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Abstract 

Complex two-dimensional FFTs up to size 256 x 256 points are im- 
plemented on the Intel iPSC/System 286 hypercube with emphasis on 
comparing the effects of data mapping, data transposition OI commu- 
nication needs, and the use of distributed FFTs. Two new implemen- 
tations of the ID-FFT include the Local-Distributed method which 
performs local FFTs in one direction followed by distributed FFTs in 
the other direction, and a Vec.tor-Radix implementation that is de- 
rived from decimating the DFT in two-dimensions instead of one. In 
addition, the Transpose-Split method involving local FFTs in both di- 
rections with an intervening matrix transposition and the Block 2D- 
FFT involving distributed FFT butterflies in both directions are im- 
plemented and compared with .:he other two methods. Timing results 
show that on the Intel iPSC/System 286, there is hardly any difference 
between the methods, with the only differences arising front the effi- 
ciency or inefficiency of communication. Since the Intel cannot overlap 
communication and computation, this forces the user to buffer data. In 
some of the methods, this causes processor blocking during communi- 
cation. Issues of vector&.&n, connnunication strategies, data storage 
and buffering requirements are investigated. A model is given that con,- 
pares vectorieation and communication complexity. While timing re- 
sults show that the Transpose-Split method is in general slightly faster, 
our model shows that the Block method and Vector-Radix method have 
the potential to be faster if the communication difficulties were taken 
care of. Therefore if communication could be “hidden” within con,- 
putation, the latter two methcds can become useful with the Block 
method vectorizing the best anc~ the Vector-Radix method having 25% 
fewer multiplications than row-column 2D-FFT methods. Finally the 
Local-Distributed method is a good hybrid method requiring no trans- 
posing and can be useful in cert.lin circumstances. This paper provides 
some general guidelines in evalu.ating parallel distributed ZD-FFT im- 
plementations aud concludes th.pt while different methods may be best 
suited for different systems, better implementation techniques as well 
as faster algorithms still perform better when communication become 
more efficient. 
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1 Introduction 

Multidimensional Fourier transforms, as in the single dimensional case, 
can also be broken into pieces that can be done in parallel. The possibil- 
ities are even richer here. This is because multidimensional transforms 
can be done either as a sequence of separable one-dimensional tcans- 
forms, or by directly splitting them into blocks of smaller multidimen- 
sional transforms, as in the vector-radix methods [2,9]. We study only 
the case of the two-dimensional Fourier transform because the discus- 
sion and algorithmic methods can be extended directly to computing 
higher dimensionaI Fourier transforms. 

Work on two-dimensional FFTs on distributed processors has so far 
been restricted to the row-column approach. The strips method parti- 
tions the two-dimensional array, or matrix, into rows, mapping block 
rows into processors. The transform of each row is then found, and 
the nlatrix is transposed before a second row transform pass is done on 
rows that previously had been columns. We follow [5] in terming this 
approach the Danspose-Split (TS) BD-FFT. 

Another row-column method partitions the matrix into blocks of sub- 
matrices, assigning one block per node. The hypercube is then viewed 
as a two-dimensional cross-product of smaller dimensional hypercubes 
with distributed FFTs performed along both the rows and the columns. 
No transposing of data is needed here. We term this method the Block 
(B) 2D-FFT method. 

We present two new methods of implementing 2D-FFTs. The first 
one is a row-column approach that partitions data into strips much 
like the Transpose-Split method. The difference is that no transpose is 
done between the horizontal and vertical steps. Instead, the horizontal 
FFTs are done locally inside each processor and the vertical FFTs are 
distributed. We call this the Local-Distribz~led (LD) ID-FFT method. 

Finally we discuss the implementation of the Vector-Radix 2D-FFT 
on the hypercube and show that this method has promise, although 
the communication of the old iPSC hampered the timings obtained. In 
order to give a “fair” comparison with the other row-column methods 
we have chosen to implement a partial Vector-Radix (PVR) PD-FFT 
on the hypercube. What this means is that the individual 2D-FFTs 
that are done locally inside the processors are row-column 2D-FFTs, 
however, the distributed steps use the vector radix update scheme. As 
noted in [2,9], the serial 2D Vector-Radix method has a 25% reduction 
in multiplications and fewer butterflies than a serial row-column 2D- 
FFT. 

The Transpose-Split SD-FFT is favored by some because all FFT 
computations are performed locally. The only communication that 
takes place occurs within the transpose step. Gustafson [l] has im- 
plemented the Transpose-Split FFT on a 1024-node NCUBE machine 
which has the pleasant property that each node can perform up to 9 
simultaneous communications, thereby allowing the use of almost all 
the links of the hypercube during the transpose stage. Be can reduce 
communication time by a factor of d, the hypercube dimension. There- 
fore all that is needed to effectively implement this n&hod is a fast 
efficient matrix transpose procedure. See [3] for an in-depth analysis 
of the hypercube matrix transpose problem. 

