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An important utility that digital computer systems 
should provide is the ability to generate random num- 
bers. Certainly this is true in scientific computing 
where many years of experience has demonstrated the 
importance of access to a good random number genera- 
tor. And in a wider sense, largely due to the ency- 
clopedic efforts of Donald Knuth [18], there is now a 
realization that random number generation is a concept 
of fundamental importance in many different areas of 
computer science. Despite that, the widespread adop- 
tion of good, portable, industry standard software for ran- 
dom number generation has proven to be an elusive 
goal. Many generators have been written, most of them. 
have demonstrably non-random characteristics, and 
some are embarrassingly bad. In fact, the current state 
of random number generation software is accurately 
described by Knuth [18, p. 1761 who advises “. . . look 
at the subroutine library of each computer installation 
in your organization, and replace the random number 
generators by good ones. Try to avoid being too shocked 
at what you find.” 

Knuth’s advice applies equally well to most recently 
published computer science textbooks, particularly 
those written for the undergraduate market. Indeed, 
during the preparation of this article we reviewed more 
than 50 computer science textbooks that contained soft- 
ware for at least one random number generator. Most of 
these generators are unsatisfactory. 

This article was motivated by practical software con.. 
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siderations developed over a period of several years 
while teaching a graduate level course in simulation. 
Students taking this course work on a variety of sys- 
tems and their choices typically run the gamut from 
personal computers to mainframes. With Knuth’s ad- 
vice in mind, one important objective of this course is 
for all students to write and use implementations of a 
good, minimal standard random number generator that 
will port to all systems. For reasons discussed later, this 
minimal standard is a multiplicative linear congruen- 
tial generator [18, p. lo] with multiplier 16807 and 
prime modulus P - 1. As it turns out, porting this 
random number generator (or any other for that matter) 
to a wide variety of systems is not as easy as it may 
seem. The issues involved are discussed later in this 
article. 

The body of this article is organized into four sec- 
tions. In the first, we present the rationale for our 
choice of a minimal standard generator. We believe 
that this is the generator that should always be used- 
unless one has access to a random number generator 
known to be better. In the second section we demon- 
strate how to implement the minimal standard in a 
high-level language on a variety of systems. The third 
section presents theoretical considerations (and imple- 
mentation details in support of the discussion in the 
previous sections. Finally, in the last section, we pre- 
sent selected examples of unsatisfactory generators that 
have either appeared in recently published (post-1980) 
computer science textbooks or are currently supplied 
by popular programming environments. 
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MINIMAL STANDARD 
To the non-specialist, the construction of a random 
number generator may appear to be the kind of thing 
that any good programmer can do easily. Over the 
years many programmers have unwittingly demon- 
strated that it is all too easy to ‘hack’ a procedure that 
will produce a strange looking, apparently unpredict- 
able sequence of numbers. It is fundamentally more 
difficult, however, to write quality software which pro- 
duces what is really desired-a virtually infinite se- 
quence of statistically independent random numbers, 
uniformly distributed between 0 and 1. This is a key 
point: strange and unpredictable is not necessarily 
random. 

In retrospect it is evident that a generally satisfactory 
algorithm for random number generation was proposed 
by D. H. Lehmer 36 years ago [26]. This parametric 
multiplicative linear congruential algorithm has with- 
stood the test of time. It can be implemented efficiently 
[27, 31, 37, 411, numerous empirical tests of the ran- 
domness of its output have been published [8, 15, 27, 
28, 371, and its important theoretical properties have 
been analyzed [9, 14, 18, 301. The conclusion to be 
drawn from all this research is now clear. Although 
Lehmer’s algorithm has some statistical defects, if the 
algorithm parameters are chosen properly and if the 
software implementation of the algorithm is correct, the 
resulting generator can produce a virtually infinite se- 
quence of numbers that will satisfy almost any statisti- 
cal test of randomness. In other words, with properly 
chosen parameters, Lehmer’s algorithm, correctly im- 
plemented, represents a good minimal standard genera- 
tor against which all other random number generators 
can-and should-be judged. 

Lehmer’s algorithm represents a good example of the 
elegance of simplicity. Specifically, the algorithm in- 
volves nothing more than the judicious choice of two 
fixed integer parameters 

(i) modulus: m-a large prime integer 

(ii) multiplier: a-an integer in the range 2, 3, . . . , 
m-l 

and the subsequent generation of the integer sequence 
Zl,ZZ, 23.. . via the iterative equation 

(iii) z,+, = f(zn) for n = 1, 2, . . . 

where the generating function f( .) is defined for all z in 
1, 2 9 . . . , m-las 

(iv) f(z) = az mod m. 

The sequence of z’s must be initialized by choosing an 
initial seed z1 from 1, 2, , m - 1. And, as an addi- 
tional step, the sequence is conventionally normalized 
to the unit interval via division by the modulus to pro- 
duce the real sequence u,, uz, u3, . . . where 

(v) un =2,/m for II = 1, 2, . . . 

A random number generator based on this algorithm is 
known formally as a prime modulus multiplicative lin- 

ear congruential generator (PMMLCG) [22]. We prefer 
the less formal term Lehmer generator. 

