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Abstract 

A simple variant of the odd-even cyclic reduction algorithm 
for solving tridiagonal linear systems is presented. The target 
architecture for this scheme is a parallel computer with nodes 
which are vector processors, such as the Floating Point 
Systems T-Series hypercube. Of particular interest is the case 
where the number of equations is much larger than the number 
of processors. The matrix system is partitioned into local 
subsystems, with the partitiloning governed by a parameter 
which determines the amount of redundancy in computations. 
The algorithm proceeds after the distribution of local systems 
with independent computations, all-to-all broadcast of a small 
number of equations from each processor, solution of this 
subsystem, more independent computations, and output of the 
solution. Some redundancy in calculations between 
neighboring processors results in minimized communication 
costs. One feature of this approach is that computations are 
well balanced, as each processor executes an identical algebraic 
routine. 

A brief description of the standard cyclic reduction 
algorithm is given. Then the divide and conquer strategy is 
p&en& along with some estimates of speedupand effici&y. 
Finally, an occam program for this algorithm which runs on the 
FPS T-20 computer is discussed along with experimental 
results. 

1. Introduction 

In this paper we present an extension of the cyclic reduction 
algorithm to a method for use on a distributed-memory parallel 
processor with nodes which are able to perform vector 
arithmetic. The emphasis is on exploitation of vector 
capabilities while keeping communication costs to a minimum. 
This section contains a description of the standard cyclic 
reduction algorithm and an outline of the rest of this paper. 

We are concerned with the solution of a system of linear 
equations, Ax=f, for which the coefficient matrix A is 
symmetric, tridiagonal and positive definite. This matrix 
system has the form 
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Letting x0= x,+r = al= %+1 = 0, (1.1) is equivalent to the 
system of equations 

aixi-t + bixi + ai+txi+t = fi, i =l,n WV 

Suppose for convenience that n=2k-1. Cyclic reduction 
consists of two phases, the reduction phase and the 
backsubstitution phase. First, the system (1.2) is reduced to a 
system of (n-1)/2 by (n-1)/2 equations in the unknowns x2, 

x4,. . ., X,-l by dropping the odd equations after using them to 
substitute for the odd numbered unknowns in the even 
equations. That is, we have 

a(24(2) (2) (2) 
i i-1 + bi ‘i + a(2)x!2) = $2), i=l, e 

i+l 1+1 2 
(1.3) 

where xg) = x’,:’ t = 0. This procedure is repeated k-2 times until 
- 

n 
L 

one equation is left, 

#dx(k) = +k’ 
1 1 1 (1.4) 

The complete algorimm for the reduction phase follows. 

Forj = 1, k-l 

Fori= I,“+’ 

Next i 

Next j 

1 
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After solving for xf’ in (1.4), the backsubstitution phase pro- 

ceeds with the algorithm 

Forj=k-2, 1 

U.6) 

Next j 

where x” = x’) 0 n+l =0, l<j<k-2 
2j-1 

The algorithm can be easily generalized for arbitrary values 
of the dimension n. We have presented the algorithm in terms 
of retaining the even numbered equations at each step, and 
factoring out the odd equations. Clearly, one could instead 
retain the odd numbered equations, or alternate even and odd 
between cycles to carry certain unknowns through the entire 
reduction step. The method generalizes in an obvious way to 
systems with a block tridiagonal coefficient matrix. Cyclic 
reduction can be used for nonsymmetric systems. Because we 
are interested primarily in applications which produce 
symmetric systems, we limit our discussion to that case. 

An important point to make is that the procedures for 
calculation of the coefficients in (1.5) and unknowns in (1.6) 
are inherently parallel with respect to i. The exploitation of this 
fine-grain parallelism has been analyzed for implementation on 
vector processors and on various parallel architectures. 
Hackney and Jesshope present a version for solving an 
n-dimensional system on n processors keeping the level of 
parallelism constant at n, [ 11. Kershaw considered using cyclic 
reduction as a preconditioner for conjugate gradients to solve a 
block tridiagonal system on a Cray 1, [2]. Johnsson has 
formulated cyclic reduction algorithms for various 
configurations, including binary trees and n-cubes, [3]. 
Lambiotte and Voigt used cyclic reduction on a CDC 
STAR-100 computer, [4]. They point out that the method can 
be described as an LTU decomposition of a permutation on the 
original linear system. This rearrangement of the equations and 
unknowns yields an algorithm consisting of operations on 
vectors whose elements are accessed contiguously, eliminating 
strides called for in (1.5) and (1.6). Additional references on 
cyclic reduction can be found in Ortega and Voigt, [SJ. 

