
SPECIAL ARTICLE

THE EVALUATION OF PROGRAM-BASED
SOFTWARE TEST DATA ADEQUACY
CRITERIA

In earlier work, a prelimina y set of axioms for software test data adequacy
was introduced in order to formalize properties which should be satisfied by
any good program-based adequacy criterion, Here, we extend this zoork by
augmenting the set with additional axioms which substantially strengthen
the set. In doing so, we rule out several types of unsuitable notions of
adequacy.

ELAINE J. WEYUKER

For much of the brief history of computers, software
systems consisted of a few thousand lines of code pro-
duced by an individual in a short period of time. Under
such circumstances, the use of ad hoc techniques was
perhaps acceptable. Today, however, software systems
of tens of thousands or even millions of lines are com-
monplace. Such systems are produced by large teams of
developers, frequently situated in several locations,
over a period of years. These realities of modern soft-
ware production demand that software engineers pay
more attention to formalizing the production of soft-
ware, including the definition of accurate models of the
phases of software production and an increased use of
form.al criteria to evaluate these models.

In this article we investigate fundamental properties
for program-based test data adequacy criteria. In partic-
ular! we need to be able to recognize a good adequacy
criterion when we see one, and we need to be able to
recognize that a proposed adequacy criterion is a poor
choice. Furthermore, we must have an objective, well-
defined basis for this assessment.

Several recent papers reflect the growing awareness
of the importance of this type of software engineering
theory. Hoare et al. [lo] presented a set of algebraic

This research was supported in part by the National Science Foundation
under Grant CCR-85-01614 and bv the Office of Naval Research under C:on-
tract:V00014-85-K-0414.

01988 ACMOOOl-0782/88/0600-0668 $1.50

laws, or axioms, for a programming language. In [17],
we presented properties for software complexity mea-
sures and evaluated several well-known mleasures
based on their satisfaction of the properties. Similar
research was described by Iannino et al. in [ll] for
software reliability models.

Like many axiomatic theories, this work is intended
to make explicit our intuition; in this case about the
testing process. Thus, each of the properties presented

We describe how we have extended our earlier work
which contained an axiomatization of program-based

grows out of our experience with practical testing and

software test data adequacy criteria [16]. The philoso-
phy behind this work is that software testing is more

our observations about the strengths and weaknesses of

than just the selection of test data and the execution of

proposed test data adequacy criteria, and therefore

the software on that test set. We need to evaluate test
data by using adequacy criteria and assess proposed

should not be surprising to the practicing tester.

criteria.

DEFINITIONS
Here we present necessary definitions and assumptions.
We assume a structured programming language in
which programs are single-entry/single-exit, that all in-
put statements appear at the start of the program, and
all output statements appear at the end. With these
assumptions, we can easily define a notion of composi-

668 Communications of the ACM June 1988 Volum.? 31 Number 6

http://crossmark.crossref.org/dialog/?doi=10.1145%2F62959.62963&domain=pdf&date_stamp=1988-06-01

Special Section

tion of programs. For programs P and Q using the same
set of identifiers, we write P ; Q to mean the program
formed by replacing P’s unique exit and output state-
ments by Q with Q’s input statements deleted. A compo-
nent of a program P is any contiguous sequence of state-
ments of P.

Ideally, a specification is a total function which de-
scribes an intended behavior of the program for every
possible input. In practice, a specification S is a partial
function whose domain is the set of all values for which
S is defined. The specification defines what a program
is intended to compute for all elements of its domain.
Values not included in the specification’s domain are
considered “don’t care” conditions, and any output or
no output is acceptable for such inputs.

The domain of a program is the set of all values for
which the program halts. In theory, of course, one can-
not determine the set of values for which the program
halts, or the function being computed by the program.
For these reasons and since the specification defines
what should be computed, test cases are selected from
the specification’s domain. There is not much point in
selecting as a test case for a program, an input for
which any output or no output is acceptable. This is the
case for points outside the specification’s domain.
Ideally, the specification describes behavior for every
possible input and hence any such input could be used
as a test case.

For program P, we let P(x) denote the result of P
executing on input vector x. If x is in t$e specification’s
domain, then we let S(x) denote the value that a pro-
gram intended to fulfill S should produce on input x.
For x not in the domain of S, we shall say that S(x) is
undefined. If P and Q are programs, we write P = Q(P is
equivalent to Q) if and only if P(x) = Q(x) for every
element x. In particular, if P = Q, then for each x, P(x)
is defined if and only if Q(x) is defined, and hence P
and Q have the same domain.

