
IMPLEMENTATION AND PERFORMANCE
ANALYSIS

OF PARALLEL ASSIGNMENT ALGORITHMS
ON A HYPERCUBE COMPUTER

Barry A. Carpenter’ and Nathaniel J. Davis IV

Department of Electrical and Computer
Engineering

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

ment and industry. One particular government organization
with a keen inter&t in the increasea processing speeds pro-
vided bv parallel nrocessing is the Strateaic Defense Initia-
tive Orgahization jSDI0). y

ABSTRACT

The process of effectively coordinating and controlling re-
sources during a military engagement is l&own as battle man-
agement/command, control, and communications (BM/C3).
One kev task of BM/C3 is allocatinE weaDons to destrov
targets.- The focus df this research 7s on beveloping pa;-
allel computation methods to achieve fast and cost effective
assignment of weapons to ta.rgets. Using the sequential Hun-
garian method for solvinn the assignment oroblem as a basis.
this paper presents the dYevelopm&t and ihe relative perfor:
mance comparison of four parallel assignment methodologies
that have been implemented on the Intel iPSC hypercube
computer. The first three approaches are approximations to
the optimal assignment solution. The advantage to these
is that they are computationally fast and have proven to
generate assignments that are very close the the optimal as-
signment in terms of cost. The fourth approach is a parallel
i<plementation of the Hungarian algoriihm, where ‘certain
subtasks are performed in parallel. This approach produces
an optimal assignment as compared to the sub-optimal as-
signments that result from the first three approaches. The
relative performance of the four approaches is compared by
varying the number of weapons and targets, the number of
processors used, and the size of the problem partitions.

1. INTRODUCTION

Parallel processing is a method of computation that ex-
ploits the concurrent events that occur in the solution of
many different problems. Parallel computers employing mul-
tiple processors exploit these concurrent events by assigning
each event to a different processor for simultaneous process-
in

+
Recent software implementations have shown that sig-

nl cant reductions in processing times are possible using par-
a&l processing. The ability to compute faster solutions to
large scale problems appeals to many researchers in govern-

‘Captain Carpenter is currently assigned to the 31st Technical Eval-
uation Squadron (SAC), Edwards AFB, CA.

This work was supported by a grant from the Strategic Defense Ini-
tiative Off&.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

The Strategic Defense Initiative (SDI) was launched in
1983 as a research and development program to determine
if a “smart” system of nonnuclear defense could effectively
destroy incoming offensive ballistic missiles before they deto-
nate over our country. The overall system architecture of the
SD1 system is envisioned as one of several defensive layers
corresponding to the different phases that occur in the trajec-
tory of a ballistic missile. Those phases are the boost phase,
the midcourse phase, and the reentry or terminal phase.
Within each defensive layer, computers will use information
gathered from sensors to detect, classify, and track potential
targets. Using this information a.nd predefined engagement
strategies, weapons will be assigned to destroy certain high-
threat targets. After firing on assigned targets, the effective-
ness of the weapons would be evaluated and used to make
future weapon engagement decisions. The combination of all
of these processes is known as battle management/command,
control and communication or BM/C3 [SeD85].

One of the critical BM/C3 tasks is the assignment of
weapons to targets. Situations similar to the problem of
assigning weapons to targets frequently occur in other ar-
eas such as operations research, logistics management, and
even in a computer’s internal management of its resources.
Typically, there exists a number of resources available to he
allocated to a number of requesters. In most cases, there are
more requesters than there are resources. In cases such as
these, decisions must be made as to which requesters are al-
located resources and which requesters are denied resources.
The problem is generally known in the literature as the as-
signment problem and usually involves allocating available
resources to competing requesters in such a way as to maxi-
mize some measure of profit or award, or to minimize some
measure of penalty IKuh55, Chu57, Kur62].