Several things should be noted. First, because m is 
prime, f(z) # 0 for all z in 1, 2, . . . , m - 1. This is 
important because it prevents the sequence of z’s from 
collapsing to zero. Second, the values u = 0 and u = 1 
are impossible. Instead, the smallest and largest possible 
values of u are l/m and 1 - l/m respectively. Third, 
the normalization by m does not affect the fundamental 
issue of whether or not the sequence of u’s appears to be 
random. That is, the issue of randomness can be com- 
pletely resolved by studying the integer sequence of z’s 

The genius of Lehmer’s algorithm is that if the multi- 
plier and prime modulus are properly chosen, the re- 
sulting sequence of z’s will be statistically indistin- 
guishable from a sequence drawn at random (albeit 
without replacement) from the set 1, 2, . . . , m - 1. 
Indeed, it is only in the sense of simulating this random 
draw that the algorithm is random-there is actually 
nothing random about Lehmer’s algorithm (except pos- 
sibly the choice of the initial seed). For this reason 
Lehmer generators are sometimes labeled pseudorandom. 

For instance, consider an example defined by f(z) = 
6z mod 13. If the initial seed is z1 = 1 then the resulting 
sequence of z’s is 

. . . 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1 . . . (1) 

where, as the ellipses indicate, the sequence is actually 
periodic because it begins to cycle (with a full period of 
length m - 1 = 12) when the initial seed reappears. The 
point is that the first 12 terms of this sequence (or 
indeed any 12 consecutive terms) appear to have been 
drawn at random, without replacement, from the set 1, 
2 ,..., 12. Also, because f(z) = 6z mod 13 is a full period 
generating function, any initial seed between 1 and 12 
could have been chosen without affecting the apparent 
randomness of the sequence. For example, if the initial 
seed is 2, the resulting sequence is 

. . . 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2 . . . (2) 

which is nothing more than a circular shift of sequence 
(1). In general all full period Lehmer generators behave 
just like this example-they produce a fixed virtual 
circular list defined by a permutation of the integers 1, 
2 , . . . 9 m - 1. The initial seed provides an initial list 
element, all other elements are then drawn in se- 
quence. 

This example also illustrates the importance of a 
proper choice of multiplier. Specifically, if the multi- 
plier is changed from 6 to 7, the resulting full period 
sequence generated by f (z) = 72 mod 13 is 

. . . 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, . . . (3) 

In a sense, randomness, like beauty, is in the eye of the 
beholder. Because of the patterns evident in the second 
half of this sequence, however, most people would con- 
sider (3) to be less random than (1). Thus, even though 
(6z mod 13) and (72 mod 13) are both full generating 
functions, the former is a better choice as it produces a 
more random output. 
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Continuing with this example, if the multiplier is ists began to standardize this choice, research shifted to 
changed to a 5, the resulting sequence generated by a systematic search for good associated multipliers. 
f(z) := 52 mod 13 does not even have a full period. For a fixed prime modulus, in this case m = P - 1, 
Specifically, either it is now clear that the systematic search for good asso- 

ciated multipliers involves finding a’s which will pass 
. . 1, 5, 12, 8, 1, . . . or . . . 2, 10, 11, 3, 2, . . . 

hi) 
each of the following three tests. 

or . . . 4, 7, 9, 6, 4, . . . T1 : Is f(z) = az mod m a full period generating func- 

is generated depending on the choice of initial seed. 
This latter type of small-period behavior is clearly un- 
desirable-and avoidable. It is known that for any 
prime modulus (m 2 3) a significant percentage of the m 
- 2 possible choices for a will yield a full period gener 
ating function. (Specifically, for m = 13 the full period 
multipliers are a = 2, 6, 7, 11 and for m = 231 - 1, a = 
16807 is just one of more than 534 million full period 
multipliers [9].) Thus there is no good reason to use a 
Lehmer generator without a full period. 

The previous example illustrates two of the three 
central issues that must be resolved when creating a 
Lehmer generator-full period periodicity and random- 
ness. The third central issue is implementation, that is, 
guaranteeing that f(z) = az mod m will be evaluated 
effimently and correctly for all z in 1, 2, . . . , m - 1. FOI 
our example, this issue is trivial. For realistically large 
values of a and m, however, implementation in a high- 
level language is a non-trivial issue because of the po- 
tential overflow associated with the product az. In par- 
ticular, if a = 16807 and m = 231 - 1 then 46 bits are 
required to hold the largest possible value of the az 
product. 

In his original paper [26], Lehmer not only suggestecl 
the algebraic form of f( .), he also suggested that the 
(Mersenne) prime m = 231 - 1 might be an appropriate 
choice for the modulus. For years this suggestion was 
largely ignored. Instead, programmers who knew more 
about code optimization than random number genera- 
tion concentrated on the development of multiplicative 
generators with non-prime moduli of the form m = zb 
where b was matched to the integer word size of the 
computer. The primary reason for this was execution 
speed. With a suitable choice of the multiplier a and 
some low-level programming the az product could be 
reduced to several shifts and adds and the mod m oper- 
ation could be accomplished by controlled integer over- 
flow [22, 311. The result of this emphasis on speed was 
a generation of computationally efficient but highly 
non-portable and statistically flawed multiplicative lin- 
ear congruential generators, the most notorious being 
the now infamous IBM SYSTEM/360 product RANDU 

(451. 
Fortunately, by the mid-1960s a more balanced ap- 

proach to random number generation had developed. 
Execution speed, while still important, was no longer 
the paramount issue [28] and the fundamental impor- 
tance of a prime modulus was better appreciated-at 
least by specialists [16]. This, coupled with the devel- 
opment of 32-bit arithmetic as a computing standard, 
caus’ed 23’ - 1 = 2147483647 to reappear as an obvi- 
ous, logical choice for the modulus. As the special- 

tion? 

