
IMPLEMENTATION OF A DIVIDE AND CONQUER CYCLIC
REDUCTION ALGORITHM ON THE FPS T-20 HYPERCUBE

Christopher L. Cox, Dept. of Mathematical Sciences, Clemson University,
Clemson, SC 29634-1907

Abstract

A simple variant of the odd-even cyclic reduction algorithm
for solving tridiagonal linear systems is presented. The target
architecture for this scheme is a parallel computer with nodes
which are vector processors, such as the Floating Point
Systems T-Series hypercube. Of particular interest is the case
where the number of equations is much larger than the number
of processors. The matrix system is partitioned into local
subsystems, with the partitiloning governed by a parameter
which determines the amount of redundancy in computations.
The algorithm proceeds after the distribution of local systems
with independent computations, all-to-all broadcast of a small
number of equations from each processor, solution of this
subsystem, more independent computations, and output of the
solution. Some redundancy in calculations between
neighboring processors results in minimized communication
costs. One feature of this approach is that computations are
well balanced, as each processor executes an identical algebraic
routine.

A brief description of the standard cyclic reduction
algorithm is given. Then the divide and conquer strategy is
p&en& along with some estimates of speedupand effici&y.
Finally, an occam program for this algorithm which runs on the
FPS T-20 computer is discussed along with experimental
results.

1. Introduction

In this paper we present an extension of the cyclic reduction
algorithm to a method for use on a distributed-memory parallel
processor with nodes which are able to perform vector
arithmetic. The emphasis is on exploitation of vector
capabilities while keeping communication costs to a minimum.
This section contains a description of the standard cyclic
reduction algorithm and an outline of the rest of this paper.

We are concerned with the solution of a system of linear
equations, Ax=f, for which the coefficient matrix A is
symmetric, tridiagonal and positive definite. This matrix
system has the form

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed .for direct
commercial advantage, the ACM copyright notice and the title of -
the publication and its date appear, a&t notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

bl a2
a2 b2 a3

. . .
. . .

. .a
an b::

‘Xl
x2

=

x”

(1.1)

Letting x0= x,+r = al= %+1 = 0, (1.1) is equivalent to the
system of equations

aixi-t + bixi + ai+txi+t = fi, i =l,n WV

Suppose for convenience that n=2k-1. Cyclic reduction
consists of two phases, the reduction phase and the
backsubstitution phase. First, the system (1.2) is reduced to a
system of (n-1)/2 by (n-1)/2 equations in the unknowns x2,

x4,. . ., X,-l by dropping the odd equations after using them to
substitute for the odd numbered unknowns in the even
equations. That is, we have

a(24(2) (2) (2)
i i-1 + bi ‘i + a(2)x!2) = $2), i=l, e

i+l 1+1 2
(1.3)

where xg) = x’,:’ t = 0. This procedure is repeated k-2 times until
-

n
L

one equation is left,

#dx(k) = +k’
1 1 1 (1.4)

The complete algorimm for the reduction phase follows.

Forj = 1, k-l

Fori= I,“+’

Next i

Next j

1
(if i + 1)

b?
21-l

0 ACM 1988 0-89791-273-X/88/0007/1532 $1.50

1532

http://crossmark.crossref.org/dialog/?doi=10.1145%2F63047.63111&domain=pdf&date_stamp=1989-01-03

After solving for xf’ in (1.4), the backsubstitution phase pro-

ceeds with the algorithm

Forj=k-2, 1

U.6)

Next j

where x” = x’) 0 n+l =0, l<j<k-2
2j-1

The algorithm can be easily generalized for arbitrary values
of the dimension n. We have presented the algorithm in terms
of retaining the even numbered equations at each step, and
factoring out the odd equations. Clearly, one could instead
retain the odd numbered equations, or alternate even and odd
between cycles to carry certain unknowns through the entire
reduction step. The method generalizes in an obvious way to
systems with a block tridiagonal coefficient matrix. Cyclic
reduction can be used for nonsymmetric systems. Because we
are interested primarily in applications which produce
symmetric systems, we limit our discussion to that case.