The assignment problem can be solved in many different
ways. The brute force method would be to enumerate all the
possible ways resources could be allocated to requesters and
then choose the combination that provides the best alloca-
tion. This method might work well for a very small number
of resources and requesters, but for any realistically sized sys-
tem, the time required to enumerate all of the possibilities
would be prohibitive. A significant amount of research has
been conducted over the last forty years in an effort to pro-
vide more time efficient methods-oi arriving at the best, or
verv close to the best. allocation of resources. The obiective

-i ”

of this paper was to implement and analyze the performance
of assignment algorithms on a parallel multiprocessor com-
puter. In the analysis, attention was focused on the effects of
inter-processor communications, load balancing among pro-
cessors, and execution times. The parallel computer used

0 ACM 1988 0-89791-273-X/88/0007/1231 $1.50

1231

http://crossmark.crossref.org/dialog/?doi=10.1145%2F63047.63077&domain=pdf&date_stamp=1989-01-03

for the implementations was the Intel iPSC (Intel Personal
Super Computer) multiprocessor system.

The experimental model and the assumptions governing
its analysis are presented in Section 2. Section 3 describes
the fouf parallel approaches used to solve the assignment
oroblem. The oerformanc’s of the four annroaches is dis-
cussed in Sectidn 4. Section 5 presents &Aclusions to the
research.

2. EXPERIMENTAL MODEL

Because the main focus of this study is on the implemen-
tation of a parallel weapon- target assignment algoriihm, an
entirelv realistic simulatioc. of missile traiectories and dis-
tributi’bn patterns of missiles within the diiferent geographic
regions is not attempted. For this reason, exact details of
the battle management system such as how the individual
targets are detected and tracked; the specifics of particu-
lar weapons; the operation and sensitivity of sensor devices;
and the three-dimensional and rotational characteristics of
weapon-to-target geometry are not addressed and are as-
sumed to function independently with respect to the target-
ing assignment mechanism.

A number of simplifyin,; assumptions pertaining to the
operation of the BM/CS s,ystem have been made in order
to concentrate on the weapons-to-target assignment prob-
lem These assumptions do not detract from the problem’s
solutions. First, the nurnbcr and location of potential tar-
gets, along with their relative importance, are assumed to
be available on demand. Li’iewise, the number and status of
available resources or weapons are also assumed to be imme-
diately available when requested. Problems associated with
detecting and classifying potential targets, and the details
of evaluatinz the effectiveness of weanons alreadv assigned
to targets a& not considered, althouih simulated resul?s of
those functions are supplied as input data to the programs.
Weapons are considered to be reuseable with a finite number
of “shots,” and are assigna’jle to one target at a time for a
single “shot.” Each instanct: of assignment is assumed to be
one “snapshot’ of the dynamic process of missiles in some
phase of their trajectory. The assignment process is further
assumed to be memoryless, This means that each assign-
ment iteration is based only on the current cost information
provided to it and is unaff’ected by previous assignments.
‘However, the assignment process may choose to allow cer-
tain weapons to remain idle for future use if the present cost
of utilization is considered too high.

Plausible missile attack scenarios have been generated
and evaluated using an unclassified ballistic missile defense
simulation program. Factors such as space-based weapons
olatform orbits. rotation of the earth. and plausible mis-
Lile trajectories are accountc2d for in the simulation program
[Odo85]. The scenarios are used as a basis for constructing
‘Lcost” data as input to the parallel assignment implementa-
tions developed in this study.

The data generation program developed in this research
uses a random number gen,erator to produce cost values in
the range of 1 to 2500,, which correspond to the range of val-
ues for the heuristic Just described. The lower data values
correspond to a high probability of kill and low cost assign-
ments. The higher values indicate low probability of kill
and high cost assignments (i.e., long distances, small angles
of impact). Although the data used in the cost matrix is
random, provisions could be made to produce lower values
in some sections of the mat.rix and higher values in others.
The groupings of low and high values would represent groups
of weapons that have similar opportunities for engaging the
same targets.

123

3. IMPLEMENTATION DESCRIPTIONS

As background for this research, techniques for devel-
oping parallel algorithms were reviewed and evaluated for
their suitability to the assignment problem. Sequential al-
gorithms that have been developed to solve the assignment
problem were also evaluated. The Bourgeois and Lassalle
(B&L [BoLllla, BoL7lb] version of the Hungarian method
was c h osen as a basis for the parallel implementations be-
cause of its ability to handle the case of non-square cost
matrices without <he addition of dummy variables; typically
used in the traditional Hunnarian method.

