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Abstract: We describe the solution of linear systems
of equations, Ax = b, on distributed-memory concur-
rent computers whose interconnect topology contains
a two-dimensional mesh. A is assumed to bean MxM
banded matrix. The problem is generalized to the
case in which there are n; distinct right-hand sides,
b, and can thus be expressed as AX = B, where X and
B are both M Xxn; matrices. The solution is obtained
by the LU decomposition method which proceeds in
three stages: (1) LU decomposition of the matrix A,
(2) forward reduction, (3) back substitution. Since
the matrix A is banded a simple rectangular subblock
decomposition of the matrices A, X, and B over the
nodes of the ensemble results in excessive load im-
balance. A scattered decomposition is therefore used
to decompose the data. The sequential and concur-
rent algorithms are described in detail, and models of
the performance of the concurrent algorithm are pre-
sented for each of the three stages of the algorithm.
In order to ensure numerical stability the algorithm
is extended to include partial pivoting. Performance
models for the pivoting case are also given. Results
from a 128-node Caltech/JPL Mark I hypercube are
presented, and the performance models are found to
be a good agreement with these data. Indexing over-
head was found to contribute significantly to the total
concurrent overhead.

1. Introduction

The solution of systems of linear equations is
of fundamental importance in many fields of science
and engineering, and in recent years much work has
been done on the efficient solution of such systems
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on concurrent processors ([Heller 78], [Dongarra 84a],
[Ortega 85]). Direct methods, in particular Gaussian
elimination and the closely-related LU and Cholesky
decompositions, have received much attention. In
this paper we describe the solution of narrow-banded,
non-symmetric systems of linear equations by means
of LU decomposition with partial pivoting, followed
by forward reduction and back substitution. The con-
current algorithms that we describe in Sec. 4, 5, and
6 are based on work by [Fox 84], and were designed for
use on hypercube multiprocessors, although they will
run with very little modification on any distributed
memory, MIMD multiprocessor whose interconnect
topology contains that of a 2-dimensional grid.

The rest of this section will attempt to convey
the scope and fecundity of recent research into the so-
lution of linear systems on multiprocessors by Gaus-
sian elimination and related methods. This is not
intended to be a full (or even adequate) review of the
current state of researchin the field, but should rather
provide pointers for the interested reader. Section 2
gives a statement of the problem addressed by this
paper. The sequential LU decomposition, forward re-
duction and back substitution algorithms are outlined
in Sec. 3. Sections 4 and 5 discuss the decomposition
and communication strategies used in the concurrent
implementation, which is described in Sec. 6. In
Sec. 7 performance models are developed, and these
are compared in Sec. 8 with timings made on the
Caltech/IPL 128-node Mark II hypercube. The code
used for the timings is written in the C programming
language, and the hypercube version makes use of the
CrOS III communication system and CUBIX, both of
which are described in [Fox 87a]. Conclusions drawn
from this work are presented in Sec. 9.

Kung and Leiserson [Kung 80] have described
an LU decomposition algorithm for a bi-dimensional
systolic array processor (SAP). This method restricts
the size of the input matrix for a SAP of a given
size. In [Johnsson 81] a Gaussian elimination algo-
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rithm for solving banded linear systems on a linear
SAP with no size restriction was described. More
recently Navarro et al. [Navarro 87] have investi-
gated LU decomposition algorithms for linear SAPs
with no size restriction. Thakore and Su [Thakore 87]
have described algorithms for performing matrix in-
version by Gaussian elimination, and LU decompo-
sition on the SM3 multiprocessor system [Baru 86},
and have compared performance models for the SM3
and hypercube multiprocessors. Cholesky factoriza-
tion of symmetric, positive-definite matrices, and LU
factorization with partial pivoting of non-symmetric
matrices have been investigated by Geist and Heath
[Geist 86]. Chu and George have developed the work
of Geist and co-workers further, and have described
[Chu 87] an algorithm for Gaussian elimination with
partial pivoting. Both Geist and Heath, and Chu and
George present timings for the algorithms run on an
INTEL iPSC hypercube.

The numerical solution of many types of par-
tial differential equations by both the finite difference
and finite element methods leads to banded linear
systems of equations (see, for example, Chaps. 7 and
8 of [Fox 87a]). Chan et al. [Chan 86] have con-
sidered the solution on hypercubes of banded linear
systems generated by the solution of elliptic PDE’s,
and discuss the Alternating Direction Implicit (ADI)
method, Gaussian elimination, and multigrid tech-
niques. The use of the ADI method on multipro-
cessors to solve parabolic PDE’s has recently been
investigated by Johnsson et al. [Johnsson 87a, 87b].
Concurrent algorithms for the Cholesky factorization
of banded matrices are discussed in [Utku 86). O’Neil
et al. [O’Neil 87] have studied the solution of a three-
dimensional elasticity problem by the finite element
method, and used a concurrent Gaussian elimina-
tion algorithm to solve the resultant linear system on
the BBN Butterfly Parallel Processor. Dongarra and
Sameh [Dongarra 84b] have considered algorithms
for solving narrow-banded, diagonally-dominant lin-
ear systems on different concurrent processors, and
present timings made on the Cray X/MP-4 and
Denelcor HEP multiprocessors. Johnsson has investi-
gated in [Johnsson 85] the communication and calcu-
lation complexity of Gaussian elimination and block
cyclic reduction for the solution of block tridiagonal
systems on multiprocessors with ring, 2-D mesh, and
hypercube interconnect topologies. In [Dongarra 87),
Dongarra and Johnsson have extended their analy-
sis of Gaussian elimination to bus-based and switch-
based shared memory concurrent processors, and give
timing measurements for runs made on the Alliant
FX/8 and Sequent Balance 21000 multiprocessors.
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2. Problem Statement

This paper describes the solution of linear sys-
tems of equations of the type:

Ax;‘ = bk (1)

where the coeflicient matrix, 4, is an M x M non-
symmetric, narrow-banded matrix (i.e., bandwidth,
w & M), and xx and bx (k = 0,1,...,n — 1) are
vectors. For convenience Eq. (1) will be rewritten in
the form:

AX =B (2)

where X is an M x n, matrix the columns of which
are simply the vectors xi, and similarly B is the M x
np matrix whose columns are the vectors by. The
need to solve such systems of equations arises, for
example, when solving a partial differential equation
for a number of different boundary conditions.
Equation (2) will be solved using LU decompo-
sition, followed by forward reduction and back sub-
stitution. Both the non-pivoting and partial pivoting
cases will be considered. Timing results obtained on
a 128-node Caltech/JPL Mark II hypercube will be
presented and compared with performance models.