The Block method was implemented in [6] on the Floating Point Sys- 
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tems T-Series hypercube. By considering the signal flow graph of the 
radix-2 FFT algorithm, we see that this implementation requires com- 
munication during both the vertical and horizontal passes. At each step 
where the butterfly computation is split between two processors, each 
node exchanges with its neighbor exactly half of its data points. Each 
processor computes the butterfly updates for the points it possesses 
after which it contains updates for half of its own points and half of 
the points belonging to its communicating partner. Another exchange 
is then necessary to repatriate these updates. Therefore two exchanges 
are required for one butterfly step. This may seem inefficient unless 
the communications and computations are overlapped during the dis- 
tributed butterfly calculations. This is indeed possible on the T-Series 
since each node possesses a transputer that allows a processor to send 
data to its neighbor in the next butterfly step even before it has totally 
completed the present step. Hence, two communicatiou stages can be 
overlapped in one computational step. This method of implementa- 
tion is referred to as the Block method since the matrix is mapped by 
sub-blocks into the hypercube such that the (i, j)th block is mapped 
into the node whose label is the binary representation of i concatenated 
with the binary representation of j. The powerful vector boards on the 
T-Series allows this method to be used advantageously. 

The Local-Distributed method aud the Vector-Radix-2 method are 
implemented ou the Intel IPSC. The Intel iPSC, unlike the NCUBE 
and T-Series machines, does not allow simultaneous communication. 
This is detrimental for the Vector-Radix-Z method as the distributed 
stages involve total exchanges between four processors iustead of two. 
A total exchange within a subcube of processors means that each pro- 
cessor in the subcube ex&anges data with every other processor in the 
subcube. This particular property of Intel communication also means 
that the full cross-bar interconnection scheme cannot be simulated effi- 
ciently, and with Intel iPSC/System 286 capabilities, a transpose takes 
2d = 2 log2 P steps to perform, as each node can only do one scud 
followed by one receive in one direction at a time. Another draw- 
back is that computation and communication cannot be overlapped 
and thus distributed FFTs will exhibit blocking during the distributed 
butterfly steps caused by one processor waiting for data from another. 
The Local-Distributed method does not require a transpose and does 
distributed FFTs along only one direction instead of two (the Block 
method). Meanwhile the Vector-Radix FFT performs local 2D-FFTs 
followed by distributed stages requiring the summation and multipli- 
cation of the local FFTs by “twiddle” factors. The Vector-Radix FFT 
has a lot of potential that is not reflected in our implementation on 
the Intel iPSC precisely because of communication inefficiencies. But 
we think it is useful to offer it as au alternative to the row-column 
approach because of its rich parallelism. 

2 Two Dimensional FFT Algorithms 

2.1 Row-Column 

The Discrete Fourier Transform (DFT) of a vector 2: of length n is 
defined as 

Y +- F,x 

where F, is the matrix consisting of powers of the nth root of unity 
w, = e-2*i/n, 

The two-dimensional (2-D) discrete Fourier transform (DFT) of a two- 
dimensional array X E Cnlxn’ is defined as 

Y +-- F,,, XF:, 

The matrix notation clearly demonstrates the row-column or 
column-row method of computing the 2-D transform, since matrix- 
multiplication is associative. If the fast Fourier transform (FFT) is 
used to evaluate the 1-D FFTs along both the rows and the columns, 
the number of complex multiplications required is n’log, n for n = 
n1 = 722. In addition, a matrix transposition algorithm is required. 

A one-dimensional FFT of a long vector of length n = 121.712 can be 
computed in a 2-D “fashion” by viewing it as a DFT of an array of size 
n1 x nz [7], that is, by writing x as an array x,,,~~~~. We can compute 
the n-point DFT of x by an nl-point FFT of the rows, a point-wise 

multiplication of x by the twiddle factors, followed by another nz-point 
FFT on the columns. The matrix of twiddle factors T is defined 

[T]+ = w,i,L, j = 0,. , nl - 1; k = 0,. ,712 - 1. 

and * denotes the point-wise multiplication of two matrices. Hence the 
DFT y of x is another two-dimensional array given by 

T 
~n,xn, = FniPnmz) * hxnFnJ1 

The row-column or column-row method can be used to compute the 
horizontal and vertical DFTs. 

2.2 Vector-Radix 

The Vector-Radix FFT is a direct decomposition of the two- 
dimensional DFT into sums of smaller two-dimensional DFTs multi- 
plied by “twiddle factors”, (the diagonal matrix A). Here a 2-D DFT 
is recursively broken down into four 2-D DFTs until only trivial 2D- 
DFTs need to be evaluated. The number of complex multiplications is 
now in210g2 n, 25% lower than the row-column method [2,9]. More- 
over, no matrix transpose routine is required. 

