
A DISTRIBUTED HYPERCUBE FILE SYSTEM

Robert J. Flynn and Haldun Hadimioglu

Electrical Engineering and Computer Science Department
Polytechnic University

333 Jay Street
Brooklyn, New York 11201

Abstract. For the hypercube, an autonomous
physically interconnected file system is proposed.
The resulting distributed file system consists of
an I/O organization and a software interface. The
system is loosely-coupled architecturally but from
operating systems point of view a tightly-coupled
system is formed in which interprocessor messages
are handled differently from file accesses. A
matrix multiplication algorithm is given to show
how the distributed file system is utilized.

1 Introduction

Concurrent computer systems are
typically applied to very
partitionable

large,
computationally demanding

scientific problems. These problems are
very large either because a large number
of computations (work) are done for each
data element or because there is a very
large number of data elements (volume) or
both. This usually results in large,
frequent data movements, increasing the
I/O load. Dividing the problem among a
large number of processors can clearly cut
the amount of (work) time required to do a
problem. Partitioning a problem (volume)
among many computing elements can add I/O
to an already large data volume problem.

Hypercube systems represent a
particular form of interconnected
homogeneous machines [l], [2]. The
principal advantage is in its simple,
short, message passing capability, taken
together with an easily scalable form.
While it is clear that work time can be

Permission to copy without fee all or partofthis material is granted
provided that the copies are not made or distributed .for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 ACM 1988 0-89791-273-X/88/0007/1375 $1 SO

cut and that one can deal with larger work
problems, the issue of data volume and I/O
remain.

The decomposition of the work
required in the hypercube form can be
independent of the logical decomposition
of the data volume. If the data volume is
memory bound an artificial repartition of
the process space is required. For this
reason, the logical introduction of a
distributed file system is required. The
topology of a distributed file system can
be independent of the process distribution
topology. Here, however, an embedded,
autonomous sub-hypercube disk-based file
system is proposed. The system does not
replace message based transfers among
processors. It supplements them with
distributed file transfers.

Recently, the I/O problem has been
considered and termed as the concurrent
I/O problem [33 . A paper at the third
hypercube conference [4] proposes a system
similar tc the system, independently
developed and proposed in this paper.
Witkowski et al suggest a Concurrent I/O
(CIO) system and a hypercube Concurrent
File System ('=-I for high bandwidth
concurrent I/O. A CIO node connects a
subcube of processing nodes to the outside
world. A number of CIO nodes are
interconnected in a hypercube fashion.

Commercial hypercube manufacturers
are following the same path to have more
I/O utilization. The NCUBE NChannelTM
provides high speed parallel I/O [5]. I/O

1375

http://crossmark.crossref.org/dialog/?doi=10.1145%2F63047.63093&domain=pdf&date_stamp=1989-01-03

channels connect the hypercube array to a
number of Nchannel I/O boards. Each I/O
channel supports a single disk controller.
The disk system software running on each
I/O board forms a h.ierarchical file system
and a "disk farm" clan be configured.

Intel iPSC/z has one communication
link unused per node for I/O other than
interprocessor communication I 0 [6]. It
also allows a high-speed iLBXT 1(; interface
board to be attached to each node.

The FPS Mark II T Series hypercubes
have a system boa:rd on the system ring
[71 f The board has a disk which can hold
data for computation.

2 Hypercube Algorithms

CALTECH experience with hypercubes
has pointed out four factors for efficient
concurrent computation [81. First,
communication time especially due to
hardware restrictions
Direct-ConnectTM routEzt ebmeploryeedduce%
iPSC/2 aims at this point
induced

[91* Second,
parallel overhead due to

synchronization, new programming language
and operating systems constructs must be
low. Third, the load balance of the
application should not be too difficult to
maintain during the computation. Fourth, a
low ratio of the communication to the
computation is a necessity for high
efficiencies [8]. Side effects of these
are that communication and concurrency
compete with each other and load balancing
and communication compete with each other.