A test data adequacy criterion is a set of rules used to
determine whether or not testing can be terminated.
Such a criterion may involve the program’s structure.
In this case, the adequacy criterion is said to be pro-
gram-based. Such criteria are generally used during unit
testing when relatively small program pieces are tested.
Other criteria may ignore the program itself and rely
solely on the specification. These criteria are said to be
specification-based. Still other criteria may ignore both
the program and the specification in the selection or
evaluation of test data. An example of such a criterion
is random selection.

Although in industrial settings, program-based ade-
quacy criteria are rarely used, it is generally acknowl-
edged that when such a criterion is employed, it is
likely to be either statement or branch adequacy. If a
program is represented by a flowchart, then a branch is
an edge of the flowchart. Test set T is statement (branch)
adequate for P, provided for every statement (branch) of
P, there is some test case in T which causes the state-
ment (branch) to be exercised. They are both clearly
examples of program-based adequacy criteria.

PROPERTIES TO ASSESS PROGRAM-BASED
ADEQUACY CRITERIA
The properties, or axioms, proposed in [16] were in-
tended to be used as the basis for assessing program-
based adequacy criteria. Our ultimate goal is to define a
set of properties that would be satisfied by all and only
“good” program-based test data adequacy criteria and
in that sense would truly characterize such criteria. In
practice, however, a tester might well decide to employ
an adequacy criterion in spite of the fact it fails to
satisfy certain of the desirable properties. It may be that
even though the criterion has some known deficiencies,
its strengths nonetheless make it especially appealing
for the particular circumstances.

For example, it was shown that statement and
branch adequacy fail to satisfy three of the original
eight properties. Nonetheless, a tester might choose to
use these criteria in spite of these limitations because
there is a statement or branch coverage tool available
in-house which is relatively easy and inexpensive to
use. If the alternative to using a less than ideal criterion
is that no adequacy criterion will be used, then that
might well be a compelling argument for a criterion’s
use, even though it has known deficiencies.

Since we presented a complete discussion of the im-
portance of each property in earlier work, we omit ar-
guments here for the rationale behind these properties.
In each instance, when we refer to an “adequate test
set” or a program being “adequately tested by” a test
set, that adequacy is being assessed using some fixed
adequacy criterion.

We now present the eight properties. The first four
properties apply equally to any adequacy criterion; the
later properties are specialized to program-based crite-
ria. As mentioned earlier, the intent of these properties
is to formalize the intuition we have gained by testing
“real” systems.

The first property we present is in a sense the central
property for any adequacy criterion. It requires that, as
assessed by a given adequacy criterion, every program
must be adequately testable.

1. APPLICABILITY PROPERTY. For every program,
there exists an adequate test set.

There are many ways that this property could be
refined. We could require that the language contain
only finitely-many representable points. In that case
this property can be rephrased as:

Applicability Property. For every program, there ex-
ists a finite adequate test set.

Of course, even when test sets are guaranteed to be
finite, there can be a very large number of required test
cases. An additional refinement might be to require
that test sets be “reasonably sized,” as assessed by the
program’s size or complexity.

Another possible refinement of the Applicability
Property might be to consider adequacy criteria which
are only applicable for restricted domains. For example,

June 1988 Volume 31 Number 6 Communications of the ACM 669

‘1 Section

one might be able to define a meaningful adequacy
criterion which applied specifically to graphics pro-
grams, but was not useful for other types of programs.
Thus, if one could precisely define a class of programs
for which it was algorithmically possible to determine
whether or not a given program was a member of that
class, a less demanding property might be proposed as
follows:

Rellativized Applicability Property. Let R be a class
of programs and A be an adequacy criterion. For every
program in R there exists an A-adequate test set.

Exhaustive testing of a substantial size
domain would generally be prohibitively
expensive. Testing is designed explicitly to
address this issue.

We shall say that a program has been exhaustively
tested if it has been tested on all representable points of
the specification’s domain. Such a test set, called an
exhaustive test set, should surely be adequate no matter
what criterion is used since there can be no additional
testing possible. Exhaustive testing of a substantial size
domain, however, would generally be prohibitively ex-
pensive. Testing is designed explicitly to address this
issue. It is inherently a process in which a relatively
small set (the test set) is selected in such a way that it is
a reasonable approximation to a much larger set (the
domain). Thus, although an adequacy criterion may
well require exhaustive testing in some cases, particu-
larly when the domain is small, a criterion which
always requires exhaustive testing is unacceptable.
Formalizing this we have:

2. NON-EXHAUSTIVE APPLICABILITY PROP-
ERTY. There is a program P and test set T such that
P is adequately tested by T, and T is not an exhaus-
tive test set.

The next property states that once a program has
been adequately tested, running some additional tests
cannot cause the program to be deemed inadequately
tested.