An important point to make is that the procedures for
calculation of the coefficients in (1.5) and unknowns in (1.6)
are inherently parallel with respect to i. The exploitation of this
fine-grain parallelism has been analyzed for implementation on
vector processors and on various parallel architectures.
Hackney and Jesshope present a version for solving an
n-dimensional system on n processors keeping the level of
parallelism constant at n, [11. Kershaw considered using cyclic
reduction as a preconditioner for conjugate gradients to solve a
block tridiagonal system on a Cray 1, [2]. Johnsson has
formulated cyclic reduction algorithms for various
configurations, including binary trees and n-cubes, [3].
Lambiotte and Voigt used cyclic reduction on a CDC
STAR-100 computer, [4]. They point out that the method can
be described as an LTU decomposition of a permutation on the
original linear system. This rearrangement of the equations and
unknowns yields an algorithm consisting of operations on
vectors whose elements are accessed contiguously, eliminating
strides called for in (1.5) and (1.6). Additional references on
cyclic reduction can be found in Ortega and Voigt, [SJ.

In this work we present a simple adaptation of cyclic
reduction to a parallel computer whose nodes are vector
processors. Vector arithmetic will be used in connection with
the fine-grain, or statement-level parallelism. A “divide and
conquer” approach will provide coarse-grain, or
subroutine-level parallelism which will correllate in terms of
hardware to parallelism over multiprocessors. The divide and
conquer algorithm is presented in detail in Section 2. We
assume that the number of processors is much smaller than the
number of equations, so that many equations will be passed to
each node. We will limit this discussion to the case where the
coefficients and unknowns in (1.1) are scalars, though the
block case is of significant interest. In Section 3 the algorithm
is discussed again in the context of LTU decomposition similar
to that in [4]. An example of a parallel processor in which each
processor performs vector arithmetic is the FPS T-Series
hypercube. The implementation of the divide and conquer
algorithm on the 16 processor FPS T-20 hypercube and results
are presented in Section 4, The program is an outgrowth of an
occam program written by Vandiver, [6]. Her implementation
of a simple version of the algorithm presented here, using
integer arithmetic, ran on a parallel processor SimdatOr on a
VAX 8600.

2. Divide and Conquer Algorithm

Our main interest is a variant on the standard cyclic
reduction algorithm for a parallel processor with vector nodes,
based on a ‘divide and conquer’ strategy. If there are p
processors, the system of n equations is partitioned into p local
systems so that the reduction and backsolving phases can be
performed on each local system independently of the others.
This necessitates some redundancy in calculations for the sake
of lessened communications. Each local system is reduced to q
equations at which point there is no overlap of equations.
From a global perspective, the system of n equations has been
reduced to pq equations in pq unknowns. An all-to-all
broadcast of these pq equations takes place, and each processor
solves the pqxpq system, then proceeds with backsubstitution
to determine the unknowns associated with its local system.
The distribution of coefficients and the reduction process is
illustrated in Figure 2.1 for the case with n=19, p=2, and q=2.
In this example there will be two

reduction steps. The i’ equation after j-l steps is denoted Ey).

Processor 1

Processor 2

Figure 2.1 Example with n=19, q=2, p=2

The entries of the right hand side are distributed in a similar
way.

Letting np be the local system size, we can determine the
relationship between n, p. q and nr. For convenience we
assume n,=(q+l)2k-l-1 for some integer k so that the q
unknowns in each local system are carried through a reduction
procedure where the odd unknowns are always factored out.
A simple proof by induction verifies the following proposition.

Proposition 2.1: Suppose the tridiagonal system of n equations
is to be divided into p overlapping partitions each with

1533

Total Time = C, + C,logzn + C,n (24)
(For example, see [4]). Thus, for suitably large values of n,
time is essentially linear with respect to n. If this is the case,
then we have the following.

Proposition 2.2: If the time-intensive stages of the divide and
conquer algorithm are dominated by operations which are
O(n& then the speedup S,, and efficiency, E,, satisfy the
inequalities

np =(q+1)2k-1-1 equations, q and k integers. If

(21)

then k-l reduction steps (always factoring out the odd
unknowns) will reduce each local system to q equations in q+2
unknowns where each reduced local system shares one
unknown with its neighbor on either side.

In practice, n and p, or an upper limit for p. are given, and
one must choose q and np. One way to determine these
parameters would be to tint1 np from (2.1) using various values
of q. choosing the q which yields the value for nr, closest to but
not greater than (q+1)2k-r-1 for some integer k. The global
matrix system could then be extended with l’s on the main
diagonal and O’s elsewhere to length corresponding to q and
np=(q+1)2k-r-1. A sholrt algorithm could be written to
implement this procedure, choosing q from a specified range.

