
Comparison of Two-Dimensional FFT Methods on the Hypercube

Clare Y. Chu”
Northrop Corp., Aircraft Division

One Northrop Avenue, 3812/82
Hawthorne, CA 90250

Abstract

Complex two-dimensional FFTs up to size 256 x 256 points are im-
plemented on the Intel iPSC/System 286 hypercube with emphasis on
comparing the effects of data mapping, data transposition OI commu-
nication needs, and the use of distributed FFTs. Two new implemen-
tations of the ID-FFT include the Local-Distributed method which
performs local FFTs in one direction followed by distributed FFTs in
the other direction, and a Vec.tor-Radix implementation that is de-
rived from decimating the DFT in two-dimensions instead of one. In
addition, the Transpose-Split method involving local FFTs in both di-
rections with an intervening matrix transposition and the Block 2D-
FFT involving distributed FFT butterflies in both directions are im-
plemented and compared with .:he other two methods. Timing results
show that on the Intel iPSC/System 286, there is hardly any difference
between the methods, with the only differences arising front the effi-
ciency or inefficiency of communication. Since the Intel cannot overlap
communication and computation, this forces the user to buffer data. In
some of the methods, this causes processor blocking during communi-
cation. Issues of vector&.&n, connnunication strategies, data storage
and buffering requirements are investigated. A model is given that con,-
pares vectorieation and communication complexity. While timing re-
sults show that the Transpose-Split method is in general slightly faster,
our model shows that the Block method and Vector-Radix method have
the potential to be faster if the communication difficulties were taken
care of. Therefore if communication could be “hidden” within con,-
putation, the latter two methcds can become useful with the Block
method vectorizing the best anc~ the Vector-Radix method having 25%
fewer multiplications than row-column 2D-FFT methods. Finally the
Local-Distributed method is a good hybrid method requiring no trans-
posing and can be useful in cert.lin circumstances. This paper provides
some general guidelines in evalu.ating parallel distributed ZD-FFT im-
plementations aud concludes th.pt while different methods may be best
suited for different systems, better implementation techniques as well
as faster algorithms still perform better when communication become
more efficient.

‘This work was done by the authc,r at Comcll University, Ithaca NY.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

@ ACM 1988 0-89791~-273-X/88/ooo7/143o $1e50

1 Introduction

Multidimensional Fourier transforms, as in the single dimensional case,
can also be broken into pieces that can be done in parallel. The possibil-
ities are even richer here. This is because multidimensional transforms
can be done either as a sequence of separable one-dimensional tcans-
forms, or by directly splitting them into blocks of smaller multidimen-
sional transforms, as in the vector-radix methods [2,9]. We study only
the case of the two-dimensional Fourier transform because the discus-
sion and algorithmic methods can be extended directly to computing
higher dimensionaI Fourier transforms.

Work on two-dimensional FFTs on distributed processors has so far
been restricted to the row-column approach. The strips method parti-
tions the two-dimensional array, or matrix, into rows, mapping block
rows into processors. The transform of each row is then found, and
the nlatrix is transposed before a second row transform pass is done on
rows that previously had been columns. We follow [5] in terming this
approach the Danspose-Split (TS) BD-FFT.

Another row-column method partitions the matrix into blocks of sub-
matrices, assigning one block per node. The hypercube is then viewed
as a two-dimensional cross-product of smaller dimensional hypercubes
with distributed FFTs performed along both the rows and the columns.
No transposing of data is needed here. We term this method the Block
(B) 2D-FFT method.

We present two new methods of implementing 2D-FFTs. The first
one is a row-column approach that partitions data into strips much
like the Transpose-Split method. The difference is that no transpose is
done between the horizontal and vertical steps. Instead, the horizontal
FFTs are done locally inside each processor and the vertical FFTs are
distributed. We call this the Local-Distribz~led (LD) ID-FFT method.

Finally we discuss the implementation of the Vector-Radix 2D-FFT
on the hypercube and show that this method has promise, although
the communication of the old iPSC hampered the timings obtained. In
order to give a “fair” comparison with the other row-column methods
we have chosen to implement a partial Vector-Radix (PVR) PD-FFT
on the hypercube. What this means is that the individual 2D-FFTs
that are done locally inside the processors are row-column 2D-FFTs,
however, the distributed steps use the vector radix update scheme. As
noted in [2,9], the serial 2D Vector-Radix method has a 25% reduction
in multiplications and fewer butterflies than a serial row-column 2D-
FFT.

The Transpose-Split SD-FFT is favored by some because all FFT
computations are performed locally. The only communication that
takes place occurs within the transpose step. Gustafson [l] has im-
plemented the Transpose-Split FFT on a 1024-node NCUBE machine
which has the pleasant property that each node can perform up to 9
simultaneous communications, thereby allowing the use of almost all
the links of the hypercube during the transpose stage. Be can reduce
communication time by a factor of d, the hypercube dimension. There-
fore all that is needed to effectively implement this n&hod is a fast
efficient matrix transpose procedure. See [3] for an in-depth analysis
of the hypercube matrix transpose problem.