3. MONOTONICITY PROPERTY. If T is adequate
for P, and T C T’ then T’ is adequate for P.

It follows immediately from Properties 1 and 3 that
an exhaustive test set is always adequate, as desired.

The next property reflects the fact that a test data
adequacy criterion is intended to measure how well the
testing process has been performed. Certainly, if a pro-
gram has not been tested at all, the process cannot have
been thorough, and the program cannot be considered
adequately tested.

4. INADEQUATE EMPTY SET PROPERTY. The
empty set is not an adequate test set for any program.

5. ANTIEXTENSIONALITY PROPERTY. There are
programs P and Q such that P E Q, T is adequate for P,
but T is not adequate for Q.

The antiextensionality property reflects the fact that
we are assessing program-based adequacy cr:iteria, not
adequacy criteria in general. It says the semantic equal-
ity of two programs is not sufficient to impl-y that they
should necessarily be tested the same way. Program-
based testing should depend upon the implementation,
and not simply the functions computed by the program.

To introduce a notion of syntactic closeness, we shall
say that two programs are the same shape if one can be
transformed into the other by applying the following
rules any number of times:
(a) Replace relational operator rI in a predicate with

relational operator r2.
(b) Replace constant c, in a predicate or assignment

statement with constant cZ.
(c) Replace arithmetic operator aI in an assignment

statement with arithmetic operator a2.

6. GENERAL MULTIPLE CHANGE PROPERTY.
There are programs P and Q which are the same shape,
and a test set T such that T is adequate for P, but T is
not adequate for Q.

Just as the antiextensionality property said that se-
mantic “closeness” (equality] is not sufficient to imply
that two programs should necessarily be tested the
same way, this change property states that the syntactic
closeness of two programs is not sufficient to imply that
they should necessarily be tested the same way either.

7. ANTIDECOMPOSITION PROPERTY. There exists
a program P and component Q such that T is adequate
for P, T’ is the set of vectors of values that variables
can assume on entrance to Q for some t in T, and T’ is
not adequate for Q.

This antidecomposition property may at first appear
to be somewhat counterintuitive. It states that although
a program has been adequately tested, it does not nec-
essarily imply that each of its component pieces has
been properly tested. That is, a routine which has been
adequately tested in some environment or context has
not necessarily been adequately tested for other envi-
ronments. Furthermore, even though P appears to be
more complicated than Q, in the sense that P syntacti-
cally contains Q, semantically Q may actually be more
complex than P. For example, if Q lies on an unexecut-
able path of P, then even if T is a test set which is
adequate for P, T’, which in this case would be the

670 Communications of the ACM June 1988 Volume 31 Number 6

Special Section

empty set, would presumably not be adequate for Q.
Similarly, even if a component Q were executable in P.
it may only be executable with data in a very restricted
form which the criterion would not assess as adequate
for Q.

8. ANTICOMPOSITION PROPERTY. There exist
programs P and Q, and test set T, such that T is ade-
quate for P, and the set of vectors of values that vari-
ables can assume on entrance to Q for inputs in T is
adequate for Q, but T is not adequate for P; Q.

This final proposed property states that testing each
piece of a program in isolation is not necessarily suffi-
cient to deem the entire program adequately tested.
Such a scheme fails to take into account the added
interactions and interfaces which must be tested when
programs are composed.

THE INSUFFICIENCY OF THE PROPERTIES
In [16] we demonstrated that the preceding eight prop-
erties are useful in exposing weaknesses in several
well-known program-based adequacy criteria. For ex-
ample, it was shown that the statement and branch
adequacy criteria fail to satisfy the Applicability Prop-
erty. A criterion which fails to satisfy this property is
fundamentally unsatisfactory as an adequacy criterion
since after evaluating the testing process and determin-
ing that the criterion has not been satisfied [for exam-
ple, only 50 percent of the statements have been exe-
cuted) one cannot algorithmically determine whether
more testing must be performed, or the criterion is sim-
ply not satisfiable for this program (for example, it con-
tains a substantial amount of unexecutable code.) It
was also shown that statement and branch adequacy
fail to satisfy the Antidecomposition and Anticomposi-
tion properties. In essence, the Antidecomposition
Property rules out criteria that do not recognize that
the context of a piece of code may well determine what
testing is appropriate. The Anticomposition Property
eliminates criteria that do not have provision for testing
the interaction of program pieces.

