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ABISTRACT 

Seismic signal processing is computationally intensive and 
sequential algorithms in use do not exploit the concurrency inherent in 
data migration techniques. .tn this paper we study seismic migration 
algorithms with a view to present a general framework for analyzing 
such algorithms and propose some coarse-grained paradigms for com- 
putation on parallel computers. We analyze a few typical examples of 
the different migration techniques existing in literature, and discuss 
techniques to optimize their performance on distributed concurrently 
executing processors. The ca~mputational and communication require- 
ments of the algorithms are discussed and diverse optimization tech- 
niques are proposed. The memory limitation, I/O bottleneck and com- 
putational tradeoffs on hypercube multiprocessors are analyzed [l&9]. 

1. Introduction 

Migration of seismic data involves repositioning the measured data to 
determine accurately the topology of the subsurface reflectors. Migration is 
an inverse process in which the recorded waves are propagated back to their 
source by systematically solving the wave equation for each successive 
layer. There has been considerable study of stable algorithms for efficient 
solution to the wave equation, and seismic migration has been routinely 
used for interpreting seismic data for over two decades. Migration tech- 
niques range from simple Enite-difference techniques to the more sophisti- 
cated frequency domain methods 571. Regardless of the technique used, 
migration greatly facilitates accuracy in seismic interpretation and 
identitication and in some cases is indispensable. 

Seismic migration algorithms are computationally very intensive and 
require processing large amounts of data. Sfacking [5,7] reduces the amount 
of data to be migrated and improves the signal to noise ratio, yet the tasks 
arc remain computationally formidable. In addition, recent techniques for 
migration incorporate lateral velocity variations, and models for processing 
three-dimensional signals have also been proposed. These developments 
call for a dramatic increase in the computational requirements, often well 
above those provided by traditional computing architectures. At the same 
time, new architectures for high performance low cost computing have been 
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developed, with exciting possibilities for handling computationally inten- 
sive problems [l]. Systematic analyses of seismic migration algorithms 
from the view point of such high performance systems has not yet been 
done. An objective of this paper is to reformulate solution of the wave 
equation to exploit the inherent space-time concurrency in the algorithms. 
We propose a few paradigms for exploiting this parallelism. For this pur- 
pose we review the spectrum of algorithms currently in use and propose 
methods in which they could be adapted for highly parallel signal process- 
ing architectures. A simple frequency domain parallel phase shif migration 
algorithm [2,3] was analyzed in the companion papers [1,91, and the per- 
formance indices for that algorithm discussed. In this paper we generalize 
those models for computation to incorporate alternate methods, and study 
their performance requirements. The algorithms will then be suitable for 
implementation on distributed memory and hypercube multiprocessors. 
The communication and computation tradeoffs, I/O bandwidth, and perfor- 
mance optimization criteria will also be examined. 

In Section 2, we discuss the salient features of several migration tech- 
niques and propose parallel paradigms. Sections 3 and 4 will discuss the 
performance issues on shared memory and distributed memory multiproces- 
sors, The rich interconnectivity of hypercube topologies will be used to 
advantage in reducing the communication overhead in distributed signal 
processing. 

2. Seismic Migration Algorithms 

In this section we describe techniques, in use for migrating seismic 
record sections. For the purposes of clarity we outline the derivation of the 
general wave ex!rupolurion equation. These techniques are clustered under 
tie general name of wave equation migration methods. The theory is exact 
for laterally invariant velocities [2,5]. Assume the receiver coordinate is r , 

the source coordinate is s , the midpoint coordinate is x =T and the 

offset coordinate is h = 9 . The variable z represents depth into the 

earth/ocean. The general wavefield can then be represented by 
v ( r , s , t , z, , r, ) where z, and r, are the depth coordinates of the 
receiver and source respectively. The scalar wave equation is then 

Fourier Transforming w.r.t I , s and I we have. 

Here k, and k, are the spatial frequencies w.r.t r and s respectively. Y is 
the F.T. w.r.t all the variables (r ,s,t .+.a,) . 

