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Abstract. For the hypercube, an autonomous 
physically interconnected file system is proposed. 
The resulting distributed file system consists of 
an I/O organization and a software interface. The 
system is loosely-coupled architecturally but from 
operating systems point of view a tightly-coupled 
system is formed in which interprocessor messages 
are handled differently from file accesses. A 
matrix multiplication algorithm is given to show 
how the distributed file system is utilized. 

1 Introduction 

Concurrent computer systems are 
typically applied to very 
partitionable 

large, 
computationally demanding 

scientific problems. These problems are 
very large either because a large number 
of computations (work) are done for each 
data element or because there is a very 
large number of data elements (volume) or 
both. This usually results in large, 
frequent data movements, increasing the 
I/O load. Dividing the problem among a 
large number of processors can clearly cut 
the amount of (work) time required to do a 
problem. Partitioning a problem (volume) 
among many computing elements can add I/O 
to an already large data volume problem. 

Hypercube systems represent a 
particular form of interconnected 
homogeneous machines [l], [2]. The 
principal advantage is in its simple, 
short, message passing capability, taken 
together with an easily scalable form. 
While it is clear that work time can be 
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cut and that one can deal with larger work 
problems, the issue of data volume and I/O 
remain. 

The decomposition of the work 
required in the hypercube form can be 
independent of the logical decomposition 
of the data volume. If the data volume is 
memory bound an artificial repartition of 
the process space is required. For this 
reason, the logical introduction of a 
distributed file system is required. The 
topology of a distributed file system can 
be independent of the process distribution 
topology. Here, however, an embedded, 
autonomous sub-hypercube disk-based file 
system is proposed. The system does not 
replace message based transfers among 
processors. It supplements them with 
distributed file transfers. 

Recently, the I/O problem has been 
considered and termed as the concurrent 
I/O problem [ 33 . A paper at the third 
hypercube conference [4] proposes a system 
similar tc the system, independently 
developed and proposed in this paper. 
Witkowski et al suggest a Concurrent I/O 
(CIO) system and a hypercube Concurrent 
File System ('=-I for high bandwidth 
concurrent I/O. A CIO node connects a 
subcube of processing nodes to the outside 
world. A number of CIO nodes are 
interconnected in a hypercube fashion. 

Commercial hypercube manufacturers 
are following the same path to have more 
I/O utilization. The NCUBE NChannelTM 
provides high speed parallel I/O [5]. I/O 
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channels connect the hypercube array to a 
number of Nchannel I/O boards. Each I/O 
channel supports a single disk controller. 
The disk system software running on each 
I/O board forms a h.ierarchical file system 
and a "disk farm" clan be configured. 

Intel iPSC/z has one communication 
link unused per node for I/O other than 
interprocessor communication I 0 [6]. It 
also allows a high-speed iLBXT 1(; interface 
board to be attached to each node. 

The FPS Mark II T Series hypercubes 
have a system boa:rd on the system ring 
[71 f The board has a disk which can hold 
data for computation. 

2 Hypercube Algorithms 

CALTECH experience with hypercubes 
has pointed out four factors for efficient 
concurrent computation [81. First, 
communication time especially due to 
hardware restrictions 
Direct-ConnectTM routEzt ebmeploryeedduce% 
iPSC/2 aims at this point 
induced 

[91* Second, 
parallel overhead due to 

synchronization, new programming language 
and operating systems constructs must be 
low. Third, the load balance of the 
application should not be too difficult to 
maintain during the computation. Fourth, a 
low ratio of the communication to the 
computation is a necessity for high 
efficiencies [8]. Side effects of these 
are that communication and concurrency 
compete with each other and load balancing 
and communication compete with each other. 

Hypercube applications have the 
properties of high concurrency, natural 
load balance, a regular communication 
graph, little communication and a large 
data space. Each data element is reused 
many times i.e. many accesses to each 
individual data element are made. This 
coupled with th.e fact that many 
calculations are done per data element 
results in a large number of computations 
for the application. 

The computat:ton pattern of the 
applications makes use of chunks of 
sequential data elements at any time, 
without imposing difficulties and changes 
on the communication pattern of the 
application. Many large strips of data 
move simultaneously the net effect of 
which is that there is very large, coarse 
grain, data flow in the system at any 
moment. 