Rapps and Weyuker [13] have defined a family of
adequacy criteria, known as the data flow testing crite-
ria, most of which are more demanding than branch
testing. For this family of adequacy criteria, test data
must be selected so as to cause the execution of paths
connecting various program locations at which a vari-
able is given a value (called a definition) and places
where the selected variable definition may subse-
quently be used. Each of these criteria require that
some or all path segments of a certain type be executed.
Like branch testing, these criteria fail to satisfy the Ap-
plicability Property. In [7], Frank1 and Weyuker have
explored the properties of a family of criteria which are
based on the data flow criteria, but which satisfy the
Applicability Property.

In spite of the properties’ usefulness in exposing

flaws in proposed adequacy criteria, we shall now dem-
onstrate that, taken together, they are still weak. To do
this, we define a criterion which satisfies each of the
properties, but does not conform to one’s intuition
about what such an adequacy criterion should be like.
We then introduce new properties aimed at eliminating
such inappropriate criteria. Eventually we hope to have
a complete set of axioms in the sense that they can be
satisfied by all and only adequacy criteria that conform
to one’s intuitive ideas of program-based test data
adequacy.

A Godel numbering is a way of assigning a unique
numerical value to each program in such a way that
the program can be algorithmically retrieved from this
value [2]. Let P be a program and let p be its Godel
number. Then we shall say that T is Godel adequate for
P provided p E T. That is, any test set is deemed ade-
quate by this criterion provided it contains among its
inputs, the program’s number. Such a criterion does not
require that test data be chosen in a way that has any-
thing fundamental to do with either the program’s syn-
tax, semantics, or intended semantics (specifications). It
should also be noted that regardless of how complex a
program is, there will always be an adequate test set of
size one.

Our intuition tells us that an “inessential”
change in a program, such as changing the
variables’ names, should not change the
test data required to adequately test the
program.

It is easy to verify that each of the previously pro-
posed properties is satisfied by this criterion. Since
Godel adequacy is clearly not a “good” or even an ap-
propriate adequacy criterion, it helps elucidate some
fundamental gaps in the set of properties. One promi-
nent weakness is that although the properties state the
(semantic) equivalence of two programs should not be
sufficient to require that they be tested the same way
(Antiextensionality Property) and that the syntactic
closeness of two programs should not be sufficient
either (General Multiple Change Property), we did not
consider the case of two programs which are both se-
mantically and syntactically the same. We shall call a
program P a renaming of Q if P is identical to Q except
that all instances of an identifier X, of Q have been
replaced in P by an identifier x,, where x, does not
appear in Q, or if there exists a sequence Q = P, , P2,
. . , P, = P where Piti is a renaming of P, for i = 1, . . ,
n- 1.

Our intuition tells us that an “inessential” change in
a program, such as changing the variables’ names,
should not change the test data required to adequately
test the program. Two programs which are renamings

June 1988 Volume 31 Number 6 Communications of the ACM 671

Special Section

of each other are as close as two programs can be with-
out being textually identical. Since they are essentially
the same program, they should require the same test
cases. We are therefore led to propose the next
property:

RENAMING PROPERTY. Let P be a renaming of Q.
Then T is adequate for P if and only if T is adequate
for Q.

Clearly, Godel adequacy does not satisfy this prop-
erty since if P and Q are distinct programs with Godel
numbers respectively p and q, then p # q even if P is a
renaming of Q. By definition, (p] is Godel adequate for
P, but is not Godel adequate for Q. However, we shall
now present a minor modification of this criterion,
which, although just as intuitively inappropriate as
Code1 adequacy, does satisfy the Renaming Property as
well as the original eight properties. Thus, we see that
this enlarged set of properties is not sufficient to elimi-
nate all inappropriate criteria.

We first assume, without loss of generality, that there
is some standard ordering of variables in the language,
and an associated canonical representation of any pro-
gram. For example, assume for a program involving k
distinct variable names, that the canonical representa-
tion of the program uses the variable names x1, x2. . . ,
& and that x1 is the first variable encountered in a
sequential scan of the program, xZ is the second distinct
variable, etc. Then every program can be algorithmi-
cally converted to its canonical form. Clearly, if P is a
renaming of Q, then Q is a renaming of P and P and Q
have the same canonical form. Now if instead of assign-
ing a unique number to each syntactically distinct pro-
gram, we assigned the number of a program’s canonical
form to it and every other member of that class, we
could call this the Gddel-class number. Therefore, if P
and Q are renamings of each other, they have the same
Godel-class number. We shall then say that a test set T
is Gtidel-class adequate for a program P provided that
p E T, where p is P’s Code]-class number. This crite-
rion is essentially the same as Godel adequacy, with
the same lack of intuitive acceptability, but was de-
fined in such a way as to assure that it satisfies the
Rena.ming Property as well as the original eight
properties.