These equations have two independent solutions, and choosing only 
the one which corresponds to the downward going waves, we have with 

krv ksv K, = w and 1~ = 0 the following equations 
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With both the receiver and the source having common depth z we have 

aul_ dY iilY 
-a?-z+aL, 

TN _ iw 
a;-- $11 - K,2,: + [1 - K.+)Y 

Then modifying the equation for zero-offset data and considering that 

K, = (kX + k~,)& and K~ = (kX - kh)-& we can formulate a differential 

equation in Y(k, , w , 2) as follows: 

This equation is the one-way wave equation for downward extrapolation of 
zero-offset data. 

2.1 Migration in the (& , w) domain. 

Migration in the (k, , co) domain is called the phase shift algorithm 
I2.31. We have from the extrapolation equation 

a+ 2’v”:, (kv2 3 
-ziF)l y 

Given~(x.f,z=O)wehavetoreconstruct~(w,r=O,t)weobtain 
the stepping equation in z as follows 

Y(k, , co, 82) = Y (4 , w , 0)exp ( ~[l-(~)Z]hSz ) 

At this point we digress and describe in brief the architecture of the 
distributed multiprocessing system. There are a number of independent pro- 
cessors, each with its own memory, interconnected to other processors in 
the systems via a hypercube interconnection. Data is exchanged through 
messages, and the communication overhead is proportional to the length of 
the messages. Short messages are avoided to minimize the effect of com- 
munication set-up time for the communication protocol between nodes. 
There is a host processor, which oversees the operations of the multipro- 
cessing system and can be used by the processors to execute commands 
which could be used by all the processors. Commands are defined as global 
if they need data elements from more than one processor for execution, and 
local if they can be executed by the processor itself on data elements within 
its own memory. A global command can be broken up into several local 
commands, each of which can be executed concurrently on the processors. 
If the operations are linear ( as most matrix manipulations in migration are ) 
a consistent result can be obtained by summing the results of local com- 
mands. 

2.1.1 The Phase Shift Algorithm 

The stratified-layer model of the earth [4] assumes that the earth is 
made up of horizontal layers extending downward in the depth coordinate I 
. Each layer of depth is characterized by a velocity c which is invariant in 
the horizontal coordinate x and is constant in z for that layer. Formulating 

the wave-equation for layer 1 , we have for i+r (X , I , I ) the wave-field 

Wxx(X,Z,~) + wzz(x,z .t) - $h(X.ZJ) = cl 

where i+ru is the second partial derivative w.r.t x, wzz is second partial w.r.t 
L , and w,, is the second partial w.r.t I Fourier Transforming the equation 
with respect to x and I we have on rearranging 

‘f’, (k ,z .m) - L2‘y(kx ,z ,a) + +‘(k ,z , 0) = 0 

y’, (kx ,z ,w) = -($k?)Y (k, .z ,a) 

This is a second order differential equation in I . If the initial condition is 
Y(k, ,O,w),then 

Y(k, ,ZO,W) = exp *‘r(kz .o,o) 

Therefore, given w ( x , 0 , I ) we evaluate Y ( k, (0 , o ) , and then use the 
above equation to evaluate Y ( k, , L 0 , w ) The required migration section 
isW(x,zo,O),whichweobtainfromY(kX,zo,w)asfollows, 

u,(x ,zo,O) = fjY(k,,ro,o)eA’dk,do 

Therefore, to obtain the migrated section, the algorithm first evaluates 
the two-dimensional Fourier Transform of the data, calculates the 
Y ( k, , zo (0) for required depth zg , integrates over frequency and 
inverse transforms w.r.t. k,. 

In practice, we perform a discrete version of the above algorithm. 
~(x.0.t) is sampled at points (Xj,O,fi) for j=l,2;..,N, and 
i=l,2,....,N,togiveanN,byN,mauix,~(xi,O,ti).Thetwodimen- 
sional DFf w.r.t t0 x and t is then an N, by N, matrix , Y ( kxi (0, oi ), 
where j and i take the values mentioned earlier. In the discrete domain the 
solution to the migration equation, assuming the sampling theorem condi- 
tions are satisfied, is 

Y(X vzo,t=O) = CC’I’(kxj vzo,wi)ejk*“, 
’ I 

The Sequential Phase Shift Algorithm. 

