings

of characters .

Patterns in a function definition need not directly corre-

spond to the cases in the definition of the concrete datatype,

as can be seen by the following example:

fun div4 [l-x 0011 = true

I div4 y = false

The pattern matching using the concrete syntax is im-

portant in our approach to representing object languages.

Without it, one has to introduce somewhat arbitrary names

for the operations that decides what form an element has

and for the operations that selects the components of a com-

pound element. Compare our quotation brackets and an-

tiquotation symbol with the corresponding constructions in

the Edinburgh LCF system [GMW79] and also with Quine’s

quasi-quotation [QuiSl).

As a second example consider implementing the deno-

tational description of a very simple imperative language.

We first define the language

conctype Pgm
= [Iprogram <Cmds> endl]

and Cmds
= CI<Cmd>ll

I [I<Cmd>; <Cmds>l]

and Cmd
= [lif <Bexp> then <Cmds> else <Cmds> fit]

I [Iwhile <Bexp> do <Cmds> endl]

I Cl<Var>:=<Exp>l]

and EXP
= CI<Var>ll

I tl<Integer>l]

I C I <E~p>+<Exp> I]

I Cl<E~p>*<E~p>ll

I Et (<Exp>) t]

97

and Bexp

= [l<E~p>=<~~p>ll

I [l<Bexp>l<Bexp>l]

1 [I <Bexp>&<Bexp> I]

I C I (<Bexp>) II

where we assume we already have defined two’ concrete

datatypes Var and Integer and a function toint that maps

a concrete integer to the corresponding ML value. Using

the concrete datatype defined above, we can define an in-

terpreter in a natural way. Notice that the definition is very

close to how Gordon describes the denotational semantics

of a language in [Gor79]. We assume we already have im-

plemented an abstract data type for states, with operations

sinit, update and valof.

fun P [iprogram -(~a) end\] = Cs cs sini.t

and Cs [l-cl] s =ccs

I cs Cl-c; -csll s = cs cs CC c s)

and C [lif -(b) then -(sl) else -(s2) fill s =

if B b s then Cs sl s else Cs ~2 s

1 C [Iwhile -(b) do ^(cs) end11 s =

let fun f s = if B b s then f (Cs cs s)

else s

in f s

end

1 C [l-x:=-e11 s =

update(x, E e s. s)

and E [l-x!] s = valof (x,s)

I E Cl-n11 s = toint n

1 E [I-el+-e21] s =Eels+Ee2s

1 E [I-el*-e21] s = E el s * E e2 s

I E Cl(“e)ll s =Ees

and B [i eel=-e2 I] s = E el s = E e2 s

I B [I-bll-b2)] s = B bl s orelse B b2 s

I B [I-bl&-b21] s = B bl s andalso B b2 s

1 B [I(’ s =Bbs

This example raises a problem of how to decide what dif-

ferent patterns means. The first and second cases in the

definition of E just consist of ML-variables and the prob-

lem is how to decide that the first is the variable case and

the second the integer case. We use information from the

type inference mechanism to choose between the two pos-

sibilities. The pattern is not parsed until the typechecker

already has typechecked the right hand sides of the defi-

nition and then we know that x in the fist case must be

of type Var and n in the second must be of type Integer.

From this information it is possible to distinguish which

case a pattern is supposed to denote. It is of course pos-

sible to try to define a function where one can not decide

what cases two patterns are supposed to denote. Take for

example the definition of a function that counts the number

of variables in an expression:

fun Vars [l-x13 = 1

I Vars [l*nll = 0

I Vars [l^el+‘e2ll = Vars el + Vars e2

I Vars [l~el*~e211 = Vars el + Vars e2

I Vars [I(-e>ll = Vars e

In this example it is impossible to choose between the two

cases if we do not use the variable name to indicate its type,

as we do in denotational descriptions and Fortran(Our

solution is to allow the user to explicitly type the variables.

So the first two cases in the definition must be written as:

fun Vars [I-(x:Var) 13 = 1

I Vars [I*(n:Integer)l] = 0

. . .

We consider it to be an error if we do not have enough

information to parse a quotation pattern unambiguously.