The Block method was implemented in [6] on the Floating Point Sys-

1430

http://crossmark.crossref.org/dialog/?doi=10.1145%2F63047.63099&domain=pdf&date_stamp=1989-01-03

tems T-Series hypercube. By considering the signal flow graph of the
radix-2 FFT algorithm, we see that this implementation requires com-
munication during both the vertical and horizontal passes. At each step
where the butterfly computation is split between two processors, each
node exchanges with its neighbor exactly half of its data points. Each
processor computes the butterfly updates for the points it possesses
after which it contains updates for half of its own points and half of
the points belonging to its communicating partner. Another exchange
is then necessary to repatriate these updates. Therefore two exchanges
are required for one butterfly step. This may seem inefficient unless
the communications and computations are overlapped during the dis-
tributed butterfly calculations. This is indeed possible on the T-Series
since each node possesses a transputer that allows a processor to send
data to its neighbor in the next butterfly step even before it has totally
completed the present step. Hence, two communicatiou stages can be
overlapped in one computational step. This method of implementa-
tion is referred to as the Block method since the matrix is mapped by
sub-blocks into the hypercube such that the (i, j)th block is mapped
into the node whose label is the binary representation of i concatenated
with the binary representation of j. The powerful vector boards on the
T-Series allows this method to be used advantageously.

The Local-Distributed method aud the Vector-Radix-2 method are
implemented ou the Intel IPSC. The Intel iPSC, unlike the NCUBE
and T-Series machines, does not allow simultaneous communication.
This is detrimental for the Vector-Radix-Z method as the distributed
stages involve total exchanges between four processors iustead of two.
A total exchange within a subcube of processors means that each pro-
cessor in the subcube ex&anges data with every other processor in the
subcube. This particular property of Intel communication also means
that the full cross-bar interconnection scheme cannot be simulated effi-
ciently, and with Intel iPSC/System 286 capabilities, a transpose takes
2d = 2 log2 P steps to perform, as each node can only do one scud
followed by one receive in one direction at a time. Another draw-
back is that computation and communication cannot be overlapped
and thus distributed FFTs will exhibit blocking during the distributed
butterfly steps caused by one processor waiting for data from another.
The Local-Distributed method does not require a transpose and does
distributed FFTs along only one direction instead of two (the Block
method). Meanwhile the Vector-Radix FFT performs local 2D-FFTs
followed by distributed stages requiring the summation and multipli-
cation of the local FFTs by “twiddle” factors. The Vector-Radix FFT
has a lot of potential that is not reflected in our implementation on
the Intel iPSC precisely because of communication inefficiencies. But
we think it is useful to offer it as au alternative to the row-column
approach because of its rich parallelism.

2 Two Dimensional FFT Algorithms

2.1 Row-Column

The Discrete Fourier Transform (DFT) of a vector 2: of length n is
defined as

Y +- F,x

where F, is the matrix consisting of powers of the nth root of unity
w, = e-2*i/n,

The two-dimensional (2-D) discrete Fourier transform (DFT) of a two-
dimensional array X E Cnlxn’ is defined as

Y +-- F,,, XF:,

The matrix notation clearly demonstrates the row-column or
column-row method of computing the 2-D transform, since matrix-
multiplication is associative. If the fast Fourier transform (FFT) is
used to evaluate the 1-D FFTs along both the rows and the columns,
the number of complex multiplications required is n’log, n for n =
n1 = 722. In addition, a matrix transposition algorithm is required.

A one-dimensional FFT of a long vector of length n = 121.712 can be
computed in a 2-D “fashion” by viewing it as a DFT of an array of size
n1 x nz [7], that is, by writing x as an array x,,,~~~~. We can compute
the n-point DFT of x by an nl-point FFT of the rows, a point-wise

multiplication of x by the twiddle factors, followed by another nz-point
FFT on the columns. The matrix of twiddle factors T is defined

[T]+ = w,i,L, j = 0,. , nl - 1; k = 0,. ,712 - 1.

and * denotes the point-wise multiplication of two matrices. Hence the
DFT y of x is another two-dimensional array given by

T
~n,xn, = FniPnmz) * hxnFnJ1

The row-column or column-row method can be used to compute the
horizontal and vertical DFTs.

2.2 Vector-Radix

The Vector-Radix FFT is a direct decomposition of the two-
dimensional DFT into sums of smaller two-dimensional DFTs multi-
plied by “twiddle factors”, (the diagonal matrix A). Here a 2-D DFT
is recursively broken down into four 2-D DFTs until only trivial 2D-
DFTs need to be evaluated. The number of complex multiplications is
now in210g2 n, 25% lower than the row-column method [2,9]. More-
over, no matrix transpose routine is required.