3. The Sequential Algorithm

The sequential algorithm described here follows
that of [Martin 67), and divides the solution of the
banded system in Eq. (2) into three stages. In the
first stage the LU decomposition of the coefficient ma-
trix A is performed. This factorizes 4 into the prod-
uct of a lower triangular matrix, L, and an upper
triangular matrix, U

A=LU (3)

The matrices I and U both have a band structure
similar to that of 4, and the factorization is unique if
we require that L have unit diagonal elements. Other
factorizations, such as the Cholesky factorization in
which the diagonal elements of L and U are the same,
are also possible. It is convenient to store I and U
in the same memory locations as A4, with L replacing
the lower triangular part of 4, and U the remaining
part of A. There is no need to explicitly store the
unit diagonal of L.

The LU decomposition of A proceeds in M steps
(see [Golub 83]). If m is the halfwidth of the band,
given by w = 2m—1, then at stepk (k= 0,1,..., M —
1), only those elements of A within an active mxm
“window” centered on the diagonal are affected (see
Fig. 1). At step k the first row and column of the
window lie on the k** row and column of 4, and the



k*h row of U and the k*} column of L are evaluated
according to:

Lie=1
1<i<m (4)
Ukktj = Ark+j 0<j<m (5)

The elements of 4 in the window, but not in the first
row or column, are then modified as follows:

Litie = Artik/ Ax,k

Appiprs = Aktiers = Dieti e Uk et g (6)

where 0 < 7 < m, 0 < j < m. As the algorithm
proceeds the window moves along the main diagonal
of A, having factored those elements over which it has
passed (i.e., those to the left and above the window).

< M > <n,> fnb>
tos - [ N
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Figure 1. Schematic representation of step k of LU decompo-
sition for an M x M matrix, A, with bandwidth w. The mxm
window is represented by the dark shaded square. The light
shaded part of the band above and to the left of the window has
already been factorized, and contains the appropriate clements
of L and U. The unshaded part of the band below and to the
right of the window has not yet been modified. The shaded
region of the matrix B represents the m X n, window updated
in the forward reduction and back substitution phases.

In the forward reduction stage both sides of Eq.
(2) are multiplied by L~ to give:

UX = L™'B = Brg (7)

The matrix Bpr can be stored in the same memory
location as B. Asin the LU decomposition algorithm,
forward reduction is performed in a series of M steps,
with only those elements lying in an active window
of B of size m x np elements being modified in each
step. In fact, the LU decomposition and forward re-
duction stages can be merged, thereby reducing the
indexing overhead. However, for clarity we will treat
LU decomposition and forward reduction as separate
stages. In forward reduction the window moves down
the matrix B one row at a time. At each step the
elements of B lying within the window are updated
according to:

Bietij = Bieti,j — Br,jLrtik (8)

where 1 <1< m, 0<j< np Thusat step k the ele-
ments of B lying above the window have already been
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modified to Bpg. The final back substitution stage
evaluates the solution matrix, X, by multiplying Eq.
(7) by U1

X= U"IBFR (9)
The back substitution algorithm again consists of M
steps, but in this case we start with the last row and
work up the matrix towards the first row. Thus the
active window of B begins at the bottom of B and
moves one row upwards with each step. The steps
are numbered from k¥ = M — 1 to 0, and at step k
the elements of B within the window are updated as
follows:

Xy ; = B /U
k,J knJ/ klk (10)
Bi—ij = Br—ij = X#,iUk-ik
where 1 < i1 < m, 0 < j < ng. The solution matrix
X can also be placed in the same storage location
as Brr. Thus in the forward reduction and back

substitution steps the matrix B is first modified to
Brr, and then to X.

4. Concurrent Decomposition

We now consider how to decompose the prob-
lem on a concurrent processor containing a two-
dimensional mesh in its interconnect topology. In the
case of a simple algorithm, such as matrix multipl-
cation, the square subblock decomposition has been
shown to be optimal ([Fox 85}, [Fox 87b]). However,
such a decomposition is not appropriate for the prob-
lem at hand since at each step of the algorithm only
a few of the processors would be invoived. In fact,
as shown in Fig. 2(a), those processors lying entirely
outside the band of matrix A perform no useful work
at all.

In order to minimize the effects of load imbal-
ance the scattered square decomposition, shown in
Fig. 2(b), will be used [Fox 84]. This ensures that all
processors are involved in computation at each stage
of the algorithm in as load-balanced a fashion as pos-
sible. In the scattered square decomposition a de-
composition template is placed periodically over the
data so that adjacent matrix elements lie in different
processors. Decomposition templates for concurrent
processors with 2-D mesh and hypercube topologies
are shown in Fig. 3(a) and (b), respectively. We will
discuss here only square templates, which restricts us
to the use of hypercubes of even dimension. The ex-
tension to rectangular templates is straightforward,
In Fig. 3(b) the decomposition template for the hy-
percube topology is based on a 2-dimensional Grey
code ordering ([Gilbert 58], [Salmon 84]), which en-
sures that adjacent cells in the decomposition tem-
plate correspond to nearest neighbors in the hyper-
cube topology. Moreover, it should be noted that the



nodes in any row or column constitute a subcube of
the hypercube. This feature can be exploited to al-
low rows and columns of a matrix to be broadcast by
means of a pipe algorithm, as explained in Sec. 5.
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Figure 2. Comparison of (a) local square and {b) scattered
square decompositions of a 186X 18 banded matrix onto a 16-
node concurrent processor. ‘The band is shown shaded, and the
zero elements outside the band are not actually stored. Each
cell represents a matrix element, and the number in the cell
indicates the node in which this element is stored. This figure
shows the numbering of noces appropriate for a 2-dimensional
array of processors. The numbering for a hypercube would be
based on the 2-dimensional Grey code scheme shown in Fig.
3(b).