As one would expect, the efficiency of the divide and
conquer method is directly related to q, which governs the
amount of redundancy in computation. This will be restated
more precisely in another proposition, but this is evident when
one realizes that the number of equations which a processor
originally shares with the processors on either side is the ratio
which is multiplied by p-l in (2.1).

Before reduction begins, each local system will have the
form

aixisl + bixi +, ai+txi+t = fi, i =l,n
P (22)

In consideration of the global system, on the first processor we
can let x,=0 and on the last processor set xn +,=O. Otherwise these

P
terms are nontrivial because of the overlap. Thus each local
system is a system of np equations in nr,+2 unknowns.

On each processor, the reduction algorithm (1.5) is
performed k-l times with nt=nn so that each local system is
reduced to one of the form

aO3X(k) W Or)
i i-1 + bi ‘i .t a(ls)xck) = e’, i = 1, q

i+l i+l
(23)

A communication step takes place now. We have to solve a
pqxpq tridiagonal system, and each processor holds q
equations of the system. There are a variety of ways to
communicate the coefficients and solve for the pq unknowns.
We propose a simple ‘all-to-all broadcast’, i.e. for j=l,p,
processor j sends the coefficients in its version of (2.3) to every
other processor. Each processor will solve the same pqxpq
system, then use the q+2 unknown values associated with that
processor’s local system. Then the backsubstitution algorithm
(1.6) is carried out on each processor, beginning with q+2
known values rather than 1.

Now the solution is complete, and the values can be
gathered according to the following rule, On processor 1, with
15 i 5 p, variables locally numbered I through nn have global

number *[q(nn+l)]+l to %q(np+I)]+np.
q+l q+l

Now we consider efficiency. We assume q is small enough
that the time in communicating and solving the pqxpq system is
negligible with regard to the time spent in reduction and
backsubstitution. Timing formulas for vectorized cyclic
reduction applied to an nxn system on a single processor have
the form

SP2$
Epl”

q+l
(25)

Proof: From (2.1) we have

By definition,

n = (q+W + Cl-p)q
P w+l

(26)

time to solve on one processor S
sp= .

tune to solve on p processors
and Ep=A

P
Thus,

sp+ n(pq+l) >!w>Pq
p (q+l)n+(l-p)q - q+l - q+l

and the result for E,. follows immediatelv.
Remark An obvio& motivation for using multiple processors
is the case in which the uroblem is too large to fit on one
processor. In this case, on‘e may wish to consider the speedup
and efficiency with respect to a base timing on r processors, r
greater than 1. With respect to r, for p greater than r, speedup
and efficiency for p processors may be defined as

S
S _ time to solve on r processors

II

P- time to solve on p processors ’
E _

F-I (27)
I p

r
It must be pointed out that the efficiency relative to r processors
is exactly that - it should not be assumed that the efficiency
relative to one processor will be the same. Under the same
hypothesis as in Proposition 2.2, the conclusion in (2.5) holds
for the relative efficiency. Using (2.6) and (2.7) we have

so that

E El%
* q+l

For a complete analysis of efficiency, other factors must be
considered. Proposition 2.2 implies that efficiency of the
reduction and backsubstitution phases improves as q gets large.
As a increases. the amount of time in broadcasting and solving
the pqxpq system is no longer insignificant. An appropriate
range for q depends on n, p, and parameters governing the
particular computer being used such as scalar arithmetic speed,
vector arithmetic start-up times and communication times.

Stopping the reduction procedure before there is just one
equation left, while using a single-processor vector computer,
is mentioned with additional references in Ortega and Voigt,
[5]. This strategy makes sense because once vector lengths
decrease to a certain size. use of the vector arithmetic unit is no
longer worthwhile. A scalar method is used to solve for the
unknowns at that level and backsubstitution proceeds from
there.

Johnsson discusses a hybrid method for a parallel

1534

processor which uses Gaussian elimination at the local level
and cyclic reduction at the global level, (the opposite of our
method), which he calls GECR, [3]. This may be appropriate
for the case where there is no vector arithmetic capability.

3. Rearranging for Contiguous Access

The Divide and Conquer algorithm as described in Section
2 works efficiently under the assumption that the parallel
processor being used is capable of vector arithmetic with
strides, i.e. there is a reasonably fast gather-scatter capability.
This is not always the case. For example, an FPS T-Series
hypercube works most efficiently when vector operations
involve elements which are stored contiguously. Toward this
end, a reduction step of the cyclic reduction algorithm can be
described in terms of a block LTU (for the symmetric case,
LTLT) decomposition of a permuted matrix [4]. The rows and
columns of the matrix are rearranged so that each step in the
cyclic reduction algorithm can be expressed with vector
operations which require no gather-scatter operations. We
describe one reduction step using this approach, applied to the
local system Ax=f, which has the form

a1 % az
. . .