The sequential algorithm proceeds in the following manner: 

SteP1:Y(k,i,O,wi)iscomputedfrom~(xj,O,ti).Y(kk,,O,m)is 
a N! by NX matrix. This step involves calculation of N, N,-point FITS and 
N, N,-point FFIs. 

.+g. 
Step2:Y(kXj.0,~i)ismultipliedbyE(j,0,i)= e’ 
foralli and j. 
Step 3: Y ( kxj , zo , m; ) from Step 2, is summed across wi 
Step4:v(x ,zu.O)isthenobtainedbyanIFFTw.r.tk,. 
StepS:zs=zs+Ar 
Step 6: if zo < LAz then go to Step 2. 
stop. 

For large N, , N, and L , the algorithm is computationally very 
expensive. We exploit the inherent parallelism as described in the next 

!=wvh. 

The Parallel Phase Shift Algorithm. 

Let us assume we have N independent processors, each having its 
own CPU and local memory, capable of communicating with other proces- 
sors, via messages, in a hypercube interconnected network. A central host 
processor performs tasks whose results may be used by all the independent 
processors. 

We now describe the tasks required by each processor p to migrate 
data according to the phase shift algorithm. The processor is indexed by p 
which can take the integer values 1 through N . Since the processors have 
limited local memory, each processor can only process a row or a column at 
a time. There is an additional index to E ( j , I , i ) to incorporate the vary- 
ing velocity cl in each new layer /. We also assume N = N, = N, = L for 
simplicity of analysis. 

Each processor p executes the following sequence: 

Step 1: Receive from host, the N, length vector, y ( Xj (0 , is ) for j = 1 to 
N 
Cimpute its FFT w.r.t to X. 
Send Y ( kxj , 0 , rp ) back to host 
Step 2: Receive N, length vector Y ( kv , 0 , ti ) for i = 1 to N, from host. 
ComputeitsFFT,Y(kk,,O,wi). 
Step 3: Multiply Y ( kxp , O,wi)byE(p ,1 ,i)foralli. 
SteP4:~Y(k~,O,Ui). 

Step 5: Communicate with other processors,(in a parallel fashion) to sum 
over p 
Invert the vector w.r.t k, to obtain the next layer. 
Step 6: Repeat steps 3-5 for the new layer, until L layers are migrated. 
stop 
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A multi-step parallel algorithm 

A multi-step algorithm follows Steps 1, and Step 2 as above , but evaluates 
Steps 3 onwards as given belt w: 
Step 3: For each Y ( kq , 0 , tOi ) compute the L by N, matrix as follows: 
Doforj =itoN, 
Doforl = 1 toL 
y(k,. 1 vW)=Y(kxpv l,Q).E(P,Z,i) 

Step 4: Sum over i to form z Y ( kq , 1 , wi ) 

Step 5: Communicate with bl.her processors to obtain the N, length vector 
in k, 
Invert FFI w.r.t to k, to obtain a migrated layer. 
stop 

The hypercube topology, enables parallel communications in IogN 
steps, therefore, we can transmit from one node to the furthest node in 
atmost 1ogN communication r:t.eps. The multi-stop algorithm is efficient in 
the sense that the parallelism is completely exploited. We explain this as 
follows. In the single step parallel algorithm , only one NI point FFT need 
to be inverted to migrate the inext layer, this implies that N - I processors 
arc idle. By processing L steps at a time, we can keep all the processors 
busy and balance the load equally. each processor migrates a different 
layer. 

The parallel algorithm therefore reduces the 0 ( N 3 ) complexity of 
the sequential algorithm to an 0 (N 2 ) algorithm, plus the communication 
costs. The multi-step algorithm keeps the load balanced across the proces- 
sors, improving efficiency further. 

With respect to conventional sequential computer the multi-step algo- 
rithm has another advantage. For each successive depth step, the sequential 
computer is penalized into accessing secondary storage, but our parallel 
algorithm, performs all the computations in the main memory for moderate 
memory penalty. 