A similar scattered decomposition has been
used by Saad and Schultz [Saad 85] in their discussion
of the Gaussian elimination algorithm on hypercubes.
Saad and Schultz, however, allow each cell of the de-
composition template to hold a subblock of mx
elements (see Eq. (13)), rather than just one element
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as in our decomposition. A comparison of these two
decompositions is given in [Beernaert 87).
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Figure 3. Decomposition templates for (a) 2-D mesh and (b)
hypercube topologies.
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5. Communication Strategies

In order to update the current window elements
of the matrix A4 according to Eq. (6), the first column
of the window (Zk4ik, 0 < ¢ < m) must be sent
across the window to the right, and the first row of
the window (Uj x4, 0 < j < m) must be sent down
the window. This means that each node to which
elements in the first column of the current window
are assigned must send their part of the first column
to all the nodes in the same row of the decomposition
template. Similarly each node to which elements in
the first row of the current window are assigned must
send their part of the first row to all the nodes in the
same column of the decomposition template. After
the first row and column of the window have been
transmitted each node contains all the information
necessary to update the window elements assigned to
it,

On a hypercube the nodes lying in a particular
row, or column, of the decomposition template consti-
tute a subcube, and the communication of rows and
columns across the current window could therefore be
performed by means of the tree-based broadcast al-
gorithm described in Chap. 14 of [Fox 87a). However,
we will use a pipe broadcast method, which has the
advantage of being simple to implement, and which
can be used on any multiprocessor whose connection
topology contains a ring. In the simplest pipe broad-
cast, called a linear pipe, the communicating nodes
are mapped onto a line, with the source node at one
end. The source node sends the data one packet at
a time to the next node in the line. As this node
receives each packet it passes it on to the next node,
and so on until all of the nodes have received all of
the packets sent by the source node. If t.omm 1s the
time taken to read a floating-point number from one
node and then write it to the next, then the first
number arrives at the last node in the pipe in time
(D = 1Dtcomm, where D is the number of nodes in the



pipe. Thereafter one number arrives every tcomm sec-
onds, so the total time to broadcast » numbers to all
nodes in the pipe is:

Tlt'ﬂea,r = (7' + D - 2)tcomm (11)

The quantity (D — 2)t.omm is commonly called the
pipe startup time.

In the split pipe algorithm the communicating
nodes are again mapped onto a line, but in this case
the source node is placed, as nearly as possible, at the
middle of the line, rather than at one end. The source
node then sends each packet in turn to the two nodes
on either side of it, which in turn pass on the incoming
packets to the next nodes. The nodes at each end of
the line receive packets, but do not forward any. If
the source node is capable of simultaneously sending
a packet out on two communication channels in the
same time that it takes to send it on one channel,
then the split pipe broadcast has the advantage of
having only half the pipe startup time of the linear
pipe:

(D-2)

3 ] teomm (12)

Tlplit = |:7' +

It should be noted that if there are only two nodes in
the pipe, the implementation of the split pipe reduces
to that of the linear pipe. .

In the concurrent algorithms described in Sec.
6, we will use the split pipe algorithm to broadcast

rows and columns across the windows of the matrices
A and B.

6. The Concurrent Algorithm
6.1. LU Decomposition With No Pivoting

We now consider the concurrent implementa-
tion of the basic LU decomposition algorithm given
in Egs. (4), (5), and (6). We first introduce the quan-
tity:

m=m/VN (13)

where IV is the number of nodes in the concurrent pro-
cessor. At some step k of the LU decomposition each
processor holds #? matrix elements in the active win-
dow. Since we are using a scattered decomposition,
these elements do not comprise a contiguous 7 x #n
submatrix, but are scattered uniformly throughout
the window. By comparing the windows for steps k
and £+ 1, we see that row k£ and column k are active
at step k, but not thereafter. However, at step k + 1
the nodes to which these now inactive elements are
assigned obtain a compensating amount of new work
from row k + m and column k -+ m, thereby preserv-
ing load balance. This useful feature arises from the
periodicity of the scattered decomposition.
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Each step k of the concurrent LU decomposition
algorithm consists of five stages:

(a) Evaluate 1/Ak x in the node to which the top
left corner element of the current window is as-
signed.

(b) The top row of the window, which by Eq. (5)
is just the nongero elements of row k of U, is
broadcast downwards, except that the top left
corner node sends 1/Ay x, instead of Ay k. This
broadcast is done using the split_pipe algorithm
described in Sec. 5.

(c) The nodes assigned to the elements in the first
column of the window evaluate the k'® column
of I according to Eq. (4). The other nodes are
idle at this time. The quantity 1/A4g x is avail-
able to each of the first column of nodes since it
was broadcast downwards in step (b). Since the
matrix L overwrites the lower triangular part
of A, the matrix element Ay i is replaced by
Arpin/Ag e, for6 < i< m.

(d) The first column in the widow (i.e., the k*® col-
umn of L), except for the element in the top
left corner, is broadcast across the window, so
that all nodes in the same row of the decompo-
sition template contain identical subsets of the
maultipliers Lk+i,k (0 <1< m)

(e) The matrix elements of A lying in the window,
but not in the first row or column, are updated
according to Eq. (6). Following the split pipe
broadcasts performed in stages (b) and (d), all
the information necessary to do this for a given
matrix element is contained in the processor
holding that element.

The load imbalance arising in steps (a) and (c)
is summarized in Table 1, In the evaluation of 1/A4;
in stage (a), only the node assigned to the top left
corner of the current window is doing any work. For-
tunately this does not constitute a serious sequential
bottleneck as only one floating-point operation is in-
volved. Thus although stage (a) is very inefficient,
it is irrelevant when compared with the time taken
by the dominant stage (¢). Stage (c) is more effi-
cient than stage (a), but contributes more to the to-
tal concurrent overhead. Stages (a) and (c) are poorly
implemented from the concurrent point of view, but
do not significantly impact the performance of the
concurrent algorithm for sufficiently large grain size
problems, since the dominant concurrent stage (e) re-
quires time of order Mm?, while the sequential stages
take time of order .

6.2. LU Decomposition With Partial Pivoting

The LU decomposition algorithm described in
Sec. 6-1 is appropriate when the diagonal elements,
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Stage : Time Local Contribution to Total
Sequential | Concurrent | Efficiency | Concurrent Overhead
(a) Invert A, o(1) o(1) O(1/N) 0O(1/H?)
(c)Form Multipliers| HVN-1 f O(1/VN) 01/ )
(¢) Update Matrix | (fiVN-1)2 f 1-0(1/ HMVN) O(1/ VN

Table 1 The utilization of the concurrent processor during the three calculation phases of the LU decomposition
algorithm. The ssquential and concurrent times are given in units of teq1., the time to perform one floating-point

operation.

Ay, are dominant. This is often the case, but in
general attention must be given to numerical insta-
bility resulting from division by A when its value
is small or vanishing. This problem can be avoid-
ing by performing partial pivoting. This is done by
searching the first column of the current window for
the maximum entry Axyix, 0 < 4 < m. If this row
corresponds to row number k + 2,,,. then the rows of
the window corresponding to rows 1 = 0 and ¢ = {4z
are swapped, and the algorithm continues as before.
One complication is that the window must be at least
M 4+ tmae columns in width to accommodate the el-
ements that are now located in the first row. This
possible increase in window size affects the speed of
the algorithm, but does not alter in any essential way
the steps (a) to (e) outlined above. The variable size
of the window encountered here is handled naturally
by the scattered decomposition, which ensures that
the loads of the different nodes differ by at most one
column. This illustzates the utility of this simple de-
composition approach. While originally motivated by
the need to cope with the banded structure of the ma-
trix, it has proved to be a powerful method for dealing
with other sources of imnbalance. The added compli-
cations arising from the variable window width could
be reduced by assuming that the width of the window
is always the maximum value of (2m — 1) columns,
and padding the unused part of the window with ge-
ros. However, in our implementation this was not
done, and the variable size of the window was fully
taken into account. This makes it necessary to store
the window width at each step of the LU decomposi-
tion algorithm so that the correct value can be used in
the forward reduction and back substitution stages.
Furthermore if, as in our implementation, the LU de-
composition and forward reduction are performed in
distinct stages, it is also necessary to store the pivot
row numbers so the corresponding pivot operations
can be performed on the matrix B prior to the for-
ward reduction stage. Clearly, in any production code
the LU decomposition and forward reduction stages
should be merged.