We have another problem if we want to define a function

fun isadd [l-x+-y11 = true

I isadd z = false

because the type checker and quotation parser can not give

a unique type to the variables x and y. They can either

be of type Var, Integer or Exp, so the pattern is am-

biguous and therefore erroneous. To make it unambiguous

the user must provide type information. Notice that the

type information distinguishes the more restrictive pattern

[l^(x:Var)+-(y:Var)l] from [l*(x:Exp)+^(y:Exp) 11.

Problems with ambiguities in patterns are discussed in a

paper [DKLM84].

The concrete data types fit nicely into the ordinary

typesystem in ML and we can for example define polymor-

phic concrete data types such as trees with information in

the nodes.

conctype ‘A Tree = [loll

I cI{<‘A Tree>-<‘A>-<‘A Tree>)13

98

with elements like

CI{o-- (“HEJA”)-Co-- (“BARACKEN”)-0)) 11

: String Tree

and

c1co-lolo-o~ll : BinNumber Tree

and a function that swaps the left and right part of a tree

fun swaptree [loll = [loll

I swaptree [If-x-*y--zlll = CIC-z-*y--x>11

As can be seen from the String Tree example above, it is

possible to use ordinary ML types when defining concrete

types.

3 Lexical Analysis

It is not obvious what should be treated as a lexical token in

the embedded languages. In order to be flexible and allow

as many and as different concrete data types as possible,

we have decided to view every character as a lexical token.

The only exceptions to this are that a sequence of blanks

is treated as one blank and that the escape character ‘ \ ’

gives the following character its literal meaning. The result

of this is that blanks are not handled nicely. If we want

to have blanks in a quotation expression then there must

be a blank character in the corresponding position in the

grammar, and if a blank is present in the grammar there

must be at least one blank in the quotation.

Having a more sophisticated lexical analyzer give us an-

other problem. We can not use parts of a lexical token in

the grammar. For example if we use ML:s lexical analyzer,

as they do in the LeML system [The85], we can not defme

the binary numbers as we do in section 2 since a sequence

of zeros and ones is treated as an integer in ML.

The best solution would probably be to give the user

the possibility to define her own lexical analyzer.

4 Parsing and Type Derivation

In this section we describe how the new constructions are

translated during the compilation to ordinary data types

and constructors.

After the compilation nothing of the new constructions

remains and they have therefore no effect on the execution

speed of the new syntactical constructions. A program with

concrete datatypes, quotations and anti-quotations runs at

the same speed as one without them.

Let us give an overview of the translation process. A

concrete datatype is translated into the following objects.

s A datatype definition, which could be seen as the type

of parse trees for the language defined by the grammar

in the concrete datatype.

l A parser that recognizes the language described by

the grammar and translates a phrase of the language

into the parse tree.

s A (pretty?) printer that prints elements of the con-

crete datatype using the concrete syntax.

The type definition of binary numbers,

conctype BinNumber = CIOII

I c1111

I [I<BinNumber>Ol]

I [l<BinNumber>ll]

will be translated into the following datatype definition.

datatype BinNumber = BinNumber

I BinNumber

I BinNumber of BinNumber

I BinNumber of BinNumber

and a parser that, for example, translates C I101 II to

BinNumber4(BinNumber3(BinNumberZ))

The parser is used in the compiler to translate quota-

tion patterns and quotation expressions to ordinary pat-

terns and expressions. For example, the function

fun succ [loll = Cllll

I succ El111 = clloll

I succ [I-b 011 = [t-b It]

I succ [l-b 111 = [I-(succ b)Oll

is translated to

fun succ (BinNumberl) = BinNumber

I succ (BinNumber2) = BinNumber BinNumber

I succ (BinNumber b) = BinNumber b

I succ (BinNumber b) = BinNumber (succ b)

99

Usually the syntax of an ML program is checked in two

distinct steps. First it is parsed with a context free parser

and then typechecked with a type checker utilizing Milner’s

algorithm [Mi178]. This simple sequence is no longer pos-

sible when concrete data types are added to ML since the

parsing of a concrete element depends of its type. That is,

if a concrete expression is in a context where an ‘element of

type A is expected it should be parsed with A as the start

symbol. Correspondingly, the type of an ML expression in

a quotation is dependent on the parsing of the quotation.