Practical considerations which limit this speedup are communication 
costs which are incurred in sending and receiving messages from the host, 
messages between the processors themselves across the spatial frequencies, 
I/O, memory limitation per processor resulting in fewer depth steps being 
processed in one pass and in:fficient communication protocols for some 
commercial multiprocessors. A hypercube interconnection network 
between the processors can ,qeatly speed up communications, and the 
broadcast facility from the host to the nodes decreases the communication 
costs incurred. In addition the communication time also depends on the size 
of the message being transmito:d. In section 4 we examine the performance 
of this algorithm on two commercially available multiprocessors. the 
NCUBE and the Sequent [8,9]. 

2.2 Migration in the (X , w ) domain. 
In the absence of horizontally varying velocity, the phase shift equa- 

tion can be used 10 migrate sei.imic records efficiently. However, the equa- 
tion is not valid when v varies with x and the square root has to be approxi- 
mated with rational functions 1.0 solve the equation numerically. Different 
methods in use deal with truncated continued fraction expansion and are 
discussed in [2,3,4]. We will now examine an interesting stable two-step 
algorithm [4] that is a combination of the phase-shift algorithm and an inter- 
polation scheme. Our interest in this scheme stems from two factors, firstly 
it arises from the exact phase shift scheme which is simple and stable, 
secondly, it generalizes to higher dimensions of space without significant 
increase in complexity. This cannot be said of most finite difference 
schemes which (using implicit methods) become expensive computationally 
when more than one dimension is considered. One of our objectives is to 
use parallel processing architectures for problems in higher dimensions, 
therefore, we will examine this !wo-step algorithm in some detail. 

The method consists of two parts. In the first part, the phase shift 
equation is used to compute the next step, for a number of velocifies which 
span a range of possible velocities. The next step then is interpolation, in 
which these reference wave-fields for different velocities are used to imer- 
palate the exact wave-field for the next step in the migration. Though this 
two-part scheme is computationally expensive, it has very good dispersion 
properties, and we formulate a Flarallel algorithm in the following paragraph 

which minimizes the communication overhead. AS will be explained in 
Section 3, any implementation which improves the computation to 

communication ratio will be preferred over others for the same algorithm. 
The interpolation part of the sequential program would contain routines for 
interpolating which would be defined globally. For efficient parallel imple- 
mentation we break up this routine into loco1 interpolation routines, and by 
trading communication in favor of computation the nodes spend a minimal 
time in communicating. The algorithm is structured as follows. 

Step 1: Receive N, length column from the host (FFT w.r.t k, has been 
done). 
Compute its N, point l%T w.r.t, t , Y( kw , I , wi ) . 
Step 2: For each of the velocities v 1 , ~2, . . . . . v, march locully forward a 
depth step. 
Sum over oi 
Step 3: Communicate with other processors to march forward globally for 1 
reference wavefields for the next layer. Compute m wr.t k, of the 1 
wavefields (in parallel). 
Interpolate the definitive field Y( x , ze , Wi ) for the next step. 
Compute FFT of the definitive field, ‘I!( k, , ~0, Wi > 
Step 4: Repeat steps 2-3 for the next depth layer. 
end 

In a coarse-grained approach additional computation costs no extra 
time, if partitioned well. However, since communication costs come into 
the picture, we need to minimize the number of IFFTs. While methods to 
interpolate the definitive wavefield in the k, domain would be of interest 
two problems arise; First a particular interpolation scheme may not be pos- 
sible in frequency domain, and second, the velocity is explicitly a function 
of x only in the case of interpolation in (x , o ) domain. A compromise 
between the number of reference velocities and the simplicity of the inter- 
polation scheme, would determine the actual efficiency of the implementa- 
tion. In the next section we examine afmite-&firence migration algorithm 
in the (X , w ) domain, and observe that it lends itself easily for a distri- 
buted system of tridiagonal solvers. 

2.3 Finite-difference in the (X , I ) and (X , o) domains. 

In this section where we examine migration algorithms that migrate 
data in the time domain, the space component may be either in x or k, 
Since we are trying to solve a two dimensional velocity problem, using one 
dimensional methods, the algorithms would not be exact for velocity which 
varies sharply with depth and space [6]. In this section we examine an 
algorithm in the (k, , I ) domain case when the velocity does not vary 
laterally. We will examine the parallel architectures for such implementa- 
tion, and compare with the the other methods. These methods in the time 
domain approximate traditional methods for solving hyperbolic partial dif- 
ferential equations on grids. There is a wealth of literature on these 
methods, suitable for a finer-grained computation model than the one we 
are considering. 