We now consider other possible strengthenings of the
set of properties. As previously noted, Godel adequacy
is essentially independent of both the program’s seman-
tics and syntax. Godel-class adequacy addresses this
problem to a small extent by grouping together pro-
grams whose syntax and semantics are essentially iden-
tical. Both criteria share a related weakness, however.
Intuitively, as programs become more complex, they
should require more testing. Both Godel adequacy and
Godel-class adequacy ignore this fundamental insight.
For both criteria, every program has a size one ade-
quate test set, and every size one test set is Godel and
Godel-class adequate for some program. We are there-

fore led to the following property which neither of
these adequacy criteria satisfy:

COMPLEXITY PROPERTY. For every n, there is a
program P, such that P is adequately tested by a size
n test set, but not by any size n - 1 test set.

That is, for every program there are other programs
that require more testing. As mentioned, neither Godel
or Godel-class adequacy satisfies this property since in
both cases every program is testable with a size one test
set. However, by modifying these criteria slightly once
again, we are able to define an equally inappropriate
criterion which satisfies all of the proposed properties.
Let p be program P’s Godel-class number. T:hen we
shall say that test set T is Gijdel-class-interval adequate,
provided (q j 1 s q 5 p) _C T. Thus, a program with
Godel-class number n is adequately tested using this
criterion, by a test set of size n, but by no test set of size
n - 1. The criterion therefore satisfies the Complexity
Property, and, it can be shown, the original eight prop-
erties as well as the Renaming Property. Once again,
however, the test cases really have nothing to do with
either the program’s syntax or semantics.

The obvious question is how can there be a criterion
which satisfies all of the proposed properties, even
though it is obviously inappropriate? The answer is that
we have not included among the properties, anything
which characterizes what a program-based adequacy cri-
terion is supposed to be. In a sense, it was tacitly as-
sumed that we would only use these properties to as-
sess something that was, in fact, a plausible adequacy
criterion. In [16] we used the first eight properties to
evaluate several program-based adequacy criteria. It al-
lowed us to determine, in a concrete way, the strengths
and weaknesses of each of these adequacy criteria.

Since our goal is to ultimately present a set of proper-
ties which are satisfiable by all and only good program-
based adequacy criteria, we now consider the funda-
mental role of a program-based adequacy criterion.
Such a criterion should assess the quality of testing by
determining whether or not a set of test dat.a has com-
pletely exercised a given program or the extent to
which this has been done. What a particular program-
based adequacy criterion defines, then, is h.ow the word
“exercises” is to be interpreted.

We will now consider various program-based ade-
quacy criteria in light of this insight, and ultimately
propose a property which captures this intuition.

Two well-known program-based adequacy criteria
are statement and branch coverage. For these criteria,
the interpretation of the term “exercised” is clear. What
is required is that certain parts of the program code
must be executed. Another class of program-based ade-
quacy criteria are the data flow testing criteria [7, 131
mentioned earlier. Each of these criteria require that
some or all path segments of a certain type be exer-
cised. Once again, the interpretation of “exercised” is
that certain parts of the code be executed.

672 Communications of the ACM Iune 1988 Volume! 31 Number 6

Special Section

A substantially different type of program-based ade-
quacy criterion is known as mutation analysis [I, 51.
Using this criterion, given a program P, specification S,
and a test set T such that P is correct on every member
of T, a set of alternative programs known as mutants of
P is produced. Each mutant Pi is formed by modifying a
single statement of P in some predefined way, similar to
the transformations permitted by our definition of “the
same shape.” Each mutant is then run on every ele-
ment of T, and T is said to be mutation adequate for P
provided that for every inequivalent mutant P, of P,
there is a t in T such that P,(t) # P(t). A similar idea was
proposed by Hamlet in [8]. For mutation adequacy, the
word “exercised” includes executed. Suppose some
statement of the program has never been executed by
any test case. Then that statement could be replaced by
a different statement without affecting the outcome of
any test case, and hence the test data would not have
distinguished P from this mutated program.

We will consider now one final family of program-
based notions of test data adequacy towards our goal of
determining a central property for program-based ade-
quacy criteria. In [3] we defined an adequacy criterion,
known as modified size adequacy, and in [16] we dem-
onstrated that it satisfied the original eight properties.
This criterion, which can be viewed as a theoretical
generalization of mutation adequacy, requires that suf-
ficient test data be included so that the program being
tested is distinguished from certain inequivalent pro-
grams which are no longer than the tested program,
using a simple syntactic measure of size. The underly-
ing intuition behind this criterion is that ideally a test
set should be able to distinguish a given program from
all inequivalent programs. Since there are infinitely
many such programs, such an ideal is not practically
feasible. A finite approximation to this ideal is there-
fore necessary, and modified size adequacy represents
one such finite approximation.