1640

At step k the concurrent partial pivoting algo-
rithm incorporates the following five additional steps:

(1) Each node containing elements in the first col-
umn of the current window determines the local
maximum of | Ax4i x| (0 < 1 < /1) for those ele-
ments in the node. This step only involves VN
nodes; the other nodes are idle.

(2) The global maximum of the v'N local pivot can-
didates found in step (1) is determined. This
could be done by means of the hypercube-
specific subcube combine algorithm described in
Chap. 20 of [Fox 87a], however we have used a
more general algorithm based on the pipe al-
gorithm described in Sec. 5. Each of the vN
nodes, except the top node to which the top
left corner element in the window has been as-
signed, passes its candidate pivot element and
its row number up to the top node, which finds
the maximum of all the candidates and the cor-
responding number of the pivot row.,

(3) The pivot row number is next broadcast to all
nodes. In our implementation this was done us-
ing a tree broadcast. The location of the pivot
row, and the window width are stored for use
in the subsequent forward reduction and back
substitution sieps.

(4) The pivot row is swapped with the top row of
the window. Ifthe pivot row and the old top row
are both assigned to the same 1ow of the decom-
position template this step requires no commu-
nication, otherwise the transfer is effected via
the shortest connecting linear pipe.

() Finally the pivot row is sent to all nodes. This
completes the swap, and also implements stage
(b) of the non-pivoting algorithm above.

These pivoting steps are followed by those of
the non-pivoting algorithm with the obvious changes
required by the variable window width. It is apparent
that while pivoting is an almost trivial operation on a
sequential machine, it can require a fairly complicated
algorithm in the concurrent implementation.



6.3. Forward Reduction and Back Substitution

In the k** step of the forward reduction algo-
rithm the elements in the current active window of
B must be updated according to Eq. (8). Asin the
LU decomposition stage, we must first communicate
the first row of the window of A (the L. in Eq.
(8)) across the window. Then the top row of the win-
dow of B must be communicated downward across
the window. Both of these broadcast operations are
performed using the split pipe algorithm. Each node
then has all the data necessary to update the window
elements of B assigned to it.

The k*» step of the back substitution algorithm
(Eq. (10)) is similar to that of the forward reduction
algorithm., The elements in the last column of the
current window of A (the Ui_;; in Eq. (10)) are
broadcast to the left across the window. Each node to
which elements in the bottom row of the window are
assigned evaluates the k' row of the solution matrix
X by multiplying the bottom row of the window of B
by 1/Uj, k. This step involves nodes in only one row of
the decomposition template; the other nodes are idle
at this time. The bottom row of B is overwritten with
the newly determined row of the solution matrix, and
is then broadcast upwards across the window. The
window elements are then updated according to Eq.
(10).

If partial pivoting is performed in the LU de-
composition the above description of the forward re-
duction and back substitution stages are unchanged,
expect that the variable window size must be taken
into account, and before performing the forward re-
duction the rows of B must be pivoted to match the
pivoting in the LU decomposition stage.

7. Performance Models

Models of the performance of concurrent algo-
rithms are important since they indicate whether the
algorithm is efficient on massively parallel systems
for a given grain size. Also discrepancies between the
predicted and measured performance ofien point out
non-optimal coding.

7.1. The Sequential Algorithm.

The time taken for one step of the sequential LU
decomposition algorithm is just the time to evaluate
the multipliers (Eq. (4)), plus the time to update the
elements of A in the window (Eq. (6)). Thus, for the
non-pivoting case, the total time for the M steps of
the sequential algorithm is given by:

Ti(m) = M{(m — 1)¢; + 2(m — 1)%¢,] (14)

where M is the order of the matrix. We have assumed
that M > m, and have ignored the time to evaluate
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1/Ag k. The quantity ¢, is the “average” time to eval-
uate one of the multipliers Ly, x, and is made up of
the time t 4. to perform one floating-point operation,
plus the overhead incurred in each pass through the
outer loop. We will ascribe this overthead to the index-
ing of the matrix elements referred toin the loop, but
there are other sources of overhead, such as that aris-
ing from setting up and and controlling the inner loop.
Similarly, t; is the time per floating-point operation
spent in each inner loop, and equals ¢ plus half
the indexing overhead in each pass through the inner
loop. In this context the outer and inner loops corre-
spond to loops over rows and columns, respectively.
In the absence of indexing overhead ¢ = tg = Zq1e-
The time taken for one step of the sequential
forward reduction stage is just the time to update
the elements in the active window of the matrix B

(Eq. (8)).
Tl(m. n;,) = M[2(m - l)m,t3 + let,'nd] (15)

where t; is the time per floating-point operation for
the inner loop, and #;,4 is the indexing time in each
outer loop.

The time taken by the back substitution stage is
similar, except the time taken to evaluate the solution
vector in the last row of the window must be included.

T1(m, nb) = M[Z(m - l)n;,t;.; + nbt.;] (16)

where as usual ¢4 is the time per floating-point oper-
ation for the outer loop.

7.2 The Concurrent Algorithm.

We next consider the concurrent LU decomposi-
tion for the case in which there is no pivoting, and in
which the window size, m, is an exact multiple of /N
In this case, each node is assigned an equal number of
matrix elements in the window, so the decomposition
is completely balanced.