To achieve this, we have to integrate the parsing of the con-

crete elements with Milner’s type derivation algorithm. We

have built the parser around a generalized versilon of Ear-

ley’s algorithm [Ear70]. It is generalized for two reasons:

l Concrete data types seen as grammars are more pow-

erful than context free grammars for which Earley’s

algorithm is constructed. This stems frorn the fact

that we can have polymorphic concrete data types.

A simple example of a language that can 'be defined

by a polymorphic data type but not with a context

free grammar are the trees introduced in section 2.

l A parser defined with Earley’s algorithm usually takes

a sequence of lexical tokens as input and gives a parse

tree as output. However, the parser that; we want

should take a sequence of lexical tokens and unquoted

ML objects as input and give an ML expression as

output.

The algorithm we have developed differs from IEarley’s in

that we can have type variables in the nonterminals and

these can be instantiated during parsing. For example,

given the conctype

conctype 'A List = [I$I]

I CI<'AX~A List>11

and

conctype D = CIOII I [I111

and the input I: IO$ II, ‘A will be instantiated to D. To sup-

port this, each item in Earley’s algorithm contains, apart

from the dotted production and the item set pointer, a type

substitution. The substitutions are handled in the following

way by the parsing operations:

l In the predict operation in Earley’s alg0rith.m an item

is added only once even though it might be predicted

from more than one item. In our version each new

item is created with an initial substitution. The more

information we let this substitution inherit from the

predicting item the less is the chance that we can

share it. To assure maximal sharing we let each item

start with the empty substitution. When the dot is

to the left of an uninstantiated type variable all conc-

types known in the context are predicted.

l In the completion of an item I, we return to the

item set pointed to and add updated versions of all

items I’ which have a type T’ to the right of the

dot that can be unified with the type T we have

just completed. Since there can be more than one

item with this property we have to make sure that we

use fresh variables for the type variables in T before

unification. We update I’ by moving the dot one

step to the right and compose the substitution with

the substitution in I.

Let us illustrate this with an example: Corresponding to

the input [I $$I] and the conctype

conctype ‘A List = [I$11
I EI<JAx'A List>11

we get the item sets:

4

<s>
..- . ..- < ‘A List > , so, 0

< ‘A List > ::= .$, 11, cl
< ‘A List > ::= . < ‘A > < ‘A List > , [I, 0

(1)

I1

< ‘A List > ::= $., [I, 0 (2)
<S> .a- ..- < ‘A List> ., se [‘A ++ ‘XI], 0 (3)

< ‘A List > ::= <‘A >. <‘A List>,

[‘A H ‘Xz List], 0

< ‘A List > ::= .$, [I, 1

<‘A List> ::= . < ‘A > < ‘A List > , [], 1

100

< ‘A List > ::= $.) [I, 1

< ‘A List > ::= < ‘A > < ‘A List > . ,

[‘A H ‘X2 List,

‘X, H ‘X2 List], 0

< ‘A List > ::= < ‘A > . < ‘A List > ,

[‘A H ‘X4 List], 1

<s> ..- ..- <‘A List> .so[‘A H ‘X5,
‘Xg l-b ‘X2 List,

‘X3 H ‘X2 List], 0

< ‘A List > ::= <‘A>. <‘A List>,

[‘A H ‘X6 List,

‘X, H ‘X2 List,

‘X, t-9 ‘X2 List], 0

< ‘A List > ::= *$, [I, 2
< ‘A List > ::= . < ‘A > < ‘A List > , [], 2

The composition of substitutions s and 8’ is written SS’.

ss is the substitution obtained from Milner’s type deriva-

tion algorithm applied to the ML parts of the program.

Notice that before we unify the left hand side of the

production in (2) with the type to the right of the dot in

(1) to get (3) we substitute a new variable ‘X, for ‘A in

(2).
We now explain what to do with unquoted expressions

in the input. An unquoted expression of type T can be

viewed as an already parsed part of the input that can be

accepted whenever we have an item in the item set with

the dot to the left of a type that can be unified with T.

