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thetic wave propagation code using explicit finite differ- 
ences with absorbing boundary conditions has been im- 
plemented on an Intel Hypercube with 32 processors. The 
algorithm is highly parallel with good load balancing be- 
tween processors and speed up proportional to the num- 
ber of processors being used. A vectorised version of the 
code has been used to evaluate the performance of the 
Intel IPSC-VX 5d vector hypercube. Mflop rates up to 
71 are achieved. 

1. Introduction. 

Many geophysical problems, including the modelling 
of the Earth’s crust and the discovery of gas and oil 
accumulations are problems in wave propagation (Kelly 
et. al. [4]). In recent years there has been great 
interest in the production of synthetic seismograms for 
complex subsurface geometries as a means of extracting 
and understanding fine detail in seismograms ([I], [3], 
141, [6]). A realistic solution of the two-dimensional wave 
equation is the first step in the generation of a synthetic 
seismogram as an aid in the interpretation of seismic data. 

The two-dimensional wave equation which describes 
the propagation of stress waves in a horizontally stratified 
elastic medium is easily solved by the method of finite 
differences. Numerical solutions have been obtained by 
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Alford et.al. [l] and Kelly et. al. [4]. For the generation 
of a synthetic seismogram an essentially infinite physical 
domain must be mapped onto a finite region restricted in 
size by the computer memory available. A solution over 
a timescale of seconds is required. Consequently, this 
problem is large scale, requiring intensive computation 
and large memory. 

Such large scale problems are ideal candidates for par- 
allelisation. Clayton [3] implemented an algorithm for the 
solution of the acoustic wave equation on a concurrent 
processor. Petersen and Renaut (61 have demonstrated 
that this algorithm can be used to solve a realistic prob- 
lem and produce seismic traces. 

In this paper we continue the work of Petersen and 
Renaut [6]. The algorithms for the solution of the wave 
equation by either a five-point or a nine-point stencil have 
been implemented on a hypercube, where each processor 
has a vector capability. The effects that the use of 
these stencils have on numerical solutions are determined 
by their dispersive and stability properties. Here we 
present the results of a theoretical analysis which show 
these properties. The characteristics can be compared by 
examining the numerical solutions. 

In Section 3 we present our results. For comparison 
results without vectorisation are also presented. The code 
vectorized well. With a problem of maximal size a mflop 
rate of 71 is achievable. This compares favourably with 
smaller supercomputers, which are, however, more expen- 
sive than a hypercube. Our results also demonstrate that 
the nine-point stencil may be preferred to the five-point 
stencil. It is computationally more intensive and pos- 
sesses better dispersive properties. The ratio of timestep 
to gridsize is also less restricted by the stability require- 
ment. These characteristics mean that either larger prob- 
lems can be solved or higher accuracy attained, than with 
the five-point stencil. 

2. The Acoustic Wave Equation. 

The acoustic wave equation in two dimensions is 
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where p = p(z, y) is density, rc is bulk modulus and 
P = P(z,y,t). The velocity of the pressure wave in the 
medium is given by v := u(z, y) = 8. This equation 

is solved numerically on a horizontally stratified domain 
350m x 240m (cf. Figure 1). The initial condition is 
a shot explosion behind the boat which tows an array of 
hydrophones for picking up the trace data. As in Petersen 
and Renaut [6] the shot is modelled by a Gaussian pulse. 

This scheme is said to be accurate of order two. 
It allows numerically stable solutions provided that the 
Courant number, CL, is bounded 
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Figure 1. The physical domain. 

A finite difference scheme for the solution of this 
equation is obtained by substituting the standard forward 
and backward difference operators for the continuous 
derivatives. This leads to the traditional five-point stencil 
for the solution of the wave equation 

(2.1) 
p(? Y, t -t At) = ZP(:e, y, t) - P(z, y, t - At) 

+ ($‘[P(z + Az,~,t) 

+ J=(z - AZ, y, t) + P(z, y + Ay, t) 

+P(~,Y - AY,~) -4J’(s,y,t)] 

Here we assume that the grid is square and set As = 
Ay = h. The velocity with.in a layer is given by u = ~(2, y) 
and the time increment is At. The points used to advance 
a point to the new time level are seen in Figure 2. 
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Figure 2. The five-point stencil. 
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An analysis of the dispersive properties of this method is 
given by Petersen and Renaut 161. It propagates waves 
with phase and group velocities which are direction de- 
pendent. This dispersion can be controlled by using a 
small enough grid size allowing about 12 points per wave- 
length. The pulse used in our experiments has a wave- 
length of about 30m and so we require h 5 2.5m. With 
h = 2.5m dispersion is less than 2% and the energy of the 
wave travels at about 97% of its correct value. 

An alternative to the above five-point stencil is ob- 
tained by rotating the stencil 45’ and using a weighted 
combination of the resulting stencil with 2.1. A second 
order accurate stencil using nine points at the k time Ievel 
is obtained: 

p(z,y,t+ At) = 2P(z,y,t) - P(x,y,t -At) 

+ ($2[(D - l)(P(x+ Ax,Y,~) 

f P(z - Ax, y,t) + P(x, y I- Ay, t) 

+ P(x,Y - AY,~) -4P(x,y,t)) 

+;(P(z+Aqy+Ay,t) 

+P(z+Ax,y-Ay,t) 

+P(z-Ax,y+Ay,t) 

+P(z-Az,y-Ay,t) 

- 4P(s,Y,t))l 

This stencil is shown in Figure 3. 
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this we have used the second-order accurate boundary 
conditions derived in Clayton and Engquist [2]. At the 
right hand boundary we model the equation 

An approximation of this on the discrete domain is given 
by the first order difference scheme: 

D,DFPNj/c + kDrD;(PNjk 

f- PN-ljk) - iD$D;(PN-ljk+lf 

PNjk-1) = 0 

Here 

Pijk II P(iAx, jay, kAt). 