As in the sequential algorithm, we ignore the
time taken to evaluate 1/4; ; in the node in the top
left corner of the current window. There are then
two calculation steps: the evaluation of the multipli-
ers, and the updating of the window elements, the
times for which are /¢, and 2/?%t;, respectively. The
routine split_pipe is called twice to broadcast the first
row and column of the window. In the first phase of
the routine the data to be sent by the source nodes
are copied to a buffer, taking time t.op,. Ideally on
packetizing machines such as the Mark II hypercube,
this step could be omitted, since the data to be sent
lie at regularly-spaced storage locations so split_pipe
could be implemented using the CrOS III routines
vread and vwrite (see Chap. 14 of [Fox 87a]). How-

ever, vread and vwrite have not been optimally im-




plemented on the Mark IT hypercube, so the buffering
stage is necessary. In the second phase of split_pipe,
the datais piped to the destination nodes as described
in Sec. 5. Thus the total time for the concurrent al-

gorithm is given by:
ﬂ’ﬂ%ﬂl = 2Pty + ity + 2Mitcopy
17)
VN —2 (
+2 ['fn + —

tcomm

The concurrent overhead, f, is defined as:

Tl(m)
= 18

€ Tl(m) ( )

thus from Eqs. (14) and (17) the concurrent overhead

of the LU decomposition algorithm when m = mv/ N
1s:

no,4-n (metT) (\/_ 2)
==+ + 7 (19)
2m  2mVN )

where 71 = #1/t2, Te = tiopy/la, T = tcomm/tg, and
terms of order 1/m?v N have been neglected.

If m is not an exact multiple of /N then the
nodes in the first row and column of the decompo-
sition template will be assigned more window ele-
ments than others, resulting in an imbalanced de-
composition. The most imbalanced case occurs when
m exceeds an exact multiple of VN by 1, ie., m =
#V/ N + 1. Following the analysis given above for the
balanced case, we find the following total time for the
concurrent algorithm:

fLU=

Tl
N—A(/F)— =2(m+ 1)% + (m+ 1)t
R vN -2
+2|m+ 1+ _2‘—" comm

which leads to a concurrent overhead of:

(4+ 'rl) T (e + 1)
fiv = =55  2mVN m (21)
2+7VN+1+ 27,)
+ 272

In the concurrent forward reduction algorithm
the time taken to update the elements in the active
window of matrix B is similar to that for the sequen-
tial algorithm given in Eq. (14). However, the multi-
pliers Ly 4i,x in Eq. (8) must be piped across the win-
dow. This communication step 1s also performed in
the LU decomposition stage, and the forward reduc-
tion and LU decomposition stages could be merged,
thereby avoiding the need to communicate the multi-
pliers twice. However, for clarity we present forward

reduction and LU decomposition as two distinct al-
gorithms. A second communication step is necessary
to pipe the n; elements in the top row of the win-
dow of B (the By,; in Eq. (8)) down the window.
Adding the times for the calculation and communi-
cation steps together we obtain the total time for the
concurrent forward reduction algorithm:
T (i ) = 2m7ts + fpting
M
+ (7 + PpYteopy (22)
+ (M + A+ VN — 2)tcomm

where we have assumed a balanced composition, i,
m = v/ N. From Egs. (15) and (22), the concurrent
overhead for the forward reduction phase is therefore:

1 (1—1/«./_)
frr= \/17+ 5

(e e
L WE-2)

27y

where 7; = ting/t3, 7' = teomm/t3, and 7. = t.opy /1.

The back substitution phase involves communi-
cation steps similar to those in the forward reduction
phase, except that in the former case the right-hand
column of the window of 4 and the bottom row of the
window of B are communicated (see Eq. (10)). The
time for the concurrent back substitution algorithm
in the balanced decomposition case is therefore:

Tn(mn, 7op)

7 = 2Rtz + fpts + (M + ) tcopy

(24)
+ (ﬁl+ ;lb‘*' VN - 2)tcn:m't‘m

From Egs. (16) and (24), the concurrent overhead for
the back substitution phase is therefore:

_ 1 (1~1/\/—)
st_r‘n\/F-}_ 7

+ (i+ -.—) (—T°~+—Tll (25)

np m 2
L -2)
2mnb

where 74 = t4/13.
7.3 Partial Pivoting

In general, the time taken for the LU decompo-
sition algorithm in the partial pivoting case depends
on which rows take part in the pivoting, and this in
turn depends on the elements of A. At any given stage
of the LU decomposition the width of the window de-
pends on the previous pivoting history. Moreover the
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time to send the top row in the window to the posi-
tion of the pivot row via the shortest geodesic pipe,
depends on the location of the pivot tow. Thus a time
for the general case of LU decomposition with partial
pivoting cannot be derived. In Table 2 we present the
times for each stage of the sequential and concurrent
LU decomposition algorithms. For clarity we assume
here that indexing overhead is negligible. At step k of
the algorithm the active window of matrix 4 will, in
general, be rectangular, being m rows by my columns.
In the case of no pivoting m; = m at each step, how-
ever, in the case of partial pivoting m < m; < 2m.
In Table 2 7h; equals fmk/\/ﬁ], where [z] is the
smallest integer greater than or equal to z. At stage
(d) in Table 2 we give the time to send the top row
in the window to the position of the pivot row. If
the top row and pivot row are assigned to the same
row of the decomposition template no communication
is necessary, so this stage takes no time (a memory-
to-memory copy is performed which we ignore). If
the top row and pivot row are not assigned to the
same row of the decomposition template then the top
row is sent to the pivot row position via the shortest
geodesic pipe. In Table 2 we denote the number of
nodes involved in this pipe by [. If each row of the
decomposition template is equally likely to contain

the pivot row then the expectation value of the time
taken by stage (d) is:
VN/[2+1
E;= E P(lk)(‘f‘hk + I — Z)tcamm (26)
l;. =2
where P(1)) is the probability that there are Iy nodes

in the shortest pipe from the top row to the pivot
ow.

_f2/VN il =2,3,...,.VN/2
P(”‘)‘{u\/ﬁ if 1, = V24 1 (27)

Equations (26) and (27) give the expectation value of
stage (d) in the case of “random” pivoting, as:

p_ |- (VN - 2)*
TN /N

If we further assume that for most of the M steps the

width of the window is at its maximum value, i.e,,

mp = 2m — 1, then Mg = 2/ and the overhead for

LU decomposition with partial pivoting is:

1 0.5 T T

= b — (1 =2/ VN

fru T -ﬁm+m+( / )4m
T
ANz

teomm (28)

my

(28)

where h{N) is a function of N.

of Pivot Row

Time
Stage -
Sequential Concurrent

(a) Find Pivot m e Mty
(b) Transmit to

Corner Node 2 (VN=1) teomm
(c) Inform All Nodes

of Pivot Paramelers 21022 N teomm
(d)Send Top Row in 0

Window to Position or

(r’hk+]k—2) Leomm

(e) Send Pivot Row N VN-=2
Everywhere [ e+ ( 2 )] tcomm
() Invert Ay Liny
(g) Form Multiplicrs (m— 1) Leae Mty
(h)Pipe Multipliers ~ L (YN=2
Across Window [+ ( 5 )] Leomm