A further generalization of this adequacy criterion
was proposed in [a]. Since the decision to restrict atten-
tion to programs which are no longer than the one
being tested is somewhat ad hoc, we defined a family of
program-based adequacy criteria which requires that
the given program be distinguished by test data from
inequivalent programs of distance no greater than some
value for some suitable notion of distance.

In what sense do these criteria which assess ade-
quacy in terms of whether or not a program has been
distinguished from other inequivalent programs by test
data, require that the program be completely exercised?
Once again, for virtually any plausible notion of dis-
tance, it is required that every statement of the given
program be executed. If that were not the case, then an
unexecuted statement of the program could be replaced
by a different one which renders the resulting program
inequivalent to the original one. The resulting program,
which could presumably be chosen to be within a small
distance of the original one, would not be distinguished
from the original by the test data, even though they are
not equivalent.

Having looked at several fundamentally different
types of program-based adequacy criteria, we see that
one common pattern emerges. What is common to each
of these adequacy criteria is the requirement that every
statement must be executed. The philosophy underly-
ing such a requirement is straightforward: if some por-
tion of the program has never been executed, then that
portion could be performing any arbitrarily wrong com-
putation and testing would be unable to detect these
faults.

We therefore propose:

STATEMENT COVERAGE PROPERTY. If T is ade-
quate for P, then T causes every executable statement of
P to be executed.

It should be noted that this property does not quite
require that a criterion imply statement adequacy. If it
did, such a criterion would also fail to satisfy the Appli-
cability Property. Suppose P is a program containing
some unexecutable code and that A is a program-based
adequacy criterion. If the Statement Coverage Property
required that every statement of P be traversed in order
that a test set be deemed adequately tested using crite-
rion A, then no test set would be adequate for P since
no test set can cause the unexecutable statements to be
executed. Thus A would fail to satisfy the Applicability
Property. The importance of the Statement Coverage
Property is that it requires test data to be included that
relate to the program. This is in contrast to criteria such
as those based on a program’s Gijdel number.

Practical experience has convinced us that
human beings are quite good at
determining whether or not code is
executable.

In one of the earliest books containing a substantial
discussion of testing, Myers [12] presents a set of funda-
mental principles of testing, or what he calls “testing
axioms.” His second principle is:

One of the most difficult problems in testing is knowing
when to stop.

He subsequently elaborates on this point and states:
“One basic criterion for a set of test cases is ensuring
that they cause every instruction in the module to be
executed at least once. The criterion is certainly neces-
sary, but it is not the place to stop.”

Myers’s perspective throughout this book is to pre-
sent a practical, non-theoretical, discussion of software
reliability in general, and software testing in particular.
Since his viewpoint, which is based primarily on prag-
matic experience, is substantially different from ours, it
is encouraging to note that the same conclusion is
drawn.

lune 1988 Volume 31 Number 6 Communications of the ACM 673

Special Section

We agree that statement adequacy “is not the place to
stop,” and argue that it is a poor criterion since it does
not satisfy the Applicability, Antidecomposition, and
Anticomposition properties. This points out why it is
not a sufficient criterion. Still, we agree with Myers
that it is a necessary criterion, and believe that we
have argued this point persuasively. If a test set does
not satisfy statement adequacy for a program, some por-
tion of the program has never been executed, and
therefore that portion could contain arbitrary faults
that would go undetected.

One final comment of a theoretical nature is in order
about the Statement Coverage Property. It requires that
the tester be able to determine which statements of a
program are executable. But it is a well-known theoret-
ical result that there can be no algorithm to determine
whether or not a particular statement of a program is
executable [Z]. Nonetheless, practical experience has
convinced us that human beings are, in fact, quite good
at determining whether or not code is executable. In
empirical experiments using our data flow testing tool
ASSET [18], for example, this has become apparent.

A NON-PROGRAM-BASED ADEQUACY
CRITERION
In this section we investigate one additional adequacy
criterion. Our intent is to show that a criterion which is
not program-based does not satisfy the properties which
describe program-based criteria, but does satisfy the
more general properties. We shall say that a program
has been k-adequately tested provided it has been tested
on at least k > 0 points. Then any test set of size at least
k is k-adequate for any program. k-adequacy is an ad
hoc form of testing which can be thought of as an ex-
tremely crude model of random testing. Although it
might be argued that it is a plausible notion of test data
adequacy, it is certainly not a program-based criterion.
Therefore, we examine which of the proposed proper-
ties t.his criterion satisfies.

It is easy to verify that k-adequacy satisfies the Appli-
cability, Non-Exhaustive Applicability, Monotonicity,
and Inadequate Empty Set properties. This is not sur-
prising since all of these properties represent character-
istics of adequacy criteria in general, not necessarily
program-based ones.