The recursive block structure of the DFT matrix F, is used in two- 
dimensions to derive the method. The matrix X E C”x’l is segregated 
into four sets; one over those samples X(j, Ic) for which j aud 12 are 
both eveu, one for which j is eveu and k is odd, one for which j is odd 
and k is even and oue for which both j and k are odd. 

Theorem 2.1 Let X E Px’” with n = 2t, then the &D vector-radiz: 
splitting of the &D-DFT of X is 

FnXF,’ = (F,E,)(M,xM~(ICF,‘) 

= 
1 

I 
I :;: -2$ ] [ ii:: ii;: ] [ 2/t -2,2 ] 

whew A,lz = diag(1, w,, . , w,“‘~-‘) and 

X11 = F,,,X(O : 2 : n - 2,0 : 2 : n - Z)F,T,, 

Xl2 = F,,,X(O : 2 : n - 2,1 : 2 : n - l)F$ 

x21 = F,/zX(I:2:n-1,0:2:n-2)F;,2 

x22 = F,,2X(1 : 2 : n - I,1 : 2 : n - 1)FE12 

The II,,, M, a’~e pemmtation matrices jot Ihe perfect shuffle and in- 
veme perfect shufle operatom, respectively. 

Proof From [ 111, we have 

Fan,, = [ : -“p ] [ F;‘2 F,o,2 ] 

Applying this to both sides of M,,XMz gives the required decomposi- 
tion. 

-*- 

Theorem 2.1 is the basic two-dimensional Co&y-Tukey (CT2) split- 
ting of the Vector-Radix method for computing the 2-D FFT. The 
complete algorithm is obtained by recursive application ,of this basic 
decomposition. 

Algorithm 2.1 Vector-Radix 2-D FFT 
n = 2” 
x - P,XPZ 
for * = 1 : t 

L + 29 
L/2-1 

AL/~ +diw(l,wr.,...,~~ ) 

end 

Here P,, is the bit-reversal permutation matrix. 
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Table 1: Multiple Transforms and Vector Length. 

I horizontal I vertical I 

+length of portion in each processor 

3 Comments on Data Ordering and Vec- 
torization 

The usual radix-two in-place FFT algorithms require a data permuta- 
tion either at the start of the procedure or at the end. This permutation 
is the well-known bit-reversing permutation. In the Transpose-Split 
method, the FFTs are performed lccally so that this permutation is 
also done independently and locally We can also avoid bit-reversing 
by using Stockham FFTs locally, albeit this necessitates an extra ar- 
ray of workspace. In any case, no distributed bit-reversing operatiou 
is necessary. The Local-Distributed methods, require up to an extra d 
communications [IO], on a cube which can communicate simultaneously 
in all directions, to perform distributszd bit-reversal. The Block and the 
Vector-Radix FFT results in a need for distributed bit-reversal along 
both the horizontal and vertical directions, or an extra 2& commu- 
nications if Swarztrauber’s [IO] method is utilized. On the Intel cube, 
autosort FFTs incur too much communication overhead to be efficient. 
However if the data is to be transformed and then inverse transformed, 
there would be no need to unscramble in the transform domain since 
there are algorithms which take bit-reversed data on input and return 
the inverse transform in natural order. 

If the data array is mapped within each processor so that its vector 
orientation is perpendicular to the d.rection of the FFT, one can effec- 
tively vectorire the butterfly computations. The vector length is equal 
to the number of multiple transforms and hence one would prefer to 
do the FFT of m transforms in parallel rather than do one transform 
after the other [4,10]. 

The basic operation here is a vectsr SAXPY where 

v t 013: + y 

v, x, and y are vectors with OL a scalar. Since the direction of the 
second FFT pass is perpendicular to that of the first pass, a transpose 
is needed between the two stages. For the Transpose-Split method this 
means that QJG the block transpose, one must complete the transpose 
by performing transposes on all the submatrices locally. For the two 
distributed methods, a local transpose of the array resident in each 
node is required to retain the correc:t orientation of the vectors. The 
Floating Point Systems implementation of the Block method consists 
of mapping the array X in sub-blocks into the nodes of the hypercube. 
Since the T-Series consists of vector boards, local transposes are done 
on each submatrix to keep the correct orientation for vectorizing. 