The recursive block structure of the DFT matrix F, is used in two-
dimensions to derive the method. The matrix X E C”x’l is segregated
into four sets; one over those samples X(j, Ic) for which j aud 12 are
both eveu, one for which j is eveu and k is odd, one for which j is odd
and k is even and oue for which both j and k are odd.

Theorem 2.1 Let X E Px’” with n = 2t, then the &D vector-radiz:
splitting of the &D-DFT of X is

FnXF,’ = (F,E,)(M,xM~(ICF,‘)

=
1

I
I :;: -2$] [ii:: ii;:] [2/t -2,2]

whew A,lz = diag(1, w,, . , w,“‘~-‘) and

X11 = F,,,X(O : 2 : n - 2,0 : 2 : n - Z)F,T,,

Xl2 = F,,,X(O : 2 : n - 2,1 : 2 : n - l)F$

x21 = F,/zX(I:2:n-1,0:2:n-2)F;,2

x22 = F,,2X(1 : 2 : n - I,1 : 2 : n - 1)FE12

The II,,, M, a’~e pemmtation matrices jot Ihe perfect shuffle and in-
veme perfect shufle operatom, respectively.

Proof From [111, we have

Fan,, = [: -“p] [F;‘2 F,o,2]

Applying this to both sides of M,,XMz gives the required decomposi-
tion.

-*-

Theorem 2.1 is the basic two-dimensional Co&y-Tukey (CT2) split-
ting of the Vector-Radix method for computing the 2-D FFT. The
complete algorithm is obtained by recursive application ,of this basic
decomposition.

Algorithm 2.1 Vector-Radix 2-D FFT
n = 2”
x - P,XPZ
for * = 1 : t

L + 29
L/2-1

AL/~ +diw(l,wr.,...,~~)

end

Here P,, is the bit-reversal permutation matrix.

1431

Table 1: Multiple Transforms and Vector Length.

I horizontal I vertical I

+length of portion in each processor

3 Comments on Data Ordering and Vec-
torization

The usual radix-two in-place FFT algorithms require a data permuta-
tion either at the start of the procedure or at the end. This permutation
is the well-known bit-reversing permutation. In the Transpose-Split
method, the FFTs are performed lccally so that this permutation is
also done independently and locally We can also avoid bit-reversing
by using Stockham FFTs locally, albeit this necessitates an extra ar-
ray of workspace. In any case, no distributed bit-reversing operatiou
is necessary. The Local-Distributed methods, require up to an extra d
communications [IO], on a cube which can communicate simultaneously
in all directions, to perform distributszd bit-reversal. The Block and the
Vector-Radix FFT results in a need for distributed bit-reversal along
both the horizontal and vertical directions, or an extra 2& commu-
nications if Swarztrauber’s [IO] method is utilized. On the Intel cube,
autosort FFTs incur too much communication overhead to be efficient.
However if the data is to be transformed and then inverse transformed,
there would be no need to unscramble in the transform domain since
there are algorithms which take bit-reversed data on input and return
the inverse transform in natural order.

If the data array is mapped within each processor so that its vector
orientation is perpendicular to the d.rection of the FFT, one can effec-
tively vectorire the butterfly computations. The vector length is equal
to the number of multiple transforms and hence one would prefer to
do the FFT of m transforms in parallel rather than do one transform
after the other [4,10].

The basic operation here is a vectsr SAXPY where

v t 013: + y

v, x, and y are vectors with OL a scalar. Since the direction of the
second FFT pass is perpendicular to that of the first pass, a transpose
is needed between the two stages. For the Transpose-Split method this
means that QJG the block transpose, one must complete the transpose
by performing transposes on all the submatrices locally. For the two
distributed methods, a local transpose of the array resident in each
node is required to retain the correc:t orientation of the vectors. The
Floating Point Systems implementation of the Block method consists
of mapping the array X in sub-blocks into the nodes of the hypercube.
Since the T-Series consists of vector boards, local transposes are done
on each submatrix to keep the correct orientation for vectorizing.

Vector length is also an important issue when doing multiple trans-
forms on vector processors. Suppose we have an N-by-N array and p
processors. The length of the vectors in the direction perpendicular to
the FFT computations should be as long as possible (up to the length
of the vector register) so as to take full advantage of vector operations.
The Transpose-Split method requires each processor to do N/p FFTs of
length N simultaneously and thus has an effective vector length of N/p.
The Block method has each processor responsible for N/,/j? FFTs of
which only Nfti elements of each FFT are processor-local. The vector
length here is N/G and is & times longer than the Transpose-Split
method. The Local-Distributed method has the same characteristics
of the Transpose-Split method during its local phase, vectors of length
N/p; however in its distributed phase, the effective vector lengths are
N. These observations are summarized in Table 1

4 Implementation and Timings

The Transpose-Split, Local-Distributed, Block and partial Vector-
Radix methods for the two dimensional FFT are implemented on the
Intel iPSC/D4MX hypercube running XENIX R3.4, iPSC Release 3.1
with Exelan R3.3 networking software. The code was written using
Ryan-McFarland FORTRAN. Vector boards are not available so that
all computations within a node are done serially. The Transpose-Split
method uses local FFTs in both the vertical and horizontal stages and
a recursive block transpose routine. The transpose code used was a
modified version of Ching-Tien Ho’s with the only change being the
removal of the aforementioned buffering.

