
COMPUTING PRACTICES

Edgar H. Sibley
Panel Editor

Practical and theoretical issues are presented concerning the design,
implementation, and use of a good, minimal standard random number
generator that will port to virtually all systems.

RANDOM NUMBER GEUERATORS:
GOOD ONES ARE HARD TO FIN

STEPHEN K. PARK AND KEITH W. MILLER

An important utility that digital computer systems
should provide is the ability to generate random num-
bers. Certainly this is true in scientific computing
where many years of experience has demonstrated the
importance of access to a good random number genera-
tor. And in a wider sense, largely due to the ency-
clopedic efforts of Donald Knuth [18], there is now a
realization that random number generation is a concept
of fundamental importance in many different areas of
computer science. Despite that, the widespread adop-
tion of good, portable, industry standard software for ran-
dom number generation has proven to be an elusive
goal. Many generators have been written, most of them.
have demonstrably non-random characteristics, and
some are embarrassingly bad. In fact, the current state
of random number generation software is accurately
described by Knuth [18, p. 1761 who advises “. . . look
at the subroutine library of each computer installation
in your organization, and replace the random number
generators by good ones. Try to avoid being too shocked
at what you find.”

Knuth’s advice applies equally well to most recently
published computer science textbooks, particularly
those written for the undergraduate market. Indeed,
during the preparation of this article we reviewed more
than 50 computer science textbooks that contained soft-
ware for at least one random number generator. Most of
these generators are unsatisfactory.

This article was motivated by practical software con..

0 1988 ACM 0001.0782/88/1000-1192 51.50

siderations developed over a period of several years
while teaching a graduate level course in simulation.
Students taking this course work on a variety of sys-
tems and their choices typically run the gamut from
personal computers to mainframes. With Knuth’s ad-
vice in mind, one important objective of this course is
for all students to write and use implementations of a
good, minimal standard random number generator that
will port to all systems. For reasons discussed later, this
minimal standard is a multiplicative linear congruen-
tial generator [18, p. lo] with multiplier 16807 and
prime modulus P - 1. As it turns out, porting this
random number generator (or any other for that matter)
to a wide variety of systems is not as easy as it may
seem. The issues involved are discussed later in this
article.

The body of this article is organized into four sec-
tions. In the first, we present the rationale for our
choice of a minimal standard generator. We believe
that this is the generator that should always be used-
unless one has access to a random number generator
known to be better. In the second section we demon-
strate how to implement the minimal standard in a
high-level language on a variety of systems. The third
section presents theoretical considerations (and imple-
mentation details in support of the discussion in the
previous sections. Finally, in the last section, we pre-
sent selected examples of unsatisfactory generators that
have either appeared in recently published (post-1980)
computer science textbooks or are currently supplied
by popular programming environments.

1192 Communications of the ACM October 1988 Volume :I2 Number 10

http://crossmark.crossref.org/dialog/?doi=10.1145%2F63039.63042&domain=pdf&date_stamp=1988-10-01

Computing Practices

MINIMAL STANDARD
To the non-specialist, the construction of a random
number generator may appear to be the kind of thing
that any good programmer can do easily. Over the
years many programmers have unwittingly demon-
strated that it is all too easy to ‘hack’ a procedure that
will produce a strange looking, apparently unpredict-
able sequence of numbers. It is fundamentally more
difficult, however, to write quality software which pro-
duces what is really desired-a virtually infinite se-
quence of statistically independent random numbers,
uniformly distributed between 0 and 1. This is a key
point: strange and unpredictable is not necessarily
random.

In retrospect it is evident that a generally satisfactory
algorithm for random number generation was proposed
by D. H. Lehmer 36 years ago [26]. This parametric
multiplicative linear congruential algorithm has with-
stood the test of time. It can be implemented efficiently
[27, 31, 37, 411, numerous empirical tests of the ran-
domness of its output have been published [8, 15, 27,
28, 371, and its important theoretical properties have
been analyzed [9, 14, 18, 301. The conclusion to be
drawn from all this research is now clear. Although
Lehmer’s algorithm has some statistical defects, if the
algorithm parameters are chosen properly and if the
software implementation of the algorithm is correct, the
resulting generator can produce a virtually infinite se-
quence of numbers that will satisfy almost any statisti-
cal test of randomness. In other words, with properly
chosen parameters, Lehmer’s algorithm, correctly im-
plemented, represents a good minimal standard genera-
tor against which all other random number generators
can-and should-be judged.

Lehmer’s algorithm represents a good example of the
elegance of simplicity. Specifically, the algorithm in-
volves nothing more than the judicious choice of two
fixed integer parameters

(i) modulus: m-a large prime integer

(ii) multiplier: a-an integer in the range 2, 3, . . . ,
m-l

and the subsequent generation of the integer sequence
Zl,ZZ, 23.. . via the iterative equation

(iii) z,+, = f(zn) for n = 1, 2, . . .

where the generating function f(.) is defined for all z in
1, 2 9 . . . , m-las

(iv) f(z) = az mod m.

The sequence of z’s must be initialized by choosing an
initial seed z1 from 1, 2, , m - 1. And, as an addi-
tional step, the sequence is conventionally normalized
to the unit interval via division by the modulus to pro-
duce the real sequence u,, uz, u3, . . . where

(v) un =2,/m for II = 1, 2, . . .

A random number generator based on this algorithm is
known formally as a prime modulus multiplicative lin-

ear congruential generator (PMMLCG) [22]. We prefer
the less formal term Lehmer generator.

Several things should be noted. First, because m is
prime, f(z) # 0 for all z in 1, 2, . . . , m - 1. This is
important because it prevents the sequence of z’s from
collapsing to zero. Second, the values u = 0 and u = 1
are impossible. Instead, the smallest and largest possible
values of u are l/m and 1 - l/m respectively. Third,
the normalization by m does not affect the fundamental
issue of whether or not the sequence of u’s appears to be
random. That is, the issue of randomness can be com-
pletely resolved by studying the integer sequence of z’s

The genius of Lehmer’s algorithm is that if the multi-
plier and prime modulus are properly chosen, the re-
sulting sequence of z’s will be statistically indistin-
guishable from a sequence drawn at random (albeit
without replacement) from the set 1, 2, . . . , m - 1.
Indeed, it is only in the sense of simulating this random
draw that the algorithm is random-there is actually
nothing random about Lehmer’s algorithm (except pos-
sibly the choice of the initial seed). For this reason
Lehmer generators are sometimes labeled pseudorandom.