As described in [3,4], the phase shift equation which is exact for 
laterally invariant data cannot be used for laterally varying velocities. 
Instead the square-root expression is expanded in the form of a truncated 
series. The equation then becomes 

iw _. w x - I [u - 
b&k? ly 

k 
I- c-&j2 

This equation is solved by splitting it up into two separate equations applied 
for alternate steps. Cross multiplying and Fourier transforming with respect 
to k, we have [3] 

and 

[I + (T&)~D,]D,Y = g D,Y 

D, and D, represent partial derivatives with respect to x and I . These 
equations are solved numerically with a set of algebraic equations involving 
a values of Y (X , z , w ) on a grid of points ( j , n ) referring to 
0’ 6x , n 6s ) , where Y is ‘J’j, .The equation then becomes 
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Yj,n+l + (a- i PI Wj-1,n+1-2yj~+l+yj+l,n+l) = 

yj.* + (a + A3 ~yj-l.n~2yj.n+yj+I.n~ 

where a = (&)’ and p = $& . 

This is a hidiagonal system of equations for j=1,2,3,....,NX and must 
be solved for all N, values of w. 

Our parallel model for finite-difference computation is one which 
solves a system of tridiagonal equations for w, on processor i . Let us 
examine the ways in which a tridiagonal system of equations may be 
solved on a processor. Two factors have to be considered; one is the limita- 
tion of memory per processor, and the second the parallelism in the compu- 
tation for solving a single set. 

Solving a tridiagonal set of equations is equivalent to multiplying the 
values on the grid by a template of four coefficient values, which moves 
across the grid, calculating the fourth unknown value on the grid using the 
coefficient values on the template. All the elements on the grid need not be 
stored and schemes exist which minimize the storage involved by ordering 
the update of values on the grid. 

However, to continue with our discussion, finite-difference migration 
easily partitions into a coarse-grained paradigm for computation across the 
frequencies. Similar arguments can be made for finite difference in the 
(t , z , 1’ ) domain , where t* is the transformed time in the “moving” 
coordinate reference axes [7]. Then each k, is assigned a tridiagonal system 
of equations on a grid ( 1 , I l ). 

3. Performance Analyses 

Our model for parallel processing consists of N independent proces- 
sors, each with its own local memory, communicating with each other via 
messages. The interconnectivity is a hypercube topology, offering con- 
currency in communications. The cost of communication determines the 
efficacy of the parallel implementation. If the task is partitioned such that 
each independent processor takes tcomp for computation and the total time 
spent in non-overlapped communication is l,,,,,, then the total time required 
for a parallel implementation is fp” = tcomm + fconvl The time required for 
a serial implementation of the algorithm would be Nt,,, , so an index of 
performance, I , would then be 

The index of performance , I , compares the speed up of a parallel 
implementation with a sequential processor having an infinite memory. The 
actual speedup, then, in comparison with traditional sequential computers 
with secondary storage would be much higher. For example, a 512 proces- 
sor NCUBE, would have an equivalent of 256 Mbytes of main memory, for 
parallel execution [I]. 

We now examine the indices of performance of the migration algo- 
rithms discussed to provide us with a measure of the performance expected 
from a distributed parallel implementation. 

Migration in the ( k, , o ) domain. 

The serial computation is about ~42 time units, where A is the data 

array size ( A = N, = N, ) for a single step. The r,, then is F .The 

communication cost lcom is pA210gN time units. a is a factor of propor- 
tionality which is a measure of the computation speed of each processor. p 
is proportional to the effective communication time per byte of data moved. 
The index of performance is then 

I= N 
1 + Nb2p)J 

The index depends on z (from [ll, this ratio is about low2 to 10Y3 for the 

phase shift algorithm ). The memory requirements for the phase shift algo- 
rithm are minimal. If an L step scheme was used the memory required 
would he roughly 8.M bytes (we assume complex data). 

Migration in the ( x , CO) domain. 