TZ : Is the full period sequence . . , z, , z2, . . . , z,,-~, 
z,, . . . random? 

T3: Can f( .) be implemented efficiently with 32-bit 
arithmetic? 

The third section of this article is largely concerned 
with a theoretical discussion of these tests, with the 
primary emphasis on TB because it is the least well 
known of the three. 

Each of the three T-tests effectively serves as a filter 
that limits the possible choices of a. Of the more than 
2 billion possible choices corresponding to m = 23’ - 1, 
it is now known that only a relative handful of multi- 
pliers will pass all three tests. From this handful we 
have selected the multiplier 16807 to define a specific 
implementation of the minimal standard generator. Be- 
cause of the subjective nature of Tz, however, there 
will always be some uncertainty about which multi- 
plier is best and if this paper were to be written again in 
a few years it is quite possible that we would advocate 
a different multiplier based on the results of Tz testing 
yet to be done. 

The multiplier a = 75 = 16807 was first suggested by 
Lewis, Goodman and Miller in 1969 [27], based largely 
on the fact that 

j(z) = 168072 mod 2147483645 (5) 

is a full period generating function. These authors also 
supplied evidence of randomness based on the results 
of what are now recognized to be relatively weak em- 
pirical statistical (T2) tests. And, with regard to imple- 
mentation, they presented an efficient but highly non- 
portable 32-bit SYSTEM/360 assembler lariguage proce- 
dure. 

In the intervening years more powerful theoretical 
tests of (full period) randomness have been developed, 
thereby strengthening T2 significantly as discussed in 
[4, 9, 14, 181. Extensive testing has revealed that the 
minimal standard generator defined by equation (5) 
also passes these tests-although not always with the 
best possible scores. Moreover, in 1979 Schrage [41] 
resolved the issue of machine independent implemen- 
tation in a high-level language by demonstrating that 
equation (5) can be implemented correctly without 
overflow ” . as long as the machine can represent all 
integers in the interval -231 to 23’ - 1.” 

In summary, a = 16807 and m = 231 - 1 define a 
generator which has a full period, is demonstrably ran- 
dom, and can be implemented correctly on almost any 
system. The generator has been exhaustively tested and 
its characteristics are well understood, at least by spe- 
cialists who frequently advocate its use [l, 22, 23, 391. 
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(Moreover, it has become a standard in the sense that it 
is now available in some commercial software packages 
such as subroutine RNUN in the IMSL library [17] and 
as subroutine DRAND in the simulation language SLAM 
II [42].) With all this in mind, we feel confident in 
recommending this random number generator as a 
minimal standard against which all others should be 
judged. 

IMPLEMENTING THE MINIMAL STANDARD 
The most obvious way to implement the minimal 
standard generator in a high-level language such as 
Pascal is as follows: 

function Random : real; 
(* Integer Version 1 *) 

const 
a = 16807; 

m = 2147483647; 

begin 
seed := (a * seed) mod m; 
Random := seed / m 

end ; 

where 

var seed : integer; 

is a global variable used to hold the current value in 
the integer sequence of z’s This generator must be ini- 
tialized by assigning seed a value between 1 and 
2147483646. Random numbers uniformly distributed 
between 0 and 1 can then be generated as required via 
repeated calls to Random. Unfortunately, for most sys- 
tems this version of Random is fatally flawed. Because 
the product a * seed can be as large as 16807 X 
2147483646 = 1.03 X 245, this version of Random is 
not a correct implementation of equation (5) unless 
maxint is 246 - 1 or larger. If maxint is smaller, as it 
will be for most contemporary systems, integer over- 
flow will occur producing an error. 

Any implementation of the minimal standard should 
be tested for correctness, not randomness. If the imple- 
mentation is correct, tests for randomness are redun- 
dant; if the implementation is incorrect, it should be 
discarded. A simple but effective way of testing for a 
correct implementation is based on the fact that if 
z1 = 1 then zloool = 1043618065. In other words, Ran - 
dom is correct only if the program fragment 

seed := 1; 
for n := 1 to 10000 do 

u := Random; 
Writeln(‘The current value 

of seed is : I, seed); 

produces 1043618065. If overflow is going to occur- 
thereby rendering incorrect all values from that point 
on, or causing program execution to halt-it will surely 
do so at some point in this sequence because intermedi- 
ate values of seed as large as 2147483531 are produced. 

Another obvious way to implement Random in Pas- 
cal is to do the integer calculations in real arithmetic, 

that is, declare the global variable 

var seed : real; 

and then use 

function Random : real; 
(* Real Version 1 *) 

const 
a = 16807.0; 

m = 2147483647.0; 
var 

temp : real; 
begin 

temp := a * seed; 
seed := temp - m * Trunc(temp / m); 
Random := seed / m 

end ; 

This version of Random will be correct if reals are rep- 
resented with a 46-bit or larger mantissa (excluding the 
sign bit). For example, this version will be correct on all 
systems that support the IEEE 64-bit real arithmetic 
standard since the mantissa in that case is 53-bits. Note 
that there is a residual integer arithmetic requirement 
in this version of Random. The largest possible value of 
Trunc ( temp / m), however, is 16806 and no “integer 
out of range” error will occur provided maxint is at 
least this large. 

Less obvious but extremely portable Pascal imple- 
mentations of the minimal standard generator are pos- 
sible based on Schrage’s method first published in 1979 
[41] and later refined in 1983 [l]. We present the inte- 
ger implementation first and then the real version. The 
theory supporting these two implementations is pre- 
sented in the next section. 