For instance, consider an example defined by f(z) =
6z mod 13. If the initial seed is z1 = 1 then the resulting
sequence of z’s is

. . . 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1 . . . (1)

where, as the ellipses indicate, the sequence is actually
periodic because it begins to cycle (with a full period of
length m - 1 = 12) when the initial seed reappears. The
point is that the first 12 terms of this sequence (or
indeed any 12 consecutive terms) appear to have been
drawn at random, without replacement, from the set 1,
2 ,..., 12. Also, because f(z) = 6z mod 13 is a full period
generating function, any initial seed between 1 and 12
could have been chosen without affecting the apparent
randomness of the sequence. For example, if the initial
seed is 2, the resulting sequence is

. . . 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2 . . . (2)

which is nothing more than a circular shift of sequence
(1). In general all full period Lehmer generators behave
just like this example-they produce a fixed virtual
circular list defined by a permutation of the integers 1,
2 , . . . 9 m - 1. The initial seed provides an initial list
element, all other elements are then drawn in se-
quence.

This example also illustrates the importance of a
proper choice of multiplier. Specifically, if the multi-
plier is changed from 6 to 7, the resulting full period
sequence generated by f (z) = 72 mod 13 is

. . . 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, . . . (3)

In a sense, randomness, like beauty, is in the eye of the
beholder. Because of the patterns evident in the second
half of this sequence, however, most people would con-
sider (3) to be less random than (1). Thus, even though
(6z mod 13) and (72 mod 13) are both full generating
functions, the former is a better choice as it produces a
more random output.

October 1988 Volume 31 Number 10 Communications of the ACM 1193

Computing Practices

Continuing with this example, if the multiplier is ists began to standardize this choice, research shifted to
changed to a 5, the resulting sequence generated by a systematic search for good associated multipliers.
f(z) := 52 mod 13 does not even have a full period. For a fixed prime modulus, in this case m = P - 1,
Specifically, either it is now clear that the systematic search for good asso-

ciated multipliers involves finding a’s which will pass
. . 1, 5, 12, 8, 1, . . . or . . . 2, 10, 11, 3, 2, . . .

hi)
each of the following three tests.

or . . . 4, 7, 9, 6, 4, . . . T1 : Is f(z) = az mod m a full period generating func-

is generated depending on the choice of initial seed.
This latter type of small-period behavior is clearly un-
desirable-and avoidable. It is known that for any
prime modulus (m 2 3) a significant percentage of the m
- 2 possible choices for a will yield a full period gener
ating function. (Specifically, for m = 13 the full period
multipliers are a = 2, 6, 7, 11 and for m = 231 - 1, a =
16807 is just one of more than 534 million full period
multipliers [9].) Thus there is no good reason to use a
Lehmer generator without a full period.

The previous example illustrates two of the three
central issues that must be resolved when creating a
Lehmer generator-full period periodicity and random-
ness. The third central issue is implementation, that is,
guaranteeing that f(z) = az mod m will be evaluated
effimently and correctly for all z in 1, 2, . . . , m - 1. FOI
our example, this issue is trivial. For realistically large
values of a and m, however, implementation in a high-
level language is a non-trivial issue because of the po-
tential overflow associated with the product az. In par-
ticular, if a = 16807 and m = 231 - 1 then 46 bits are
required to hold the largest possible value of the az
product.

In his original paper [26], Lehmer not only suggestecl
the algebraic form of f(.), he also suggested that the
(Mersenne) prime m = 231 - 1 might be an appropriate
choice for the modulus. For years this suggestion was
largely ignored. Instead, programmers who knew more
about code optimization than random number genera-
tion concentrated on the development of multiplicative
generators with non-prime moduli of the form m = zb
where b was matched to the integer word size of the
computer. The primary reason for this was execution
speed. With a suitable choice of the multiplier a and
some low-level programming the az product could be
reduced to several shifts and adds and the mod m oper-
ation could be accomplished by controlled integer over-
flow [22, 311. The result of this emphasis on speed was
a generation of computationally efficient but highly
non-portable and statistically flawed multiplicative lin-
ear congruential generators, the most notorious being
the now infamous IBM SYSTEM/360 product RANDU

(451.
Fortunately, by the mid-1960s a more balanced ap-

proach to random number generation had developed.
Execution speed, while still important, was no longer
the paramount issue [28] and the fundamental impor-
tance of a prime modulus was better appreciated-at
least by specialists [16]. This, coupled with the devel-
opment of 32-bit arithmetic as a computing standard,
caus’ed 23’ - 1 = 2147483647 to reappear as an obvi-
ous, logical choice for the modulus. As the special-

tion?

TZ : Is the full period sequence . . , z, , z2, . . . , z,,-~,
z,, . . . random?

T3: Can f(.) be implemented efficiently with 32-bit
arithmetic?

The third section of this article is largely concerned
with a theoretical discussion of these tests, with the
primary emphasis on TB because it is the least well
known of the three.

Each of the three T-tests effectively serves as a filter
that limits the possible choices of a. Of the more than
2 billion possible choices corresponding to m = 23’ - 1,
it is now known that only a relative handful of multi-
pliers will pass all three tests. From this handful we
have selected the multiplier 16807 to define a specific
implementation of the minimal standard generator. Be-
cause of the subjective nature of Tz, however, there
will always be some uncertainty about which multi-
plier is best and if this paper were to be written again in
a few years it is quite possible that we would advocate
a different multiplier based on the results of Tz testing
yet to be done.

The multiplier a = 75 = 16807 was first suggested by
Lewis, Goodman and Miller in 1969 [27], based largely
on the fact that

j(z) = 168072 mod 2147483645 (5)

is a full period generating function. These authors also
supplied evidence of randomness based on the results
of what are now recognized to be relatively weak em-
pirical statistical (T2) tests. And, with regard to imple-
mentation, they presented an efficient but highly non-
portable 32-bit SYSTEM/360 assembler lariguage proce-
dure.

In the intervening years more powerful theoretical
tests of (full period) randomness have been developed,
thereby strengthening T2 significantly as discussed in
[4, 9, 14, 181. Extensive testing has revealed that the
minimal standard generator defined by equation (5)
also passes these tests-although not always with the
best possible scores. Moreover, in 1979 Schrage [41]
resolved the issue of machine independent implemen-
tation in a high-level language by demonstrating that
equation (5) can be implemented correctly without
overflow ” . as long as the machine can represent all
integers in the interval -231 to 23’ - 1.”