An interesting algorithm in this domain is the two-step phase shift 

plus interpolation algorithm discussed in section 2.2. The communication 
and the computation times are both directly proportional to the number of 
reference velocities 1. If the number of reference velocities is less than the 
number of processors N then communication and computation may be 
overlapped. For this algorithm lcomp is approximately ctL4 2 and fEOmm is 
&!A *logN. Therefore the performance index is given by 

I= N 
1 + “Il’tx”“” 

Since the interpolation step adds some computation to the parallel system, 
with no additional communication , the index will be slightly better in prac- 
tice than the phase shift algorithm. The phase shift algorithm with interpola- 
tion has the potential for being used when the data is in three dimensions, 
besides being unconditionally stable. The memory requirements are 
directly proportional to the number of reference velocities used and multi- 
step algorithms used for the simple phase shift would be expensive. 

Migration using Finite-Difference Schemes. 

We considered a finite difference scheme in the (x , f ) domain and 
the parallel algorithm consisted of partitioning the algorithm on the basis of 
frequencies. Each processor is assigned a tridiagonal system of equations. 
There are two communication steps, one when each node receives the row 
vector of data, and the second when the solution of the tridiagonal is com- 
pleted and the solution summed across the nodes. For this algorithm r,,, = 

a,A + CQA logA since the solution of a tridiagonal system of size A takes 
0 (A ) computations. The tcomm is again PA 210gA . We have considered a 
simple protocol in which the data is summed across the nodes in 10gA steps. 
The performance index is then 

‘=* 
The data size A , affects the index of performance and we need more com- 
putation on each node. If more than one frequency is clustered on each 
node, then t,,, is increased and tcom is reduced, giving the performance 
index 

I = , + Log 
The required performance index can then be computed for the best “cluster” 
value. in addition the memory requirements are moderate, since tridiagonal 
equations can be solved very efficiently in terms of storage. 

Figures 1 and 2 illustrate the performance indices for the phase shift 
and the finite-difference methods respectively. They are plotted for A = 

e 1024 , and for varying a . The performance index of the phase shift algo- 

rithm monotonically increases with N , however the “knee” of the curve is 

soon reached. The onset of saturation is delayed by a small g . The algo- 

rithm designer can use the curves to either estimate I or to determine the 
number of processors needed for the application. While the performance 
index is lower for smaller N, the efficiency is noticeably higher. The perfor- 
mance index for the finite difference methods increases to a limit and then 

P decreases, the maximum being inversely proportional to Q. Therefore, to 

achieve pca.k performance e a must be minimized, this may often depend on 

the communication protocols in use on the multiprocessor. So far we have 
not considered the constraint memory puts on the index of performance. 
The best cluster size can be determined for a given performance index, 
given A. But the limited memory per node may not allow such an imple- 
mentation. Another factor to be considered is the I/O capabilities of the 
parallel processing machine. Pipelining I/O with computation would result 
in further enhancement of the performance. I/O and data path is a serious 
problem which must be considered before a dedicated hardware implemen- 
tation of our proposed architectures can be considered. We have not con- 
sidered broadcast communication facilities available on some commercial 
multiprocessors. In the next section we consider some performance indices 
on parallel computers. 
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4. Parallel Phase Shift Algorithm on Multiproces- 
sors 

In this section we study tour implementation of the phase shift migra- 
tion algorithm on multiprtcessor computing systems. We consider two 
types of systems; shared memory systems and distributed memory parallel 
processor systems. The performance of our algorithm is studied on these 
two very different MIMD architectures.[8,9]. 

4.1 Shared Memory Multiprocessing System 

Shared memory multiprccessors have a number of processors that 
share a common tus allowing them to access the system resources (I/O, 
memory, coprocessors). The program is partitioned into subtasks which are 
assigned to individual processors which should in principle execute them in 
parallel. One of the advantages: of shared memory processors is that shar- 
ing data and variables is very easy, without expensive message based com- 
munications between processors, as only pointers need be exchanged. How- 
ever, contention for common resources and the execution of critical scquen- 
tial sections reduces the processor efficiency due to overhead incurred in 
queueing for resource allocation. Speed up is application dependent, but for 
many applications is linear in the number of processors for a while, with a 
saturation effect. 