Our implementation of the Block method differs from. Floating Point
System’s in that only one exchange is incurred during each distributed
butterfly step. Since the Intel cannot overlap communication and com-
putation, the added cost of performing two exchanges would degrade
the performance of the distributed methods without giving any basis
for comparison.

The Vector-Radix method is implemented only partially. In other
words, the local independent 2D-DFTs are done by a conventional IOW-
column ZD-FFT subroutine found in [S], and only the distributed steps
involve updating by the Vector-Radix method. Since our hypercube
has only 16 nodes, only two such distributed steps are done. In order
to perform in-place computation and do away with the need for extra
buffers, the Vector-Radix updating was done so that each processor in
the corner of its two-dimensional subcube was responsible for all the
updating of that particular corner of the data for its three partners as
well as for itself. For example, the processor in the south-west corner of
the two-dimensional subcube for that iteration will send its north-west
corner to the processor above it in exchange for the south-west corner
of that processor. It will also send its north-east corner to the processor
diagonally across from it in exchange for the south-west corner of that
processor. And it will send its south-east corner to the processor to
its right in exchange for the south-east corner of that processor. This
processor will update all the submatrices it receives and then do a
reverse exchange where all its partners get their own updated corners
back.

Computation time as well as communication time is displayed for all
four methods. A portion of the communication time is reflected in a
processor bIocking while awaiting data that it is to receive. The total
execution time is shown in Table 2. Table 3 shows the computation time
required by each method while Table 4 displays the communication
time whereas Table 5 displays the amount of time a processor spends
blocked. Times are given in milliseconds and range from the fastest
processor to the slowest processor.

The results show timings that are roughly within 10% of each other
for the four different methods. However if we look at the break-down of
communication versus computational time, some interesting differences
surface.

The computational times of the Transpose-Split method and the
Vector-Radix method are the most load balanced. The Transpose-Split
computations exhibit the most paralIelism as all of the actual FFT steps
are independent and done in parallel. For the Vector-Radix method the
individual 2D-FFTs done locally within each processor are also done
entirely independently and in parallel. As expected, the computational
times in the distributed row-column methods show a small amount of
imbalance, with greater gaps between the faster and slowest proces-
sor than shown by the Transpose-Split method and the Vector-Radix
method. While the Local-Distributed method stays about even with
the Transpose-Split method as far as computation is concerned, the
Block method on the average takes a bit longer. Since the same FFT
algorithm was used for the three row-column methods, we conjecture
that this might be due to ‘the fact that processors in the Block method
get interrupted during computation at two stages, during both the ver-
tical and horizontal FFTs, whereas the Local-Distributed method only
gets interrupted during its vertical FFT. The Transpose-Split method
is only interrupted once, between the horizontal and vertical stages. Of
course the effects of these interruptions can be minimized if the proces-
sors are able to simultaneously communicate and compute. The com-
putational time for the Vector-Radix method is on the average faster
than any of the row-column methods, especially on large problems.

1432

Table 2: Total Execution Time.

size
dim

16 x 16
1
2
3
4

32 x 32
1
2
3
4

64 x 64
1
2
3
4

128 x 128
1
2
3
4

256 x 256
3
4

TS

155
90

75-125
140-145

710
385-390
230-275
170-220

3280
1700

910-945
525-570

15130
7825-7840

3965
2155

17650-17665
9040-9215

145-160
80-95
55-70

105-150

665-715
340-395
180-230
105-160

3110-3305
1550-1750

785-935
415-585

15025-15230
7165-7930
3575-4145
1800-2225

16870-18605
8135-9615

90-I 10
65-85

90-I 10

365-430
235-290
110-205

-

1675-1895
1045-1230

425-555

7820-8630
4835-5480
1895-2350

22220-24660
8695-10370

PVR

-

160
-

125-190

-

465-470
-

215-330

1850-1895

685-840

-

7735-7820

2345-2490

9040-9215

Keep in mind that we have not taken advantage of the 25% reduction
of multiplications since our Vector-Radix implementation does not re-
curse all the way down to the 2 x 2 trivial 2-D transform. Instead, only
the distributed steps are done via the Vector-Radix splitting and the
processor local ZD-FFTs are done by the regular row-column approach.
Hence even at this limited level, we see that the Vector-Radix sl~ows
potential in speeding up computation.