In summary, a = 16807 and m = 231 - 1 define a
generator which has a full period, is demonstrably ran-
dom, and can be implemented correctly on almost any
system. The generator has been exhaustively tested and
its characteristics are well understood, at least by spe-
cialists who frequently advocate its use [l, 22, 23, 391.

1194 Communications of the ACM October 1988 Volume 32 Number 10

Computing Practices

(Moreover, it has become a standard in the sense that it
is now available in some commercial software packages
such as subroutine RNUN in the IMSL library [17] and
as subroutine DRAND in the simulation language SLAM
II [42].) With all this in mind, we feel confident in
recommending this random number generator as a
minimal standard against which all others should be
judged.

IMPLEMENTING THE MINIMAL STANDARD
The most obvious way to implement the minimal
standard generator in a high-level language such as
Pascal is as follows:

function Random : real;
(* Integer Version 1 *)

const
a = 16807;

m = 2147483647;

begin
seed := (a * seed) mod m;
Random := seed / m

end ;

where

var seed : integer;

is a global variable used to hold the current value in
the integer sequence of z’s This generator must be ini-
tialized by assigning seed a value between 1 and
2147483646. Random numbers uniformly distributed
between 0 and 1 can then be generated as required via
repeated calls to Random. Unfortunately, for most sys-
tems this version of Random is fatally flawed. Because
the product a * seed can be as large as 16807 X
2147483646 = 1.03 X 245, this version of Random is
not a correct implementation of equation (5) unless
maxint is 246 - 1 or larger. If maxint is smaller, as it
will be for most contemporary systems, integer over-
flow will occur producing an error.

Any implementation of the minimal standard should
be tested for correctness, not randomness. If the imple-
mentation is correct, tests for randomness are redun-
dant; if the implementation is incorrect, it should be
discarded. A simple but effective way of testing for a
correct implementation is based on the fact that if
z1 = 1 then zloool = 1043618065. In other words, Ran -
dom is correct only if the program fragment

seed := 1;
for n := 1 to 10000 do

u := Random;
Writeln(‘The current value

of seed is : I, seed);

produces 1043618065. If overflow is going to occur-
thereby rendering incorrect all values from that point
on, or causing program execution to halt-it will surely
do so at some point in this sequence because intermedi-
ate values of seed as large as 2147483531 are produced.

Another obvious way to implement Random in Pas-
cal is to do the integer calculations in real arithmetic,

that is, declare the global variable

var seed : real;

and then use

function Random : real;
(* Real Version 1 *)

const
a = 16807.0;

m = 2147483647.0;
var

temp : real;
begin

temp := a * seed;
seed := temp - m * Trunc(temp / m);
Random := seed / m

end ;

This version of Random will be correct if reals are rep-
resented with a 46-bit or larger mantissa (excluding the
sign bit). For example, this version will be correct on all
systems that support the IEEE 64-bit real arithmetic
standard since the mantissa in that case is 53-bits. Note
that there is a residual integer arithmetic requirement
in this version of Random. The largest possible value of
Trunc (temp / m), however, is 16806 and no “integer
out of range” error will occur provided maxint is at
least this large.

Less obvious but extremely portable Pascal imple-
mentations of the minimal standard generator are pos-
sible based on Schrage’s method first published in 1979
[41] and later refined in 1983 [l]. We present the inte-
ger implementation first and then the real version. The
theory supporting these two implementations is pre-
sented in the next section.

The following integer version of Random is correct
on any system for which maxint is 231 - 1 or larger.
First declare var seed : integer and then use

function Random : real;
(* Integer Version 2 *)

const
a = 16807;

m = 2147483647;
q = 127773; (* m div a *)
r = 2836; (* m mod a *)

var
lo, hi, test : integer;

begin
hi := seed div q;
lo := seed mod q;
test := a * lo - r * hi;
if test > 0 then

seed := test
else

seed := test + m;
Random := seed / m

end;

The essential feature of this implementation is that the
variable test will never take on a value which cannot
be represented correctly with 32 bits (including sign).

October 1988 Volume 31 Number 10 Communications of the ACM 1195

Computing Practices

A functionally equivalent real version of this imple-
mentation is also possible. In general, this is the version
that must be used if maxint is smaller than Z31 - 1 (on
some microprocessor systems). It will be correct on any
syste:m for which reals are represented with a 32-bit or
1arge:r mantissa (including the sign bit). First declare
var seed : real and then use

function Random : real;
(* Real Version 2 *)

const
a = 16807.0;
m = 2147483647.0;
q = 127773.0; (* m div a *)
.c = 2836.0; (* m mod a *)

va.r
.lo, hi, test : real;

begin
hi := Trunc(seed / q);
.10 := seed - q * hi;
test :=a *lo-r *hi;
if test > 0.0 then

seed := test
else

seed := test + m;
Random := seed / m

end;

There is also an integer arithmetic requirement in this
implementation of the minimal standard. As with real
version 1, however, the largest possible value of hi is
16807 and no errors will occur provided maxint is at
least this large.

Over the years we (and our students) have imple-
mented the minimal standard on a wide variety of sys-
tems. We have yet to encounter a contemporary system
on which at least one of the four versions of Random
could not be installed correctly. One system that de-
serves special mention is Turbo Pascal (version 3.0)
from Borland International [46]. This popular system
represents a good implementation exercise for two rea-
sons: Turbo Pascal provides its own random number
generator, which is not very good and maxint on this
system is only 215 - 1, thereby eliminating the possibil-.
ity of an efficient integer implementation. Fortunately
plain Turbo Pascal uses 48-bit real arithmetic with a
4@bit mantissa and so it supports real version 2 of Ran -
dom. In addition, the ‘87’ version of Turbo Pascal
(whic:h uses the 8087 family of math coprocessors) uses
IEEE standard 64-bit real arithmetic and so both real
versions of Random work correctly with it. Real version
1 is more efficient than real version 2, by approxi-
mately a 2:3 ratio, but it is less portable.

One nagging implementation issue that must be re-
solved is how to handle seed. The method we have
used herein-declaring seed to be global and updating
its value by a side effect-is an obvious violation of
good software engineering practice. Recognizing this,
many authors advocate using seed as a formal var
function parameter. We find this clumsy and mislead-

ing because statements like u := Random(<seed) seem
to suggest that the user should assign a value to seed
and thereby create the random number. We believe
that the user should always be able to initialize the
generator by supplying an initial seed. Nevertheless,
after initialization the ideal solution is to hide seed
from the user. Unfortunately, standard Pascal does not
support this approach.

