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ABSTRACT 

A new numerical approach by Furmanski and Kolawa to quantum chromodynamics is 
based on diagonalizi.ng the underlying Hamiltonian. This method involves the generation of 
states by repeated action of a potential operator. This symbolic calculation is dominated by 
the time it takes to search the database of existing states to verify if a generated state is identi- 
cal to one previously found. We implement this algorithm on the Caltech/JPL Mark II hyper- 
cube and analyze its performance of both a simple database search and one optimized for this 
application. We show that the hypercube performance can be modelled in a fashion similar to 
conventional numerical (loosely synchronous) applications. 
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1. Introduction 

We have used the hypercube at Caltech extensively for the numerical Monte Carlo 
approach to Lattice gauge theories [Otto 841, [Flower 871, [Apostolakis 881; the most popular 
approach to solving the fundamental equations of particle physics. In this paper, we would 
like to illustrate the flexibility of the hypercube by discussing its use in a fundamentally dif- 
ferent approach to the solution of gauge theories. 

Furmanski and Kolawa have developed a new approach to numerical Lattice Gauge 
Theory based on diagonalizing the Hamiltonian [Furmanski 861. Such an approach is, of 
course, a familiar technique in chemical problems. In Sec. 2, we show that this can be imple- 
mented on a computer and that the most time consuming part involves the generation of a list 
of unique states. In Sec. 3, we detail the sequential algorithm showing that it can be viewed as 
searching and updating a database. In Sec. 4, we discuss the hashing algorithm and its exten- 
sions. In Sets. 5 and 6, we describe and analyze the concurrent implementation showing that it 
has good performance on the large databases associated with realistic problem parameters. 
Conclusions are given in the final section. 

2. Description of the Physical Problem 

In this paper, we will consider the solution of the SU(2) gauge field theory on a finite 
lattice. We will solve Schrodinger’s equation where we are only interested in two lowest 
eigenvalues of the Hamiltonian H : 

Hle> = E le>. (1) 

We use the method that is fully described in [Furmanski 861 and [Kolawa 86a]. 
The Hamiltonian for the SU(2) gauge theory can be written as a sum of two terms. The 

first part D, is diagonal in the Fourier basis 1 1 > (where every link has representation I of the 
SU(2)). The second part of the Hamiltonian is the plaquette operator V which can change 
representations on links around a plaquette by l/2. In this basis, we can look for eigenstates 
of Hamiltonian as: 

le> = Cfkk, I ki> 

ki 

(2) 

where k counts number of plaquettes with nontrivial representations that the state can be built 
from (in the following k will be called the generation). i is an internal label for states with a 
given number of plaquettes. One can ensure that states are translationally and rotationally 
invariant and also orthonormal. 

We can rewrite (1) as 

(D + V)le> = E le>. (3) 

Multiplying (3) by the state < 0 I we get: 

<OID le> + <OlV/le> = <OIE le> (4) 

or 

f,<OlVle>=E (5) 

Multipling (3) by < 1 I 

Dfl+f,<l IVIO>+Cf,i<l lvl&>=Ef 1 (6) 

Similarly for state < 2i I 

Df,i+fl<& Iv I l>+Cf 3kc2i 
k 

i 

IvI’k>=‘f 2; (7) 
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Following this procedure we can write an infinite set of linear equations which we have to 
truncate in order to make it solvable. This we can do by neglecting in the (n-1)‘th equation 
the matrix element < n-l IV1 n >. 

The computer program has to compute all the coefficients in the equations. In order to 
get them, we first have to produce all required states. The program which produces these 
states is subject of this paper. All the required states can be produced by procedure of 
repeated action with the operator V. First we act with V on an empty lattice (k=O) and pro- 
duce one plaquette with representation l/2 on it. This is called the first generation or a k=l 
state. Then we act again on this state and we get several different states which are called the 
second generation with k=2. Acting again with V on the states from the second generation we 
produce the third generation and so on. Every time we produce a state, acting with V, we 
have to check if the state is on the list of states already produced. If not we must add the new 
state to the list. It is important to note that the states are either identical (up to a phase) or 
linearly independent. 