Antiextensionality emphasizes that for a program-
based adequacy criterion, it is the implementation which
serves as the basis of evaluation, not the function being
computed. Thus, as the implementation changes, even
if the same function is computed, different test data
may be required to satisfy a given program-based ade-
quacy criterion. Therefore, k-adequacy fails to satisfy
the Anti-Extensionality Property.

If T is k-adequate for any program, then it is k-ade-
quate for every other program. It thus follows that k-
adequacy also fails to satisfy the General Multiple
Change Property, and the Anticomposition Property. k-
adequacy does satisfy the Antidecomposition Property
because if T is a test set of size k, and V is the set of
values variables can assume on entrance to Q, it is
possible that V contains fewer than k-elements.

The Renaming Property is also satisfied by k-ade-
quacy since any two programs are adequately tested by
any size k test set, not only semantically and syntacti-
cally close programs. On the other hand, it does not
satisfy the Complexity Property since all programs re-
quire the same amount of testing using the k.-adequacy
criterion.

Finally, it clearly does not satisfy the Statement Cov-
erage Property. This is as it should be since, as we have
argued, Statement Coverage is in a sense the funda-
mental property of program-based test data adequacy
criteria. Thus, it should not only preclude notions
which are inappropriate to serve as test data adequacy
criteria, as it does for the Gijdel number criteria, but it
should also eliminate plausible adequacy criteria
which, like k-adequacy, are not program-based.

SUMMARY AND FUTURE DIRECTIONS
In [16] a preliminary set of axioms or properties for
software test data adequacy was introduced. The pur-
pose of that investigation was to abstract and formalize
properties which should be satisfied by any “good” pro-
gram-based test data adequacy criterion. In this way we
are able to assess proposed models of program-based
adequacy in a concrete way. We extended this work in
this article. We showed that even though the properties
were useful in assessing the strengths and weaknesses
of proposed program-based adequacy criteria, they
were still not complete in the sense that they could all
be simultaneously satisfied by entirely unsuitable ade-
quacy criteria.

We then added three new properties which substan-
tially strengthen the set and, in particular, rule out
these unsuitable notions. We intend to continue this
formal investigation of software test data adequacy cri-
teria, adding and modifying properties when necessary
until it is possible to prove a type of completeness theo-
rem that says, in effect, that the only notions of pro-
gram-based test data adequacy that can satisfy all of the
properties are appropriate ones, and conversely, that
any “good” notion satisfies the entire set of properties.
At that point, we will have a clear understanding of
this important part of the software process, and have a
formal means of evaluating newly proposed models.
The properties should also serve as a foundation for the
definition of “good” program-based adequac.y criteria.

REFERENCES
Note: References [I?], 191, (141. and [IS] are not cited in text.

1. Budd. T.A. “Mutation Analysis: Ideas, Examples. Problems and Pros-
pects.” In Computer Program Testing. Chandrasekaran and Radicchi.
129-148. North-Holland. New York. 1981.

2. Davis, M.D. and Weyuker, E.J. Computability, Complexity, and Lan-
guages. Academic Press, New York. 1983.

3. Davis, M.D. and Weyuker. E.J. A formal notion of program-based test
data adequacy. Inf. and Control, 56, l-2 (Jan.-Feb. 1983). 52-71.

4. Davis, M.D. and Weyuker. E.J. Metric space based test data ade-
quacy criteria. The Computer @umzl. 30. 4 (1987). 17-24.

5. DeMillo. R.A.. Lipton, R.J. and Sayward. F.G. Hints on test data
selection: Help for the practicing programmer. Computer. 71. 4 (Apr.
1978). 34-41.

6. Frankl, P.G. “The Use of Data Flow Information for I he Selection
and Evaluation of Software Test Data.” Ph.D. diss.. New Ybrk Uni-
versity, 1987.

674 Communications of the ACM]une 1988 Volume 31 Number 6

Special Section

7. Frankl, P.G. and Weyuker. E.J. Data flow testing in the presence of
unexecutable paths. In Proc. Workshop on Software Testing (Banff,
Alberta, Canada. July 15-17. 1986), 4-13.

8. Hamlet, R.G. Testing programs with the aid of a computer. IEEE
Trans. Software Eng., SE-3. 4 [July 1977). 279-290.

9. Hamlet. R.G. Reliability theory of program testing. Acfa Informatica.

10.
16, (1981), 31-43.
Hoare, C.A.R.. Hayes, I.].. Jifeng. He. Morgan. CC.. Roscoe, A.W..
Sanders, J.W., Sorensen, I.H.. Spivey. J.M. and Sufrin. B.A. Laws of
programming. Comm. ACM, 30, 8 (Aug. 1987). 672-686.