Dz, DQ and 0,” are the forward, backward and central 
difference operators. 

This boundary scheme is stable for p < 1 when 
implemented with either of the operators 2.1 or 2.2. A 
comparison of other suitable boundary operators has been 
performed by Renaut and Petersen [7]. 

q X 
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Figure 3. The nine-point stencil. 

Dispersion is minimised by using /3 = 5. With this 

value for p the method is stable for /I 5 $. Dispersion is 
controlled by using at least 6 points per wavelength. For 
gridsize, h = 5m, dispersion is less than 1% and energy 
travels at 96% of its correct value. 

As explained the physical domain is mapped onto a 
finite domain with boundaries that are artificial. Ideally, 
a sorution computed on the finite region should coincide 
with the free space solution. Therefore, provided that 
there are no external mechanisms which cause reflection 
back into the domain, the artificial boundaries should 
simulate the outward radiation of energy. To achieve 

The finite difference method is implemented on a 
hypercube by dividing the spatial domain to be modelled 
into a regular grid of patches. As Clayton [3] each patch 
is mapped onto a processor of the cube which has also 
been arranged as a two-dimensional grid. Neighbouring 
patches have one layer of grid points overlapping on each 
side (cf. Figure 5). If a patch lies on the edge of the 
physical domain then only interior sides overlap. By 
overwriting the (k - l)8t time level with the updated 
(k + l)St time level the pressure array need only be of size 
(72x + 2) x (ny + 2) x 2, where nz + 2 and ny + 2 are the 
number of points in the x and y directions respectively, 
per processor. The velocity distribution is stored in an 
array of size (nz + 2) X (ny + 2). 
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Figure 4. Right hand boundary. 

Figure.5. The node communication. 
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3. Results. 

In order to compare the efficiency of the two methods 
we need a measure of the amount of work involved in each 
case. We count the number of floating point operations 
per iteration step. For (2.1) this gives 

288nx ny + 88(nx + ny) + 48 + 680, 

compared to 

602nzny + 88(ns + ny) + 48 + 680 

for (2.2). The major contribution here is from the calcula- 
tion at the interior points. Work at the boundaries is less 
than 1% of the total for O(nx) = O(ny) = 100. It appears 
that the five-point stencil (2.1) is more than twice as fast. 
Results for a problem with nx = ny = 70, Ax = Ay = 
2.5m and At = .00055 for 4096 iterations are given in 
Table 1. 

[Scheme Dimension Time/ Total Time mflop -1 
1 of Cube Iteration Rate 1 

I 5Pt I 5 1 .9995s / 1 hr 8 min 14 s / 1.41 / 

! 9Pt I 5 1 1.6289s 1 1 hr 57 min 12 s 1 1.83 1 

: 5Dt 1 4 

! 5Dt 1 0 

1 2.1758s I 21 hr 28 min 32 s I .65 1 

/ 32.4531s I 36 hr 55 min 46 s I .04 / 

Table 1. Results for non-vectorized code. 

We notice that the scheme (2.1) does not live up 
to expectations. It is only 1.63 times faster than (2.2). 
The communication time, however, is the same in either 
case and thus is the cause of the discrepancy with the 
theoretical prediction. Greater than linear speedup is 
attained using the 5-d cube as compared with the O- 
d cube. This phenomenum which is an effect of the 
80286 chip is fully explained in Petersen and Lindheim 
[5]. Obviously the program is highly parallel with good 
load balancing. 

Using the Intel hypercube it is possible to apply 
the preprocessor to vectorise the code. We discovered, 
however, that in this case more efficient code was obtained 
by carrying out the vectorisation by hand. Better results 
are achieved by considering the pressure array as a long 
vector, thus enabling vectorisation of both loops of the 
iteration. Results are presented in Table 2. In this case 
we used an array of maximum size, nx = ny = 190. 

Table 2. Results for vectorized code. 

Almost linear speedup is obtained with higher dimen- 
sional cubes. The advantage of (2.1) is now even less ap- 
parent as it is only 1.31 times faster than (2.2). We per- 
formed the same problem but without calculation. This 
required 5 mins 52 sets. Thus one third of the time is re- 
quired for communication with (2.1) as compared to one 
quarter for (2.2). 

In the experiments we performed the gridsize was the 
same for both (2.1) and (2.2). As explained, however, in 
Section 2 the scheme (2.2) should perform equally well 
as (2.1) on a grid twice as coarse. Also the bound on 
Courant number is higher so that larger time steps can 
be used. Therefore, we can expect to solve a problem 
to a specified accuracy with less work using (2.2). A grid 
twice as coarse reduces the computation by a factor 4. As 
some portion of the time is involved in communication 
and as vector lengths are reduced, the timings will not 
actually be reduced by this factor. Whatever, the nine- 
point stencil will outperform the five-point stencil. More 
importantly, in this context, scheme (2.2) can be used 
to model larger problems. In fact problems four times 
as large with accuracy comparable to that attained by 
(2.1) on the original problem can be modelled. The 
extra computation required for (2.2) may explain why 
it is not much used in practice. In a parallel setting, 
however, where communication takes a large proportion 
of the time, the advantages of (2.2) are more apparent. 

In either case the added capability of the vector pro- 
cessor evidently improves the algorithm’s performance. 
Computer time is substantially reduced. Synthetic seis- 
mograms can be produced on a realistic timescale. A vec- 
tor hypercube is a viable alternative to a more expensive 
supercomputer. 
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