(i) Correct Matrix

2(m— l)(mk— 1) Leale

A AN
2mmk tc::;\lc

Table 2 Expected timings for each stage of the LU decomposition algorithm with partial pivoting for the
sequential and concurrent cases. Indexing overhead has been ignored.
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Comparing Eq. (29) with Eq. (21), for the non-
pivoting case in which 73 = 1 and 7. = 0, we see that
the increased width of the window in the pivoting case
results in a larger grain size, and so tends to decrease
the overhead. However, this decrease is offset by the
increase arising from the extra communication nec-
essary to perform the pivoting. Nevertheless, if the
grain size is sufficiently large that the 1//2 terms
in the overhead are negligible, then the pivotling case
will have less overhead provided 7 is less than about

2.
8. Hypercube Timings

In this Section we present timings made on the
128-node Caltech/JPL Mark IT hypercube. Since the
decomposition template is restricted to a square grid,
only hypercubes of even dimension may be used. We
therefore made timings on 0, 2, 4 and 6 dimensional
hypercubes. The l-node timings were used to de-
duce concurrent overheads for the 4, 16, and 64 node
results. In some cases the matrix data would not
fit into the memory of a single node, so a model
of the l-node program was used to extrapolate the
expected run time. In the LU decomposition algo-
rithm the window size is progressively reduced for
steps k > M — m+ 1 as the window moves off the
bottom right corner of the matrix. A similar effect oc-
curs in the forward reduction and back substitution
algorithms. These “end effects” have been ignored
in the analysis of Sec. 7, and result in slightly lower
execution times. We are interested in narrow-banded
matrices for which the end effects are negligible, and
the timings presented in this section have therefore
been corrected for end effects by measuring the time
for the first M — m + 1 steps and then multiplying
this time by M/(M — m 4+ 1).

8.1 LU Decomposition Results

In Table 3(a) we present the I-node timings for
LU decomposition with no pivoting for a matrix of
order M = 150. As expscted from Eq. (14), the plot
of Ty(m)/(m — 1) against bandwidth, w = 2m — 1,
shown in Fig. 4, yields a straight line. A least-squares
fit to this data gives ¢; = 219.7 usec and {; — 48.8
psec, so that 7y = t1/t, = 4.5. Equation (14) can
therefore be written as:
L(m) _4eq
=% x(m—1)[2(m — 1)+ 4.5] usec (30)
From Eq. (19), we see that indexing overhead makes a
substantial contribution to the total concurrent over-
head. In the code that produced the timings in Table
3(a) little effort was made to minimize the indexing
overhead. In Table 3(b) we present timings for code
a which matrix elements are accessed by means of
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pointers, rather than be explicitly subscripted arrays.
This minor change results in the program running
about 15% faster, and the timings for this case are
also shown in Fig. 4. For the optimized version of
the code t; = 202.3 usec and t; = 40.7 usec, giv-
ing mm = 5.0. The optimized code runs faster, but
increases the concurrent overhead. This is because
the indexing overhead in the inner loop has been re-
duced by a greater factor than that in the outer loop.
The value of t; = 40.7 usec corresponds to a speed
of about 25 kflops for one node of the Mark IT hyper-
cube.

Window {Bandwidth Ti(m) Ti(m)

Size, m |w=2m —1| (seconds) (m-—1)
16 31 3.79 0.253
18 35 4.78 0.281
20 39 5.90 0.311
22 43 7.14 0.340
24 47 8.49 0.369
26 51 9.96 0.398
28 55 11.56 0.428
30 59 13.27 0.458
32 63 15.08 0.486

Table 3(a) Timings for the sequential LU decomposition al-
gorithm running on a single node of the 128-node Caltech/JPL
hypercube. The order of the matrix was 150. No pivoting was
performed, and matrix elements were accessed by explicit in-
dexing.

Window [Bandwidth Ti(m) Ty(m)

Sige, m |w=2m—1| (seconds) (m—1)
16 31 3.20 0.214
18 35 4.05 0.238
20 39 4.98 0.262
22 43 6.03 0.287
24 47 7.15 0.311
26 51 8.40 0.336
28 55 9.72 0.360
36 59 11.17 0.385
32 63 12.68 0.409

Table 3(b) Samc as for Table 3(a), except that matrix ele-
ments were accessed using pointers instead of explicit indexing.

In Tables 4(a), (b) and (c) we present timings,
efliciencies, and concurrent overheads for the LU de-
composition algorithm for 4, 16, and 64 node hyper-
cubes. No pivoting was performed, and matrix ele-
ments were accessed by explicit indexing. The band-
widths considered correspond to the case of a bal-
anced decomposition, i.e., m = my/N. Tables 5(a),
(b), and (c) give results for the case of maximum im-
balance, when m = v/ N + 1.



m m H\mo Ta() T1(m) ELU fro m m 1/ Ta(m) Ty(m) erLy fro
40 20 0.0500 18.67 62.75 0.840 0.190 41 20 0.0500 20.42 65.91 0.807 0.239
44 22 0.0455 22.24 75.89 0.853 0.172 45 22 0.0455 24.24 79.37 0.819 0.222
48 24 0.0417 26.11 90.28 0.864 0.157 49 24 0.0417 28.17 94.07 0.835 0.198
52 26 0.0385 30.28 105.92 0.875 0.143 53 26 0.0385 32,51 110.03 0.846 0.182
56 28 0.0357 34.79 122.81 0.882 0.133 57 28 0.0357 37.14 127.22 0.856 0.168
60 30 0.0333 30.57 140.94 0.890 0.123 61 30 0.0333 42.10 145.67 0.865 0.156
64 32 0.0313 44.67 160.33 0.897 0.114 65 32 0.0313 47.36 165.37 0.873 0.146
68 34 0.0294 50.10 180.96 0.903 0.107 69 34 0.0294 52.94 186.31 0.880 0.137
72 36 0.0278 55.84 202.84 0.908 0.101 73 36 0.0278 58.83 208.50 0.886 0.129

Table 5(a) Timings (in seconds), efficiencies, and overheads for the LU decom-
position algorithm on a 4-node hypercube. No pivoting was performed, and the
matrix order, M = 400. The window widths, m, correspond to the imbalanced case
in which m = mvN + 1. The 1-node times, Ti(m), were estimated from Eq. (14),
using #; = 219.7 usec, and ¢2 == 48.8 psec.