The following integer version of Random is correct 
on any system for which maxint is 231 - 1 or larger. 
First declare var seed : integer and then use 

function Random : real; 
(* Integer Version 2 *) 

const 
a = 16807; 

m = 2147483647; 
q = 127773; (* m div a *) 
r = 2836; (* m mod a *) 

var 
lo, hi, test : integer; 

begin 
hi := seed div q; 
lo := seed mod q; 
test := a * lo - r * hi; 
if test > 0 then 

seed := test 
else 

seed := test + m; 
Random := seed / m 

end; 

The essential feature of this implementation is that the 
variable test will never take on a value which cannot 
be represented correctly with 32 bits (including sign). 
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A functionally equivalent real version of this imple- 
mentation is also possible. In general, this is the version 
that must be used if maxint is smaller than Z31 - 1 (on 
some microprocessor systems). It will be correct on any 
syste:m for which reals are represented with a 32-bit or 
1arge:r mantissa (including the sign bit). First declare 
var seed : real and then use 

function Random : real; 
(* Real Version 2 *) 

const 
a = 16807.0; 
m = 2147483647.0; 
q = 127773.0; (* m div a *) 
.c = 2836.0; (* m mod a *) 

va.r 
.lo, hi, test : real; 

begin 
hi := Trunc(seed / q); 
.10 := seed - q * hi; 
test :=a *lo-r *hi; 
if test > 0.0 then 

seed := test 
else 

seed := test + m; 
Random := seed / m 

end; 

There is also an integer arithmetic requirement in this 
implementation of the minimal standard. As with real 
version 1, however, the largest possible value of hi is 
16807 and no errors will occur provided maxint is at 
least this large. 

Over the years we (and our students) have imple- 
mented the minimal standard on a wide variety of sys- 
tems. We have yet to encounter a contemporary system 
on which at least one of the four versions of Random 
could not be installed correctly. One system that de- 
serves special mention is Turbo Pascal (version 3.0) 
from Borland International [46]. This popular system 
represents a good implementation exercise for two rea- 
sons: Turbo Pascal provides its own random number 
generator, which is not very good and maxint on this 
system is only 215 - 1, thereby eliminating the possibil-. 
ity of an efficient integer implementation. Fortunately 
plain Turbo Pascal uses 48-bit real arithmetic with a 
4@bit mantissa and so it supports real version 2 of Ran - 
dom. In addition, the ‘87’ version of Turbo Pascal 
(whic:h uses the 8087 family of math coprocessors) uses 
IEEE standard 64-bit real arithmetic and so both real 
versions of Random work correctly with it. Real version 
1 is more efficient than real version 2, by approxi- 
mately a 2:3 ratio, but it is less portable. 

One nagging implementation issue that must be re- 
solved is how to handle seed. The method we have 
used herein-declaring seed to be global and updating 
its value by a side effect-is an obvious violation of 
good software engineering practice. Recognizing this, 
many authors advocate using seed as a formal var 
function parameter. We find this clumsy and mislead- 

ing because statements like u := Random( <seed) seem 
to suggest that the user should assign a value to seed 
and thereby create the random number. We believe 
that the user should always be able to initialize the 
generator by supplying an initial seed. Nevertheless, 
after initialization the ideal solution is to hide seed 
from the user. Unfortunately, standard Pascal does not 
support this approach. 

There is also the question of what value should be 
used to initialize seed. Part of the folklore of random 
number generation is that some initial seeds are better 
than others-how many of us remember being told 
something like . . . always use at least five digits with 
the last one odd [38]? For some generators this type of 
witchcraft is necessary. For the minimal standard, how- 
ever, all initial seeds between 1 and 2147483646 are 
equally valid. If you use the minimal standard genera- 
tor to produce simulation results and if these results 
prove to be very sensitive to the choice of initial seed 
then distrust your simulation, not the generator. 

We recommend the construction of an initialization 
procedure, Randomize, which prompts for an initial 
value of seed and forces it to be an integer between 1 
and 23’ - 2. As a convention we frequently advise our 
students to respond with the 9 digits of their social 
security number. This helps insure the statistical inde- 
pendence of each student’s results and provides a 
sometimes desirable standardization. One advantage to 
using the minimal standard is that results can be repro- 
duced if desired. This is possible, however, only if the 
initial seed is remembered. For the same reason we 
view any implementation of Randomize as unaccept- 
able if it does not allow the user to supply the initial 
seed. Default initial values, particularly those supplied 
by an inaccessible program counter or system clock, 
should be used only when the user chooses not to sup- 
ply one. 

THEORY 
The purpose of this section is to present some theoreti- 
cal details in support of the previous discussion. We 
begin with a discussion of T1--the test for full period. 
We assume, as before, that f(z) = az mod m where m is 
a large prime, that 2 5 a 5 m - 1 and that the sequence 
Zl, z2, z3, . . . is generated iteratively as z,+, = f(z,,) with 
the initial seed z, in 1, 2, . . . , m - 1. We also make use 
of the following basic results [18, p. 10 and p. 3751 

Z n+l = f(z,,) = a”z, mod m n = 1, 2, 3, . . . (6) 

a”-’ mod m = 1 (7) 

and a standard number theoretic definition: If m is 
prime then a is a primitive element module m (or primitive 
root of m) iff a” mod m # 1 for n = 1, 2, . . , m - 2 [18, 
p. 191. Equation (7) is a classic result known as Fermat’s 
Theorem. 