Vector length is also an important issue when doing multiple trans- 
forms on vector processors. Suppose we have an N-by-N array and p 
processors. The length of the vectors in the direction perpendicular to 
the FFT computations should be as long as possible (up to the length 
of the vector register) so as to take full advantage of vector operations. 
The Transpose-Split method requires each processor to do N/p FFTs of 
length N simultaneously and thus has an effective vector length of N/p. 
The Block method has each processor responsible for N/,/j? FFTs of 
which only Nfti elements of each FFT are processor-local. The vector 
length here is N/G and is & times longer than the Transpose-Split 
method. The Local-Distributed method has the same characteristics 
of the Transpose-Split method during its local phase, vectors of length 
N/p; however in its distributed phase, the effective vector lengths are 
N. These observations are summarized in Table 1 

4 Implementation and Timings 

The Transpose-Split, Local-Distributed, Block and partial Vector- 
Radix methods for the two dimensional FFT are implemented on the 
Intel iPSC/D4MX hypercube running XENIX R3.4, iPSC Release 3.1 
with Exelan R3.3 networking software. The code was written using 
Ryan-McFarland FORTRAN. Vector boards are not available so that 
all computations within a node are done serially. The Transpose-Split 
method uses local FFTs in both the vertical and horizontal stages and 
a recursive block transpose routine. The transpose code used was a 
modified version of Ching-Tien Ho’s with the only change being the 
removal of the aforementioned buffering. 

Our implementation of the Block method differs from. Floating Point 
System’s in that only one exchange is incurred during each distributed 
butterfly step. Since the Intel cannot overlap communication and com- 
putation, the added cost of performing two exchanges would degrade 
the performance of the distributed methods without giving any basis 
for comparison. 

The Vector-Radix method is implemented only partially. In other 
words, the local independent 2D-DFTs are done by a conventional IOW- 
column ZD-FFT subroutine found in [S], and only the distributed steps 
involve updating by the Vector-Radix method. Since our hypercube 
has only 16 nodes, only two such distributed steps are done. In order 
to perform in-place computation and do away with the need for extra 
buffers, the Vector-Radix updating was done so that each processor in 
the corner of its two-dimensional subcube was responsible for all the 
updating of that particular corner of the data for its three partners as 
well as for itself. For example, the processor in the south-west corner of 
the two-dimensional subcube for that iteration will send its north-west 
corner to the processor above it in exchange for the south-west corner 
of that processor. It will also send its north-east corner to the processor 
diagonally across from it in exchange for the south-west corner of that 
processor. And it will send its south-east corner to the processor to 
its right in exchange for the south-east corner of that processor. This 
processor will update all the submatrices it receives and then do a 
reverse exchange where all its partners get their own updated corners 
back. 

Computation time as well as communication time is displayed for all 
four methods. A portion of the communication time is reflected in a 
processor bIocking while awaiting data that it is to receive. The total 
execution time is shown in Table 2. Table 3 shows the computation time 
required by each method while Table 4 displays the communication 
time whereas Table 5 displays the amount of time a processor spends 
blocked. Times are given in milliseconds and range from the fastest 
processor to the slowest processor. 

The results show timings that are roughly within 10% of each other 
for the four different methods. However if we look at the break-down of 
communication versus computational time, some interesting differences 
surface. 

The computational times of the Transpose-Split method and the 
Vector-Radix method are the most load balanced. The Transpose-Split 
computations exhibit the most paralIelism as all of the actual FFT steps 
are independent and done in parallel. For the Vector-Radix method the 
individual 2D-FFTs done locally within each processor are also done 
entirely independently and in parallel. As expected, the computational 
times in the distributed row-column methods show a small amount of 
imbalance, with greater gaps between the faster and slowest proces- 
sor than shown by the Transpose-Split method and the Vector-Radix 
method. While the Local-Distributed method stays about even with 
the Transpose-Split method as far as computation is concerned, the 
Block method on the average takes a bit longer. Since the same FFT 
algorithm was used for the three row-column methods, we conjecture 
that this might be due to ‘the fact that processors in the Block method 
get interrupted during computation at two stages, during both the ver- 
tical and horizontal FFTs, whereas the Local-Distributed method only 
gets interrupted during its vertical FFT. The Transpose-Split method 
is only interrupted once, between the horizontal and vertical stages. Of 
course the effects of these interruptions can be minimized if the proces- 
sors are able to simultaneously communicate and compute. The com- 
putational time for the Vector-Radix method is on the average faster 
than any of the row-column methods, especially on large problems. 
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Table 2: Total Execution Time. 