Table 4(a) Timings (in seconds), efficiencies, and overheads for the LU decompo-

sition algorithm on & 4-node hypercube. No pivoting was performed. The window
widths, m, correspond to the balanced case in which m = #mvN. The matrix
order is M = 400. The 1-node times, T1(m), were estimated from Eq. (14), using
1 = 219.7 usec, and ¢, = 48.8 usec.
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m m H\w& m._HmA&,ov n..HCSV Ly fiv m m 1/% ﬂum?&.v Ti(m) €U frv
80 20 0.0500 24.06 312.93 0.813 0.230 81 20 0.0500 26.29 320.79 0.763 0.311
88 22 0.0455 28.61 378.54 0.827 0.209 89 22 0.0455 31.02 387.19 0.780 0.282
96 24 0.0417 33.55 450.40 0.839 0.192 97 24 0.0417 36.17 459.82 0.795 0.259
104 26 0.0385 38.87 528.50 0.850 0.177 105 26 0.0385 41.69 538.70 0.808 0.238
112 28 0.0357 44.61 612.84 0.859 0.165 113 28 0.0357 47.62 623.82 0.819 0.221
120 30 0.0333 50.73 703.42 0.867 0.154 121 30 0.0333 53.93 715.18 0.829 0.207
128 32 0.0313 57.25 800.24 0.874 0.145 129 32 0.0313 60.65 812.78 0.838 0.194
136 34 0.0294 64.13 903.30 0.880 0.136 137 34 0.0294 67.72 916.62 0.846 0.182
144 36 0.0278 71.39 1012.60 0.887 0.128 145 36 0.0278 75.18 1026.70 0.854 0.172
Table 4(b) Same as for Table 4(a), but for a 16-node hypercube, and M = 500. Table 5(b) Same as for Table 5(a), but for a 16-node hypercube, and M = 500.
m m H\&.e R._m»Amov H..HQ:V LU .\hQ m m H\qu mam»?r‘v ﬂa?ﬂv €Ly .*.hQ
160 20 0.0500 38.83 1999.86 0.805 0.243 161 20 0.0500 42.31 2024.92 0.748 0.337
176 22 0.0455 46.04 2419.51 0.821 0.218 177 22 0.0455 49.82 2447.06 0.767 0.303
192 24 0.0417 53.85 2879.09 0.835 0.197 193 24 0.0417 58.10 2909.14 0.782 0.278
208 26 0.0385 62.40 3378.60 0.846 0.182 209 26 0.0385 66.90 3411.15 0.797 0.255
224 28 0.0357 71.60 3918.05 0.855 0.170 225 28 0.0357 76.40 3953.10 0.808 0.237
240 30 0.0333 81.40 4497.44 0.863 0.158 241 30 0.0333 86.50 4534.98 0.819 0.221
256 32 0.0313 91.90 5116.77 0.870 0.149 257 32 0.0313 97.41 5156.80 0.827 0.209
272 34 0.0294 102.81 5776.03 0.878 0.139 273 34 0.0294 108.91 5818.56 0.835 0.198
288 36 0.0278 114.60 6475.22 0.883 0.133 289 36 0.0278 121.19 6520.25 0.841 0.190

Table 4(c) Same as for Table 4(a), but for a 64-node hypercube, and M = 800. Table 5(c) Same as for Table 5(a), but for a 64¢-nodc hypercube, and M = 800,
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Figure 5 Concurrent overhead for the LU decomposition algorithm with no piveting, for 4,
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and (21) and are discussed in the text.
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In Fig. 5 we plot concurrent overhead, frr, as
a function of 1/7 for the both the balanced and im-
balanced cases. Equations (19) and (21) indicate that
frv should depend almost linearly on 1/ for large
values of 7n. In Fig. 5 we also plot the dependence of
frv upon 1/m predicted by the performance models
discussed in Sec. 4. The upper set of curves corre-
spond to the imbalanced case, and the lower set to
the balanced case. A value of 4 = 4.5, deduced from
the 1-node results in Table 3(a), was used, and 7. was
taken to be 0.3. The results for the 16 and 64 node
hypercubes were found to be well fitted by value of
T = 1.8, however the results for the 4-node hyper-
cube lie below the curve predicted by this value on
the model line corresponding to = 1.2. The 1eason
for this apparent discrepancy lies in the implementa-
tion of the CrOS III routine cwrite, which sends data
out from one node on a set of communication chan-
nels specified in the argument list. The time to send
a packet out on N.p.» communication channels is:

Tewrite = &+ BN han (31)

where a is the overhead incurred in initializing the
transmission, and 8 is the asymptotic time to send
a packet over one channel. In the split pipe routine
described in Sec. 5, the source node must send each
packet out on two communication channels. Thus
the value of t.(omm in Eq. (12) has the form of Eq.
(31) with N.pan = 2. However, if there are only 2
nodes in the pipe, as is the case for a 2-dimensional
hypercube mapped onto a 2 x 2 decomposition tem-
plate, the source node writes on only one channel, so
Ncpan = 1. Thus, when using the split pipe algorithm
we would expect {.omm to be lower for a 2-dimensional
hypercube than for hypercubes of higher dimension.
Although the split pipe algorithm has a smaller pipe
startup time than the linear pipe, the implementation
of cwrite on the Mark II hardware makes it slower if
many packets are transmitted. The values of T given
above are consistent with values found in other work
on the Mark IT hypercube. In the almost linear regime
plotted in Fig. 5 it is difficult to distinguish the ef-
fects due to changes in 7, and 7. As may be seen in
Eq. (19), the important quantity is 7. + 7. The close
similarity between the observed and predicted results
shown in Fig 5. indicates that the performance mod-
els of Sec. 4 correctly represent the behavior of the
algorithm. For large grain sizes the overhead tends
asymptotically to zero, and provided m? > 27V N
the algorithm scales well as the number of nodes in-
creases. In the case of the Mark II hypercube, over-
heads of less than about 20% were obtained in the
balanced case for all hypercube dimensions consid-
ered for /m > 25.

Results for the sequential LU decomposition al-
gorithm with partial pivoting are given in Table 6.
The performance model outlined in Table 2 predicts
that Ty(m)/(m — 1) should be proportional to the
window width, 7h, averaged over the M steps of the
algorithm. The value of 7 is in turn proportional m.
In Fig. 6 Ty(m)/(m — 1) is plotted against m, and
as expected the measured data are fitted well by a
straight line. The non-zero y intercept of this line in-
dicates that there are additional sources of overhead,
such as indexing overhead, which are not accounted
for in the simple model in Table 2. Some of this
overhead can doubtless be removed by more careful
coding, however, as for the non-pivoting case, some
overhead will remain., Thus the model presented in
Table 2 can be expected to give only a qualitative
description of the performance of a real program. A
straight line fit to the data plotted in Fig. 6 gives the
following model for the performance of the sequential
LU decomposition algorithm with partial pivoting:

%771_) =45.9x(m — 1)(23.2+ 4m) pusec (32)

Equation (32) has been written so that if m
equals the maximum possible value of 2m — 1, then
the time to perform a single float-point operation in
the inner loop is 45.9 psec. This time also includes
any overhead associated with the inner loop. The
value of 45.9 usec is close to the corresponding value
of 48.8 usec found in the non-pivoting case, in fact
the ratio of the two numbers can be interpreted as
7m/2m, giving M = 1.89m. This result indicates that
for most of the algorithm, the window width is close
to the maximum value.