In this work we present a simple adaptation of cyclic 
reduction to a parallel computer whose nodes are vector 
processors. Vector arithmetic will be used in connection with 
the fine-grain, or statement-level parallelism. A “divide and 
conquer” approach will provide coarse-grain, or 
subroutine-level parallelism which will correllate in terms of 
hardware to parallelism over multiprocessors. The divide and 
conquer algorithm is presented in detail in Section 2. We 
assume that the number of processors is much smaller than the 
number of equations, so that many equations will be passed to 
each node. We will limit this discussion to the case where the 
coefficients and unknowns in (1.1) are scalars, though the 
block case is of significant interest. In Section 3 the algorithm 
is discussed again in the context of LTU decomposition similar 
to that in [4]. An example of a parallel processor in which each 
processor performs vector arithmetic is the FPS T-Series 
hypercube. The implementation of the divide and conquer 
algorithm on the 16 processor FPS T-20 hypercube and results 
are presented in Section 4, The program is an outgrowth of an 
occam program written by Vandiver, [6]. Her implementation 
of a simple version of the algorithm presented here, using 
integer arithmetic, ran on a parallel processor SimdatOr on a 
VAX 8600. 

2. Divide and Conquer Algorithm 

Our main interest is a variant on the standard cyclic 
reduction algorithm for a parallel processor with vector nodes, 
based on a ‘divide and conquer’ strategy. If there are p 
processors, the system of n equations is partitioned into p local 
systems so that the reduction and backsolving phases can be 
performed on each local system independently of the others. 
This necessitates some redundancy in calculations for the sake 
of lessened communications. Each local system is reduced to q 
equations at which point there is no overlap of equations. 
From a global perspective, the system of n equations has been 
reduced to pq equations in pq unknowns. An all-to-all 
broadcast of these pq equations takes place, and each processor 
solves the pqxpq system, then proceeds with backsubstitution 
to determine the unknowns associated with its local system. 
The distribution of coefficients and the reduction process is 
illustrated in Figure 2.1 for the case with n=19, p=2, and q=2. 
In this example there will be two 

reduction steps. The i’ equation after j-l steps is denoted Ey). 

Processor 1 

Processor 2 

Figure 2.1 Example with n=19, q=2, p=2 

The entries of the right hand side are distributed in a similar 
way. 

Letting np be the local system size, we can determine the 
relationship between n, p. q and nr. For convenience we 
assume n,=(q+l)2k-l-1 for some integer k so that the q 
unknowns in each local system are carried through a reduction 
procedure where the odd unknowns are always factored out. 
A simple proof by induction verifies the following proposition. 

Proposition 2.1: Suppose the tridiagonal system of n equations 
is to be divided into p overlapping partitions each with 
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Total Time = C, + C,logzn + C,n (24) 
(For example, see [4]). Thus, for suitably large values of n, 
time is essentially linear with respect to n. If this is the case, 
then we have the following. 

Proposition 2.2: If the time-intensive stages of the divide and 
conquer algorithm are dominated by operations which are 
O(n& then the speedup S,, and efficiency, E,, satisfy the 
inequalities 

np =(q+1)2k-1-1 equations, q and k integers. If 

(21) 

then k-l reduction steps (always factoring out the odd 
unknowns) will reduce each local system to q equations in q+2 
unknowns where each reduced local system shares one 
unknown with its neighbor on either side. 

In practice, n and p, or an upper limit for p. are given, and 
one must choose q and np. One way to determine these 
parameters would be to tint1 np from (2.1) using various values 
of q. choosing the q which yields the value for nr, closest to but 
not greater than (q+1)2k-r-1 for some integer k. The global 
matrix system could then be extended with l’s on the main 
diagonal and O’s elsewhere to length corresponding to q and 
np=(q+1)2k-r-1. A sholrt algorithm could be written to 
implement this procedure, choosing q from a specified range. 