There is also the question of what value should be
used to initialize seed. Part of the folklore of random
number generation is that some initial seeds are better
than others-how many of us remember being told
something like . . . always use at least five digits with
the last one odd [38]? For some generators this type of
witchcraft is necessary. For the minimal standard, how-
ever, all initial seeds between 1 and 2147483646 are
equally valid. If you use the minimal standard genera-
tor to produce simulation results and if these results
prove to be very sensitive to the choice of initial seed
then distrust your simulation, not the generator.

We recommend the construction of an initialization
procedure, Randomize, which prompts for an initial
value of seed and forces it to be an integer between 1
and 23’ - 2. As a convention we frequently advise our
students to respond with the 9 digits of their social
security number. This helps insure the statistical inde-
pendence of each student’s results and provides a
sometimes desirable standardization. One advantage to
using the minimal standard is that results can be repro-
duced if desired. This is possible, however, only if the
initial seed is remembered. For the same reason we
view any implementation of Randomize as unaccept-
able if it does not allow the user to supply the initial
seed. Default initial values, particularly those supplied
by an inaccessible program counter or system clock,
should be used only when the user chooses not to sup-
ply one.

THEORY
The purpose of this section is to present some theoreti-
cal details in support of the previous discussion. We
begin with a discussion of T1--the test for full period.
We assume, as before, that f(z) = az mod m where m is
a large prime, that 2 5 a 5 m - 1 and that the sequence
Zl, z2, z3, . . . is generated iteratively as z,+, = f(z,,) with
the initial seed z, in 1, 2, . . . , m - 1. We also make use
of the following basic results [18, p. 10 and p. 3751

Z n+l = f(z,,) = a”z, mod m n = 1, 2, 3, . . . (6)

a”-’ mod m = 1 (7)

and a standard number theoretic definition: If m is
prime then a is a primitive element module m (or primitive
root of m) iff a” mod m # 1 for n = 1, 2, . . , m - 2 [18,
p. 191. Equation (7) is a classic result known as Fermat’s
Theorem.

From equation (6), if z1 = 1 then in general z,,+~ =
a” mod m. Let p be the smallest value of n such that
z,,+, = 1. The existence of p I m - 1 is guar(anteed by

1196 Communications of the ACM October 1988 Volume 31 Number 10

Computing Practices

Fermat’s Theorem. Because .zr+, = zl, it follows that
.zr+* = z2 and in general zr+,, = z,, for all n 2 1; that is,
the sequence of z’s is periodic with period p. If p =
m - 1 then f(*) is a full period generator. Clearly this is
true iff a is a primitive root of m. (On the other hand, if
a is not a primitive root of m then f(*) is not a full
period generator and p < m - 1 must be a divisor of
m - 1.) Relative to the example Lehmer generator,
we see that both 6 and 7 are primitive roots of 13 and
that 5 is not. With regard to the primitive roots of
m = z3’ - 1, the following is known [Q, 271:

(1) there are a total of 534,600,OOO primitive roots;’

(2) the smallest primitive root is 7;
(3) a is a primitive root iff a = Tb mod m where b is

relatively prime to m - 1;

(4) the prime factors of m - 1 are 2, 3, 7, 11, 31, 151
and 331;

(5) b = 5 is relatively prime to m - 1 and thus 75 =
16807 is a primitive root.

These results completely resolve the use of T, testing,
at least in theory: f(.) is a full period generator with
m = 231 - 1 iff a is one of the approximately 534 million
associated primitive roots. Thus T, is a filter that elimi-
nates approximately 75 percent of the possible multi-
pliers. Several years ago, Fishman and Moore [Q] took
on the Herculean task of Tz-testing the remaining
25 percent for randomness. The following briefly sum-
marizes their results.

It is well-known that all linear congruential genera-
tors suffer from the inherent flaw that, in 3-space for
example, the points (zl, z2, z3), (~2, ~3, z4), (z3, z4, z5) all
fall on a finite-and possibly small-number of parallel
(hyper)planes [30]. All of the most powerful theoretical
T1 tests are based on analyzing the uniformity of this
hyperplane (lattice) structure in k-space for small val-
ues of k. As the authors stated, “[we] regard a multi-
plier as optimal if for 2 5 k 5 6 and each set of parallel
hyperplanes the Euclidean distance between adjacent
hyperplanes does not exceed the minimal achievable
distance by more than 25 percent.. . . [and] among the
more than 534 million full period multipliers examined
in this study, our research identified only 414 optimal
multipliers.” [Q].

We should mention that due to a bookkeeping error
in [Q] the number 414 is incorrect, there are actually
only 410 optimal multipliers. Nonetheless, this error in
no way diminishes the significance of the work. Also,
only 205 of the 410 multipliers were actually published.
The other 205 can be calculated since primitive roots
occur in pairs, that is, for m = 231 - 1 the multiplier a =
7b mod m is a primitive root iff a ’ = 7m-1-b mod m is
also. Finally, and this is most important, there is noth-
ing magic about 410. If the 25 percent distance criteria
is increased slightly, significantly more than 410 opti-
mal multipliers will result [Q].

’ ~M.~OO,OOO is exact; the corresponding value in [9] is approximate

The multiplier 16807 is not in Fishman and Moore’s
list of 410 optimal multipliers. For that matter, the
other multipliers (630,360,016 [37] and 397,204,094
[14]) commonly used with 231 - 1 are not in the list.
This certainly does not mean that 16807 is an unsatis-
factory multiplier; it just means that the sequence
16807 produces is not quite as random as some others.
It is important to appreciate that the results in [Q] were
derived independent of implementation (T3) considera-
tions and in that sense the results are incomplete. We
now turn to a discussion of 32-bit implementation using
Schrage’s method [l]. Following that, we will have
more to say about the results in [Q].