In this section, four diff&ent parallel implementations of
the assignment algorithm are presented. The first three pro-
grams are closely related and vary mainly in the amount of
interprocessor coordination. Although all of the first three
programs use the B&L algorithm to perform the assignment
task in parallel, the final assignments produced are not opti-
mal. Heuristics are used to reduce the number of redundant
assignments and will be fully discussed below. The fourth
program is an effort to implkment a parallel version of the
B&L algorithm whose final solution is ontimal.

The”first implementation: no commkiications: The first
parallel implementation, or level 1 program, is the case where
there is no coordination between any of the processors in
the iPSC. The initial matrix of assignment cost information
is partitioned into strips (groups of rows) and distributed
among the different. processor nodes. Each processor uti-
lizes the sequential B&L algorithm to compute assignments
within its cost submatrix and works entirely independent of
the other processors. Figure 1 illustrates the relationship
between the individual processors in the cube and the cube
manager. With a 5-dimension hypercube, up to 32 proces-
sors can operate in parallel on different portions of the cost
matrix. The execution time is expected to be much shorter
than either of the sequential implementations, however the
resulting assignment will not be optimal.

The non-optimal assignment solution of this implementa-
tion results from the individual processors not communicat-
ing with each other about which targets have been assigned.
As a consequence, one processor may assign a weapon to a
certain target while another processor may assign a different
weapon to the same target. This wastes one weapon that
could have been assigned to another target. A larger num-
ber of processors will most likely result in more redundant
assignments and more wasted weapons, but will calculate
these results much faster than could a single processor im-
plementation.

The second implementation: partial communications, sin-
gle iteration The “level 2” parallel implementation intro-
duces some coordination between the processors computing
assignments for certain partitions of the cost matrix. The
coordination is performed by processors designated as con-
troller processors. The processors performing the assign-
ments are known as assign processors.

Partitions of the cost matrix sent to the controller pro-
cessors are further subdivided by the controllers and sent to
the appropriate assign processors. The weapon-target pair-
ings from the assign processors are examined by their as-
sociated controllers to identifv redundant assinnments. The
controllers then eliminate redundancies by c&i-paring the
individual costs of those assignments that are conflicting.
The controllers allow the lowest cost weapon allocations to
r&main and sets all the higher cost, redundantly assigned
weapons to an idle state. The communications paths for this
approach are shown in Figure 2, for two control processors
a&l 6 assign processors. since redundant assignments can
be identified within controller grouns. the exoected benefits

” .,

of this approach are fewer overall redundancies and lower as-
signment costs. The coordination overhead within the con-
trol processors can become significant if large numbers of

redundancies occur. This may degrade the system perfor-
mance.

The third implementation: partial communications, mul-
tiple iterations The ‘Llevel 3” parallel implementation increases
the amount of coordination oerformed in the controller oro-
cessors. Instead of idling the redundantly assigned weapons
as in level 2, these weapons are made available for assign-
ment to other targets not yet assigned. The iterative process
of reallocation continues until all weapons within a control
group have been assigned to unique targets. Note that re-
dundancies can still exist between control groups. Thus, this
implementation, like the first two, will not generate the op-
timum solution.

The fourth implementation: parallel ma&x operations
The “level 4” implementation is a different approach from
the first three narallel imnlementations. Instead of renlicat-
ing the serial code in several nodes, certain time consuming
operations of the B&L algorithm were implemented in par-
allel on multiple processors.

In the three previous parallel implementations, there is a
problem with the redundant assignment of weapons to the
same target. In this implementation, the problem is elimi-
nated by fully coordinating the assignment process. During
a parallel assignment iteration, each processor makes assign-
ments on a different independent windows of the cost matrix.
The term independent means that the targets being consid-
ered for assignment are not being considered by any other
processor during the present iteration. After each iteration,
the individual assignment contributions from each processor
are used to update global variables that are then broadcast
to each processor and the next set of independent windows
are searched for possible assignments. The algorithm terrn-
nates when, as in the sequential B&L algorithm, all weapons
have been assigned. The assignment solution produced by
this implementation will be the minimum-cost optimal as-
signment

4. RESULTS

The four parallel implementations of the assignment al-
gorithm were evaluated for target-to-weapon ratios of 1 :I,
5:1, and 1O:l. These ratios are representative of the SDI en-
vironment during the early boost-phase of an engagement.
For each ratio, the number of weapons was chosen to range
from 32 to 128. The nerformance of each narallel imnle-

I

mentation was evaluated for each combination of number of
weapons to be assigned and target-to-weapon ratio. The re-
sults of the evaluations, discussed below, were shown to be
statistically valid by replicating the evaluations over a large
set of cost matrices.