size 
dim 

16 x 16 
1 
2 
3 
4 

32 x 32 
1 
2 
3 
4 

64 x 64 
1 
2 
3 
4 

128 x 128 
1 
2 
3 
4 

256 x 256 
3 
4 

TS 

155 
90 

75-125 
140-145 

710 
385-390 
230-275 
170-220 

3280 
1700 

910-945 
525-570 

15130 
7825-7840 

3965 
2155 

17650-17665 
9040-9215 

145-160 
80-95 
55-70 

105-150 

665-715 
340-395 
180-230 
105-160 

3110-3305 
1550-1750 

785-935 
415-585 

15025-15230 
7165-7930 
3575-4145 
1800-2225 

16870-18605 
8135-9615 

90-I 10 
65-85 

90-I 10 

365-430 
235-290 
110-205 

- 

1675-1895 
1045-1230 

425-555 

7820-8630 
4835-5480 
1895-2350 

22220-24660 
8695-10370 

PVR 

- 

160 
- 

125-190 

- 

465-470 
- 

215-330 

1850-1895 

685-840 

- 

7735-7820 

2345-2490 

9040-9215 

Keep in mind that we have not taken advantage of the 25% reduction 
of multiplications since our Vector-Radix implementation does not re- 
curse all the way down to the 2 x 2 trivial 2-D transform. Instead, only 
the distributed steps are done via the Vector-Radix splitting and the 
processor local ZD-FFTs are done by the regular row-column approach. 
Hence even at this limited level, we see that the Vector-Radix sl~ows 
potential in speeding up computation. 

The analysis of the communication times show a different story. Here 
the three row-column methods exhibit roughly the same range of times 
for communication. As already mentioned, our implementation of the 
Vector-Radix a-cube total exchange is very primitive since the Intel 
iPSC cannot communicate ~CIOSS nm~e than one link at the same time. 
Hence a huge amount of blocking is seen to be responsible for the slow- 
ness of the Vector-Radix communication. The blocking time for the 
three row-colunm methods is about the same. This demonstrates that 
the load imbalance of the distributed methods is not really much of 
a problem as far as blocking between send and recv are concerned. 
One interesting point is that the Transpose-Split communication re- 
sults actually show an increase in time for the N = 16 x 16 problem 
with increasing number of processors. This is due primarily to the 
added complexity of having to send smaller and smaller messages OI 
extra buffering costs. Even though we have implemented the unbuffered 
transpose, the results from the use of buffered transposing still show 
this increase. 

In the next section we see that while the distributed nlethods re- 
quire O(log, P) start-ups for connnunication, the transpose method 
could possibly require up to O(P) startups if not done carefully. We 
also coniider the effective vector length of the different methods and hy- 
pothesize what would happen if the node processors have vector boards. 

5 Discussion and Model 

Models of computational and communicational complexity are often 
useful in giving general guidelines to the benefits of various methods 
of implementation. Since FFT iniplementations are usually cornmu- 
nication bound, we first consider the analysis of simply transferring 
data among the processors as specified by the recursive block transform 
procedure and the distributed methods. The vectorization of multiple 
transforms are dealt with next. Finally we give an estimate of the total 
time required. 

size Conmutation Time 

dim 
16 x 16 

1 
2 
3 
4 

32 x 32 

4 
64 x 64 

4 
128 x 128 

4 
256 x 256 

3 173251315 16150-17875 21515-23975 
4 8815/185 7650-9145 8205-9910 

Table 3: Computational Time of 2D-FFT. 

TST LD B PVR 

150/10 140-155 
go/10 70-85 
5515 40-65 
40/5 15-40 

- - 

SO-100 go-100 
50-70 - 

25-40 30-45 

705125 645-695 - 

375/15 320-380 345-410 
210/10 155-215 210-270 
125/10 85-120 SO-135 

380-385 
- 

115-130 

3250/80 3055-3250 
1670/50 1490-1690 
880130 735-885 
480/20 380470 

1615-1835 
995-1180 
385-515 

- 

1625-1630 

445-460 

15015/285 14805-15010 
7575/155 6935-7705 
3870/90 3400-3975 
2015/60 1680-2075 

7565-8405 
4660-5315 
1775-2225 

- 

7235-7250 
- 

1895-1915 

8300-8320 

1 total computation time and time for internal transpose 

Table 4: Conmlunication Time Including Blocking Overhead. 

256 x 256 
3 310-335 650-710 660-695 - 

4 230-400 445-510 435-495 860-1355 
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Table 5: Time Spent Blocked during Communication 

c 

L 

L 

size Blocked Time 
dim TS LD B PVR 

16 x 16 
1 0 0 - - 

2 o-5 o-5 o-5 10-45 
3 5-60 O-60 O-5. - 

4 15-85 O-110 5-50 15-90 
32 x 32 

1 0 0 - - 

2 o-5 o-5 5 30-65 
3 O-50 O-10 o-5 - 

4 5-65 o-15 O-60 30-175 
64 x 64 

1 5 10 - - 

2 5 0 10 10-175 
3 5-20 5-55 o-15 - 

4 5-60 o-15 5-10 115-355 
I28 x 128 

1 15-40 35 - 
2 20-155 30-35 35-60 60-340 
3 lo-25 20-30 20-25 - 
4 20-85 10-20 15-20 125-405 