Hypercube applications have the
properties of high concurrency, natural
load balance, a regular communication
graph, little communication and a large
data space. Each data element is reused
many times i.e. many accesses to each
individual data element are made. This
coupled with th.e fact that many
calculations are done per data element
results in a large number of computations
for the application.

The computat:ton pattern of the
applications makes use of chunks of
sequential data elements at any time,
without imposing difficulties and changes
on the communication pattern of the
application. Many large strips of data
move simultaneously the net effect of
which is that there is very large, coarse
grain, data flow in the system at any
moment.

The domain decomposition phase of
algorithm development determines how the
communication graph of the algorithm
matches the hypercube network, the load

balance and the concurrency. It is because
of these reasons that decomposition has
become a frequently discussed subject in
hypercube literature. It is the aim of
this paper to show that an optimum
decomposition is not enough and current
hypercubes can be more efficient and more
powerful if they are provided with a
distributed file system.

3 The Need for more I/O

The nature of hypercube processing is
that each node can independently have I/O.
I/O bandwidth in hypercubes is ideally
proportional to the number of nodes. Thus,
hypercubes offer higher I/O capability
than serial computers and some other
parallel computers. The scalability
property of hypercubes makes them suitable
for larger problems that as new nodes are
added the memory size increases linearly
and communication time is not affected as
much. But for hypercubes the I/O
potential must be used efficiently in
order to have a real computing power.

One could add more and more memory at
each node in order to solve some of the
I/O issues. But, this is not an optimum
solution since it is possible to find
larger and larger applications for which
the hypercube is too small. Even if these
larger applications can be run, it will be
at lower speeds. The reason is that still
these large memories are not used
efficiently. Long messages are needed for
reading and writing of these large
memories.

At some point the logical memory
hierarchy of file is both appropriate to
and needed by hypercube systems. That is,
at some point and with some problems, one
must deal with files and large disk
systems. Current systems treat a hypercube
system as a backend processor with all of
the basic file management work being done
by a single front end computer. A large
disk attached to a single front end forms
a type of single point global file system.
The centralized disk reduces the problem
to the one seen in shared memory systems:
A single point possible bottleneck is
created in the context of a system
designed to distribute work.

The issue of file systems is seen
principally at startup time, when large
amounts of data are scattered to
appropriate processors. Application
programs are written such that all data is
sent to the Processing Nodes (PNs) before
PNs actually start computation. After
that, interprocess communications are
treated as message passing. When access to
a file has to be made, one invokes the

1376

front end processor. To the degree that a
conceptual piece of a file exists in the
memory of different processors one can
move them about as if they are very long
messages. This causes long startup delays
and ultimately limits the scalability of
the machine form.

In order to solve the basic physical
I/O problem, one could attach a small disk
to each processor. This, however, is
expensive and not scalable. It does not
take into account the need for different
clusters of processors to cooperatively
work on similar pieces or phases of
related data objects.

Scaling up a hypercube for higher
speeds has been possible as noted in the
literature. Such universal programs [lo]
do not, however, reflect the time to
distribute data from the intermediate host
(IH) to the PNs and the time to gather
results from the PNs to the IH. These
programs are that before the computation
starts the whole data domain is
partitioned. After the start of the
execution, there is virtually no new data
distribution from the IH. Such a scheme
certainly sets a limit on the size of
applications based on the size of each
local memory.

During a hypercube program execution
each PN gets an equal part of the domain
for load balancing purposes. Some PNs may
need some part(s) of the initially
distributed data volume that are stored on
other PNs. Some PNs may need
(intermediate) results produced by other
PNs. These large data block transfers are
made by sending messages through PN-PN
links.

In conventional hypercube systems
there is little notion of files for the
processing nodes. Messages are treated
like files. One must deal with files.
Messages are not files. The I/O problem is
worsened by the fact that using more PNs
results in more communication of the type
mentioned above. This is because the more
partitioning of a problem, the larger the
data flow, i.e. more long messages have to
be sent. Now the system is such that
a) There are long startup delays. b) There
are long communication times. c) The speed
is slower. d) There is a low throughput.
e) The system is not scalable. f) The
efficiency is lower. g) Programs are not
universal.