The computation times varied widely between the differ-
ent implementations, as shown in Table 1 and Figure 3 (for
96 weapons and 960 targets). As a benchmark for compar-
ison, the time required to reach the optimal soluti~~~l on a
single processor is given by the level 1: one processor’ ,.ase in
the table. The fastest computation times were consistently
those of the level 1 and the level 2 programs, while the slower
times were where those of the level 3 and level 4 programs.
This difference in performance is primarily attributed to the
volume and frequency of communications between proces-
sors in the different implementations. One drawback of the
faster solutions is that they are not optimal because of re-
dundancies, weapons idled, and reassignments to other tar-
gets performed by the different implementations. However,
in most cases, the advantage of fast processing times allows
manv iterations of sub-optimal assignments to be computed
in the time required to compute only one optimal solution.
In the level 3 and 4 implementations, the cost of doing large
volumes of slow interprocessor communications dominates
the actual computation time within the processors. As the

level of coordination and communications increases, the av-
erage computation times also increases but at much slower
rate. As a result, if the interprocessor communications de-
lays could be significantly reduced, as predicted for the iPSC
V2, implementations of levels 3 and 4 might become more
useful.

Although processing times and speedups were the main
measures of performance emphasized, the manner in which
the available weapons are utilized is also very important. If
an algorithm is extremeIy fast but yields poor weapons uti-
lization, it will not be very useful. Weapon effectiveness is
defined as the percentage bf weapons assigned to a unique
target. All of the imolementations oroduced weanon effec-
tiv&ess above 80% for the lo:1 and 5:l weapon-to-‘target ra-
tios. An example of the results for a IO:1 target-to-weapon
ratio is shown in Table 2. The best overall assignment per-
formance, in terms of computational speed and weapons ef-
fectiveness, was obtained with the level 2 implementation.
In most all 5:l and 1O:l ratio cases, it wasted less than 10%
of the weapons. In general, the level 2 program idled more
weapons than it wasted while yielding effectiveness percent-
ages comparable to the other implementations. The idling of
weapons rather than wasting them is important, especially
when weapons are scarce. Idled weapons can be withheld
until a later assignment iteration when they may be utilized
in a more cost effective manner.

5. CONCLUSIONS

Achieving fast and efficient results from a parallel pro-
cessing system appears to rely on three fundamental rules:
(1) The problem must be partitionable into a number of in-
dependent subproblems. (2) The communications between
the processing elements must be kept to a minimum. (3)
The, computations performed by each processor must be ap-
proximately equal and simultaneous.

This paper has presented four parallel implementations of
resource allocation algorithms and evaluated their usefulness
in an SDI-oriented environment. The first three implemen-
tations partitioned the overall cost matrix into independent
submatrices and solved each on independent processors. The
differences in the imnlementations focused on the level of
interprocessor commt;nications that was used to identify re-
dundant assignments and, possible, reallocate the duplicates.
The fourth implementation decomposed the serial B&L al-
gorithm for execution on a parallel processor. The factor
that limited this implementation’s performance was the long
delays incurred during periods of interprocessor communica-
tions. Examining the ibur implementations in light of the
tradeoff between the comoutational soeed and the effective-
ness of the resultant assignments, I&e1 2, which involved
a modest amount of coordination and communication, pro-
duced the best overall performance. The approach used in
level 2 would easily map onto a geographically distributed
SD1 architecture, if such a system were to be deployed.

References

[BoL7la] Bourgeois, L. and J. Lassalle. “An Extension of
the Munkres Algorithm for the Assignment Prob-
lem to Rectangular Matrices,” Communications
of the ACM, 14: pp. 802-804 (December 1971).

[BoL71 b] -. “Algorithm 415: Algorithm for the Assign-
ment Problem (Rectangular Matrices)[H]” Com-
munications of the ACM, 14: pp. 805-806 (De-
cember 1971).