256 x 256 
3 40-60 go-150 95-130 - 
4 45-220 65-170 60-135 95-715 

Suppose we have an n-by-n array and P = 2d processors. Through 
out this discussion we shall assume that P is an even power of two. 
Assuming that P divides n, each processor would have n”/P points. 
The recursive block transpose a.gotithm requires d steps where n”/2P 
points are exchanged per step. hIeanwhile both distributed row-column 
FFT algorithms have d steps involving trans-processor butterflies. Each 
step requires the exchange of n’/P points. One can see here that twice 
as much data points are exchanged at each step. However since these 
points are all contiguous there it; no overhead of sending multiple mes- 
sages nor the need to copy into a buffer. However, due to the algebraic 
structure of the butterflies, an extra buffer array of n2/P points is 
needed for each processor since it cannot overwrite its array until af- 
ter the butterfly computation. The extra buffer is not required in the 
Floating Point System implementation, however au extra exchange per 
tram-processor butterfly step is needed. Three extra buffers would be 
needed for the Vector-Radix method $we did not use this trick of ex- 
changing twice per distributed step. Therefore in our implementation, 
we incur the cost of the extra ea;change and hence no extra buffers are 
necessary. 

Let r be the data startup ti1r.e or communication lateucy time, B, 
the maximum packet size that can be transferred at a time, and t, the 
per element transfer time. Denote time by 

the time required for a certain operation by a certain method 
The total communication overhead is measured by 

t, (number of elements to be sent) f 7 (number of start-ups) 

First we look at unbuffered transpose communication. Ho and Johnsson 
[3] show that the complexity for unbuffered communication is 

The complexity for startups is O(P) and grows exponentially with the 
dimension d = logs P of the cube. This can be seen easily where, 
ignoring B,,, , the complexity be,:omes 

TTS COrnLII, = d$ + (Y 2i)27. 
i=O 

a 
When F > En,, we must take into account these extra start-ups and 
the number of start-ups is O(P + log, P [nZ/2PB,l). 

Buffered communication makes sense only when n /P remains small 
and the complexity is approximately O(log, P) start-ups growing lin- 
early with cube dimension. Here one must also take into account the 
extra time required for buffering as well as the fact that the effective 
buffer is small, so that on large problems the transpose is essentially 
unbuffered. 

The Local-Distributed method has communication complexity 

TLD 
73 

corn*, = 2dpt, + 2drmax(l, 

as does the Block method. 

T&m = T::rn 
Here the complexity only grows linearly with the number of cube di- 

mensions, however, there is twice as much data to transfer and when the 
problem gets large, we get a measurement proportional to [n2/&F1 
times the start-up costs. Thus the complexity of the distributed meth- 
ods is O(log, P) start-ups when n2/P < B, and O(log, P [n2/BmP1) 
when n2/P > B,. 

The communication complexity of our in-place Vector-Radix FFT 
necessitates two exchanges per distributed step. Recall that this scheme 
is similar to that of the Floating Point Systems implementation [6] and 
also Walton’s [I2] one-dimensional FFT implementation where portions 
of the matrix or vector are exchanged and then sent “home”. Here each 
portion is of size $‘/P and each processor communicates with three 
processors. Hence the communication complexity is 

If the three exchanges per distributed step can be done simultaneously, 
the startup term becomes just 

4 log2 fir 

TT S comn = 2(P - 1)T + (logs P)& 

TLD cmm x (210g,P) (;t.++ 

Team x (2log, P) (gtc+r) 

pv R 
cmm x (210&P) ($+3r) 

Table 6 illustrates data transfer time (in milliseconds) without any 
computation. Two different transposes are compared for the Trans- 
pose-split method, the unbuffered and buffered methods described in 
[3]. One can see that for small problems, the buffered recursive trans- 
pose and the distributed methods take about the same time communi- 
cating, eveu though the distributed methods send twice as much data. 
This is because the data lie in contiguous locations and thus require 
only one message. By comparing buffered and unbuffered transpos- 
ing we can find the cut-off point beyond which it makes no difference 
whether to buffer or not to buffer. Here we see that buffering just does 
not matter when the size is larger than 64 x 64. The communication 
times of the distributed methods are comparable to buffered transpose 
times until the problem size gets large enough so that the maximum 
packet size B,, is reached. Here we see that for the 128 x 128 prob- 
lem, communication for the distributed row-column methods is roughly 
twice the time for transposing. Since the number of data points moved 
is also twice that of transposing, this is consistent. For d = 4, the 
timings are about equal since the message packets are small enough so 
that they can be all transferred in one step. Finally as expected the 
Vector-Radix communication was the slowest because of the inefficient 
implementation on the Intel iPSC. It is expected, however that given 
an efficient “total exchange” capability where processors can commu- 
nicate simultaneously, that the communication times should speed up 
making the Vector-Radix method viable and feasible. 
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Table 6: Communication Times without Intervening Computation. 

r Anal& of Conununication w/o Computation 1 

dim 
16 x 16 

1 
2 
3 
4 

32 x 32 
1 
2 
3 
4 

64 x 64 
1 
2 
3 
4 

128 x 128 

f 
3 
4 

256 x 256 
3 
4 

TS LD 
unbuff. buff. 