As one would expect, the efficiency of the divide and 
conquer method is directly related to q, which governs the 
amount of redundancy in computation. This will be restated 
more precisely in another proposition, but this is evident when 
one realizes that the number of equations which a processor 
originally shares with the processors on either side is the ratio 
which is multiplied by p-l in (2.1). 

Before reduction begins, each local system will have the 
form 

aixisl + bixi +, ai+txi+t = fi, i =l,n 
P (22) 

In consideration of the global system, on the first processor we 
can let x,=0 and on the last processor set xn +,=O. Otherwise these 

P 
terms are nontrivial because of the overlap. Thus each local 
system is a system of np equations in nr,+2 unknowns. 

On each processor, the reduction algorithm (1.5) is 
performed k-l times with nt=nn so that each local system is 
reduced to one of the form 

aO3X(k) W Or) 
i i-1 + bi ‘i .t a(ls)xck) = e’, i = 1, q 

i+l i+l 
(23) 

A communication step takes place now. We have to solve a 
pqxpq tridiagonal system, and each processor holds q 
equations of the system. There are a variety of ways to 
communicate the coefficients and solve for the pq unknowns. 
We propose a simple ‘all-to-all broadcast’, i.e. for j=l,p, 
processor j sends the coefficients in its version of (2.3) to every 
other processor. Each processor will solve the same pqxpq 
system, then use the q+2 unknown values associated with that 
processor’s local system. Then the backsubstitution algorithm 
(1.6) is carried out on each processor, beginning with q+2 
known values rather than 1. 

Now the solution is complete, and the values can be 
gathered according to the following rule, On processor 1, with 
15 i 5 p, variables locally numbered I through nn have global 

number *[q(nn+l)]+l to %q(np+I)]+np. 
q+l q+l 

Now we consider efficiency. We assume q is small enough 
that the time in communicating and solving the pqxpq system is 
negligible with regard to the time spent in reduction and 
backsubstitution. Timing formulas for vectorized cyclic 
reduction applied to an nxn system on a single processor have 
the form 

SP2$ 
Epl” 

q+l 
(25) 

Proof: From (2.1) we have 

By definition, 

n = (q+W + Cl-p)q 
P w+l 

(26) 

time to solve on one processor S 
sp= . 

tune to solve on p processors 
and Ep=A 

P 
Thus, 

sp+ n(pq+l) >!w>Pq 
p (q+l)n+(l-p)q - q+l - q+l 

and the result for E,. follows immediatelv. 
Remark An obvio& motivation for using multiple processors 
is the case in which the uroblem is too large to fit on one 
processor. In this case, on‘e may wish to consider the speedup 
and efficiency with respect to a base timing on r processors, r 
greater than 1. With respect to r, for p greater than r, speedup 
and efficiency for p processors may be defined as 

S 
S _ time to solve on r processors 

II 

P- time to solve on p processors ’ 
E _ 

F-I (27) 
I p 

r 
It must be pointed out that the efficiency relative to r processors 
is exactly that - it should not be assumed that the efficiency 
relative to one processor will be the same. Under the same 
hypothesis as in Proposition 2.2, the conclusion in (2.5) holds 
for the relative efficiency. Using (2.6) and (2.7) we have 

so that 

E El% 
* q+l 

For a complete analysis of efficiency, other factors must be 
considered. Proposition 2.2 implies that efficiency of the 
reduction and backsubstitution phases improves as q gets large. 
As a increases. the amount of time in broadcasting and solving 
the pqxpq system is no longer insignificant. An appropriate 
range for q depends on n, p, and parameters governing the 
particular computer being used such as scalar arithmetic speed, 
vector arithmetic start-up times and communication times. 

Stopping the reduction procedure before there is just one 
equation left, while using a single-processor vector computer, 
is mentioned with additional references in Ortega and Voigt, 
[5]. This strategy makes sense because once vector lengths 
decrease to a certain size. use of the vector arithmetic unit is no 
longer worthwhile. A scalar method is used to solve for the 
unknowns at that level and backsubstitution proceeds from 
there. 

Johnsson discusses a hybrid method for a parallel 
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processor which uses Gaussian elimination at the local level 
and cyclic reduction at the global level, (the opposite of our 
method), which he calls GECR, [3]. This may be appropriate 
for the case where there is no vector arithmetic capability. 