From equation (6), if z1 = 1 then in general z,,+~ = 
a” mod m. Let p be the smallest value of n such that 
z,,+, = 1. The existence of p I m - 1 is guar(anteed by 
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Fermat’s Theorem. Because .zr+, = zl, it follows that 
.zr+* = z2 and in general zr+,, = z,, for all n 2 1; that is, 
the sequence of z’s is periodic with period p. If p = 
m - 1 then f( *) is a full period generator. Clearly this is 
true iff a is a primitive root of m. (On the other hand, if 
a is not a primitive root of m then f(*) is not a full 
period generator and p < m - 1 must be a divisor of 
m - 1.) Relative to the example Lehmer generator, 
we see that both 6 and 7 are primitive roots of 13 and 
that 5 is not. With regard to the primitive roots of 
m = z3’ - 1, the following is known [Q, 271: 

(1) there are a total of 534,600,OOO primitive roots;’ 

(2) the smallest primitive root is 7; 
(3) a is a primitive root iff a = Tb mod m where b is 

relatively prime to m - 1; 

(4) the prime factors of m - 1 are 2, 3, 7, 11, 31, 151 
and 331; 

(5) b = 5 is relatively prime to m - 1 and thus 75 = 
16807 is a primitive root. 

These results completely resolve the use of T, testing, 
at least in theory: f( .) is a full period generator with 
m = 231 - 1 iff a is one of the approximately 534 million 
associated primitive roots. Thus T, is a filter that elimi- 
nates approximately 75 percent of the possible multi- 
pliers. Several years ago, Fishman and Moore [Q] took 
on the Herculean task of Tz-testing the remaining 
25 percent for randomness. The following briefly sum- 
marizes their results. 

It is well-known that all linear congruential genera- 
tors suffer from the inherent flaw that, in 3-space for 
example, the points (zl, z2, z3), (~2, ~3, z4), (z3, z4, z5) all 
fall on a finite-and possibly small-number of parallel 
(hyper)planes [30]. All of the most powerful theoretical 
T1 tests are based on analyzing the uniformity of this 
hyperplane (lattice) structure in k-space for small val- 
ues of k. As the authors stated, “[we] regard a multi- 
plier as optimal if for 2 5 k 5 6 and each set of parallel 
hyperplanes the Euclidean distance between adjacent 
hyperplanes does not exceed the minimal achievable 
distance by more than 25 percent.. . . [and] among the 
more than 534 million full period multipliers examined 
in this study, our research identified only 414 optimal 
multipliers.” [Q]. 

We should mention that due to a bookkeeping error 
in [Q] the number 414 is incorrect, there are actually 
only 410 optimal multipliers. Nonetheless, this error in 
no way diminishes the significance of the work. Also, 
only 205 of the 410 multipliers were actually published. 
The other 205 can be calculated since primitive roots 
occur in pairs, that is, for m = 231 - 1 the multiplier a = 
7b mod m is a primitive root iff a ’ = 7m-1-b mod m is 
also. Finally, and this is most important, there is noth- 
ing magic about 410. If the 25 percent distance criteria 
is increased slightly, significantly more than 410 opti- 
mal multipliers will result [Q]. 

’ ~M.~OO,OOO is exact; the corresponding value in [9] is approximate 

The multiplier 16807 is not in Fishman and Moore’s 
list of 410 optimal multipliers. For that matter, the 
other multipliers (630,360,016 [37] and 397,204,094 
[14]) commonly used with 231 - 1 are not in the list. 
This certainly does not mean that 16807 is an unsatis- 
factory multiplier; it just means that the sequence 
16807 produces is not quite as random as some others. 
It is important to appreciate that the results in [Q] were 
derived independent of implementation (T3) considera- 
tions and in that sense the results are incomplete. We 
now turn to a discussion of 32-bit implementation using 
Schrage’s method [l]. Following that, we will have 
more to say about the results in [Q]. 

The basic idea is to construct an algorithm that will 
evaluate f(z) = az mod m in such a way that all inter- 
mediate results will be bounded by m - 1. A 32-bit 
implementation then follows immediately if m 5 231. 
We begin by observing that the potential overflow asso- 
ciated with f( .) is caused because the product az is 
formed prior to the mod by m and that the overflow 
could be avoided if the order of these two operations 
were reversed. This could be accomplished trivially if it 
were possible to factor m as m = aq for some integer 9. If 
so then f( .) could be written as f(z) = az mod aq = 
a(z mod 9). Of course m is prime and no such factoriza- 
tion is possible. It is possible, however, to approxi- 
mately factor m as follows 

where 

m=aq+r (84 

9 = m div a and Y = m mod a. WI 

If the remainder Y is small, specifically if T < 9, this 
decomposition of m enables us to construct an algo- 
rithm for evaluating f(z) without producing intermedi- 
ate results larger than m - 1 in magnitude. Note that in 
general the quotient satisfies 9 2 1 and that 1 5 T 5 a - 
1. In the particular case of a = 16807 and m = 23’ - 1, 
we have 9 = 127,773 and r = 2836. 

A mathematically equivalent expression for f(z) = 
az mod m = az - m(az div m) can be derived by first 
adding and subtracting m(z div 9) and then doing some 
algebra to yield 

f(z) = Y(Z) + Wzl (94 
where 

y(z) = a(z mod 9) - r(z div 9) (QbJ 

and 

6(z) = (z div 9) - (az div m). (Qd 
It can be shown that if r < 9 then for all z in 1, 2, . . . , 
m - 1 the following are true: 

(1) a(z) is either 0 or 1 
(2) both a(z mod 9) and r(z div 9) are in 0, 1, 2, . . . , 

m-l 

(31 IY(z)I 5 m - 1. 