. . . I I . . .
a b a
“P “P rb+’

= (3.1)

At the beginning of the reduction phase, each local system will
consist of np equations in n,+2 unknowns. Assume that n is
odd and that the odd numbered unknowns are to be factored
out, (i.e., n,=(qtl)2k-1-l). The (local) rearranged system will
have the form

,:;[I; ;:][;;]=[::I;; (3.2)

where

At=[“’ A:a”p+t] , n,=[i B2 a], xz=k+j

B,=diag(b,, b,, . . ., b,p), B,=diag(b,, b,, . . ., bn -1)
P

X,=col(x,, x3, . . ., x*), X*=col(x*, x4, . . .) x a-‘)

Ft=col(f,, f3, . . ., fn;), F2=col(f2, f4, . . ., f%-t)

a2 a3
a4 a5

AL= . : ,
.

a a” IIp-1 I

Note that X1 contains the unknowns which are factored
out. Setting j=(np+l)/2 and m=j-1, B, and B2 have

dimension jxj and mxm. A, and B2 have dimension jx(j+l) and

mx(j+l). Because d: is not symmetric, an LTU decomposition is

performed, with L and U given by

The lower right block Tu of the matrix T is the new coefficient
matrix resulting from one reduction step. T,, has dimension
mx(j+l) and is tridiagonal, having form

I “1 111 v2
. . .

T,,= . . . = i$- A,B;‘A, (3.4)
. . .

“In hn vnl+l

To express the computation of T22 in vector arithmetic, define

vectors p, 7, CI, and 6 as

pi=+- , i=l, m yi = b,;, i=l, m
2i-1 0.5)

ai = az, i=l, j

Then we have

Si = a2i- 1, i=& j

and

y = yi - (c& + Sf+2+l)3i+l), i=l,m (3.6)

Vi = -CtiSipi, i=l, j (3.7)

The right hand side associated with T22 is computed using
the equation

(F2)i := (F2)i -

[a,Pi (F,)i + ‘;+1pi+l (‘,);+,I, i=Lm
(3.8)

After k-l reduction steps each processor holds a system of
q equations in q+2 unknowns. These coefficients are shared in
an all-to-all broadcast. Each processor solves the pqxpq
system and then extracts the qt2 values associated with its local
system.

The backsubstitution step, performed k-l times, to
determine X, can be deduced from (3.2),

X,=B;‘(F,-A&)

and formulated in vector arithmetic as

(X,)i=Pi((F,)i - [“i~z,)i + ‘,(‘,),,I 1, i=l j (3.9)

The vector product terms PF,, pa, and PS can be computed in
the reduction phase and stored for use in backsubstitution.

4. Implementation and Results

An occam program for the divide and conquer algorithm
was written for the Floating Point Systems T-20 Hypercube at
Clemson University. This is a 16 node MIMD computer with
nodes which perform vector arithmetic.

Each T-Series node contains 1 Mbyte of random-access
memory linked by vector registers to a 64-bit vector-arithmetic
unit capable of 10 MFLOPS (peak). The memory is divided
into four subbanks each containing 256 1024-byte slices, [7].
These subbanks form two banks, bank B having three
subbanks, and bank A having one. After allowing for storage
of the operating system and user code, the user can allocate
sections of memory somewhat freely. Optimum data transfers

1535

between memory and the vector unit require that input opemnds
are in different banks and that the operands are aligned, which
means that each vector begins at a slice boundary. Vector
arithmetic and communication between processors can be
performed concurrently.

The algorithm consists of six stages, the first being
initialization of the local matrix systems. This can be done in
one of two ways, either by dividing up the global system on
node 0 and broadcasting the local systems, or simply
constructing each local system on its corresponding processor.
The former strateev would be useful in the case where the
system is assembled on a serial computer and sent to the
hypemube to be solved. Our primary interest is the solution of
systems generated by numerical methods for partial differential
equations. It has been recognized that there is parallelism as
well as opportunity for vectorization in the assembling of these
systems, [8]. Thus we have each processor construct its local
system.