3. Rearranging for Contiguous Access 

The Divide and Conquer algorithm as described in Section 
2 works efficiently under the assumption that the parallel 
processor being used is capable of vector arithmetic with 
strides, i.e. there is a reasonably fast gather-scatter capability. 
This is not always the case. For example, an FPS T-Series 
hypercube works most efficiently when vector operations 
involve elements which are stored contiguously. Toward this 
end, a reduction step of the cyclic reduction algorithm can be 
described in terms of a block LTU (for the symmetric case, 
LTLT) decomposition of a permuted matrix [4]. The rows and 
columns of the matrix are rearranged so that each step in the 
cyclic reduction algorithm can be expressed with vector 
operations which require no gather-scatter operations. We 
describe one reduction step using this approach, applied to the 
local system Ax=f, which has the form 

a1 % az 
. . . 

. . . I I . . . 
a b a 
“P “P rb+’ 

= (3.1) 

At the beginning of the reduction phase, each local system will 
consist of np equations in n,+2 unknowns. Assume that n is 
odd and that the odd numbered unknowns are to be factored 
out, (i.e., n,=(qtl)2k-1-l). The (local) rearranged system will 
have the form 

,:;[I; ;:][;;]=[::I;; (3.2) 

where 

At=[“’ A:a”p+t] , n,=[i B2 a], xz=k+j 

B,=diag(b,, b,, . . ., b,p), B,=diag(b,, b,, . . ., bn -1) 
P 

X,=col(x,, x3, . . ., x* ), X*=col(x*, x4, . . .) x a-‘) 

Ft=col(f,, f3, . . ., fn;), F2=col(f2, f4, . . ., f%-t) 

a2 a3 
a4 a5 

AL= . : , 
. 

a a” IIp-1 I 

Note that X1 contains the unknowns which are factored 
out. Setting j=(np+l)/2 and m=j-1, B, and B2 have 

dimension jxj and mxm. A, and B2 have dimension jx(j+l) and 

mx(j+l). Because d: is not symmetric, an LTU decomposition is 

performed, with L and U given by 

The lower right block Tu of the matrix T is the new coefficient 
matrix resulting from one reduction step. T,, has dimension 
mx(j+l) and is tridiagonal, having form 

I “1 111 v2 
. . . 

T,,= . . . = i$- A,B;‘A, (3.4) 
. . . 

“In hn vnl+l 

To express the computation of T22 in vector arithmetic, define 

vectors p, 7, CI, and 6 as 

pi=+- , i=l, m yi = b,;, i=l, m 
2i-1 0.5) 

ai = az, i=l, j 

Then we have 

Si = a2i- 1, i=& j 

and 

y = yi - (c& + Sf+2+l)3i+l), i=l,m (3.6) 

Vi = -CtiSipi, i=l, j (3.7) 

The right hand side associated with T22 is computed using 
the equation 

( F2)i := ( F2)i - 

[a,Pi ( F,)i + ‘;+1pi+l ( ‘,);+,I, i=Lm 
(3.8) 

After k-l reduction steps each processor holds a system of 
q equations in q+2 unknowns. These coefficients are shared in 
an all-to-all broadcast. Each processor solves the pqxpq 
system and then extracts the qt2 values associated with its local 
system. 

The backsubstitution step, performed k-l times, to 
determine X, can be deduced from (3.2), 

X,=B;‘(F,-A&) 

and formulated in vector arithmetic as 

(X,)i=Pi(( F,)i - [“i~z,)i + ‘,(‘,),,I 1, i=l j (3.9) 

The vector product terms PF,, pa, and PS can be computed in 
the reduction phase and stored for use in backsubstitution. 

4. Implementation and Results 

An occam program for the divide and conquer algorithm 
was written for the Floating Point Systems T-20 Hypercube at 
Clemson University. This is a 16 node MIMD computer with 
nodes which perform vector arithmetic. 

Each T-Series node contains 1 Mbyte of random-access 
memory linked by vector registers to a 64-bit vector-arithmetic 
unit capable of 10 MFLOPS (peak). The memory is divided 
into four subbanks each containing 256 1024-byte slices, [7]. 
These subbanks form two banks, bank B having three 
subbanks, and bank A having one. After allowing for storage 
of the operating system and user code, the user can allocate 
sections of memory somewhat freely. Optimum data transfers 
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between memory and the vector unit require that input opemnds 
are in different banks and that the operands are aligned, which 
means that each vector begins at a slice boundary. Vector 
arithmetic and communication between processors can be 
performed concurrently. 