The basic idea is to construct an algorithm that will
evaluate f(z) = az mod m in such a way that all inter-
mediate results will be bounded by m - 1. A 32-bit
implementation then follows immediately if m 5 231.
We begin by observing that the potential overflow asso-
ciated with f(.) is caused because the product az is
formed prior to the mod by m and that the overflow
could be avoided if the order of these two operations
were reversed. This could be accomplished trivially if it
were possible to factor m as m = aq for some integer 9. If
so then f(.) could be written as f(z) = az mod aq =
a(z mod 9). Of course m is prime and no such factoriza-
tion is possible. It is possible, however, to approxi-
mately factor m as follows

where

m=aq+r (84

9 = m div a and Y = m mod a. WI

If the remainder Y is small, specifically if T < 9, this
decomposition of m enables us to construct an algo-
rithm for evaluating f(z) without producing intermedi-
ate results larger than m - 1 in magnitude. Note that in
general the quotient satisfies 9 2 1 and that 1 5 T 5 a -
1. In the particular case of a = 16807 and m = 23’ - 1,
we have 9 = 127,773 and r = 2836.

A mathematically equivalent expression for f(z) =
az mod m = az - m(az div m) can be derived by first
adding and subtracting m(z div 9) and then doing some
algebra to yield

f(z) = Y(Z) + Wzl (94
where

y(z) = a(z mod 9) - r(z div 9) (QbJ

and

6(z) = (z div 9) - (az div m). (Qd
It can be shown that if r < 9 then for all z in 1, 2, . . . ,
m - 1 the following are true:

(1) a(z) is either 0 or 1
(2) both a(z mod 9) and r(z div 9) are in 0, 1, 2, . . . ,

m-l

(31 IY(z)I 5 m - 1.

Item (3) is an obvious consequence of (2) and (2) follows
from equation (8) and the assumption that Y < 9. Item

October 1988 Volume 31 Number 10 Communications of the ACM 1197

computing Practices

(I) is a consequence of the fact that if x and y are real
numbers with 0 5 x - y 5 1 then LxJ - LyJ is either 0
or 1 where 1.1 denotes the usual greatest integer func-
tion.

The key to Schrage’s method is that the operation
whic:h would cause an overflow is trapped in 6(z) and
item (1) provides a mechanism for inferring the value of
6(z) from a knowledge of y(z). Specifically, because 1 51
f(z) :S m - 1 it follows from equation (9a) that 6(z) = 0
iff 1 .s y(z) 5 m - 1 and that 6(z) = 1 iff -(m - 1) 5 -r(z)
5 -1. Thus, the evaluation of 6(z) is not necessary.
Instead, to evaluate f(z), first evaluate y(z). Then if y(z)
> 0 assign f(z) : = y(z) else assign f(z) := y(z) + m. This
is the algorithm implemented in version 2 of Random.

Note that a slightly modified version of Random
could be used instead based on the following algorithm.
Evaluate (Y(Z) = a(z mod q) and p(z) = Y(Z div 4). Then if
a(z) > /3(z) assign f(z) := a(z) - /3(z) else assign f(z) :=
a(z) + (m - p(z)). Because the logic of this algorithm is
more obscure, we have chosen not to use it. This algo-
rithm does have the aesthetic property that (consistent
with (.) mod m) a(.) and p(.) are bound to 0, 1, 2, . . . ,
m - 1.

In the particular case m = 231 - 1 we take the condi-
tion I(m mod a) < (m div a) as the definition of test T3.
Based on this test, all the other multipliers commonly
used with m = P’ - 1 can be rejected immediately.
The question then is how many multipliers are like
16807, that is, how many multipliers pass both T1 and
T,? We have verified by exhaustive search that the
answer is 23,093 and that none of these multipliers are
in Fishman and Moore’s list of 410. Thus, in terms of
finding multipliers which pass all three T-tests, Fishman
and Moore’s 25 percent distance criteria is excessively
restrictive.

Two obvious questions remain: Which of the 23093
multipliers have the best TZ scores and do any of these
full period, 32-bit compatible multipliers have a Ta-
score significantly higher than 16807? The recent arti-
cle by L’Ecuyer [24] provides a partial answer to these
questions. This article reports the results of a search to
find the best full period multiplier u such that u2 < m.
Although the test a’ < m is a restrictive version of our
more general Y < 4 test (only 11465 of the 23093 multi-
pliers satisfy uz C 231 - l), L’Ecuyer was still able to
find several full period multipliers with better Tz-scores
than 16807. Of these, he reported a = 39,373 as best.

In a very recent more comprehensive search Fish-
man subjected all of our 23093 multipliers to the same
T,-tests as in [9]-with a 30 percent distance criteria.
He found several good 32-bit compatible multipliers. Of
these, a = 48,271 and a = 69,621 appear to be best. Both
of these are in the set of (11628 = 23093 - 11465) 32-bit
compatible multipliers not tested by L’Ecuyer and both
have better Tz-scores than 39373 and 16807.

So then, which 32-bit compatible multiplier should
be used? Our guess is that at some future point we will
switch to either a = 48271 (with q = 44,488 and r =
3399) or a = 69621 (with 4 = 30,845 and r = 23,902). We
are siill awaiting the results of further testing and the

accumulation of favorable user experience. For now,
we feel comfortable continuing to use a = 16807.

A SAMPLING OF INADEQUATE GENERATORS
In this section we present selected examples of inade-
quate random number generators that have either ap-
peared in recently published computer science text-
books or are currently supplied by popular program-
ming environments. To simplify the discussion we re-
strict the examples to multiplicative and mixed linear
congruential generators. This is the class of generators
for which the theory is most complete.

Many multiplicative linear congruential generators
are descendents of the infamous RANDU [45] defined by

f(z) = 655392 mod 231. (10)

This generator was first introduced in the early 1960s;
its use soon became widespread. In retrospect RANDU
was a mistake. The non-prime modulus was selected to
facilitate the mod operation and the multiplier, which
is 216 + 3, was selected primarily because of the sim-
plicity of its binary representation. Research and expe-
rience has now made it clear that RANDU represents a
flawed generator with no significant redeeming fea-
tures. It does not have a full period and it has some
distinctly non-random characteristics. Knuih calls it
“really horrible” [18, p. 1731.

In general, any multiplicative linear congruential
generator with modulus m = Zb is flawed in the sense
that it can not have a full period; instead the maximum
possible period is only z~-’ = m/h. This maximum
period is achieved iff (a mod 8) is either 3 or 5 and the
initial seed is an odd integer. If these conditions are
met the generator will produce a periodic permutation
of half the odd integers between 1 and 2' - 1 [7].