3. The Algorithlm as a Data Base Problem and the Sequential Implementation. 

The algorithm is 
1. Generate a new state 
2. Compare state with current list 
3. If state is distinct from those already on list, add it to list; otherwise return to step 1. 

We can abstract this as a database problem by mapping the steps into: 
1. Generate a database query 
2. Examine database to see if query satisfied. We define success to be that state (record) 

already exists; failure that state is new. 
3. Add new record to database if query fails; otherwise return to step 1. 

The database consists of a set of records with one record per state. 
The performance of the algorithm on the concurrent processor will naturally depend on 

such parameters as size of database; time taken to generate query; time taken to compare can- 
didate state (query) with a single record in database. Thus the design of the concurrent algo- 
rithm must be based on the specific problem at hand. We will consider a particular example - 
namely the production of the third generation (k=3) of states for a 4 x 4x 4 lattice. As dis- 
cussed later, the: performance of our concurrent algorithm will improve as the problem size 
increases and so finding a good implementation for this set of parameters should work well for 
the larger problems of physical interest. 
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Table 1: Parameters of a Sample Problem 
Production of Third Generation of 43 Lattice 

Total Execution Time 1300 Seconds (VAX1 l/780) 
6600 Seconds (Single 8086-87 node 

of Caltech Hypercube) 
Number of Queries 
(Candidate States) 

Number of Distinct Records 
(Final number of States) 

Fraction of Time Spent 
on failed queries (new states) 

Fraction of Time Spent 
on successful queries 
(States already on list) 

Fraction of Time 
Spent Generating Queries 

Total number of 
Data base comparisons 

Average number of comparisons 
for successful queries 

Average number of comparisons 
for failed queries 

2571 

890 

0.62 

0.36 

0.02 

1.06 x IO6 

412 

445 

The details of this sample case are given in Table 1. In the case of successful queries 
(candidate state on list) the match was on the average found after searching a fraction 0.46 of 
entries in the database. A histogram of this fraction is given in Figure It. Note how flat the 
distribution is. As we had to search many records to find the match (and so terminate step), it 
will turn out to be straightforward to find a concurrent algorithm as the search time (step 2) 
dominates the “sequential” steps 1 and 3 corresponding to generation of query and updating 
database. We should also note that the comparison of a candidate state with a pre-existing 
state is arranged hierarchically and the comparison time varies from case to case. This 
inherent load imbalance due to the irregularity of the problem needs to be kept in mind for 
the concurrent algorithm. We would also like to note here that because of the symmetry group 
of the states the actual database we were searching is 48 times larger than the one presented in 
Table 1. We reduced the database size by keeping in memory only one representative of the 
symmetry group for any state and by using a special technique for fast elimination of unsuc- 
cessful queries. 

4. Concurrent Implementation of Direct Search and Performance Analysis 

The performance of a database search depends critically of the ability to index the 
records. If one has to search for an essentially arbitrary occurrence of some set of strings in a 
recored, then there is no practical alternative to directly searching each record. We will first 
use this brute force approach, even though as we describe in Sec. 5, this particular database 

t Note that most of the successful queries are generated with the database nearly complete i.e. initially most 
queries fail, the database builds up and then most queries succeed. 
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can be efficiently indexed. The advantage of the simple search lies in the simplicity of the 
implementation and ability to compare with a performance model. We should stress that these 
results and performance analysis generalize to any such direct database search on a hyper- 
cube. One need only change the parameters in Equation (10) below. 