5 5 5 
10 10 10 

20-60 65-70 10-45 
105-110 75-140 70-110 

10 10 20 
15 10 20 

20-65 20 15-20 
45-140 20-25 20-25 

30 25-30 55 
35-70 30-65 60 
35-75 30-75 50-85 

105-110 35-90 35-85 

115 110 220-225 
110-115 110-115 220-225 

140 90-95 170 
80-125 80-125 120-150 

335-340 330-335 660-690 
235-240 235-345 445-450 

B ) PVR 

- - 
60-65 55-175 
50-90 - 

45-105 85-285 

225-230 110-235 

Next we model computational time for the three row-column meth- 
ods on vector nodes. Hackney and Jesshope [4] give a model for per- 
forming M independent transforms of length N by using the best serial 
algorithm and vectorizing the arithmetic. Let ,-I be the per flop com- 
putation time, and N,/z be the vector length required to achieve half 
of the asymptotic performance. Then 

Zrwrtft = 5aN(N1p + M) logz N 

Using this Inode we see that for the Transpose-Split method each 
processor does n/P transforms of length 7~ twice, hence 

T,T,s,, = 2a(5n(N1/2 + ;)log,n) 

For the Block method, each processor is responsible for l/&h of the 
work for n/e transforms of length n and this occurs twice, so 

Finally for the Local-Distributed, each processor does n/P transforms 
of length n during the horizontal phase, and (l/P)th of the work for n 
transforms of length R during the vertical stage. 

The difference in computation time among the three methods comes 
from the NllZ term, with r,” = (n/@)N,,,, TTs = nN,/? aud 
T,fD = 1/2(n $ n/P)N,,,. Comparing coefficients, we see that 

Hence in terms of vectorization, the Block lnethod is at an advantage 
which increases with increasing parallelism as measured by N,,,. 

All of the vectorized FFT implementations require an internal trans- 
form of the data in order to set up the vectors in the correct orientation. 
Since each processor has n2 / P points the overhead here is n”/ P t,,, 

Our final model combines the communication and computational 
portions of the methods in a straight-forward manner. 

TTS = 2cr(5n(Nllz + ;) loga n) + 2(P - 1)’ + (log, P$i, 

T” = Za(5+(N,,? + +og? -$ + (210g2 P)(;t, +r) 

TLD = 5an(N1/2+~)logln+5a~(N,,3+n)logl% 

t (21og, P)(& + T) 

TV R = ~~logznt(210g,P)(~~t,+3r) 

An analysis of the communication time shows that the coefficient of the 
t, term is of the same order, but that of the 7 term is clearly against 
the Transpose-Split method. Since the 7 term represents the latency 
time or startup time for each communication and is several orders of 
magnitude larger than t,, it is obvious that as P increases, the over- 
head for transpose communication will become significant. Of course 
buffering can reduce this overhead. However the minimum number of 
communications needed for recursive block transpose is still of order 
log, P. Therefore, the communication needs of the distributed meth- 
ods present a lower bound for the transpose communication. 

6 Improvements to the Vector-Radix Dis- 
tributed Step 

Consider the 2x2 Vector-Radix butterfly 

[ 5 S]+[: _w:J [: :] [y’? -k3] 

= 
1 

a + w,c + W2b + (wzw1)d a + w,c - wgl - (W$d&i 
a - WIG + w& - (WI_@ a - WIG - U?b + (W2Wl)d 1 

Suppose that the the elements of this 2x2 matrix are distributed among 
four processors: 

pa pb 

Now if we implement this operation by a total exchange, each proces- 
sor would have to compute 3 multiplications and 3 additions. The mul- 
tipliers ul, wa and (w1w2) may also be computed redundantly. Other 
alternatives include precomputing wlc, wzb and (w+l)d before the to- 
tal exchange. This cuts down on the number of multiplications as 
each processor now does at most one multiplication. We write (W~WZ) 
together because if wL = ui and w2 = wf, (WOWS) = ,;+I and no mul- 
tiplication is needed here. The load balancing here is not good because 
the processor Pa does not have to do any multiplication. However each 
processor still does three additions. 