The algorithm consists of six stages, the first being 
initialization of the local matrix systems. This can be done in 
one of two ways, either by dividing up the global system on 
node 0 and broadcasting the local systems, or simply 
constructing each local system on its corresponding processor. 
The former strateev would be useful in the case where the 
system is assembled on a serial computer and sent to the 
hypemube to be solved. Our primary interest is the solution of 
systems generated by numerical methods for partial differential 
equations. It has been recognized that there is parallelism as 
well as opportunity for vectorization in the assembling of these 
systems, [8]. Thus we have each processor construct its local 
system. 

The second stage consists of the reduction phase performed 
on each local system. The moves and arithmetic operations in 
one loop of the reduction procedure corresponding to equations 
(3.5)-(3.8) can be arranged into 8 steps (each corresponding to 
a move operation), as shown in figure 4.1. Each step consists 
of a move (gather/scatter ox’ shift for alignment) and one or two 
vector computations. These steps are ordered so that moves 
and arithmetic operations could be executed concurrently, if the 
computer has that capability. The product terms CZ~, 8p and 
OF1 are saved for use in the backsolving phase. The gather 
move in step VIII is also executed once before the first loop 
begins, and is not executed in the final reduction loop. 

ZLeIl IlLlswz 
I. a (gather)’ 

II. 6 (gather) 
III. Ft (gather)’ 

Iv. Y (gather) 
V. Ssp (shift) 

VI. 6PFt (shifi:) 

VII. Ft (gather) 

VIII. b (gather:) 

Figure 4.1 Steps in one reduction loop 

Next it is necessary for each processor to share its local 
system (2.3) with the others. We use a routine written by Dan 
Warner which implements a variant of the Johnsson and Ho 
all-to-all broadcast based on rotated binomial trees, [9], [lo]. 
The T-20 is self-synchronizing so the user only has to make 
sure that each send has a corresponding receive. 

The fourth stage of the algorithm is the solution on each 
processor of the same pq by pq system. Obviously this is 
redundant, but it is not wasteful with respect to time and it 
saves a communication step that would be needed after one 
processor solved the system while the others sat idle. 
Originally we used (software) double precision floating point 
arithmetic to solve but discovered that the vectorized cyclic 
reduction routine was faster even for small dimensions. 

Following the solution of the reduced system is the 
backsolving stage, (3.9), one loop of which is shown in figure 
4.2. Note again that in the first two steps, data moves are 
coupled with calls to the vector arithmetic unit. The moves into 
shift registers for the computation steps must be given priority 
over the shifting and scatter moves. The occam PRI PAR 
statement is useful for this purpose. 

In the sixth and final stage one can gather the global 
solution through an all-to-one broadcast of the local solutions. 

This will permit the user to send the global solution through 
node 0 to the host computer. The communication step is 
unnecessary if one merely desires a printout of the solution, as 
each processor can print its values to the screen (or to a log 
file). For test purposes we solve a system for which the exact 
solution is known, so we have each processor compute and 
print the mean square error of its associated unknowns. 

A!kxc Comoute 
X, (shift) WX,, PW33X2 

X2 (scatter) aPX2, @WV-W- al% 
X, (scatter) 

Figure 4.2 Steps in one backsolve loop 

Numerical results are presented in two parts. To study 
aspects of vectorization, a series of experiments were 
conducted on a single node. Then a number of multi-node tests 
were conducted to-examine the properties (especially speedup 
and efficiencv) of the Divide and Conauer aleorithm. 