We will describe the implementation on the Caltech Mark II hypercube which consists of 
32 8086-8087 based nodes with the 5 dimensional hypercube geometry [Tuazon 851. The sys- 
tem has a separate 8086 based controller in which the control process runs. The algorithm 
does not depend on the particular machine architecture and will work well on any MIMD 
architecture with large grain size (reasonable memory per node) and ability to send messages 
between processors. Suppose we have a total of N nodes in the concurrent processor (exclud- 
ing the control processor). 

We will decompose the problem in a simple fashion storing N equal fractions (l/N) of 
the database in each node. The algorithm is as follows: 
la) Control process sends to each processor the information necessary to generate the next 

group of states or in our more general language a group of queries. These 20-30 queries 
correspond to actions of the operator V on all second generation states. 
Each node elmpties its message buffer and accepts message from control process. 

lb) In each node, we loop over queries in this group. 
2a) Each query is first checked to see if it is referenced in a message buffer corresponding to 

another processor having found it in its local database. (See steps 3a, c). 
2b) If this check fails, we compare queries with records currently stored in given node. This 

is identical to sequential algorithm but corresponds to a database that is l/N of the size. 
3a) If the query is successful, a message is sent to all processors indicating this so that they 

may terminate consideration of query corresponding to this state. 
3b) If the query is unsuccessful, the node either moves to the next one or stores the record 

corresponding to new state if a simple hashing algorithm determines that this new record 
(state) is to be stored in this particular node’s database. 

3c) At any time, messages may be received from another processor. This message can con- 
cern either the current query, a query already considered or a future query. In the first 
two cases, appropriate action is taken - which might require deletion from database of a 
past state whose query failed in current node but which was later found in database 
stored in another node. If message concerns a future state, it is stored in a buffer to be 
used in step :2a). 

3d) A message is sent to control process when the node finishes the given group of queries. 
When the control process receives N such completion messages it moves on to the next 
group. 
The steps above are labeled so that, for instance, la and lb of the concurrent algorithm 

correspond to step 1 of the sequential case in Sec. 3. Essential features of the concurrent algo- 
rithm are 
. The generation of states (queries) is done in every node i.e. no concurrency is achieved 

in this step. 
. The nodes operate asynchronously on groups of queries and so achieve approximate load 

balancing that averages over fluctuations in query comparison time. 
. A message is sent as soon as a query succeeds in a given node and the other nodes can 

therefore immediately terminate any current or future comparison of this query. 
. The algorithm uses in an essential fashion not only a general message passing system but 

also that the receipt of message interrupts the node processor. This is necessary to easily 
process possible termination of current query. The relevant software was built in terms 
of the message passing operating system JDOS built internally at Caltech [Johnson 851. 
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In figure 2, we plot inverse of the efficiency E (sequential time divided by N times the 
time taken on N node concurrent implementation) as a function of N in the range 1 to 32. 
Even for N=32 we find an efficiency of 60% in spite of the modest size of the local database 
with a maximum of 28 entries. Clearly, the algorithm will perform better as the size of the 
database increase. The approximate formula for inverse of the efficiency is : 

1 -= Nconcurrent time = 
(8) e sequential time 

N(gMQ c N + dQ + c&Q &NJ 
1 = 

-h-de 
Cl 

(9) 

Here we put cr equal 2 because in average only half of the database is searched for query (see 
figure 1, table 1). The constant c2 we took 2/3 because nodes communicate only for failed 
queries. With these values of constants cl and c2 equation (9) takes form: 

1 
l++N+ *lo&N 

-= 
E l+$$- ’ 

where 
g - time spent on query per state, 
d - time spent to produce query, 
b - time to broadcast message, 
Q - number of queries, 
M - size of the database. 
The logarithmic dependence on N in Eq. (10) is expected as this is the dependence of 

communication time on N for the broadcast message passing used in the algorithm. Constants 
d and g can be calculated, using data included in the table 1, from the following formulas : 

g= 
sequential time 

number of database comparisons 
= 5.76ms (11) 

d = sequential time*fraction of time spent generating queries = 5 1 ms 
number of queries (12) 

Equation (10) is compared with the results in Fig. 2. Values of the constants g and d are 
taken from Eqs. (11) and (12) and constant b , regarded as a free parameter, is fitted to be 
1.41+. The exact value of b is difficult to predict due to the asynchronous, independent opera- 
tion of nodes. One would expect blog,N to be roughly the time taken for a broadcast message 
to traverse half the cube. This model would predict b to be 1 ms, which is in satisfactory 
agreement with the fitted value [Kolawa 861. 