For historical reasons, implementations of multiplica-
tive generators with m = 2b frequently make use of
wordlength and language dependencies. The following
32-bit Fortran RANDU fragment is typical:

SEED = 65539 * SEED
IF (SEED .LT. 0) SEED

= (SEED + 2147483647) + 1

It is difficult to find two lines of code whichl violate
more software engineering principles-the intent is ob-
scure and the result is non-portable. The first line
makes use of controlled integer overflow to MOD the
product by 232 and the second line clears the sign bit if
necessary by adding 23’. The net result is a MOD by 23’.
This two line implementation of equation (30) is correct
only on 32-bit, two’s complement systems for which
integer overflow is not a fatal error. Programming like
this might have been considered clever and efficient 25
years ago, but not today.

Unfortunately, the 1982 simulation text by Payne
[36] and the 1985 scientific programming text by
Nyhoff and Leestma [35] both present a controlled
overflow implementation of RANDU as the generator of
choice. Worse, Gottfried’s 1985 Pascal text [12] recom-

1198 Communications of the ACM October 1988 Volume 31 Number 10

Computing Practices

mends the Is-bit microprocessor RANDU analogue de-
fined by a = 2’ + 3 and m = 215, again with controlled
overflow and instructions about how to disable over-
flow checking. Because of its widespread use at the
time, RANDU was commonly found in the literature of
the 1960s and early 1970s. The inadequacies of this
generator are now so well known, however, that it
should never be recommended in the computer science
literature of the 1980s.

It is well known that RANDU'S TZ scores can be im-
proved somewhat by changing the multiplier [18, p.
1041. With this in mind, some people have naively at-
tempted to improve things by changing the multiplier
to 16807. For example, function Random in Prime Shef-
field Pascal-another system commonly used by our
students-is a multiplicative generator with a = 16807
and m = 23’ [ll]. Unfortunately, (16807 mod 8) is 7
and so

f(z) = 168072 mod 231 (11)

does not even have the maximum possible period!
Moreover, this generating function is apparently so
non-random that at least one software vendor has felt it
is necessary to shuffle the output to produce acceptable
randomness. Specifically, subroutine UNIFORM in the
statistical package SAS is based on equation (11) with
an added shuffle to randomize the output [38]. We
should add that the use of a generator based on equa-
tion (11) in Prime Sheffield Pascal is particularly unfor-
tunate because the PRIMOS operating system [44] pro-
vides a much better generator, RAND$A, which is the
minimal standard.

When it comes to constructing random number gen-
erators, there is no such thing as getting the software
almost right. As an illustration, the 1985 Fortran text by
Smith [43] presents a flawed generator presumably
based on a failed attempt to implement a 16807 multi-
plicative generator using controlled overflow. The two
relevant lines of code are:

SEED = 16807 * SEED
IF (SEED .LT. 0) SEED

= SEED + 2147483647

If the author had added a 1 in the second line, the
result would have been a 32-bit two’s complement im-
plementation of equation (11). Or perhaps the author
erroneously assumed that omitting the 1 would yield
a correct controlled overflow implementation of equa-
tion (5). In any case, as presented, this generator is not a
modified version of RANDU and it is not the minimal
standard. We tested this generator on a 32-bit two’s
complement system using 150 different initial seeds. In
each case the resulting sequence of z’s ultimately col-
lapsed into one of three disjoint periodic subsequences
of length 21,729 or 11,330 or 9,181 depending on the
initial seed.

We view any generator as inadequate by inspection if
its period is too small. For example the 1980 simulation
text by Maryanski [32] recommends a multiplicative
generator defined by a = 20,403 and m = 2”. The

period of this generator is 213 = 8192, which is far too
small for any serious simulation activity. Similarly, a
1985 Modula-2 system reference manual [29] presents a
Lehmer generator with a = 13 and m = 2311. The mod-
ulus is tiny, the multiplier is not a primitive root of the
modulus and the resulting period is just 1155. An even
worse example can be found in the 1985 LISP text by
Gabriel [lo] which uses a = 17 and m = 251. Again, the
multiplier is not a primitive root of the modulus and
the resulting period in this case is just 125.

As a final multiplicative generator example, the 1982
simulation text by Bulgren [2] presents an out-of-date
generator with a = 513 and m = 235. Although the
period is 233 and the T*-scores are marginally accepta-
ble (see [18, p. 103]), the associated Fortran implemen-
tation relies on a 36-bit controlled overflow technique
which is unlikely to be correct on any contemporary
system.

Mixed linear congruential generators [18, p. lo] are
generalizations of multiplicative generators with gener-
ating functions of the form f(z) = (az + c) mod m where
the additive parameter c satisfies c mod m # 0. At the
expense of one extra addition per random number, the
effect of c is to allow z = 0 as a possible value and thus
a full period sequence has length m rather than m - 1.
In theory, the modulus m can be any positive integer,
prime or non-prime. In practice, however, m is usually
either a power of 2 or a power of 10.

In the 1960s there was some hope that mixed genera-
tors would prove to be better than multiplicative gener-
ators (like RANDU), particularly if m = 2b. In retrospect,
this has not proven to be true and today, with one
notable exception [18, p. 1701, mixed generators are
rarely ever recommended by specialists. They are,
however, favored by many textbook authors and some
system programmers, presumably because the T,-test
for full period is so easy to apply. Specifically, if m = 2b
then a mixed generator has full period iff a mod 4 = 1
and c is odd [18, p. 201. For other values of m the test is
only slightly more difficult to apply [18, p. 161. In a
sense it is unfortunate that this test for full period is so
trivial as it falsely encourages non-specialists to build
their own generators. The generator discussed next is a
good illustration of this.

In 1978 P. Grogono published an introductory Pascal
text and included in it a random number generator
defined by

f(z) = (251732 + 13849) mod 216. WI

This popular text is now in its second edition [13]
and the generator remains essentially unchanged. To
its credit, this mixed generator has a full period (of
length 65536) and, because the largest possible value of
251732 + 13849 is ~1.54 X 230 it can be easily imple-
mented correctly provided maxint is 231 - 1 or larger.
Since it contains a relatively small period, this genera-
tor is unsatisfactory for scientific applications. More-
over, we are not aware of any published T2-test results
which suggest that this generator’s output is adequately
random. Despite this, Grogono’s generator has spread to

October 1988 Volume 31 Number 10 Communications of the ACM 1199

Computing Practices

many other recent textbooks [6, 25, 33, 341 and is now
something of an emerging standard in the undergradu-
ate computer science textbook market.