Item (3) is an obvious consequence of (2) and (2) follows 
from equation (8) and the assumption that Y < 9. Item 
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(I) is a consequence of the fact that if x and y are real 
numbers with 0 5 x - y 5 1 then LxJ - LyJ is either 0 
or 1 where 1.1 denotes the usual greatest integer func- 
tion. 

The key to Schrage’s method is that the operation 
whic:h would cause an overflow is trapped in 6(z) and 
item (1) provides a mechanism for inferring the value of 
6(z) from a knowledge of y(z). Specifically, because 1 51 
f(z) :S m - 1 it follows from equation (9a) that 6(z) = 0 
iff 1 .s y(z) 5 m - 1 and that 6(z) = 1 iff -(m - 1) 5 -r(z) 
5 -1. Thus, the evaluation of 6(z) is not necessary. 
Instead, to evaluate f(z), first evaluate y(z). Then if y(z) 
> 0 assign f(z) : = y(z) else assign f(z) := y(z) + m. This 
is the algorithm implemented in version 2 of Random. 

Note that a slightly modified version of Random 
could be used instead based on the following algorithm. 
Evaluate (Y(Z) = a(z mod q) and p(z) = Y(Z div 4). Then if 
a(z) > /3(z) assign f(z) := a(z) - /3(z) else assign f(z) := 
a(z) + (m - p(z)). Because the logic of this algorithm is 
more obscure, we have chosen not to use it. This algo- 
rithm does have the aesthetic property that (consistent 
with (.) mod m) a(.) and p(.) are bound to 0, 1, 2, . . . , 
m - 1. 

In the particular case m = 231 - 1 we take the condi- 
tion I(m mod a) < (m div a) as the definition of test T3. 
Based on this test, all the other multipliers commonly 
used with m = P’ - 1 can be rejected immediately. 
The question then is how many multipliers are like 
16807, that is, how many multipliers pass both T1 and 
T,? We have verified by exhaustive search that the 
answer is 23,093 and that none of these multipliers are 
in Fishman and Moore’s list of 410. Thus, in terms of 
finding multipliers which pass all three T-tests, Fishman 
and Moore’s 25 percent distance criteria is excessively 
restrictive. 

Two obvious questions remain: Which of the 23093 
multipliers have the best TZ scores and do any of these 
full period, 32-bit compatible multipliers have a Ta- 
score significantly higher than 16807? The recent arti- 
cle by L’Ecuyer [24] provides a partial answer to these 
questions. This article reports the results of a search to 
find the best full period multiplier u such that u2 < m. 
Although the test a’ < m is a restrictive version of our 
more general Y < 4 test (only 11465 of the 23093 multi- 
pliers satisfy uz C 231 - l), L’Ecuyer was still able to 
find several full period multipliers with better Tz-scores 
than 16807. Of these, he reported a = 39,373 as best. 

In a very recent more comprehensive search Fish- 
man subjected all of our 23093 multipliers to the same 
T,-tests as in [9]-with a 30 percent distance criteria. 
He found several good 32-bit compatible multipliers. Of 
these, a = 48,271 and a = 69,621 appear to be best. Both 
of these are in the set of (11628 = 23093 - 11465) 32-bit 
compatible multipliers not tested by L’Ecuyer and both 
have better Tz-scores than 39373 and 16807. 

So then, which 32-bit compatible multiplier should 
be used? Our guess is that at some future point we will 
switch to either a = 48271 (with q = 44,488 and r = 
3399) or a = 69621 (with 4 = 30,845 and r = 23,902). We 
are siill awaiting the results of further testing and the 

accumulation of favorable user experience. For now, 
we feel comfortable continuing to use a = 16807. 

A SAMPLING OF INADEQUATE GENERATORS 
In this section we present selected examples of inade- 
quate random number generators that have either ap- 
peared in recently published computer science text- 
books or are currently supplied by popular program- 
ming environments. To simplify the discussion we re- 
strict the examples to multiplicative and mixed linear 
congruential generators. This is the class of generators 
for which the theory is most complete. 

Many multiplicative linear congruential generators 
are descendents of the infamous RANDU [45] defined by 

f(z) = 655392 mod 231. (10) 

This generator was first introduced in the early 1960s; 
its use soon became widespread. In retrospect RANDU 
was a mistake. The non-prime modulus was selected to 
facilitate the mod operation and the multiplier, which 
is 216 + 3, was selected primarily because of the sim- 
plicity of its binary representation. Research and expe- 
rience has now made it clear that RANDU represents a 
flawed generator with no significant redeeming fea- 
tures. It does not have a full period and it has some 
distinctly non-random characteristics. Knuih calls it 
“really horrible” [18, p. 1731. 

In general, any multiplicative linear congruential 
generator with modulus m = Zb is flawed in the sense 
that it can not have a full period; instead the maximum 
possible period is only z~-’ = m/h. This maximum 
period is achieved iff (a mod 8) is either 3 or 5 and the 
initial seed is an odd integer. If these conditions are 
met the generator will produce a periodic permutation 
of half the odd integers between 1 and 2' - 1 [7]. 