In [Fox 88a], [Fox 86a], and [Fox 85a] we have shown how the performance of many 
problems maybe summarized in the simple form: 

Here ds is the dimension of the problem and n is the grain size - the amount of informa- 
tion stored in each node. In our case n =M/N and we find the form: 

+ The value of b could be reduced by about a factor of two using a full assembly language coding [Kolawa 
861. 
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l/E = 1 + (a + m&w 
, n WW 

where 

a=2- f, 8=4$* 

The “constant” in Eq. (13) is usually independent of N although we do find the loga- 
rithmic dependence seen in (10a) for the case of the Fast Fourier Transform. As in the data- 
base case, the log iV dependence is characteristic of long distance communication. We there- 
fore find that the direct database search fits in with our general systems analysis with the 
problem dimension ds taking the value 1. 

5. An Improved Sezvch Algorithm 

For the algorithm described in Sets. 3 and 4, the information describing the state on the 
list, which was kept in the memory, consisted of two separate parts: 

1) coordinates of the center of the mass of the state (which played the role of key), 

2) the information on how to construct a state on the lattice; this is the real record of the 
state. 
The comparison of a new state with the list of states was done in two consequent steps. 

First it was checked whether the centers of mass of two states can be matched together. This 
test rejected about 90% of false comparisons. The remaining 10% were done in a direct way, 
which means that both states were generated on separate lattices and were checked link by 
link. If this comparison was successful then the states were assumed to be identical. 

We now describe an improved technique using a state symmetry invariant key. 
The improvernent of the searching technique can be two-fold. First one can introduce 

another layer of keys - a state can be initially identified by the trace of its moment of inertia 
tensor. Then this number can be used to order states by arranging them in increasing numeri- 
cal order of the trace keys. Finally the states can also be clustered in buckets within some 
range of trace keys. 

1) 

a 

3) 

4) 

5) 

6) 

7) 

Thus the searching algorithm should look as follows: 
After a state has been generated, calculate the trace of its moment of inertia tensor, and 
its center of the mass. 
Check the trace key against the list of buffers to find in which buffer the state should be 
in. We now do a standard binary search within each bucket. This is described in steps 3 
and 7. 
Take the middle state from the bucket. 
Check the trace key of the generated state against the trace key of the state from the 
bucket, if the keys are the same go to 5, otherwise go to 7. 
Compare the :second keys - try to match centers of mass of the states if successful go to 
6, otherwise go to 7. 
Produce both states on separate lattices and compare link by link, if successful - stop, the 
states are the same, otherwise go to 7. 
If the state is the last to be checked - go to 8, if the trace key of the generated state is 
smaller then the key of the checked state, take the middle state in the lower half of the 
bucket and go to 4, if the trace key of the generated state is larger than the key of the 
checked state take the middle key in the upper half of the bucket and go to 4. If the 
trace key of the generated state is the same as the checked state find if there is any other 
state with the same trace key. If there is go to 5 (the key with the same value of the 
trace key should be a neighboring state), if there is no go to 8. 
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8) Add the new state to the bucket which was checked in the order of increasing values of 
trace keys. 

6. Concurrent Algorithm for the Indexed Data Base 

We now describe and analyze the performance of the improved algorithm described in 
the last section. Clearly the details are application dependent - not every database has a “rota- 
tionally invariant trace of moment of inertia”! However, the issues and analysis technique 
should be reasonably general for any database allowing this type of indexing. In analysis of 
the performance of this algorithm we will use data presented in Sec. 4 from the second genera- 
tion. This database is rather small, but for higher generations, we estimate the size of the 
database of order of 100,000 states which motivates the following algorithm. The basic 
assumptions of the new algorithm are the following: 
. 