4 The Distributed File System

We suggest a distributed file system,
one in which large volumes are distributed
to several disks, interconnected to each

other and at the same time with specific
disks more tightly coupled to clusters of
processors, or pieces of the hypercube.

The file concept is important in
concurrent systems as it is in sequential,
array and pipelined computers. A file is
not more memory. A file is different from
a message. A file is different from a disk
as much as a memory can be distinguished
from a disk. Files cannot be treated the
way variables contained in memories are
treated.

The I/O organization and the software
interface are the two aspects of this
research. The distributed hypercube file
system must be designed so that

i) The whole system is scalable.
ii) The concurrency is not lowered.

iii) The communication is not increased.
iv) Load balancing is not disturbed.

A schematic description of the I/O
organization is given in figure 1. A
number of sets of disks are
interconnected. Each set of disks is
connected to a cluster of PNs. Each set of
disks is controlled by dedicated hardware:
a Disk Node (DN). The host is connected to
all DNs.

The I/O organization and the software
interface that supports the I/O
organization are such that files which are
large data volumes are distributed across
the DNs. Each DN has a number of blocks of
a file. Large data transfers are made in
file blocks. Block transfers involve PN-DN
and DN-DN links. The interprocessor links,
PN-PN links, are not used for file block
transfers. At any time any block of any
file can be accessed by any of the PNs,
the DNs or the IH. The system makes file
sharing easier especially among the PNs.

The following points are considered
for satisfying the above four
requirements:

a) DNs should have a low degree. Their
interconnection must be simple.

b) Maximum distance between any two DNs
must be small.

c) Routing among the DNs must be simple
and must not require global
information.

d) Each DN must be simple and possibly
identical to form another set of
homogeneous elements in the system.

e) The distance between any pair of a
PN and a DN must be small.

DNS are not passive or slave when
compared with PNs. Their software includes
the software interface of the distributed
file system. They can make decisions for
efficient use of files. The software
interface is basically concerned with

1377

buffer management, naming and directory
management. It is implemented as a file
service which consists of a number of file
servers each one of which runs on a DN and
independent of other file servers. File
servers are responsible for coherence,
contention, locking of blocks (and files
if necessary) and synchronization. A file
server can locate any block of any file
and access it.

The efficiency of the file system is
affected by the way disk node buffers are
managed. Each of these buffers occupies
most of the local memory of a DN. Keeping
most recently used file blocks in the
buffer is important for file sharing.
Sometimes a PN, PNx, can request a block
on another DN, DNb. The closest DN to PNx,
DNa, requests the block from DNb. Since
the PNs connected to DNa will possibly
request the same b.lock from DNa, it is
most important that this block be kept as
long as possible in the DNa's buffer to
prevent unnecessary disk accesses and DNb-
DNa transfer(s). The priority scheme
sought is such that a block from the most
distant DN has the highest priority.
However, the blocks of a DN just read from
its disk should not be discarded, as they
will be shared by the PNs connected to
this DN. Different buffer management
mechanisms have been currently
investigated.

The design of the I/O organization
and the software interface must clearly be
determined in relation to applications,
for it is the flow of data files at the
request of the application's needs that
must determine the appropriate number of
processors for each disk and also the file
flow among the interconnected disks. The
file system must be such that for the PNs
the concept ltfileit must be meaningful.

The interconnection of DNs affects
the scalability of the system and file
usage for different applications.
Intuition indicates another hypercube of
smaller dimension than the dimension of
the PN hypercube. However, our research
will try other networks, such as mesh and
ring. Which DN should be connected to
which PN and which blocks should be stored
on which DN depend on the application
running. They depend on the locality of PN
programs. The file domain of each PN must
be mirrored closely by them. File blocks
needed by a cluster of PNs should be on
the closest DN so that file access time is
not long.