For historical reasons, implementations of multiplica- 
tive generators with m = 2b frequently make use of 
wordlength and language dependencies. The following 
32-bit Fortran RANDU fragment is typical: 

SEED = 65539 * SEED 
IF (SEED .LT. 0) SEED 

= (SEED + 2147483647) + 1 

It is difficult to find two lines of code whichl violate 
more software engineering principles-the intent is ob- 
scure and the result is non-portable. The first line 
makes use of controlled integer overflow to MOD the 
product by 232 and the second line clears the sign bit if 
necessary by adding 23’. The net result is a MOD by 23’. 
This two line implementation of equation (30) is correct 
only on 32-bit, two’s complement systems for which 
integer overflow is not a fatal error. Programming like 
this might have been considered clever and efficient 25 
years ago, but not today. 

Unfortunately, the 1982 simulation text by Payne 
[36] and the 1985 scientific programming text by 
Nyhoff and Leestma [35] both present a controlled 
overflow implementation of RANDU as the generator of 
choice. Worse, Gottfried’s 1985 Pascal text [12] recom- 
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mends the Is-bit microprocessor RANDU analogue de- 
fined by a = 2’ + 3 and m = 215, again with controlled 
overflow and instructions about how to disable over- 
flow checking. Because of its widespread use at the 
time, RANDU was commonly found in the literature of 
the 1960s and early 1970s. The inadequacies of this 
generator are now so well known, however, that it 
should never be recommended in the computer science 
literature of the 1980s. 

It is well known that RANDU'S TZ scores can be im- 
proved somewhat by changing the multiplier [18, p. 
1041. With this in mind, some people have naively at- 
tempted to improve things by changing the multiplier 
to 16807. For example, function Random in Prime Shef- 
field Pascal-another system commonly used by our 
students-is a multiplicative generator with a = 16807 
and m = 23’ [ll]. Unfortunately, (16807 mod 8) is 7 
and so 

f(z) = 168072 mod 231 (11) 

does not even have the maximum possible period! 
Moreover, this generating function is apparently so 
non-random that at least one software vendor has felt it 
is necessary to shuffle the output to produce acceptable 
randomness. Specifically, subroutine UNIFORM in the 
statistical package SAS is based on equation (11) with 
an added shuffle to randomize the output [38]. We 
should add that the use of a generator based on equa- 
tion (11) in Prime Sheffield Pascal is particularly unfor- 
tunate because the PRIMOS operating system [44] pro- 
vides a much better generator, RAND$A, which is the 
minimal standard. 

When it comes to constructing random number gen- 
erators, there is no such thing as getting the software 
almost right. As an illustration, the 1985 Fortran text by 
Smith [43] presents a flawed generator presumably 
based on a failed attempt to implement a 16807 multi- 
plicative generator using controlled overflow. The two 
relevant lines of code are: 

SEED = 16807 * SEED 
IF (SEED .LT. 0) SEED 

= SEED + 2147483647 

If the author had added a 1 in the second line, the 
result would have been a 32-bit two’s complement im- 
plementation of equation (11). Or perhaps the author 
erroneously assumed that omitting the 1 would yield 
a correct controlled overflow implementation of equa- 
tion (5). In any case, as presented, this generator is not a 
modified version of RANDU and it is not the minimal 
standard. We tested this generator on a 32-bit two’s 
complement system using 150 different initial seeds. In 
each case the resulting sequence of z’s ultimately col- 
lapsed into one of three disjoint periodic subsequences 
of length 21,729 or 11,330 or 9,181 depending on the 
initial seed. 

We view any generator as inadequate by inspection if 
its period is too small. For example the 1980 simulation 
text by Maryanski [32] recommends a multiplicative 
generator defined by a = 20,403 and m = 2”. The 

period of this generator is 213 = 8192, which is far too 
small for any serious simulation activity. Similarly, a 
1985 Modula-2 system reference manual [29] presents a 
Lehmer generator with a = 13 and m = 2311. The mod- 
ulus is tiny, the multiplier is not a primitive root of the 
modulus and the resulting period is just 1155. An even 
worse example can be found in the 1985 LISP text by 
Gabriel [lo] which uses a = 17 and m = 251. Again, the 
multiplier is not a primitive root of the modulus and 
the resulting period in this case is just 125. 

As a final multiplicative generator example, the 1982 
simulation text by Bulgren [2] presents an out-of-date 
generator with a = 513 and m = 235. Although the 
period is 233 and the T*-scores are marginally accepta- 
ble (see [18, p. 103]), the associated Fortran implemen- 
tation relies on a 36-bit controlled overflow technique 
which is unlikely to be correct on any contemporary 
system. 

Mixed linear congruential generators [18, p. lo] are 
generalizations of multiplicative generators with gener- 
ating functions of the form f(z) = (az + c) mod m where 
the additive parameter c satisfies c mod m # 0. At the 
expense of one extra addition per random number, the 
effect of c is to allow z = 0 as a possible value and thus 
a full period sequence has length m rather than m - 1. 
In theory, the modulus m can be any positive integer, 
prime or non-prime. In practice, however, m is usually 
either a power of 2 or a power of 10. 