The second stage consists of the reduction phase performed
on each local system. The moves and arithmetic operations in
one loop of the reduction procedure corresponding to equations
(3.5)-(3.8) can be arranged into 8 steps (each corresponding to
a move operation), as shown in figure 4.1. Each step consists
of a move (gather/scatter ox’ shift for alignment) and one or two
vector computations. These steps are ordered so that moves
and arithmetic operations could be executed concurrently, if the
computer has that capability. The product terms CZ~, 8p and
OF1 are saved for use in the backsolving phase. The gather
move in step VIII is also executed once before the first loop
begins, and is not executed in the final reduction loop.

ZLeIl IlLlswz
I. a (gather)’

II. 6 (gather)
III. Ft (gather)’

Iv. Y (gather)
V. Ssp (shift)

VI. 6PFt (shifi:)

VII. Ft (gather)

VIII. b (gather:)

Figure 4.1 Steps in one reduction loop

Next it is necessary for each processor to share its local
system (2.3) with the others. We use a routine written by Dan
Warner which implements a variant of the Johnsson and Ho
all-to-all broadcast based on rotated binomial trees, [9], [lo].
The T-20 is self-synchronizing so the user only has to make
sure that each send has a corresponding receive.

The fourth stage of the algorithm is the solution on each
processor of the same pq by pq system. Obviously this is
redundant, but it is not wasteful with respect to time and it
saves a communication step that would be needed after one
processor solved the system while the others sat idle.
Originally we used (software) double precision floating point
arithmetic to solve but discovered that the vectorized cyclic
reduction routine was faster even for small dimensions.

Following the solution of the reduced system is the
backsolving stage, (3.9), one loop of which is shown in figure
4.2. Note again that in the first two steps, data moves are
coupled with calls to the vector arithmetic unit. The moves into
shift registers for the computation steps must be given priority
over the shifting and scatter moves. The occam PRI PAR
statement is useful for this purpose.

In the sixth and final stage one can gather the global
solution through an all-to-one broadcast of the local solutions.

This will permit the user to send the global solution through
node 0 to the host computer. The communication step is
unnecessary if one merely desires a printout of the solution, as
each processor can print its values to the screen (or to a log
file). For test purposes we solve a system for which the exact
solution is known, so we have each processor compute and
print the mean square error of its associated unknowns.

A!kxc Comoute
X, (shift) WX,, PW33X2

X2 (scatter) aPX2, @WV-W- al%
X, (scatter)

Figure 4.2 Steps in one backsolve loop

Numerical results are presented in two parts. To study
aspects of vectorization, a series of experiments were
conducted on a single node. Then a number of multi-node tests
were conducted to-examine the properties (especially speedup
and efficiencv) of the Divide and Conauer aleorithm.

Table 4.i is a listing of timings fbr por%ons of the cyclic
reduction algorithm on one processor only. Here n is the
dimension of the system and times are in microseconds (as are
all subsequent timings). In all cases, q=l, so n=2k- 1 and thus
the reduction and backsolve steps each were carried out in k-l
loops. Each time given is a sum of timings of k-l vector
operations on vectors of varying size. The first three times
show how much of the total computing time was taken by each
type of vector arithmetic operation. For example, for n=3 1, the
vector reciprocals in step II of the reduction phase took a total
of 1704 microseconds. The vector negative in step VIII took
415 microseconds. Each term-by-term multiply, addition, or
difference of vectors took, on the average, 528 microseconds.
(Times actually ranged from 521 to 539). Also listed are the

total times spent in vector arithmetic and times spent in vector
moves (either gather/scatter or shifts). Unrolling gather/scatter
move Ioops by a factor of 4 resulted in a 20% time savings for
the larger dimensions. All arithmetic operations are coupled
with moves, as shown in figures 4. I and 4.2. If there was true
concurrency between arithmetic and moves, then the total time
for reduction and backsolving (items 7 and 8 in Table 4.1)
would be the same as the m&e time in 5, since this would
overshadow the time for computing.

Two additional remarks about vectorization are in order.
With the addition of fast scalar arithmetic (coming on the next
T-Series generation), it will be worthwhile to stop the reduction
early, say when the reduced system is m by m rather than 1 by
1. The unknowns associated with that level can be solved for
by the tridiagonal algorithm, then the backsolving phase is
begun with m known values. Also, we discovered that vector
operations ran faster when operands filled slices fully, i.e.
vectors had lengths which were multiples of 128. This may be
related to the fact that we used the FPS higher level generic and
single node subroutines, [111.