The analysis of the communication times show a different story. Here
the three row-column methods exhibit roughly the same range of times
for communication. As already mentioned, our implementation of the
Vector-Radix a-cube total exchange is very primitive since the Intel
iPSC cannot communicate ~CIOSS nm~e than one link at the same time.
Hence a huge amount of blocking is seen to be responsible for the slow-
ness of the Vector-Radix communication. The blocking time for the
three row-colunm methods is about the same. This demonstrates that
the load imbalance of the distributed methods is not really much of
a problem as far as blocking between send and recv are concerned.
One interesting point is that the Transpose-Split communication re-
sults actually show an increase in time for the N = 16 x 16 problem
with increasing number of processors. This is due primarily to the
added complexity of having to send smaller and smaller messages OI
extra buffering costs. Even though we have implemented the unbuffered
transpose, the results from the use of buffered transposing still show
this increase.

In the next section we see that while the distributed nlethods re-
quire O(log, P) start-ups for connnunication, the transpose method
could possibly require up to O(P) startups if not done carefully. We
also coniider the effective vector length of the different methods and hy-
pothesize what would happen if the node processors have vector boards.

5 Discussion and Model

Models of computational and communicational complexity are often
useful in giving general guidelines to the benefits of various methods
of implementation. Since FFT iniplementations are usually cornmu-
nication bound, we first consider the analysis of simply transferring
data among the processors as specified by the recursive block transform
procedure and the distributed methods. The vectorization of multiple
transforms are dealt with next. Finally we give an estimate of the total
time required.

size Conmutation Time

dim
16 x 16

1
2
3
4

32 x 32

4
64 x 64

4
128 x 128

4
256 x 256

3 173251315 16150-17875 21515-23975
4 8815/185 7650-9145 8205-9910

Table 3: Computational Time of 2D-FFT.

TST LD B PVR

150/10 140-155
go/10 70-85
5515 40-65
40/5 15-40

- -

SO-100 go-100
50-70 -

25-40 30-45

705125 645-695 -

375/15 320-380 345-410
210/10 155-215 210-270
125/10 85-120 SO-135

380-385
-

115-130

3250/80 3055-3250
1670/50 1490-1690
880130 735-885
480/20 380470

1615-1835
995-1180
385-515

-

1625-1630

445-460

15015/285 14805-15010
7575/155 6935-7705
3870/90 3400-3975
2015/60 1680-2075

7565-8405
4660-5315
1775-2225

-

7235-7250
-

1895-1915

8300-8320

1 total computation time and time for internal transpose

Table 4: Conmlunication Time Including Blocking Overhead.

256 x 256
3 310-335 650-710 660-695 -

4 230-400 445-510 435-495 860-1355

1433

Table 5: Time Spent Blocked during Communication

c

L

L

size Blocked Time
dim TS LD B PVR

16 x 16
1 0 0 - -

2 o-5 o-5 o-5 10-45
3 5-60 O-60 O-5. -

4 15-85 O-110 5-50 15-90
32 x 32

1 0 0 - -

2 o-5 o-5 5 30-65
3 O-50 O-10 o-5 -

4 5-65 o-15 O-60 30-175
64 x 64

1 5 10 - -

2 5 0 10 10-175
3 5-20 5-55 o-15 -

4 5-60 o-15 5-10 115-355
I28 x 128

1 15-40 35 -
2 20-155 30-35 35-60 60-340
3 lo-25 20-30 20-25 -
4 20-85 10-20 15-20 125-405

256 x 256
3 40-60 go-150 95-130 -
4 45-220 65-170 60-135 95-715

Suppose we have an n-by-n array and P = 2d processors. Through
out this discussion we shall assume that P is an even power of two.
Assuming that P divides n, each processor would have n”/P points.
The recursive block transpose a.gotithm requires d steps where n”/2P
points are exchanged per step. hIeanwhile both distributed row-column
FFT algorithms have d steps involving trans-processor butterflies. Each
step requires the exchange of n’/P points. One can see here that twice
as much data points are exchanged at each step. However since these
points are all contiguous there it; no overhead of sending multiple mes-
sages nor the need to copy into a buffer. However, due to the algebraic
structure of the butterflies, an extra buffer array of n2/P points is
needed for each processor since it cannot overwrite its array until af-
ter the butterfly computation. The extra buffer is not required in the
Floating Point System implementation, however au extra exchange per
tram-processor butterfly step is needed. Three extra buffers would be
needed for the Vector-Radix method $we did not use this trick of ex-
changing twice per distributed step. Therefore in our implementation,
we incur the cost of the extra ea;change and hence no extra buffers are
necessary.

Let r be the data startup ti1r.e or communication lateucy time, B,
the maximum packet size that can be transferred at a time, and t, the
per element transfer time. Denote time by

the time required for a certain operation by a certain method
The total communication overhead is measured by

t, (number of elements to be sent) f 7 (number of start-ups)

First we look at unbuffered transpose communication. Ho and Johnsson
[3] show that the complexity for unbuffered communication is

The complexity for startups is O(P) and grows exponentially with the
dimension d = logs P of the cube. This can be seen easily where,
ignoring B,,, , the complexity be,:omes

TTS COrnLII, = d$ + (Y 2i)27.
i=O

a
When F > En,, we must take into account these extra start-ups and
the number of start-ups is O(P + log, P [nZ/2PB,l).