Another approach is to perform the 2x2 Vector-Radix butterfly in 
two stages. In the first stage, processors Pa and PC work together to 
compute a + wlc and a - wlc whereas processors Pa and Pd do b + wld 
and b - wld. After this stage we have: 

1435 



Figure 1: Vector-Radix 2 x 2 Butterflies 

Communication is between r.eighboring processors. One multiplica- 
tion and one addition is done. Next processors P, and P!, cooperate to 
compute (a + W~C) + w,(b + wld) and (cz + wlc) - w,(b + wld). Corre- 
spondingly processor P, and Pf compute (a - wlc) + wz(b - wld) and 
(a-wlc) -uz(b-qd) respectively. I n tl Iis stage only one addition and 
one multiplication is done. Again communication is between neighbor- 
ing processors. And the total r.umber of multiplications and additions 
is at most two per processor. 

In general each processor contains a matrix of points and each 2 x 2 
butterfly takes place independently from the others. Figure 1 shows 
the situation schematically. If ~communication can proceed along both 
edges of each node simultaneously we might be able to overlap the 
split stages of the 2 x 2 butterfly, i.e. while P, and P, are computing 
a0 + wpco and cz0 - wfco, rh and P,, are computing (a’ - wit’) + 
w:(b’-w;d’) and (~‘-w;c’)-wZ’(b’-w;d’) from the previous butterfly. 

Another variation includes P, and Pb computing a + ulb and a - wzb 
for one set of points aud Pa an,S PC computing a + wlc and a - W~C for 
another set of points, simultaneously communicating in two directions. 

Clearly many more variations cau be presented from computing the 
basic 2 x 2 Vector-Radix butterfly to organizing the order or concur- 
rency of the independent 2 x 2 ‘Jector-Radix butterflies. Each would be 
best suited for a certain communication scheme, whether fine-grained 
or coarse-grained (as in the Intel iPSC). Also, buffering needs differ 
for the various schemes. Therefore the implementation of vector-radix 
methods on concurrent processors need to be tailored to the particular 
architecture available and offers potential for both high parallelism and 
reduced operations counts. 

7 Conclusion 

After consideration of the model and timing results we can draw the 
following conclusions. 

. The distributed methods E.I~ hurt by the interruption of computa- 
tion during the trans-processor butterfly stages, hence their perfor- 
mance should be enhanced on systems that interleave computation 
and communication. 

. The complexity of communication for distributed methods is 
log, P, therefore they are promising on systems where P is large. 

. In the presence of vector processor nodes, the Block method ex- 
hibits better vectorization than any of the other methods since its 
working vector length is approximate fi times longer. 

. The Transpose-Split method is superior ou systems which support 
an efficient transpose algorithm since its majo deficiency is the 
asymptotic complexity of recursive block transpose communication 
growing exponentially to the number of dimensions. Presently 
on the Intel iPSC/System 286 where each node is connected by 
an Ethernet communicati~~n channel, the penalties for traversing 

several nodes to get a message across increases linearly with the 
distance. Therefore on the current system, Transpose-Split is likely 
to be superior when the number of processors is small. 

The Vector-Radix method is highly parallel and also requires 
25% fewer complex multiplications than the row-column ap- 
proaches. Since each distributed butterfly depends on data in a 
d-dimensional sub-cube for a d-dimensional Vector-Radix FFT, 
a good implementation of the total exchange communication is 
needed. 

Future generations of hypercubes will likely support more ef- 
ficient transpose algorithms and routing hardware, making the 
Transpose-Split methodology more efficient. 

The Local-Distributed method is a compromise between the first 
two methods. In our implementation it is competitive with the 
Transpose-Split method and can be used when one wishes to avoid 
the transpose. 

Our implementation results show that on the Intel iPSC/System 286 
without vector boards on the nodes, there is essentially no difference 
between the three row-column methods. Efficient implementation of 
the Vector-Radix method depends on efficient total exchange commu- 
nication and is therefore this method is promising given its faster com- 
putational potential. The final analysis is that this problem is highly 
system dependent, and one should be aware of the advantages and 
disadvantages of these different methods in order to best utilize the 
parameters of a particular system. 

Our discussion of higher-dimensional transform methods naturally 
leads to insights on further areas of research. A higher-dimensional 
DFT can be approached from any combination of the following: row- 
column, transposing along any dimension, or distributed block manip- 
ulations. For example, one way of looking at a 3-dimensional trans- 
form is as a Z-dimensional transform and a l-dimensional transform 
mapped in planes within nodes of a linear array of processors. An- 
other way of viewing it is to map the data into solid chunks within a 
three-dimensional array of processors. Finally, the use of the vector- 
radix approach involves no transposing and exhibits maximal paral- 
lelism during the independent stages. Transposing distributed data in 
three dimensions is extremely awkward, hence we are especially look- 
ing at vector-radix approaches to 3-dimensional FFTs as an avenue for 
further work. 
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