A brief explanation of the matrix
multiplication algorithm developed for a
hypercube with a file system is to be
given. Two N x N matrices A and B are
multiplied and the result is contained by
C. Each matrix is a file and each row is a
single file block. The physical system is
the same as the one given in figure 1. A
hypercube connection is assumed among the

DNs. The algorithm has the following
steps:

The IH distributes A and B matrices to
the DNs. The B matrix is completely
stored on each DN as shown in figure
2. This is not possible with matrix
multiplication algorithms written
for conventional hypercubes. The way
the C file is expected on the DNs is
also shown in figure 2.

Each DN distributes an equal amount of
the A matrix to its PNs as shown in
figure 3.

Each PN calculates the assigned rows
of matrix C by multiplying their A
rows with all the rows of matrix B.
Each PN reads row I of B from its DN
and multiplies the row with the Ith
element of the A matrix. When a PN
finishes, it returns its results to
its DN.

When a DN receives results from its
PNs, it sends the results to the IH.

The above algorithm does not set
limit on the size of the matrices. If the
size is too large for the hypercube of
PNs, the rest of the matrices is read from
the IH while the PNs are involved in
computations in step 3. The efficiency of
the system is increased due to the
overlapping or macro pipelining [ll] and
can be increased more by more overlapping
such as steps 2, 3 and 4.

Also note the sharing of file blocks
in the third step of the algorithm. The
PNs of /each subcube share the same blocks
and need them at approximately the same
time. The DN which responds to the first
block request from a PN by reading from
its disk, will respond to the requests for
the same block from its other PNs without
reading from its disk but by reading from
its buffer.

The development of this algorithm has
shown a new fact about writing algorithms
for a hypercube with a file system. The
decomposition process which is influenced
by load balancing, concurrency and
communication is also influenced by the
nature of file blocks. The process now has
to consider efficient use of blocks
distributed over the DNs. A block, a
sequential set of data elements, must be
used in enough number of computations to
justify its movement. This is very
dependent on how the blocks partition the
data domain. (Should a block be a row, a
column or a submatrix ?)

A hypercube simulator has been
obtained from ORNL [12]. It simulates a
hypercube similar to the Intel iPSC
hypercube. It helps programmers develop
and debug hypercube programs which must be

1378

DN3
(12,

DN2
(8,9

13,14,15)

',lO,ll)

1 r t----DNl
1 ; 1 4~HW’

(0,1,2,3)

6

Figure 1: The I/O organization of the hypercube file system

C A B

Figure 2: The distribution of all the matrices on the DNs

PNO
I

PNl
PN2
PN3

I i

C

*
PNO
PNl
PN2
PN3

H
A

DNO

DNl

DN3

DN2

Figure 3: The distribution of the A and C matrices on the PNs

1379

written in FORTRAN or C. It has a post-
processor which produces performance
results about the execution of application
programs. The simulator has some machine
language code that forces the user to run
the simulator on a VAX/ll-780 machine or
alike.

The ORNL simulator cannot simulate a
hypercube with a file system. It has been
modified so that at the request of the
user, it can simulate a hypercube with a
file system [13]. Currently the simulator
is used for developing a1gorithms and for
obtaining performance results for both
types of hypercubes.

5 Conclusion

A distributed hypercube file system
proposed

t:adeoff.
for a better space/time

The I/O organization of the
system is that a number of disk nodes are
interconnected and each disk node is
connected to a subcube of processing
nodes. Files are distributed across the
disk nodes and large data transfers are
accomplished in file blocks between a disk
node and a processing node without using
any interprocessor link. Message transfers
are supplemented b!y file block transfers
for data transfers. The interconnection of
disk nodes enables any processing node to
access any file block fast. The software
interface of the file system manages disk
node buffers and directories. Coherence,
synchronization and locking problems are
resolved by the software interface.