The domain decomposition phase of 
algorithm development determines how the 
communication graph of the algorithm 
matches the hypercube network, the load 

balance and the concurrency. It is because 
of these reasons that decomposition has 
become a frequently discussed subject in 
hypercube literature. It is the aim of 
this paper to show that an optimum 
decomposition is not enough and current 
hypercubes can be more efficient and more 
powerful if they are provided with a 
distributed file system. 

3 The Need for more I/O 

The nature of hypercube processing is 
that each node can independently have I/O. 
I/O bandwidth in hypercubes is ideally 
proportional to the number of nodes. Thus, 
hypercubes offer higher I/O capability 
than serial computers and some other 
parallel computers. The scalability 
property of hypercubes makes them suitable 
for larger problems that as new nodes are 
added the memory size increases linearly 
and communication time is not affected as 
much. But for hypercubes the I/O 
potential must be used efficiently in 
order to have a real computing power. 

One could add more and more memory at 
each node in order to solve some of the 
I/O issues. But, this is not an optimum 
solution since it is possible to find 
larger and larger applications for which 
the hypercube is too small. Even if these 
larger applications can be run, it will be 
at lower speeds. The reason is that still 
these large memories are not used 
efficiently. Long messages are needed for 
reading and writing of these large 
memories. 

At some point the logical memory 
hierarchy of file is both appropriate to 
and needed by hypercube systems. That is, 
at some point and with some problems, one 
must deal with files and large disk 
systems. Current systems treat a hypercube 
system as a backend processor with all of 
the basic file management work being done 
by a single front end computer. A large 
disk attached to a single front end forms 
a type of single point global file system. 
The centralized disk reduces the problem 
to the one seen in shared memory systems: 
A single point possible bottleneck is 
created in the context of a system 
designed to distribute work. 

The issue of file systems is seen 
principally at startup time, when large 
amounts of data are scattered to 
appropriate processors. Application 
programs are written such that all data is 
sent to the Processing Nodes (PNs) before 
PNs actually start computation. After 
that, interprocess communications are 
treated as message passing. When access to 
a file has to be made, one invokes the 
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front end processor. To the degree that a 
conceptual piece of a file exists in the 
memory of different processors one can 
move them about as if they are very long 
messages. This causes long startup delays 
and ultimately limits the scalability of 
the machine form. 

In order to solve the basic physical 
I/O problem, one could attach a small disk 
to each processor. This, however, is 
expensive and not scalable. It does not 
take into account the need for different 
clusters of processors to cooperatively 
work on similar pieces or phases of 
related data objects. 

Scaling up a hypercube for higher 
speeds has been possible as noted in the 
literature. Such universal programs [lo] 
do not, however, reflect the time to 
distribute data from the intermediate host 
(IH) to the PNs and the time to gather 
results from the PNs to the IH. These 
programs are that before the computation 
starts the whole data domain is 
partitioned. After the start of the 
execution, there is virtually no new data 
distribution from the IH. Such a scheme 
certainly sets a limit on the size of 
applications based on the size of each 
local memory. 

During a hypercube program execution 
each PN gets an equal part of the domain 
for load balancing purposes. Some PNs may 
need some part(s) of the initially 
distributed data volume that are stored on 
other PNs. Some PNs may need 
(intermediate) results produced by other 
PNs. These large data block transfers are 
made by sending messages through PN-PN 
links. 

In conventional hypercube systems 
there is little notion of files for the 
processing nodes. Messages are treated 
like files. One must deal with files. 
Messages are not files. The I/O problem is 
worsened by the fact that using more PNs 
results in more communication of the type 
mentioned above. This is because the more 
partitioning of a problem, the larger the 
data flow, i.e. more long messages have to 
be sent. Now the system is such that 
a) There are long startup delays. b) There 
are long communication times. c) The speed 
is slower. d) There is a low throughput. 
e) The system is not scalable. f) The 
efficiency is lower. g) Programs are not 
universal. 

4 The Distributed File System 

We suggest a distributed file system, 
one in which large volumes are distributed 
to several disks, interconnected to each 

other and at the same time with specific 
disks more tightly coupled to clusters of 
processors, or pieces of the hypercube. 

The file concept is important in 
concurrent systems as it is in sequential, 
array and pipelined computers. A file is 
not more memory. A file is different from 
a message. A file is different from a disk 
as much as a memory can be distinguished 
from a disk. Files cannot be treated the 
way variables contained in memories are 
treated. 