The Sequent multiprocessing system (with 12 processors) is a shared 
memory multiprocessor with an additional cache memory for each proces- 
sor. The loops of the phase shift algorithm can be executed in parallel by 
the processors at the programmer’s discretion. New processes areforked for 
concurrent execution. However. the shared and local variables used by the 
loops must be declared so that concurrent iterations do not violate the con- 
sistency of the program. Locks on resources need be set and freed by dif- 
ferent processors, costing overhead. 

Shared memory multiprocessors speed up execution of sequential 
programs mainly through multitasking facilities available, allowing a sin- 
gle application to be shared between closely cooperating processes. 
Speedup gained by multitasking is very application dependent. Contention 
arises when multiple processors access common resources, and in the 
Sequent this is minimized by having a private cache memory per processor. 
There is considerable overhead in creating, synchronizing and terminating 
multiple processes. The DYND: operating system of the Sequent automati- 
cally balances load across the processes and schedules processes for 
optimal throughput. 

The initial speedup is almost linear in the number of processors but 
with an increase in the number of processors, the overhead associated with 
allocating and releasing resources penalizes performance and the speedup 
curve quickly saturates. The onset of saturation is delayed if each processor 
can execute a larger chunk of code in parallel and independently without 
conflict, memory management being a problem. The following table and 
Figure 3 summarize the performance of the algorithm for a relatively small 
data set migration ( Case 1: N, = N, = L = 128, Case 2: N, = iV, = L = 32). 

Table 1 

] Phase Shift Migration on Shared Memory Multiprocessors 

16 1 10 1 5.5 1 3 1 79 1 49 
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In our implementation we have not considered I/O in and out of the 
machine, and have not used any dynamic load balancing scheme to optim- 
ize performance. 

4.2 Distributed Multiprocessor System, 

A distributed computing system consists of an array of independent 
processors connected together through an interconnection network. Each 
node is an individual general processing system with its own private 
memory. The processors communicate with each other through a message 
communication protocol. An important difference between the distributed 
processor computing system and the traditional supercomputer is the need 
to divide both the algorithm and the data into smaller parts. This is very 
algorithm specilic and may often be more difficult that using a shared 
memory multiprocessor having many programs running on a large shared 
memory. But if efficiently done, these highly concurrent processors can out- 
perform vector supcrcomputers by over an order of magnitude. 

Programming for the distributed application involves the following 
subtasks: 

a). Partitioning the sequential algorithm, to distribute the computational 
load uniformly over the independent processors. 
b). A communication protocol to enable efficient data and information 
transfer between the processors to yield results consistent wilh the squen- 
tial program. 

Very often the communication overhead determines the performance 
t0 be expected. This is discussed in the following sections and also in the 
companion paper t61. Further optimization of the performance is done by 
balancing the load dynamically, overlapping computation with communica- 
tion, pipelining I/O and computation and by increasing the memory per pro- 
cessor. 

The NCUBE/Ten Multiprocessor system interconnects 1024 32-bit 
processors each with 128 Kbyte private memory in a hypercube 
configuration [9]. Host processors arc available to enable loose global con- 
trol and synchronization. I/O channels lead directly to the processing nodes 
and the host through multiportcd memories. The communication protocol is 
a three-way handshake protocol, and data is transferred between nodes by 
DMA. The communication cost linearly increases with the size of the data 
chunk being transferred. Current models have enlarged memory available 
per node. 

The parallel phase shift algorithm was implemented on the 64 prmcs- 
Sor model. Solution for data sizes for higher dimensions was implemented 
by breaking down the problem into smaller manageable tasks, and the per- 
formance was then projected for a higher number of nodes. For example it 
is the communications which need to be scaled up for a higher node model, 
the computation for the parallel task remains roughly the same, The modu- 
larity and the regularity of the node programs enables rapid porting onto 
higher order hypercubes. 