Table 4.i is a listing of timings fbr por%ons of the cyclic 
reduction algorithm on one processor only. Here n is the 
dimension of the system and times are in microseconds (as are 
all subsequent timings). In all cases, q=l, so n=2k- 1 and thus 
the reduction and backsolve steps each were carried out in k-l 
loops. Each time given is a sum of timings of k-l vector 
operations on vectors of varying size. The first three times 
show how much of the total computing time was taken by each 
type of vector arithmetic operation. For example, for n=3 1, the 
vector reciprocals in step II of the reduction phase took a total 
of 1704 microseconds. The vector negative in step VIII took 
415 microseconds. Each term-by-term multiply, addition, or 
difference of vectors took, on the average, 528 microseconds. 
(Times actually ranged from 521 to 539). Also listed are the 

total times spent in vector arithmetic and times spent in vector 
moves (either gather/scatter or shifts). Unrolling gather/scatter 
move Ioops by a factor of 4 resulted in a 20% time savings for 
the larger dimensions. All arithmetic operations are coupled 
with moves, as shown in figures 4. I and 4.2. If there was true 
concurrency between arithmetic and moves, then the total time 
for reduction and backsolving (items 7 and 8 in Table 4.1) 
would be the same as the m&e time in 5, since this would 
overshadow the time for computing. 

Two additional remarks about vectorization are in order. 
With the addition of fast scalar arithmetic (coming on the next 
T-Series generation), it will be worthwhile to stop the reduction 
early, say when the reduced system is m by m rather than 1 by 
1. The unknowns associated with that level can be solved for 
by the tridiagonal algorithm, then the backsolving phase is 
begun with m known values. Also, we discovered that vector 
operations ran faster when operands filled slices fully, i.e. 
vectors had lengths which were multiples of 128. This may be 
related to the fact that we used the FPS higher level generic and 
single node subroutines, [ 111. 

Table 4.1 provides some insight into what may be expected 
in the multi-processor results. Our primary goal is to compare 
results with the ineaualities (2.5) in Prouosition 2.2. Rows 7 
and 8 reveal how iarge np ‘must be fbr the hypothesis of 
Proposition 2.2 to be met. Certainly one would not expect to 
see optimal results for efficiency and speedup if np were less 
than 1000. A set of timings for various hypercube dimensions 
is given in Table 4.2. Here p is the number of processors, the 
local system size is n,=(q+1)2k-t-1, and the global size n is 
given by (2.1). In ea:h case q=8 except forp=l for which 
o=l. Though the values for n differ. we comoare results as 
though the; were all equal to 819’1. (This is giving an 
advantage to the p=l results.) The sum of the times spent in 
the reduction and backsubstitution phases is given first. Next 
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are the times for communication and solution of the pq by pq 
system. Here and in all subsequent results, speedup and 
efficiency are based on the total of these three timings. 

Proposition 2.2 predicts an efficiency of 87.5%. 
Discrepencies in the numerical results are caused by two 
factors. First, the solver used for the reduced global system is 
not as efficient as we would like it to be. The capability for fast 
scalar arithmetic will improve this considerably. Second, as 
mentioned above, the local size n,=575 is below the range of 
values for which the conditions of Proposition 2.2 are satisfied. 
From the perspective that n is approximately equal to p times 
np, it is not worthwhile to use 16 processors to solve systems 
which have less than 16.000 unknowns. 

Memory limitations made it inconvenient to let np be larger 
than 8191. In order to keep the n,, for p=16 in the range of 
interest (larger than lOOO), we use the generalized definitions of 
speedup and efficiency given in (2.7). Efficiency and speedup 
in subsequent tables are calculated according to (2.7), with r 
equal to the least number of processors used in each set of 
results. Three sets of results, with q held constant in each set, 
are displayed in Table 4.3. In these cases n varies somewhat 
yet we compare results as if it were constant. The predicted 
efficiencies for these three sets are 75%, 86% and 94%, 
respectively. A more efficient algorithm for the intermediate 
solve step would bring the weaker results closer to the 
predicted values. Finally, in Table 4.4, we no longer hold q 
constant but instead compare cases for which n is exactly the 
same. Because q is greater than or equal to 3, one would 
expect efficiencies no worse than 75%. The results vary within 
about 10% of this prediction. 

5. Summary 

In this paper we have described a divide and conquer cyclic 
reduction algorithm for a parallel processor with vector 
processing nodes. A rough estimate for efficiency was 
derived, based on a parameter which controls redundancy in 
calculations. Numerical results generated on an FPS T-20 
hypercube computer lent credence to this estimate and 
highlighted some shortcomings as well. This estimate was 
based on the assumption that the time to communicate and solve 
the system at the most reduced level is insignificant in 
comparison to the times taken by the reduction and backsolving 
phases. Further analysis will yield more precise performance 
estimates. 