11. Iannino, A., Muss. J.O.. Okumoto, K. and Littlewood, B. Criteria for
software reliability model comparisons. IEEE Trans. Software Eng..
SE-IO, 6 (Nov. 19841, 687-691.

12. Myers, C.J. Software Reliability, Principles and Practices. John Wiley &
Sons. New York, 1976.

13. Rapps. S. and Weyuker, E.J. Selecting software test data using data
flow information. IEEE Trans. Software Eng., SE-II, 4 (April 1985),
367-375.

14. Weyuker, E.J. The applicability of program schema results to pro-
grams. lnf. 1. Compufer and Informafion Sci., 8. 5 (Nov. 1979). 387-403.

15. Weyuker, E.J. and Ostrand, T.J. Theories of program testing and the
application of revealing subdomains. 1EEE Trans. Soffware Eng., SE-L
3 (May 1980). 236-246.

16. Weyuker. E.J. Axiomatizing software test data adequacy. IEEE Trans.
Soffware Eng., SE-12, 12 (Dec. 1986). 1128-1138.

17. Weyuker, E.J. Evaluating software complexity measures. IEEE Tram
Software Eng., to be published.

18. Weyuker, E.J. An empirical study of the complexity of data flow
testing. In Proc. Second Workshop Testing, Verificafmn and Analysis
(Banff. Alberta. Canada, July 19-21, 1988). to appear.

CR Categories and Subject Descriptors: D.2.5 [Testing and Debug
ging]: F.3.1 [Specifying and Verifying and Reasoning about Programs]:
Specification techniques

Additional Key Words and Phrases: Software testing, software valida-
tion, test data, adequacy, axiomatic evaluation

Author’s Present Address: Elaine J. Weyuker. Department of Computer
Science, Courant Institute of Mathematical Sciences, New York Univer-
sity, 251 Mercer St.. New York. N.Y. 10012.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish, requires a fee and/or specific permission.

ACM SPECIAL INTEREST
ARE YOUR TECHNICAL

INTERESTS HERE?
SIGCAPH Newsletter. Cassette Edition

SIGCAPH Newsletter, Print and Cassette
Editions

The ACM Spedal Interest Groups further the ad-
vancement of Computer science and practice in
many speciabed areas. Members of each SIG
receiveasoneoftheirbenefitsaperbdidex-
dusivefy dvoted to the special interest. The foi-
lowing are the pdcations that are available-
ttmgh rnsrnbership or special subsuiption.

SIGCAS Newsletter (Computers and
Society)

SIGCHI Bulletin (Computer and Human
Interaction)

SIGCOMM Computer Communication
Review (Data Communication)

SIGACT NEWS (Automata and
Computability Theory)

SIGCPR Newsletter (Computer Personnel
Research)

SIGAda Letters (Ada)
SIGCSE Bulletin (Computer Science

Education)

SIGAPL. Quote Quad (APL) SIGCUE Bulletin (Computer Uses in
Education)

SIGARCH Computer Architecture News
(Architecture of Computer Systems) SIGDA Newsletter (Design Automation)

SIGART Newsletter (Artificial SIGDOC Asterisk (Systems
Intelligence) Documentation)

SIGBDP DATABASE (Business Data
Processing)

SIGGRAPH Computer Graphics
(Computer Graphics)

SIGBIO Newsletter (Biomedical
Computing)

SIGIR Forum (Information Retrieval)

SIGCAPH Newsletter (Computers and the
Physically Handicapped) Print Edition

SIGMETRICS Performance Evaluation
Review (Measurement and
Evaluation)

GROUPS
SIGMICRO Newsletter

(Microprogramming)

SIGMOD Record (Management of Data)

SIGNUM Newsletter (Numerical
Mathematics)

SIGOIS Newsletter (Office Information
Systems)

SIGOPS Operating Systems Review
(Operating Systems)

SIGPLAN Notices (Programming
Languages)

SIGPLAN FORTRAN FORUM (FORTRAN)

SIGPLAN LISP Pointers

SIGSAC Newsletter (Security. Audit.
and Control)

SIGSAM Bulletin (Symbolic and Algebraic
Manipulalion)

SIGSIM Simuletter (Simulation and
Modeling)

SIGSMALL/PC Newsletter (Small and
Personal Computing Systems and
Applicat\ons)

SIGSOFT Software Engineering Notes
(Software Engineering)

SIGUCCS Newsletter (University and
College Computing Services]

]une 1988 Volume 31 Number 6 Communications of the ACM 675