4.3. Performance Analysis of Parallel Phase Shift M&a- 
tion 

In the implementation of parallel phase shift migration, each node 
works on a set of rows or columns at a time, and the communication rou- 
tines handle the transfer of data and processing of intermediate muh. The 

first communication algorithm we use is the the sequential communication 
protocol (SCP). The host is the center of the star of processors, each node 
communicates only with the host in receiving and sending data. The 
sequential algorithm thus penalizes the performance by not utilizing the 
parallelism inherent the highly interconnected hypercube configuration. 
However, it is conceptually simple, and its regularity will enable efficient 
implementation as a dedicated hardware processing system which is one 
objective of our study. The second communication algorithm, the parfJ[lel 
communication protocol (PCP), overlaps communication between sets of 
nodes, reducing the total communication time &,,,, Both the protocols 
move the same amount of data and the times are proportional to A2 where 
(A , A ) is the size of the data array, though the constants of proportionality 
are an order of magnitude apart. The comunication cost is directly propor- 
tional to the bytes of data moved, and an array has A 2 elements. In addition 
using the hypercube topology PCP can sum across nodes in LogN steps 

where N is the number of processors. It must be mentioned that the com- 
munication is dominated by the matrix transpose in the second step of the 
parallel algorithm. 

Our basis of comparison is a hypothetical sequential machine (HSP) 
with infinite cache size, and the computation of the algorithm on this 
machine is the total computation time on the different parallel processors. 
Processor utilization of this machine is assumed to be 100 %. Therefore 
this hypothetical machine is many times more efficient than the usual 
sequential computer. For example, not using our function partitioning tech- 
nique to compute L depth steps at a time, would penalize the traditional 
sequential computer, into taking L times longer than required for a single 
step. Likewise storing a large array columnwise can cause a page fault 
when computing across the rows on a large supercomputer (e.g. Convex). 
Another way of partitioning would be to assign different w to different 
nodes, this may facilitate l/O uansfer (e.g. data from a geophone is sent 
directly to the node). 

Table 2 

The performance figures for the parallel phase shift algorithm are 
given in the Table 2 (For N, = N, = 256) and plotted in Figure 4 If the 
computational task is partitioned such that each independent processor takes 
tcoV time for computation, and the total time spent in non-overlapped com- . 
murucauon 1s t,,,. , then the execution time on the parallel system is 
r,,, = fcom + tcow . The time required for a serial implementation would 
beNt cOmp,so we can define an index of performance as 

I - Lid - %mp 
tw Lnm + Lmp 

An interesting observation is that the performance is relatively independent 
of the size of the data array being processed, given that the array is large 
enough to keep processors busy. Another observation is the strong depen- 
dence of the I on the communication protocol and the communication 
speed between nodes. The phase shift algorithm for one step takes roughly 

oA2 time units and with N independent processors, rcoV is $ time 

units and t,,,. is approximately PA 210gN time units. Therefore I can be 
rewritten as 

I= OtA2 
2 

+& + PAzlogN 

p is a rough measure of the communication time for byte of data 
transferred, ideally p would be zero, leading to a performance index of N 
Therefore we have: 

I = N 
1 f Nyfl 

and I is independent of the array size A to the first approximation. 

We conclude that the communication speed coefficient j3 determines 
I. In addition, the performance improves with N as observed in Figure 4. 

5. Summary and Future Work. 
In this paper we have exploited the concurrency inherent in seismic 

migration algorithms to propose fast computing paradigms suitable for 
implementation on distributed parallel processors. Our analyses indicate 
that a coarse grained parallel implementation is well suited for seismic 
migration applications. We present some indices of performances for 
several important migration methods when implemented on a distributed 
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parallel signal processing architecture. A simple phase shift migration 
scheme was implemented on the NCUBE distributed multiprocessing sys- 
tem, and is described in [l], and illustrates the tradeoffs for a specific algo- 
rithm. 

Analysis of I/O and data path requirements will be the next objective 
of our study. Efficient communication protocols for distributed multiproces- 
sors lead to high indices of performance, and we are studying some 
schemes to improve speed up communication by overlapping processing 
and communication [8]. Load balancing and processor utilization have not 
been considered in our study and they need to be incorporated for enhanc- 
ing the efficiency of implementation. The tradeoff between simplicity of 
implementation and speedup would prove to be useful in the design of dedi- 
cated signal processing hardware. 
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