Most of the other mixed generators found in com-
puter science texts are even less satisfactory than Gro-
gono’s generator. We only list a few of these; the reader
is encouraged to look for the others-they are relatively
easy to find. The 1986 text by Lamb [20] and the 1987
text by Konvalina and Wileman [19] present mixed
generators with a = 10924, c = 11830, m = 215 + 1 and
a = 93, c = 1, m = 213 respectively. In each case the
period is full but too small. The same comment applies
to the 1987 text by Clocksin and Mellish [3] which
suggests a = 125, c = 1 and m = 2”. The 1984 text by
Savitch [40] and the 1987 text by Lamie [21] present
full period mixed generators with even smaller periods.
These generators are defined by a = 40, c = 3641, m =
729 and a = 61, c = 2323, m = 500 respectively and both
generators contain an obfuscation; in each case c can,
and should, be replaced with c mod m.

The 1986 text by Collins [5] presents a prime modu-
lus mixed generator with an insidious flaw that re-
quires special comment. The generator is defined by

j(z) = (98062 + 1) mod 131071 (13)

where 131,071 is the Mersenne prime 217 - 1. It is
easily verified, however, that f(37911) = 37911 which
means that if by chance 37911 is used as an initial seed,
the generator will be stuck on this value forever! Also,
it can be verified that if any other initial seed between
0 and 131070 is used the generator will appear to work
correctly and cycle with an (almost full) period of
131070.

The binary representation of a sequence of z’s pro-
duced by Grogono’s generator reveals an interesting
pattern. The least significant bit cycles with period 2,
the next most significant bit cycles with period 4, the
next cycles with period 8 and so forth, and only the
most significant bit cycles with a full period. It turns
out that this distinctly non-random behavior is a char-
acteristic of all full period mixed generators with
m = 2b [18, p. 121. For example, the UNIX” operating
system supports a full period mixed generator called
rand. This generator is defined by

j(z) = (1103515245~ + 12345) mod 23’ (14)

and it.s deficiencies are well known-according to
Berkeley 4.2 documentation, the low bits of the num-
bers generated are not very random. Similarly, the ran-
dom number generator in standard Turbo Pascal is a
full period mixed generator defined by

f(z) = (1292 + 907633385) mod 232 (151

with the output normalized via division by 23’. This
generator also exhibits small period cycling in its least
significant bits. Worse, the multiplier is too small and
was apparently chosen for the wrong reason-the sim-
plicity of its binary representation. (Incidentally, the

UNIX is a registered trademark of Bell Laboratories

generator in ‘87’ Turbo is subtly different. The output
is normalized via division by 23’ rather than 232 and if
the result, u, is greater than 1, then the output is 2 - u
instead.)

There is really no argument in support of any of the
example generators cited in this section. Most of them
are naive implementations of a deceptively s:imple idea.
All should be discarded. Even the best of them, those
which have a full period and are correctly imple-
mented, are inferior to the minimal standard.

CONCLUDING REMARKS
Many computer scientists will never have more than
an occasional need to use a random number generator.
And on those occasions the statistical goodness of the
random numbers they generate may not be of para-
mount importance. For some of us, however, conven-
ient and frequent access to a verifiably good random
number generator is fundamentally important. If you
have need for a random number generator, particularly
one that will port to a wide variety of systems, and if
you are not a specialist in random number glaneration
and do not want to become one, use the minimal stan-
dard. It should not be presumed that it is easy to write
a better one.

For those interested in learning more about random
number generation we recommend, in addition to
Knuth [18], the simulation texts by Fishman [7], Law
and Kelton [22], and Bratley, Fox and Schrage [l]. The
discussion in [l] is particularly relevant to this article.
We also recommend the articles by L’Ecuyer [24] and
Wichmann and Hill [47]. The combined generators pro-
posed in these articles represent a logical extension of
the minimal standard. These generators appear to yield
better statistical properties in those (rare) situations
when the minimal standard alone may be inadequate.

Acknowledgments. Our thanks to George Fishman
who kindly agreed to Tz-test our list of 32-bit compati-
ble multipliers, to John Burton who helped c:ompile
this list, and to Paul Stockmeyer, Phil Kearns, and Don
Lansing who read and commented on a preliminary
draft of the paper.

REFERENCES
1. Bratley. P., Fox. B.L., and Schrage, E.L. A Guide to Sixwlation.

Springer-Verlag. New York, 1983. pp. 180-213.
2. Bulnren. W.C. Discrefe System Simulation. Prentice-Hall. Englewood

Cliffs, N.)., 1982, p. 155. -
3. Clocksin. W.F.. and Mellish. C.S. Programming in Prolog. Springer-

Verlag. New York, 1987. p. 153.
4. Coveyou, R.R.. and MacPherson. R.D. Fourier analysts of uniform

random number generators. J. ACM 14 (lan. 1967). 100-119.
5. Collins, W.J. Intermediate Pascal Programming: A Case Sfudy Ap-

proach. McGraw-Hill. New York. 1986, p. 157.
6. Cooper. D., and Clancy. M. Oh! Pascal!. 2nd Ed. W. W. Norton. New

York. 1985. p. 14.5.
7. Fishman, G.S. Principles of Discrete Event Simulation. Wiley-fntersci-

ence. New York. 1978. pp. 345-391.
8. Fishman, G.S., and Moore. L.R. A statistical evaluation of multi-

plicative congruential random number generators with modulus
23’ - 1. /. Am. Stat. Assoc. 77, 377 (Mar. 1982). 129-1313.

9. Fishman. G.S., and Moore. L.R. An exhaustive analysis of multi-
plicative congruential random number generators with modulus
23’ - 1. SIAMJ. Sci. Stat. Comput. 7. 1 (1986). 24-45.

1200 Communications of the ACM October 1988 Volume 3:l Number 10

Computing Practices

10. Gabriel. R. Performance and Evaluation of LISP Systems. MIT. Press,
Cambridge, Mass., 1985, p. 140.

11. Gilbert. J.R. The University o/Sheffield Pascal System for Prime Com-
puters. University of Sheffield. Sheffield, England, 1987. p. 10.

12. Gottfried, B.S. Schaum’s Outline of Theory and Problems of Program-
ming with Pascal. McGraw-Hill. New York. 1985. p, 143.