1233

[Chu57] Churchman, C.W., R.L. Ackoff, and E.L. Amoff.
Introduction to Operations Research, New York:
John Wiley and Sons Incorporated, 1957.

[Cve87] Cvetanovic, Z. “The Effects of Problem Parti-
tioning, Allocation, and Granularity on the Per-
formance of Multiple-Processor Systems,” IEEE
Transactions on Computers, C-36: pp. 421-432
(April 1987).

[Kuh55] Kuhn, H.W. “The Hungarian Method for the
Assignment Problem,” Naval Research Logistics
Quarterly, 2: pp. 83-97 (1955).

[Kur62] Kurtzberg, J. :W. “On Approximation Methods
for the Assignment Problem,” Journal of the
ACM, 9: pp. 43.9-439 (1962).

[Odo85] Odom, P. A Method for Improving Technology
Research and Development Decisions Regarding
BMD and ASAT, Volume III - User Manual
and Simulation Description: Fir& Report, Con-
tract DAAHOl-84-C-0486. Huntsville, Alabama:
DESE Research and Engineering, Incorporated,
July 1985 (AD-B093915).

[SeD85] Seward, W.D., and N.J. Davis IV. “Opportunities
and Issues for Parallel Processing in SD1 Battle
Management/CS,” Presented at the AIAA Com-
puters in Aerospace V Conference, October 1985.

HOST

ASSIGN #1 ASSIGN #2 - . - ASSIGN #

Figure 1. Processor Communication Paths for the first
Level

CONTROL #2

ASSGN ASSGN

Figure 2. Communications paths for levels 2 and 3

1234

Y

4

90--

so--

70--

60--

so--

40--

WI Rble 1: Proceyskinzi m

960

l-

30.. ,,..” . ..a
_..’

,._.‘.
,...”

20.-
,..w..‘~

,_...
,....’

.,..” .,+,. * *

lo-- l ...” ._...''
. ...‘.

;evel
1

1
1
1
1
1

2
2
2
2
2
2

3
3
3
3
3
3

4
4
4
4 -

:apons

96
96
96
96
96
96

96
96
96
96
96
96

96
96
96
96
96
96

96
96
96
96

960
s&I
960
960
960

960
960
960
960
960
960

960
960
960
960
960
960

960
960
960
960

-- .,.*- *:...”
..*..a..”

,..‘.

. va.::. ::::::::. . ..a... .,.....a
4X

4 6 12 16 P 24 23 32 36

Figure.3. Speedup over a single-node level one
implementation

es of the Parallel Imple
Cntrl Proc Cntrl Tot Proc

I I 1

nentation
-rzqq

15.0570
7.5195
3.7635
1.8891
0.9518
0.4836

2
4
8

16
32

2 2 6 4.615
2 4 10 2.359
2 8 18 1.226
4 2 12 2.305
4 4 20 1.176

8 2 24 1.163

2 2 6 4.8910
2 4 10 8.4135

2 8 18 I 1.6000
4 2 12 7.6133
4 4 20 9.0953

Table 2: Assignment Results of the Parallel Implementations
Level W.%p-XlS Tar@% Cntrl Proc/Cntrl Tot Num Proc % Effective % Idle % Wsted

1 96 SW 1 100.0 0.0
1 96 960 - 2 92.1 7.9
1 96 SW 4 87.7 12.3
1 96 960 8 84.6 15.4
1 96 960 16 83.3 - 16.7
1 96 960 - 32 82.5 17.5
2 96 964 2 2 6 87.7 4.8 7.5
2 96 960 2 4 10 84.6 7.9 7.5
2 96 960 2 8 18 83.3 9.4 7.3
2 96 960 4 2 12 84.6 3.1 12.3

2
2
3
3
3
3

L!
3
3
4
4
4
4
4

96 SW 4 4 20 63.3 4.6 12.1
96 960 8 2 24 83.3 1.5 15.2
96 960 2 2 6 89.8 - 10.2
96 960 2 4 10 88.1 11.9
96 960 2 8 18 87.3 12.7
96 960 4 2 12 86.3 13.7
96 960 4 4 20 85.2 14.8
96 960 8 2 24 84.0 16.0
96 960 2 100.0
96 960 4 100.0
96 960 8 loo.0
96 SW 16 lw.o
96 960 32 100.”

1235