Table 4.1 provides some insight into what may be expected
in the multi-processor results. Our primary goal is to compare
results with the ineaualities (2.5) in Prouosition 2.2. Rows 7
and 8 reveal how iarge np ‘must be fbr the hypothesis of
Proposition 2.2 to be met. Certainly one would not expect to
see optimal results for efficiency and speedup if np were less
than 1000. A set of timings for various hypercube dimensions
is given in Table 4.2. Here p is the number of processors, the
local system size is n,=(q+1)2k-t-1, and the global size n is
given by (2.1). In ea:h case q=8 except forp=l for which
o=l. Though the values for n differ. we comoare results as
though the; were all equal to 819’1. (This is giving an
advantage to the p=l results.) The sum of the times spent in
the reduction and backsubstitution phases is given first. Next

1536

are the times for communication and solution of the pq by pq
system. Here and in all subsequent results, speedup and
efficiency are based on the total of these three timings.

Proposition 2.2 predicts an efficiency of 87.5%.
Discrepencies in the numerical results are caused by two
factors. First, the solver used for the reduced global system is
not as efficient as we would like it to be. The capability for fast
scalar arithmetic will improve this considerably. Second, as
mentioned above, the local size n,=575 is below the range of
values for which the conditions of Proposition 2.2 are satisfied.
From the perspective that n is approximately equal to p times
np, it is not worthwhile to use 16 processors to solve systems
which have less than 16.000 unknowns.

Memory limitations made it inconvenient to let np be larger
than 8191. In order to keep the n,, for p=16 in the range of
interest (larger than lOOO), we use the generalized definitions of
speedup and efficiency given in (2.7). Efficiency and speedup
in subsequent tables are calculated according to (2.7), with r
equal to the least number of processors used in each set of
results. Three sets of results, with q held constant in each set,
are displayed in Table 4.3. In these cases n varies somewhat
yet we compare results as if it were constant. The predicted
efficiencies for these three sets are 75%, 86% and 94%,
respectively. A more efficient algorithm for the intermediate
solve step would bring the weaker results closer to the
predicted values. Finally, in Table 4.4, we no longer hold q
constant but instead compare cases for which n is exactly the
same. Because q is greater than or equal to 3, one would
expect efficiencies no worse than 75%. The results vary within
about 10% of this prediction.

5. Summary

In this paper we have described a divide and conquer cyclic
reduction algorithm for a parallel processor with vector
processing nodes. A rough estimate for efficiency was
derived, based on a parameter which controls redundancy in
calculations. Numerical results generated on an FPS T-20
hypercube computer lent credence to this estimate and
highlighted some shortcomings as well. This estimate was
based on the assumption that the time to communicate and solve
the system at the most reduced level is insignificant in
comparison to the times taken by the reduction and backsolving
phases. Further analysis will yield more precise performance
estimates.

Obviously, these results are machine-dependent.
Improvements in hardware such as fast scalar arithmetic, which
is promised for the next generation of T-Series computers, will
influence the way in which this algorithm is implemented.
Scalar arithmetic will replace vector arithmetic earlier in the
reduction process. Faster gather-scatter operations may affect
the balance in timings between moves and computation.

The next stage in this effort is to generalize this algorithm to
the block case. Also, an abbreviated version of this method
may be useful as a preconditioner for a conjugate gradient
solver.

References

[l] R. Hackney and C. Jesshope, (1981), Parallel Computers:
Architecture, Programming and Algorithms, Adam Hilger,
Bristol.

[2] D. Kershaw, (1982). Solution of single tridiagonal linear
svstems and vectorization of the ICCG algorithm on the
CRAY-1, in Parallel Compuiations, (1982), 6. Rodrigue, ed.,
Academic Press, New York.

[3] L. Johnsson, (1984), Odd-even cyclic reduction on
ensemble architectures and the solution of tridiagonal systems
of equations, Dept. Computer Science Report
YALEU/CSD/RR-339, Yale Univ., New Haven, CT.

[4] J. Lambiotte and R. Voigt, (1975), The solution of
tridiagonal linear systems on the CDC STAR-100 computer,
ACM Trans., Math Software, 1, pp. 308-329.

[5] J. Ortega and R. Voigt, (1985), Solution of Partial
Differential Equations on Vector and Parallel Computers,
SIAM Rev. 27, pp.149-240.