We illustrate this with the same grammar as above and the

input [J-(x:Int>$ll

IO
<s> ..- ..- . < ‘A List > , SO, 0

< ‘A List > ::= .$, [I, 0

< ‘A List > ::= . <‘A> <‘A List>, [],O

11

< ‘A List > ::= <‘A>.<‘A List>,[‘A H Int],O

< ‘A List > ::= .$, II, 1
< ‘A List > ::= . < ‘A > < ‘A List > , [I, 1

12

< ‘A List > ::= $., [I, 1

< ‘A List > ::= <‘A> <‘A List>., [‘A H Int,

‘Xi H Int], 0

< ‘A List > ::= < ‘A > . < ‘A List > ,

[‘A H ‘X2 List], 1

<s> ::= < ‘A List > , sc [‘A ++ ‘X3,

‘X3 H Int,

‘Xi H Int], 0

< ‘A List > ::= <‘A>,<‘AList>,[‘A H IntList,

‘X4 H Int, ‘Xi H Int], 0

< ‘A List > ::= .$, [I, 2
< ‘A List > ::= . < ‘A > < ‘A List > , [I, 2

5 User Defined Representation

In the previous section we have described how the elements

of the concrete datatypes are represented. Sometimes this

representation is a bit inconvenient because we often want

to represent sequences as ML lists and sometimes we would

like to “forget” some productions in the grammar. These

differences in representation should be indicated by con-

structions in the definition of conctypes.

Productions containing terminals whose only purpose

are to indicate the structure of a sentence are of course un-

necessary when the sentence is represented as a tree. Take

for example parentheses in arithmetic expressions. In the

denotational description in section 2 we have the clauses

C I (<Exp>) I1 and [I (<Bexp>) I] because we want to have

parentheses in elements of the concrete datatypes Exp and

Bexp. These productions remain in the representation and

we must therefore have the cases:

E [I(-e>l] s = E e s

B [l(-b>l] s = B b s

in the interpreter. To eliminate these let us introduce the

notation

A = [ll...cA>...ll]

to indicate that the production should not remain in the

representation. The dots stands for arbitrary terminal sym-

bols. Our denotational example would then be written:

101

Exp = . . .

1 [il(<Exp>>lll

Bexp = . . .

1 ClI(<Bexp>)lll

The parentheses may only occur in quotation expressions.

They are eliminated during parsing and must not appear

in quotation patterns. The only situation when it is possi-

ble to forget productions in this way is of course when the

clause just contains one nonterminal and this is the same

as the conctype just being defined.

In grammars, we often use a special notati0.n for se-

quences.

Cmds ::= Cmd {;Cmd}*

In the conctypes described so far we have used rec:ursion to

define sequences. For example in the denotational descrip-

tion in section 2 where a sequence of commands is defined

by:

conctype Cmds = [l<Cmd> I]

I [l<Cmd>; <Cmds>l]

A sequence of commands cl;c2;c3 is represented by the

term:

Cmds2(cl,Cmds2(c2,Cmdsl ~3))

Having this representation we must use explicit recursion

when defining computations over the elements. If we in-

stead represent the sequences as ML lists it is possible to

use predehned list handling functions. When representing

sequences as ML lists it is necessary to exclude the ter-

minals which separate the elements. We therefore use a

somewhat different notation for sequences than in. ordinary

grammar descriptions.

{<Cmd>; . ..I+

The nonterminal inside the curly brackets defines the el-

ements in the sequence. The terminals between the non-

terminal and the three dots are the separators between the

elements in the sequence. We use + to denote repet.ition one

or more times. It is also possible to use * to denot,e zero or

more times. Using this notation the command sequence in

the denotational description could be defined

conctype Pgm = [lprogram {<Cmd>; . . .I+ end11

The conctype Cmds is then no longer necessary. Neither is

the function Cs in the interpreter. Instead we define the

function P thus

fun P [Iprogram -(cs) endl] = foldleft C sinit cs

where f oldleft is a predefined list handling function.