The I/O organization and the software 
interface are the two aspects of this 
research. The distributed hypercube file 
system must be designed so that 

i) The whole system is scalable. 
ii) The concurrency is not lowered. 

iii) The communication is not increased. 
iv) Load balancing is not disturbed. 

A schematic description of the I/O 
organization is given in figure 1. A 
number of sets of disks are 
interconnected. Each set of disks is 
connected to a cluster of PNs. Each set of 
disks is controlled by dedicated hardware: 
a Disk Node (DN). The host is connected to 
all DNs. 

The I/O organization and the software 
interface that supports the I/O 
organization are such that files which are 
large data volumes are distributed across 
the DNs. Each DN has a number of blocks of 
a file. Large data transfers are made in 
file blocks. Block transfers involve PN-DN 
and DN-DN links. The interprocessor links, 
PN-PN links, are not used for file block 
transfers. At any time any block of any 
file can be accessed by any of the PNs, 
the DNs or the IH. The system makes file 
sharing easier especially among the PNs. 

The following points are considered 
for satisfying the above four 
requirements: 

a) DNs should have a low degree. Their 
interconnection must be simple. 

b) Maximum distance between any two DNs 
must be small. 

c) Routing among the DNs must be simple 
and must not require global 
information. 

d) Each DN must be simple and possibly 
identical to form another set of 
homogeneous elements in the system. 

e) The distance between any pair of a 
PN and a DN must be small. 

DNS are not passive or slave when 
compared with PNs. Their software includes 
the software interface of the distributed 
file system. They can make decisions for 
efficient use of files. The software 
interface is basically concerned with 
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buffer management, naming and directory 
management. It is implemented as a file 
service which consists of a number of file 
servers each one of which runs on a DN and 
independent of other file servers. File 
servers are responsible for coherence, 
contention, locking of blocks (and files 
if necessary) and synchronization. A file 
server can locate any block of any file 
and access it. 

The efficiency of the file system is 
affected by the way disk node buffers are 
managed. Each of these buffers occupies 
most of the local memory of a DN. Keeping 
most recently used file blocks in the 
buffer is important for file sharing. 
Sometimes a PN, PNx, can request a block 
on another DN, DNb. The closest DN to PNx, 
DNa, requests the block from DNb. Since 
the PNs connected to DNa will possibly 
request the same b.lock from DNa, it is 
most important that this block be kept as 
long as possible in the DNa's buffer to 
prevent unnecessary disk accesses and DNb- 
DNa transfer(s). The priority scheme 
sought is such that a block from the most 
distant DN has the highest priority. 
However, the blocks of a DN just read from 
its disk should not be discarded, as they 
will be shared by the PNs connected to 
this DN. Different buffer management 
mechanisms have been currently 
investigated. 

The design of the I/O organization 
and the software interface must clearly be 
determined in relation to applications, 
for it is the flow of data files at the 
request of the application's needs that 
must determine the appropriate number of 
processors for each disk and also the file 
flow among the interconnected disks. The 
file system must be such that for the PNs 
the concept ltfileit must be meaningful. 

The interconnection of DNs affects 
the scalability of the system and file 
usage for different applications. 
Intuition indicates another hypercube of 
smaller dimension than the dimension of 
the PN hypercube. However, our research 
will try other networks, such as mesh and 
ring. Which DN should be connected to 
which PN and which blocks should be stored 
on which DN depend on the application 
running. They depend on the locality of PN 
programs. The file domain of each PN must 
be mirrored closely by them. File blocks 
needed by a cluster of PNs should be on 
the closest DN so that file access time is 
not long. 

A brief explanation of the matrix 
multiplication algorithm developed for a 
hypercube with a file system is to be 
given. Two N x N matrices A and B are 
multiplied and the result is contained by 
C. Each matrix is a file and each row is a 
single file block. The physical system is 
the same as the one given in figure 1. A 
hypercube connection is assumed among the 

DNs. The algorithm has the following 
steps: 

The IH distributes A and B matrices to 
the DNs. The B matrix is completely 
stored on each DN as shown in figure 
2. This is not possible with matrix 
multiplication algorithms written 
for conventional hypercubes. The way 
the C file is expected on the DNs is 
also shown in figure 2. 

Each DN distributes an equal amount of 
the A matrix to its PNs as shown in 
figure 3. 