In the 1960s there was some hope that mixed genera- 
tors would prove to be better than multiplicative gener- 
ators (like RANDU), particularly if m = 2b. In retrospect, 
this has not proven to be true and today, with one 
notable exception [18, p. 1701, mixed generators are 
rarely ever recommended by specialists. They are, 
however, favored by many textbook authors and some 
system programmers, presumably because the T,-test 
for full period is so easy to apply. Specifically, if m = 2b 
then a mixed generator has full period iff a mod 4 = 1 
and c is odd [18, p. 201. For other values of m the test is 
only slightly more difficult to apply [18, p. 161. In a 
sense it is unfortunate that this test for full period is so 
trivial as it falsely encourages non-specialists to build 
their own generators. The generator discussed next is a 
good illustration of this. 

In 1978 P. Grogono published an introductory Pascal 
text and included in it a random number generator 
defined by 

f(z) = (251732 + 13849) mod 216. WI 

This popular text is now in its second edition [13] 
and the generator remains essentially unchanged. To 
its credit, this mixed generator has a full period (of 
length 65536) and, because the largest possible value of 
251732 + 13849 is ~1.54 X 230 it can be easily imple- 
mented correctly provided maxint is 231 - 1 or larger. 
Since it contains a relatively small period, this genera- 
tor is unsatisfactory for scientific applications. More- 
over, we are not aware of any published T2-test results 
which suggest that this generator’s output is adequately 
random. Despite this, Grogono’s generator has spread to 

October 1988 Volume 31 Number 10 Communications of the ACM 1199 



Computing Practices 

many other recent textbooks [6, 25, 33, 341 and is now 
something of an emerging standard in the undergradu- 
ate computer science textbook market. 

Most of the other mixed generators found in com- 
puter science texts are even less satisfactory than Gro- 
gono’s generator. We only list a few of these; the reader 
is encouraged to look for the others-they are relatively 
easy to find. The 1986 text by Lamb [20] and the 1987 
text by Konvalina and Wileman [19] present mixed 
generators with a = 10924, c = 11830, m = 215 + 1 and 
a = 93, c = 1, m = 213 respectively. In each case the 
period is full but too small. The same comment applies 
to the 1987 text by Clocksin and Mellish [3] which 
suggests a = 125, c = 1 and m = 2”. The 1984 text by 
Savitch [40] and the 1987 text by Lamie [21] present 
full period mixed generators with even smaller periods. 
These generators are defined by a = 40, c = 3641, m = 
729 and a = 61, c = 2323, m = 500 respectively and both 
generators contain an obfuscation; in each case c can, 
and should, be replaced with c mod m. 

The 1986 text by Collins [5] presents a prime modu- 
lus mixed generator with an insidious flaw that re- 
quires special comment. The generator is defined by 

j(z) = (98062 + 1) mod 131071 (13) 

where 131,071 is the Mersenne prime 217 - 1. It is 
easily verified, however, that f(37911) = 37911 which 
means that if by chance 37911 is used as an initial seed, 
the generator will be stuck on this value forever! Also, 
it can be verified that if any other initial seed between 
0 and 131070 is used the generator will appear to work 
correctly and cycle with an (almost full) period of 
131070. 

The binary representation of a sequence of z’s pro- 
duced by Grogono’s generator reveals an interesting 
pattern. The least significant bit cycles with period 2, 
the next most significant bit cycles with period 4, the 
next cycles with period 8 and so forth, and only the 
most significant bit cycles with a full period. It turns 
out that this distinctly non-random behavior is a char- 
acteristic of all full period mixed generators with 
m = 2b [18, p. 121. For example, the UNIX” operating 
system supports a full period mixed generator called 
rand. This generator is defined by 

j(z) = (1103515245~ + 12345) mod 23’ (14) 

and it.s deficiencies are well known-according to 
Berkeley 4.2 documentation, the low bits of the num- 
bers generated are not very random. Similarly, the ran- 
dom number generator in standard Turbo Pascal is a 
full period mixed generator defined by 

f(z) = (1292 + 907633385) mod 232 (151 

with the output normalized via division by 23’. This 
generator also exhibits small period cycling in its least 
significant bits. Worse, the multiplier is too small and 
was apparently chosen for the wrong reason-the sim- 
plicity of its binary representation. (Incidentally, the 

UNIX is a registered trademark of Bell Laboratories 

generator in ‘87’ Turbo is subtly different. The output 
is normalized via division by 23’ rather than 232 and if 
the result, u, is greater than 1, then the output is 2 - u 
instead.) 

There is really no argument in support of any of the 
example generators cited in this section. Most of them 
are naive implementations of a deceptively s:imple idea. 
All should be discarded. Even the best of them, those 
which have a full period and are correctly imple- 
mented, are inferior to the minimal standard. 

CONCLUDING REMARKS 
Many computer scientists will never have more than 
an occasional need to use a random number generator. 
And on those occasions the statistical goodness of the 
random numbers they generate may not be of para- 
mount importance. For some of us, however, conven- 
ient and frequent access to a verifiably good random 
number generator is fundamentally important. If you 
have need for a random number generator, particularly 
one that will port to a wide variety of systems, and if 
you are not a specialist in random number glaneration 
and do not want to become one, use the minimal stan- 
dard. It should not be presumed that it is easy to write 
a better one. 

For those interested in learning more about random 
number generation we recommend, in addition to 
Knuth [18], the simulation texts by Fishman [7], Law 
and Kelton [22], and Bratley, Fox and Schrage [l]. The 
discussion in [l] is particularly relevant to this article. 
We also recommend the articles by L’Ecuyer [24] and 
Wichmann and Hill [47]. The combined generators pro- 
posed in these articles represent a logical extension of 
the minimal standard. These generators appear to yield 
better statistical properties in those (rare) situations 
when the minimal standard alone may be inadequate. 
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