Obviously, these results are machine-dependent. 
Improvements in hardware such as fast scalar arithmetic, which 
is promised for the next generation of T-Series computers, will 
influence the way in which this algorithm is implemented. 
Scalar arithmetic will replace vector arithmetic earlier in the 
reduction process. Faster gather-scatter operations may affect 
the balance in timings between moves and computation. 

The next stage in this effort is to generalize this algorithm to 
the block case. Also, an abbreviated version of this method 
may be useful as a preconditioner for a conjugate gradient 
solver. 
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n: 31 63 127 255 511 1023 2047 4095 8191 

times IQMecs): 
1. vector recip.:1704 2126 2547 
2. vector neg.: 415 519 622 
3. vector *,+,-: 528 659 792 
4. total vector arithmetic op. time: 

10565 13194 15839 
5. moves (unrolled): 

3968 6464 11456 
6. moves (without unrolling): 

4416 7104 13248 
7. reduction: 11520 15552 21184 
8. backsolve: 3456 4736 6720 

2984 3775 5329 
729 865 1061 
923 1092 1332 

18479 22106 27698 

20608 39168 75648 148928 293888 584512 

25344 48704 95552 188800 375808 747904 
29952 45760 75648 133696 248000 475008 

9856 15680 26752 48448 91136 175936 

8378 14419 26455 
1386 1956 3023 
1716 2387 3637 

37221 54574 87673 

Table 4.1 Timings for single processor cyclic reduction 

Q k rz, !lred&backcomm solve total & efficiencv 
1 11 8191 8191 653760 
2 10 4607 8703 374080 768 

-- 653760 
17216 392064 1.67 83% 

4 9 2303 8447 197120 2048 24384 223552 2.92 73% 
16 7 575 8255 61056 16000 54976 132032 4.95 31% 

Table 4.2 Results comparing efficiency and speedup for q=8 

Q k DP 
4 12 8191 
8 11 4095 

16 10 2047 

Q k “P 
4 11 7167 
8 10 3583 

16 9 1791 

e k 
2 10 
4 9 
8 8 

16 7 

nP 
8191 
4095 
2047 
1023 

cl2 
L! red&back comm solve 

26623 647296 1728 11456 
25599 335360 5568 16256 
25087 178176 15808 22592 

ti 
QEd&backcomm solve 

25599 567744 1920 16256 
25087 294400 5696 22656 
24831 156672 15936 32320 

& 
11 Ed&back c~mm solve 

15871 642240 1024 15808 
15615 329472 2496 21568 
15487 171968 6528 29952 
15423 92032 16768 43520 

total 
660480 
357184 
216576 

585920 
322752 
204928 

659072 
353536 
208448 
152320 

(Aative) 
efficiencv speedup 

1.85 92% 
3.05 76% 
irelative) 

& efficiencv 

1.82 911, 
2.86 71% 

(relative) 
sveednn efficiency 

-- 
1.86 93% 
3.16 79% 
4.33 54% 

Table 4.3 Results comparing efficiency and speedup for various values of q and n 

Q il !L Qp EW 
1 12 10 6655 528832 
2 6 10 3583 295808 
4 3 10 2047 179072 

Q 4 k 
2 12 10 
4 6 10 
8 3 10 

Q Q k 

4 24 8 12 ; 
16 6 9 

Q 9 k 
8 6 11 

16 3 11 

3583 295552 
2047 179136 

n, E.3&back 
6399 504192 
3327 272768 
1791 157056 

L+, red&back 
7 167 569728 
4095 336704 

n=6655 
cOmm solve 

640 
11520 
11520 

1728 11520 
n=1279P 

m solve 
896 16448 

1920 16448 
5568 16448 

1 n=2483 
comm f2d!E 

3072 32512 
6208 32512 

15936 32512 
n=50175 

m & 
5632 22784 

15680 22784 

um! 
540352 
307968 
192320 

Q&l 
545344 
313920 
201152 

Km! 
539776 
311488 
205504 

w 
598144 
375168 

speedup efficiency 

;:75 88% 
2.8 70% 

(relative) 
speedup efficiencv 

1:74 S3% 
2.71 68% 

(relative) 
Speedup efflciencv 

1173 87% 
2.63 66% 

(relative) 
speedup efficiency 

T:6 80% 

Table 4.4 Results comparing efficiency and speedup for identical n values. 
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