13. Crogono, P. Programming in Pascal. 2nd Ed. Addison-Wesley, Read-
ing, Mass.. 1984. pp. 135-137.

14. Hoaglin. D.C. Theoretical properties of congruential random-
number generators: An empirical view. Memo NS-340. Dept. of Sta-
tistics. Harvard University. Cambridge. Mass.. 1976.

15. Hull. T.T., and Dobell. A.R. Random number generators. SlAM Rev.
4 (July 1962), 230-254.

16. Hutchinson. D.W. A new uniform pseudorandom number genera-
tor. Commun. ACM 9, 6 (June 19661, 432-433.

17. IMSL Stat/Library User’s Manual. IMSL, Houston, Tex., 1987, pp.
947-951.

18. Knuth, D.E. The Art of Computer Programming. 2nd Ed. Addison-
Wesley, Reading, Mass.. 1981.

19. Konvalina. J., and Wileman. S. Programming with Pascal. McGraw-
Hill, New York, 1987, p. 288.

20. Lamb, R. Pascal Structure and Style. Benjamin/Cummings. Menlo
Park, Calif.. 1986. pp. 226-227.

21. Lamie. E.L. Pascal Programming. John Wiley and Sons, New York,
1987, p. 150.

22. Law, A.M., and K&on, W.D. Simulation Modeling and Analysis.
McGraw-Hill, New York, 1982, pp. 219-239.

23. Lawnberg. S.S.. Ed. Computer Performance Modeling Handbook.
Academic Press, New York, 1983. pp. 223-229.

24. L’Ecuyer. P. Efficient and portable combined random number gen-
erators. Commun. ACM 31, 6 (June 1988), 742-749, 774.

25. Leestma, S.. and Nyhoff, L. Pascal Programming and Problem Solving.
Macmillan, New York, 1984, pp. 172-173.

26. Lehmer. D.H. Mathematical methods in large-scale computing
units. Annu. Comput. Lab. Harvard Univ. 26 (1951). 141-146.

27. Lewis, P.A.. Goodman, A.S., and Miller, J.M. A pseudo-random
number generator for the Syslem/360. IBM Syst. J 8, 2 (1969),
136-146.

28. Maclaren, M.D., and Marsaglia. G. Uniform random number genera-
tors. 1. ACM 12, 1 (Jan. 1965). 83-89.

29. MacModula-2 System Reference Manual. Modula Corporation. 1985.
p. 41.

30. Marsaglia, G. Random numbers fall mainly in the planes. Natl.
Acad. Sci. Proc. 61 (Sept. 1968), 25-28.

31. Mars&a, G., and Bray, T.A. One-line random number generators
and their use in combinations. Commun. ACM II, 11 (Nov. 1968),
757-759.

32. Maryanski, F. Digital Computer Simulation. Hayden, Rochelle Park,
N.J., 1980. pp. 224-230.

33. Moffat. D.V. Common Algorithms in Pascal. Prentice-Hall, Englewood
Cliffs. N.J.. 1984, pp. 201-203.

34. Molluzzo, J.C.. and Buckely. F. Discrete Mathematics. Wadsworth,
Belmont, Calif.. 1986, pp. 219-221.

35. Nyhoff, L., and Leestma. S. FORTRAN 77for Engineers and Scientists.
Macmillan, New York. 1985, pp. 292-294.

36. Payne, J.A. Introduction to Simulation: Programming Techniques and
Methods ofAnalysis. McGraw-Hill. New York, 1982, pp. 105-106.

37. Payne, W.H., Rabung. J.R., and Bogyo, T.P. Coding the Lehmer
pseudo-random number generator. Commun. ACM 12, 2 (Feb. 1969).
85-86.

38. SAS User’s Guide: Basics, Version 5 Edition. SAS Institute Inc.. Gary,
NC. 1985. pp. 278-280.

39. Sawer. C.H., and Chandy, K.M. Computer Systems Performance Model-
ing. Prentice-Hall. Englewood Cliffs, N.J., 1981, pp. 195-199.

40. Switch, W.J. Pascal, An Introduction to the Art and Science of Pro-
gramming. Benjamin/Cummings, Menlo Park, Calif., 1984, p. 244.

41. Schrage, L. A more portable FORTRAN random number generator.
ACM Trans. Math. Softw. 5, 2 (June 1979). 132-138.

42. SLAM II Installation and Operations Guide, Version 3.2. Pritsker and
Associates, West Lafayette, Ind., 1986, pp. 3.4-3.9.

43. Smith, M. FORTRAN 77, A Problem-Solving Approach. Houghton
Mifflin, Boston, Mass., 7985, pp. 330-331.

44. Subroutines Reference Guide. 3rd Ed. Prime Computer. Natick, Mass..
1984, p. 12.45. 1984, p. 12.45.

45. System/360 Scientific Subroutine Package, Version Ill, Programmer’s 45. System/360 Scientific Subroutine Package, Version Ill, Programmer’s
Manual. IBM, White Plains, New York, 1968, p. 77. Manual. IBM, White Plains, New York, 1968, p. 77.

46. Turbo Pascal, Version 3.0. Borland International. Scotts Valley, Calif.. 46. Turbo Pascal, Version 3.0. Borland International. Scotts Valley, Calif..
1986.

47. Wichmann. B.A., and Hill. I.D. An efficient and portable pseudo-
random number generator. Appl. Stat. 31 (1982). 188-190.

CR Categories and Subject Descriptors: G.3 [Probability and Statis-
tics]: Random number generation; G.4 [Mathematical Software]: Porta-
bility

General Terms: Algorithms, Standardization, Theory
Additional Key Words and Phrases: Lehmer generators, simulation

Received 9/87: accepted 2/88

ABOUT THE AUTHORS:

STEVE PARK is a professor of computer science at the College

of William and Mary. Prior to this position, he was involved in
aerospace research at NASA, Langley Research Center. His
research interests include modeling and simulation, with an
emphasis on the conceptual design and performance analysis
of digital imaging systems. Author’s present address: Stephen
K. Park, Department of Computer Science, College of William
and Mary, Williamsburg, VA 23185.

KEITH MILLER teaches computer science at the College of
William and Mary in Virginia, and consults for Computer Sci-
ences Corporation, NASA Langley Research Center, and the
C&P Phone Company. His research interests include software
engineering, abstract data types, image data structures, and
computer ethics. Author’s present address: Keith Miller,
Department of Computer Science, College of William and
Mary, Williamsburg, VA 23185.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

October 1988 Volume 31 Number 10 Communications of the ACM 1201