The conctype Pgm is translated to the datatype:

datatype Pgm = Pgml of Cmd list

Using list notation, the definition of a language by conc-

types becomes more comprehensible. A procedure head in

a simple imperative language could with list notation be

defined as:

;... 3+) ; II

conctype procedurehead

= [lPROC <Id>;11

I [1 PROC <Id> ({<Parlist>

and Parlist

= [l{<Id>, . ..)+:<TypeId> ,I1

where Id and Typeid are two already defined conctypes. An

element of this type is [1 PROC P(a, b: int ; ch: char) ; 1 I

and a function that counts the number of parameters is:

fun countpars [IPROC *id;11 =o

I countpars ClPROC -id (‘ps) ; I] =

sum (map (fn Cl-ids:^tl] => (length ids)) ps)

where sum, map and length are predefined list handling

functions. Without list notation the conctype definition

must be defined as:

conctype Prochead

= ClPROC <Id>;11

I C IPROC <Id>(<Parlist>) ; I]

and Parlist

= [l<Idlist>:<Typeid>l]

I [l<Idlist>:<Typeid>;<Parlist>l]

and Idlist

= [l<Id>l]

I [l<Id>,<Idlist>l]

and the function that counts the number of parameters:

102

fun countpars [IPBOC *id; II =o

I countpars [IPROC ^id(*ps); I1 = countpar ps

fun countpar [I -ids : ^t II = countids ids

I countpar [I-ids:-t;-psll =

countids ids + countpar ps

fun countids [l-id11 = 1

I countids [I-id,-ids11 = 1 + countids ids

As previously mentioned, it is considered to be an er-

ror if a quotation expression can not be parsed uniquely.

It is therefore desirable to have unambiguous conctypes.

Consider arithmetic expressions. An unambiguous conc-

type would contain a lot of nonterminals and productions

which are irrelevant in the representation. Many function

definitions thus become quite complicated. Using prece-

dences and associativity rules which resolve ambiguities,

we can define the same language with a less complicated

conctype, and have more natural patterns. A desirable ex-

tension is therefore to give the user the possibility of giving

precedence and associativity rules, to productions in the

conctypes.

A completely different representation could be obtained

by defining a datatype and a function that maps the con-

crete object to the new representation. If we for example

want to represent binary numbers as integers we could de-

fine a function bintoint which maps the concrete data type

BinNumber to the corresponding integer.

fun bintoint [loll = 0

I bintoint [Ill] = 1

I bintoint [l-x 011 = 2 * bintoint x

I bintoint Cl-x 1 II = 2 * bintoint x + 1

Compare this with the following definition in YACC.

binnumb: ZERO C$$ = 0;)

I ONE C$$ = 1;)

I binnumb ZERO i$$ = $1*2;1

I binnumb ONE C$$ = $1*2+1;)

6 Implement at ion

The constructions we described in section 2 have been im-

plemented in the functional language LML [AJ87,Aug84]

and all examples in that section have been tested in the

implementation. The constructions described in section 5

are not implemented yet.

LML has no input and output for user defined datatypes

so we have not bothered to generate pretty printers for

conctypes in our implementation.

7 Related Work

One system with an explicit notion of metalanguage and

object language is the Edinburgh LCF system [GMW79].

In contrast to our proposal, LCF contains only one fixed

object language. Furthermore, the object language is rep-

resented by an abstract type that defines the abstract syn-

tax of the language, so the concrete syntax in quotations is

seen just as a convenient way for the user to enter elements

of this type. To define computations that uses the object

language one has to use the constructors and selectors of

the abstract syntax and the user must therefore remember

both the concrete and the abstract syntax of the object

language.

In the LeML system from INRIA [The85,Hue86], the

user can easily define his own object language by using an

interface with an ML version of YACC. But the concrete

syntax must still be seen as a convenient form to write

abstract syntax trees since all computations must be ex-

pressed in terms of the constructors and selectors of the

abstract syntax. Nothing like our quotation patterns is

available. Wand [Wan841 has implemented a similar sys-

tem for Scheme also using YACC to generate the parser

that translates from concrete to abstract syntax.

A more limited way to define an object language is to

use infix operators as constructors, as we can do in ML

[Mi184]. A type declaration for arithmetic expressions in-

volving integers and the operators + and * can in ML be

defined as

infix ++ **

datatype Expr = NUN of int

I OP ++ of Expr * Expr

1 op ** of Expr * Expr

A function which evaluates such an expression is:

fun E (NUN n> =n

1 E (el ++ e2) = E el + E e2

I E (el *+ e2) = E el * E e2

103

This way of making the elements of a datatype more con-

crete has a number of disadvantages. Since ML does not

allow overloading we can not use the symbols + and * as

constructors. We have to choose other symbols, for exam-

ple ++ and ** as in the example above. We must also have

a constructor for each part of the new language we want to

define, even for those parts which do not have a constructor

in the concrete syntax, like the integer case in the example

above. The expression 2*3+4 must therefore be written

(NUM 2)**(NUM J)++(NuM 4). If we want to write expres-

sions in a more familiar way we must write a parser which

translates strings to elements in the datatype.