Buffered communication makes sense only when n /P remains small
and the complexity is approximately O(log, P) start-ups growing lin-
early with cube dimension. Here one must also take into account the
extra time required for buffering as well as the fact that the effective
buffer is small, so that on large problems the transpose is essentially
unbuffered.

The Local-Distributed method has communication complexity

TLD
73

corn*, = 2dpt, + 2drmax(l,

as does the Block method.

T&m = T::rn
Here the complexity only grows linearly with the number of cube di-

mensions, however, there is twice as much data to transfer and when the
problem gets large, we get a measurement proportional to [n2/&F1
times the start-up costs. Thus the complexity of the distributed meth-
ods is O(log, P) start-ups when n2/P < B, and O(log, P [n2/BmP1)
when n2/P > B,.

The communication complexity of our in-place Vector-Radix FFT
necessitates two exchanges per distributed step. Recall that this scheme
is similar to that of the Floating Point Systems implementation [6] and
also Walton’s [I2] one-dimensional FFT implementation where portions
of the matrix or vector are exchanged and then sent “home”. Here each
portion is of size $‘/P and each processor communicates with three
processors. Hence the communication complexity is

If the three exchanges per distributed step can be done simultaneously,
the startup term becomes just

4 log2 fir

TT S comn = 2(P - 1)T + (logs P)&

TLD cmm x (210g,P) (;t.++

Team x (2log, P) (gtc+r)

pv R
cmm x (210&P) ($+3r)

Table 6 illustrates data transfer time (in milliseconds) without any
computation. Two different transposes are compared for the Trans-
pose-split method, the unbuffered and buffered methods described in
[3]. One can see that for small problems, the buffered recursive trans-
pose and the distributed methods take about the same time communi-
cating, eveu though the distributed methods send twice as much data.
This is because the data lie in contiguous locations and thus require
only one message. By comparing buffered and unbuffered transpos-
ing we can find the cut-off point beyond which it makes no difference
whether to buffer or not to buffer. Here we see that buffering just does
not matter when the size is larger than 64 x 64. The communication
times of the distributed methods are comparable to buffered transpose
times until the problem size gets large enough so that the maximum
packet size B,, is reached. Here we see that for the 128 x 128 prob-
lem, communication for the distributed row-column methods is roughly
twice the time for transposing. Since the number of data points moved
is also twice that of transposing, this is consistent. For d = 4, the
timings are about equal since the message packets are small enough so
that they can be all transferred in one step. Finally as expected the
Vector-Radix communication was the slowest because of the inefficient
implementation on the Intel iPSC. It is expected, however that given
an efficient “total exchange” capability where processors can commu-
nicate simultaneously, that the communication times should speed up
making the Vector-Radix method viable and feasible.

1434

Table 6: Communication Times without Intervening Computation.

r Anal& of Conununication w/o Computation 1

dim
16 x 16

1
2
3
4

32 x 32
1
2
3
4

64 x 64
1
2
3
4

128 x 128

f
3
4

256 x 256
3
4

TS LD
unbuff. buff.

5 5 5
10 10 10

20-60 65-70 10-45
105-110 75-140 70-110

10 10 20
15 10 20

20-65 20 15-20
45-140 20-25 20-25

30 25-30 55
35-70 30-65 60
35-75 30-75 50-85

105-110 35-90 35-85

115 110 220-225
110-115 110-115 220-225

140 90-95 170
80-125 80-125 120-150

335-340 330-335 660-690
235-240 235-345 445-450

B) PVR

- -
60-65 55-175
50-90 -

45-105 85-285

225-230 110-235

Next we model computational time for the three row-column meth-
ods on vector nodes. Hackney and Jesshope [4] give a model for per-
forming M independent transforms of length N by using the best serial
algorithm and vectorizing the arithmetic. Let ,-I be the per flop com-
putation time, and N,/z be the vector length required to achieve half
of the asymptotic performance. Then

Zrwrtft = 5aN(N1p + M) logz N

Using this Inode we see that for the Transpose-Split method each
processor does n/P transforms of length 7~ twice, hence

T,T,s,, = 2a(5n(N1/2 + ;)log,n)

For the Block method, each processor is responsible for l/&h of the
work for n/e transforms of length n and this occurs twice, so

Finally for the Local-Distributed, each processor does n/P transforms
of length n during the horizontal phase, and (l/P)th of the work for n
transforms of length R during the vertical stage.

The difference in computation time among the three methods comes
from the NllZ term, with r,” = (n/@)N,,,, TTs = nN,/? aud
T,fD = 1/2(n $ n/P)N,,,. Comparing coefficients, we see that

Hence in terms of vectorization, the Block lnethod is at an advantage
which increases with increasing parallelism as measured by N,,,.