. 

. 

14 

lb) 

W 

2b) 

W 
3b) 

4) 

5) 

6) 

Every processor checks a different state produced from the same state in the previous 
generation. 
We keep in each node the entire index based on the trace of moment of inertia key. If 
the node memory is insufficient, the algorithm can easy be extended for a split index. 
The actual database is divided into N parts and each part is kept in a different proces- 
sor. 
With the above assumptions we can construct the following concurrent algorithm: 
The control process sends to each processor the information necessary to generate the 
next group of states, or in our more general language a group of queries. These 20-30 
(2000 - 3000) queries correspond to actions of the operator V on all second (third) gen- 
eration states. 
Each node empties its message buffer and accepts message from control process. 
Each node acts with operator V at a different place on the same state and produces a 
different query. 
Each node checks the trace key of the produced state against the whole list of keys using 
the same logarithmic search described for the sequential algorithm. 
If a match is found then the node looks to see if the state is stored in its part of the data- 
base. If not, it sends the newly produced state to the node in which the state with the 
matching key is kept. 
The second set of keys is checked, and if successful, the states are checked, link by link. 
If no match is found in point 2b, the state is put on the temporary list for new state can- 
didates. 
After all states from the given states have been generated, nodes exchange temporary 
lists and remove duplicates. 
New states are attached to the lists in processors modulo N. 
A new state from the previous generation is chosen and the algorithm returns to point 
lb. 
We can estimate the efficiency of the algorithm in the similar way as we did in the previ- 
ous section. 

1 NdogzW/N + 42/N + b lo&J’Q /N + (b /WxzNQ /W -= 
dQ + glog,~Q 

(1% E 

The meaning of the variables d, b , Q, M, N in this equation is the same as in Eq. 10. 
The term glog,M represents the time of a binary search of the database in the case when the 
data was not divided into buckets. The last term in Eq. (15), (b/4)logzNQ/N is the time spent 
to exchange the temporary list between the nodes. 

If we use the values of parameters from the previous section, then on a 32 node machine, 
the efficiency calculated from Eq. (15) is about 80%. 
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Using the ge:neral formulism described in Sec. 4, we rewrite Eq. (15) for a large database 
of size M in the form: 

rlog&’ l/E= 1-t - 
log,M ’ 

rlogzN 
= ’ + (log,n + log,N) * 

(16) 

(W 

This is in fact the same type of dependence of E on N and M as seen for the Fast Fourier 
Transform. The l’ogarithmic dependence on n in Eq. (16a) corresponds to an infinite system 
dimension ds [Fox 85a]. 

We find it intriguing that in a gravitational problem, the direct N2 formula has d,=l and 
the Fast Fourier Transform with similar improved NlogN algorithm has ds = 00. In the data- 
base case, the simplest algorithm has ds=l again and the improved sequential algorithm 
corresponds to infinite system dimension. 

7. Conclusions 
In the future, we will be applying the algorithm to much larger databases as we study 

more sophisticated physics problems. Typical parameters of interest are the states that need to 
be generated for the 5th generation 43 SU(2) problem. The number of states we expect in this 
case is roughly 30000, and the algorithms will perform well on the hypercube. 

We have shown analogies in the performance analysis of database problems to those of 
loosely synchronous scientific algorithms . Particularly intriguing is the analogy to N body 
algorithms explored in the last section. It would be interesting to explore further search algo- 
rithms to see how they fit in the performance model described in Sets. 4 and 6. 
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2. Plot of inverse of efficiency vs. log, of the number of nodes. The solid line is the plot of 
formula (10) and crosses are the measured values. 

1419 