The real advantage of the presented
file system is that it expands the class
of problems that can be applied to a
scalable hypercube system. It is apparent
that such real-time problems as '
processing require immense amount oflrn?/St
bandwidth and the presented hypercube can
support such applications. The value of a
hypercube with a file system will be
apparent more when complete applications
are run. A complete application has a
number of stages. Each stage may have a
different decomposition. A hypercube
system must be able to switch from one
decomposition to another decomposition
fast. This process will be easier in the
system proposed in this paper. Further
advantages of the file system, if
projected, can be in implementing virtual
memory for processing nodes.
Multiprogramming and multiprocessing of
subcubes and individual processing nodes
and in implementing such communication
types as global send, scatter and gather
[141. Dynamic load balancing is possible
through DN-DN links. Each disk node does
not have to be identical. Instead, some
may be specialized in certain applications

as mentioned in [4]. A separate host can
be connected to each disk node. Therefore,
these new disk nodes can be renamed as
Extension Nodes (ENS).

Work is underway to determine the
best way of interconnecting the disk
nodes, connecting a disk node to a subcube
of processing nodes, managing disk node
buffers and directories. Besides the
matrix multiplication algorithm three
other problems are chosen to study the
effect of a distributed file system. These
problems are matrix inversion, Cholesky
factorization and the Fast Fourier
Transform. Algorithms for these problems
are being developed for a hypercube with
and without a distributed file system. New
metrics and formulations for the
distributed hypercube file system will be
developed to predict the performance of
the system.

References

113

121

r31

[41

r51

[cl

[71

Seitz, Charles L.,
Communications of
1985, pp. 22-33.

"The Cosmic Cube"
the ACM, Januar;

Lang, Charles R., "The Extension of
Object Oriented Languages to a
Homogeneous, Concurrent
Architecturel', Ph. D. thesis,
Technical Report Number 5014,
California Institute of Technology,
Pasadena, May 1982.

Fox, G. Fox and Frey, Alexander,
"Features of a TeraFLOPS
Supercomputer",
the 3rd

ACM Proceedings of
Conference on Hypercube

Concurrent Computers and
Applications, to be published, 1988.

Witkowski, A. and et al, "Concurrent
I/O System for the Hypercube
Multiprocesso??,
the 3rd

ACM Proceedings of
Conference on Hypercube

Concurrent Computers and
Applications, to be published, 1988.

NCUBE Users Handbook, Beaverton,
NCUBE, October 1987.

Close, P. and Wolper, A., "The iPSC
80386-Based Hypercube Node", ACM
Proceedings of the 3rd Conference on
Hypercube Concurrent Computers and
Applications, to be published, 1988.

Fazzari, Rodney J. and Lynch, John
D "The
Enhanced

FPS Mark II T Series: An
Parallel Vector

Supercomputer?,
the 3rd

ACM Proceedings of
Conference on Hypercube

Concurrent Computers and
Applications, to be published, 1988.

1380

[81 FOX, Geoffrey C. and Otto, Steve W.,
l*Algorithms for Concurrent
Processors*l, Physics Today, May 1984,
PP. 50-59.

[9] Nugent, Steven F.,
Direct-ConnectTM

"The iPSC/zTM
Communications

Technology",
3rd

ACM Proceedings of the
Conference on Hypercube

Concurrent Computers and
Applications, to be published, 1988.

[lo] Fox, Geoffrey C. and Otto, Steve W.,
"Matrix Algorithms on the Hypercube",
Research Report Number 297.3, Caltech
Concurrent Computation Project,
California Institute of
Technology, Pasadena, November 1985.

[ll] Hwang, Kai and Briggs, F. A.,
"Computer Architecture and
Parallel Processing", McGraw-Hill,
1984.

[12] Dunigan, T. H., *'A Message-Passing
Multiprocessor Simulator", Oak Ridge
National Laboratory, Oak Ridge, May
1986.

[13] Mowatt, P., "Development of a
Hypercube File System", Summer
Research Project Report, Polytechnic
University, New York, September 1987.

[14] Saad, Yousef and Schultz, Martin H.,
"Data Communication in Hypercubes",
Research Report YALEU/DCS/RR-428,
Yale University, New Haven, October
1985.

1381