All of the vectorized FFT implementations require an internal trans-
form of the data in order to set up the vectors in the correct orientation.
Since each processor has n2 / P points the overhead here is n”/ P t,,,

Our final model combines the communication and computational
portions of the methods in a straight-forward manner.

TTS = 2cr(5n(Nllz + ;) loga n) + 2(P - 1)’ + (log, P$i,

T” = Za(5+(N,,? + +og? -$ + (210g2 P)(;t, +r)

TLD = 5an(N1/2+~)logln+5a~(N,,3+n)logl%

t (21og, P)(& + T)

TV R = ~~logznt(210g,P)(~~t,+3r)

An analysis of the communication time shows that the coefficient of the
t, term is of the same order, but that of the 7 term is clearly against
the Transpose-Split method. Since the 7 term represents the latency
time or startup time for each communication and is several orders of
magnitude larger than t,, it is obvious that as P increases, the over-
head for transpose communication will become significant. Of course
buffering can reduce this overhead. However the minimum number of
communications needed for recursive block transpose is still of order
log, P. Therefore, the communication needs of the distributed meth-
ods present a lower bound for the transpose communication.

6 Improvements to the Vector-Radix Dis-
tributed Step

Consider the 2x2 Vector-Radix butterfly

[5 S]+[: _w:J [: :] [y’? -k3]

=
1

a + w,c + W2b + (wzw1)d a + w,c - wgl - (W$d&i
a - WIG + w& - (WI_@ a - WIG - U?b + (W2Wl)d 1

Suppose that the the elements of this 2x2 matrix are distributed among
four processors:

pa pb

Now if we implement this operation by a total exchange, each proces-
sor would have to compute 3 multiplications and 3 additions. The mul-
tipliers ul, wa and (w1w2) may also be computed redundantly. Other
alternatives include precomputing wlc, wzb and (w+l)d before the to-
tal exchange. This cuts down on the number of multiplications as
each processor now does at most one multiplication. We write (W~WZ)
together because if wL = ui and w2 = wf, (WOWS) = ,;+I and no mul-
tiplication is needed here. The load balancing here is not good because
the processor Pa does not have to do any multiplication. However each
processor still does three additions.

Another approach is to perform the 2x2 Vector-Radix butterfly in
two stages. In the first stage, processors Pa and PC work together to
compute a + wlc and a - wlc whereas processors Pa and Pd do b + wld
and b - wld. After this stage we have:

1435

Figure 1: Vector-Radix 2 x 2 Butterflies

Communication is between r.eighboring processors. One multiplica-
tion and one addition is done. Next processors P, and P!, cooperate to
compute (a + W~C) + w,(b + wld) and (cz + wlc) - w,(b + wld). Corre-
spondingly processor P, and Pf compute (a - wlc) + wz(b - wld) and
(a-wlc) -uz(b-qd) respectively. I n tl Iis stage only one addition and
one multiplication is done. Again communication is between neighbor-
ing processors. And the total r.umber of multiplications and additions
is at most two per processor.

In general each processor contains a matrix of points and each 2 x 2
butterfly takes place independently from the others. Figure 1 shows
the situation schematically. If ~communication can proceed along both
edges of each node simultaneously we might be able to overlap the
split stages of the 2 x 2 butterfly, i.e. while P, and P, are computing
a0 + wpco and cz0 - wfco, rh and P,, are computing (a’ - wit’) +
w:(b’-w;d’) and (~‘-w;c’)-wZ’(b’-w;d’) from the previous butterfly.

Another variation includes P, and Pb computing a + ulb and a - wzb
for one set of points aud Pa an,S PC computing a + wlc and a - W~C for
another set of points, simultaneously communicating in two directions.

Clearly many more variations cau be presented from computing the
basic 2 x 2 Vector-Radix butterfly to organizing the order or concur-
rency of the independent 2 x 2 ‘Jector-Radix butterflies. Each would be
best suited for a certain communication scheme, whether fine-grained
or coarse-grained (as in the Intel iPSC). Also, buffering needs differ
for the various schemes. Therefore the implementation of vector-radix
methods on concurrent processors need to be tailored to the particular
architecture available and offers potential for both high parallelism and
reduced operations counts.

7 Conclusion

After consideration of the model and timing results we can draw the
following conclusions.

. The distributed methods E.I~ hurt by the interruption of computa-
tion during the trans-processor butterfly stages, hence their perfor-
mance should be enhanced on systems that interleave computation
and communication.

. The complexity of communication for distributed methods is
log, P, therefore they are promising on systems where P is large.

. In the presence of vector processor nodes, the Block method ex-
hibits better vectorization than any of the other methods since its
working vector length is approximate fi times longer.

. The Transpose-Split method is superior ou systems which support
an efficient transpose algorithm since its majo deficiency is the
asymptotic complexity of recursive block transpose communication
growing exponentially to the number of dimensions. Presently
on the Intel iPSC/System 286 where each node is connected by
an Ethernet communicati~~n channel, the penalties for traversing

several nodes to get a message across increases linearly with the
distance. Therefore on the current system, Transpose-Split is likely
to be superior when the number of processors is small.