Each PN calculates the assigned rows 
of matrix C by multiplying their A 
rows with all the rows of matrix B. 
Each PN reads row I of B from its DN 
and multiplies the row with the Ith 
element of the A matrix. When a PN 
finishes, it returns its results to 
its DN. 

When a DN receives results from its 
PNs, it sends the results to the IH. 

The above algorithm does not set 
limit on the size of the matrices. If the 
size is too large for the hypercube of 
PNs, the rest of the matrices is read from 
the IH while the PNs are involved in 
computations in step 3. The efficiency of 
the system is increased due to the 
overlapping or macro pipelining [ll] and 
can be increased more by more overlapping 
such as steps 2, 3 and 4. 

Also note the sharing of file blocks 
in the third step of the algorithm. The 
PNs of /each subcube share the same blocks 
and need them at approximately the same 
time. The DN which responds to the first 
block request from a PN by reading from 
its disk, will respond to the requests for 
the same block from its other PNs without 
reading from its disk but by reading from 
its buffer. 

The development of this algorithm has 
shown a new fact about writing algorithms 
for a hypercube with a file system. The 
decomposition process which is influenced 
by load balancing, concurrency and 
communication is also influenced by the 
nature of file blocks. The process now has 
to consider efficient use of blocks 
distributed over the DNs. A block, a 
sequential set of data elements, must be 
used in enough number of computations to 
justify its movement. This is very 
dependent on how the blocks partition the 
data domain. (Should a block be a row, a 
column or a submatrix ?) 

A hypercube simulator has been 
obtained from ORNL [12]. It simulates a 
hypercube similar to the Intel iPSC 
hypercube. It helps programmers develop 
and debug hypercube programs which must be 
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written in FORTRAN or C. It has a post- 
processor which produces performance 
results about the execution of application 
programs. The simulator has some machine 
language code that forces the user to run 
the simulator on a VAX/ll-780 machine or 
alike. 

The ORNL simulator cannot simulate a 
hypercube with a file system. It has been 
modified so that at the request of the 
user, it can simulate a hypercube with a 
file system [13]. Currently the simulator 
is used for developing a1gorithms and for 
obtaining performance results for both 
types of hypercubes. 

5 Conclusion 

A distributed hypercube file system 
proposed 

t:adeoff. 
for a better space/time 

The I/O organization of the 
system is that a number of disk nodes are 
interconnected and each disk node is 
connected to a subcube of processing 
nodes. Files are distributed across the 
disk nodes and large data transfers are 
accomplished in file blocks between a disk 
node and a processing node without using 
any interprocessor link. Message transfers 
are supplemented b!y file block transfers 
for data transfers. The interconnection of 
disk nodes enables any processing node to 
access any file block fast. The software 
interface of the file system manages disk 
node buffers and directories. Coherence, 
synchronization and locking problems are 
resolved by the software interface. 

The real advantage of the presented 
file system is that it expands the class 
of problems that can be applied to a 
scalable hypercube system. It is apparent 
that such real-time problems as ' 
processing require immense amount oflrn?/St 
bandwidth and the presented hypercube can 
support such applications. The value of a 
hypercube with a file system will be 
apparent more when complete applications 
are run. A complete application has a 
number of stages. Each stage may have a 
different decomposition. A hypercube 
system must be able to switch from one 
decomposition to another decomposition 
fast. This process will be easier in the 
system proposed in this paper. Further 
advantages of the file system, if 
projected, can be in implementing virtual 
memory for processing nodes. 
Multiprogramming and multiprocessing of 
subcubes and individual processing nodes 
and in implementing such communication 
types as global send, scatter and gather 
[141. Dynamic load balancing is possible 
through DN-DN links. Each disk node does 
not have to be identical. Instead, some 
may be specialized in certain applications 

as mentioned in [4]. A separate host can 
be connected to each disk node. Therefore, 
these new disk nodes can be renamed as 
Extension Nodes (ENS). 

Work is underway to determine the 
best way of interconnecting the disk 
nodes, connecting a disk node to a subcube 
of processing nodes, managing disk node 
buffers and directories. Besides the 
matrix multiplication algorithm three 
other problems are chosen to study the 
effect of a distributed file system. These 
problems are matrix inversion, Cholesky 
factorization and the Fast Fourier 
Transform. Algorithms for these problems 
are being developed for a hypercube with 
and without a distributed file system. New 
metrics and formulations for the 
distributed hypercube file system will be 
developed to predict the performance of 
the system. 
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