[6] K. Vandiver, (1987), An occam implementation of u divide
and conquer cyclic reduction algorithm, Master’s project report,
Department of Mathematical Sciences, Clemson University.

[7] FPS T Series Users Guide, Floating Point Systems, Inc.,
Sept. 1987.

[8] 0. Edwards, (1986), Finite element st$ness calculation on
supercomputers, Master’s Thesis, Department of Mathematics,
Carnegie-Mellon University.

[9] D. Warner, Hypercube Communications Algorithms,
presented to the Workshop on Parallel Computing, Clemson
University, Clemson, SC, Nov. 18-19, 1987.

[lo] L. Johnsson and C.-T. Ho, Spanning Graphs for
Optimum Broadcasting and Personalized Communication in
Hypercubes, Dept. Comp. Sci. Tech. Rep. 500, Yale Univ.,
Nov., 1986.

[1 l] FPS T Series Math Library Manual (Release B), Floating
Point Systems, Inc., February, 1987.

1537

n: 31 63 127 255 511 1023 2047 4095 8191

times IQMecs):
1. vector recip.:1704 2126 2547
2. vector neg.: 415 519 622
3. vector *,+,-: 528 659 792
4. total vector arithmetic op. time:

10565 13194 15839
5. moves (unrolled):

3968 6464 11456
6. moves (without unrolling):

4416 7104 13248
7. reduction: 11520 15552 21184
8. backsolve: 3456 4736 6720

2984 3775 5329
729 865 1061
923 1092 1332

18479 22106 27698

20608 39168 75648 148928 293888 584512

25344 48704 95552 188800 375808 747904
29952 45760 75648 133696 248000 475008

9856 15680 26752 48448 91136 175936

8378 14419 26455
1386 1956 3023
1716 2387 3637

37221 54574 87673

Table 4.1 Timings for single processor cyclic reduction

Q k rz, !lred&backcomm solve total & efficiencv
1 11 8191 8191 653760
2 10 4607 8703 374080 768

-- 653760
17216 392064 1.67 83%

4 9 2303 8447 197120 2048 24384 223552 2.92 73%
16 7 575 8255 61056 16000 54976 132032 4.95 31%

Table 4.2 Results comparing efficiency and speedup for q=8

Q k DP
4 12 8191
8 11 4095

16 10 2047

Q k “P
4 11 7167
8 10 3583

16 9 1791

e k
2 10
4 9
8 8

16 7

nP
8191
4095
2047
1023

cl2
L! red&back comm solve

26623 647296 1728 11456
25599 335360 5568 16256
25087 178176 15808 22592

ti
QEd&backcomm solve

25599 567744 1920 16256
25087 294400 5696 22656
24831 156672 15936 32320

&
11 Ed&back c~mm solve

15871 642240 1024 15808
15615 329472 2496 21568
15487 171968 6528 29952
15423 92032 16768 43520

total
660480
357184
216576

585920
322752
204928

659072
353536
208448
152320

(Aative)
efficiencv speedup

1.85 92%
3.05 76%
irelative)

& efficiencv

1.82 911,
2.86 71%

(relative)
sveednn efficiency

--
1.86 93%
3.16 79%
4.33 54%

Table 4.3 Results comparing efficiency and speedup for various values of q and n

Q il !L Qp EW
1 12 10 6655 528832
2 6 10 3583 295808
4 3 10 2047 179072

Q 4 k
2 12 10
4 6 10
8 3 10

Q Q k

4 24 8 12 ;
16 6 9

Q 9 k
8 6 11

16 3 11

3583 295552
2047 179136

n, E.3&back
6399 504192
3327 272768
1791 157056

L+, red&back
7 167 569728
4095 336704

n=6655
cOmm solve

640
11520
11520

1728 11520
n=1279P

m solve
896 16448

1920 16448
5568 16448

1 n=2483
comm f2d!E

3072 32512
6208 32512

15936 32512
n=50175

m &
5632 22784

15680 22784

um!
540352
307968
192320

Q&l
545344
313920
201152

Km!
539776
311488
205504

w
598144
375168

speedup efficiency

;:75 88%
2.8 70%

(relative)
speedup efficiencv

1:74 S3%
2.71 68%

(relative)
Speedup efflciencv

1173 87%
2.63 66%

(relative)
speedup efficiency

T:6 80%

Table 4.4 Results comparing efficiency and speedup for identical n values.

1538