The Vector-Radix method is highly parallel and also requires
25% fewer complex multiplications than the row-column ap-
proaches. Since each distributed butterfly depends on data in a
d-dimensional sub-cube for a d-dimensional Vector-Radix FFT,
a good implementation of the total exchange communication is
needed.

Future generations of hypercubes will likely support more ef-
ficient transpose algorithms and routing hardware, making the
Transpose-Split methodology more efficient.

The Local-Distributed method is a compromise between the first
two methods. In our implementation it is competitive with the
Transpose-Split method and can be used when one wishes to avoid
the transpose.

Our implementation results show that on the Intel iPSC/System 286
without vector boards on the nodes, there is essentially no difference
between the three row-column methods. Efficient implementation of
the Vector-Radix method depends on efficient total exchange commu-
nication and is therefore this method is promising given its faster com-
putational potential. The final analysis is that this problem is highly
system dependent, and one should be aware of the advantages and
disadvantages of these different methods in order to best utilize the
parameters of a particular system.

Our discussion of higher-dimensional transform methods naturally
leads to insights on further areas of research. A higher-dimensional
DFT can be approached from any combination of the following: row-
column, transposing along any dimension, or distributed block manip-
ulations. For example, one way of looking at a 3-dimensional trans-
form is as a Z-dimensional transform and a l-dimensional transform
mapped in planes within nodes of a linear array of processors. An-
other way of viewing it is to map the data into solid chunks within a
three-dimensional array of processors. Finally, the use of the vector-
radix approach involves no transposing and exhibits maximal paral-
lelism during the independent stages. Transposing distributed data in
three dimensions is extremely awkward, hence we are especially look-
ing at vector-radix approaches to 3-dimensional FFTs as an avenue for
further work.

8 Acknowledgements

The author appreciates the helpfulness of Ching-Tien Ho, Yale Uni-
versity for sending his Transpose subroutine. The work that produced
this paper was completed with the assistance of computing facilities
of the Advanced Computing Facility at the Cornell Center for The-
ory and Simulation in Science and Engineering, which is supported by
the National Science Foundation and New York State. Part of the
typesetting and graphics was completed with the facilities of Northrop
Research and Technology Center, Palos Verdes Peninsula, California.

9

PI

PI

[31

References

J. Gustafson (Mar. 22-25, 1987), “Ensemble FFT’s as a
Function of Compute/Communication Raios,” in Fast Fourier
mmsfo~ms fw Vector and Parallel Computm Workshop,
Charles F. Van Loan, ed., The Mathematical Sciences Insti-
tute, Cornell University, Ithaca, NY.

D. B. Harris, J. H. McClellan, D. S. K. Chan & H. W.
Schuessler (1977), “Vector Radix Fast Fourier Transform,”
Rec. 1977 IEEE Internat. Conf. Acoust., Speech, Signal Proc..

C-T. Ho & S. L. Johnsson (1986), “Matrix Transpo-
sition on Boolean n-cube Configured Ensenlble Architec-
tures,” Yale University, Department of Computer Sciences,
YALEU/DCS/TR-494, New.Haven, CT.

1436

[4] R. Hockney & C. Jesshope (1981), in Pam&l Com-
puters: Architecture, Programming and Algorithms, Adam
Hilger, Bristol.

[5] 0. A. McBryan & E. F. Van de Velde (1987), “Hyper-
cube Algorithms and Implementations,” SIAM J. Sci. Statist.
comput. Y. 8, s277-s287.

[6] D. Miles, P. Kinney, J. Groshong & FL. Fazzari (1987),
“ Specification and Performance Analysis of Six Benchmark
Programs for the FPS T-Series,” Floating Point Systems, Inc.,
P.O. Box 23489, Portland, OR.

[7] H. J. Nussbaumer (1982), Fasi Fourier Transform and
Convolzllion Algorithms, Springer-Verlag, Berlin, Heidelberg.

[S] W. H. Press, B. P. Flannery, S. A. Teukolsky & W. T.
Vetterling (1986), Numerical Recipes: The Art of Scientijic
Computeing, Cambridge University Press, Cambridge.

[9] G. K. Rivard (1977), “Direct Fast Fourier Transform of Bi-
variate Functions,” IEEE Trans. Acoust. Speech Signal Pro-
eess. ASSP-25, 250-52.

[lo] P. N. Swarztrauber (1986), “Multiprocessor FFTs,” Na-
tional Center for Atmospheric Research, Boulder, CO, (to
appear in Parallel Computing).

[Ill C. F. Van Loan (1987), FFTs Born the Matrix Point of
View, (manuscript).

[12] S. R. Walton (1986), “Fast Fourier Transforms on the Hy-
percube,” Anletek Computer Research Division, Arcadia, CA.

1437