8 Future Work

In the future we will implement the constructions described

in the section on user defined representation. We will also

define and implement constructions for expressing priorities

and associativity. The problems with the lexical analyzer

also have to be further investigated. Another interesting

question is if the notion of subtype [FM881 could resolve

some of the problems with ambiguities in patterns we have

described.

Acknowledgements [GTWW77]

We would like to thank the members of the Programming

Methodology Group in Goteborg for their help and encour-

agement. In particular we would like to thank Lennart

Augustsson for his support and all help he provided dur-

ing the implementation and S&en Holmstriim for his useful

comments.

[Hoa75]

References

[AJ87] L. Augustsson and T. Johnsson. Lazy ML

User’s Manual. Programming Methodology

Group, Department of Computer Sciences,

Chalmers, S-412 96 Goteborg, Sweden, 1987.

To be distributed with the LML compiler.

L‘k841 L. Augustsson. A compiler for lazy ML. In

Proceedings of the 1984 A CM Symposium on

Lisp and Functional Programming, pages 218-

227, Austin, 1984.

[DKLM84]

[Ear701

[FM881

[GMW79]

[Gor79]

[Hue861

[Lan64]

V. Donzeau-Gouge, G. Kahn, B. Lang, and

B M&se. Document structure and modular-

ity in Mentor. In Proceedings of the ACM

SIGSOFT/SIGPLAN - Software Engineering

Symposium on Practical Software Revelop-

ment Environments, Pittsburgh, 1984. Soft-

ware Engineering Notes Vol. 9, No 3.

J. Earley. An efficient context-free parsing

algorithm. Communications of the ACM,

13(2):94-192, February 1979.

You-Chin Fuh and Prateek Mishra. Type in-

ference with subtypes. In H. Ganzinger, ed-

itor, PTOCCedingS ESOP ‘88. LNCS vol. 300,

pages 94-114, Springer-Verlag, Nancy, France,

1988.

M. Gordon, R. Milner, and C. Wadsworth.

Edinburgh LCF. Volume 78 of Lecture Notes

in Computer Science, Springer-Verlag, 1979.

M. Gordon. The Denotational Description

of Programming Languages. Springer-Vedag,

1979.

J. A. Gougen, J. W Thatcher, E. G. Wagner,

and J. B. Wright. Initial algebra semantics

and continuous algebras. JA CM, 24(1):68-95,

January 1977.

C. A. R. Hoare. Recursive data structures.

International Journal of Computer and Infor-

mation Sciences, 4(2):105 - 132, 1975.

G. Huet. Formal structures for computation

and deduction. May 1986. Lecture Notes

for International Summer School on Logic

Programming and Calculi of Discrete Design,

Marktoberdorf, Germany.

P. J. Landin. The mechanical evaluation of

expressions. Computer Journal, 6(4):308-320,

1964.

104

[Mi178) Robin Milner. A theory of type polymorphism

in programming. Journal of Computer and

Systems Sciences, 17~348-375, 1978.

[Mi184] R. Milner. Standard ML proposal. Polymor-

phism: The ML/LCF/Hope Newsletter, l(3),

January 1984.

h861 S.L. Peyton Jones. Parsing d&fix operators.

Communications of the ACM, 29(2):118-122,

February 1986.

PeWI S.L. Peyton Jones. The Implementation of

Functional Programming Languages. Prentice

Hall, 1987.

[QuiSl] Willard Van Orman Quine. Mathematical

Logic. Harward University Press, 1981.

[The85] The ML handbook, version 6.1. Project

Formel, Inria, May 1985.

[Wan841 Mitchell Wand. A semantic prototyping sys-

tem. In Proceedings of the ACM SIGPLAN

‘84 Symposium on Compiler Construction,

pages 213-221, June 1984.

105