Window |[Bandwidth Ti(m) Ty(m)
Size, m |w=2m —1| (seconds) (m-1)
10 19 5.24 0.582
11 21 6.20 0.620
12 23 7.14 0.649
13 25 8.29 0.691
14 27 9.39 0.722
15 29 10.72 0.766
16 31 11.99 0.799
17 33 13.45 0.841

Table 8 Timings for the sequential LU decomposition algo-
rithm running on a single node of the 128-node Caltech/JPL
hypercube. The order of the matrix was 200. Partial pivoting
was performed, and matrix elements were accessed by explicit
indexing.

Results for the concurrent LU decomposition al-
gorithm with partial pivoting are given in Tables 7(a),
(b) and (c) for 4, 16, and 64 nodes, respectively. In
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m m l/ﬁ‘l T.;(‘Frz) T1(m) €LU fLU

20 10 0.1000 6.30 18.00 0.714 0.400
22 11 0.0909 7.31 21.44 0.733 0.364
24 12 0.0833 8.44 25.18 0.746 0.341
26 13 0.0769 9.59 29.20 0.761 0.314
28 14 0.0714 10.87 33.52 0.771 0.297
30 15 0.0667 12.17 38.14 0.783 0.276
32 16 0.0625 13.60 43.05 0.791 0.264
34 17 0.0588 15.08 48.25 0.800 0.250

Table 7(a) Timings, cficiencies, and overheads for the LU decomposition algorithm
on a 4-node hypercube. Partial pivoting was performed and the matrix order, M =

200. The 1-node times, T1(m), were estimated from Eq. (32).

m m l/ﬁ‘L Tls(ﬁ‘b) T]_(m) €LU fLU
40 10 0.1000 13.53 131.24 0.606 0.650
44 11 0.0909 15.61 157.34 0.630 0.587
48 12 0.0833 18.15 185.80 0.640 0.563
52 13 0.0769 19.51 216.60 0.694 0.441
56 14 0.0714 21.82 249.76 0.715 0.398
60 15 0.0667 25.50 285.27 0.699 0.430
64 16 0.0625 28.30 323.13 0.714 0.401
68 17 0.0588 31.42 363.35 0.723 0.384

Table 7(b) Same as for Table

7(a), but for a 16-node hypercube, and M = 400.

m m 1/ Tea(7n) Ti(m) €Ly frv
80 10 0.1000 27.37 996.19 0.569 0.758
88 11 0.0909 32.66 1199.38 0.578 0.737
96 12 0.0833 38.27 1421.38 0.580 0.723
104 13 0.0769 41.83 1662.20 0.621 0.611
112 14 0.0714 48.48 1921.83 0.619 0.614
120 15 0.0667 52.40 2200.28 0.656 0.524
128 16 0.0625 58.30 2497.54 0.669 0.494
136 17 0.0588 64.37 2813.62 0.683 0.464

Table 7(¢) Same as for Table 7(a), but for a 64-node hypercube, and M = 800.

Fig. 7, these data are plotted as concurrent over-
head against 1/7. The sequential algorithm results,
modeled by Eq. (32), show that there are additional
sources of overhead present not included in the simple
model in Table 2. If it is assumed that the inner and
outer loops are subject to differing overheads then the
predicted form of the concurrent overhead, given by
Eq. (29), becomes:

f __0.5'r1’+3—7'{
L Tm T amdN
(rl+7") T/ (33)
E—_2/vN)—<= 2 4+ h(N)——
(5 -2V Ty T

where 7{ = t{/1}, 7. = tcopy/th, and 7' = teomm/t5.
The quantities ] and t, are the times per floating-
point operation spent in the outer and inner loops,
respectively. The 1-node results give 7{ = 12.55. The

dashed curves in Fig. 7 show the concurrent over-
head predicted by Eq. (28) with { = 12.55. The
values of 7/ and 7' were taken to be 0.3 and 1.8 (or
1.2 for the 4-node case), respectively, as in the case
of no pivoting. The predicted curves lie above the
data, suggesting that a lower value of 7{ might be
more appropriate. Part of the discrepancy between
the measured and predicted results plotted in Fig. 7
might be due to the fact that in Eq. (33) we have
assumed that the window width is at the maximum
value throughout the algorithm. The scatter in the
data points is attributable to the dependence of the
algorithm’s performance on the values of the elements
of A.
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Figure 6 Timings for the sequential LU decomposition algorithm with partial pivoting

running on a single node of the 128-node Mark II hypercube. The matrix order was 200.
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Figure T Concurrent overhead, fry, as a function of 1/ for LU decomposition with
pivoting.

1649



8.2 Forward Reduction Results

In Table 8 we present timings for the sequential
forward reduction and back substitution algorithms,
run on a single node of the hypercube. Equation (12)
indicates that at fixed n;, the time depends linearly
on (m — 1). We therefore plot in Fig. 8 Ti(ns, m)
as a function of (m — 1). The data values are fitted
very well by a straight line, the least-squares best-fit
to which gives:

TF‘R

1 _ = 49.5x[2(m— 0.98
e x[2(m — 1) + 0.98]

(34)

In Fig. 8 the intercept on the y axis is close
to zero, indicating that the overhead associated with
the outer loop is small. Equation (34) shows that
each floating-point operation in the inner loop takes
49.5 usec, which is consistent with the value of 48.8
usec found for the LU decomposition algorithm.

Tables 9(a}, (b), and (c) give the results for the
concurrent forward reduction algorithm on 4, 16, and
64 nodes. In all cases the value of ™M is held fixed
at 20. The corresponding concurrent overheads are
plotted in Fig. 9 as a function of 1/7;. The dashed
lines in Fig. 9 are the concurrent overheads predicted
by Eq. (23), for 7/ = 0.3, and 7' = 1.2 and 1.8 for the
N = 4 and N > 4 cases, 1espectively. The value of
7; was taken to be 0.98 from the 1-node results. The
agreement between the measured and predicted over-
heads is reasonably good, although it appears from
Fig. 9 that a larger value of 7; would give a better

psec

2.0
1.8
1.6

Sequential code on 1 node
n=4,M=150

1.4

12
Ty(n,,m) 104
0.8 A
0.6 S .
0.4 -
0.2 +

0.0 T T

fit. A larger value of ; might be attributable to ad-
ditional overhead in the outer loop that is present in
the concurrent algorithm but not in the sequential

algorithm.

Window |Bandwidth| T E(ny, m) | TS (ny, m)
Size, m |w=2m—1| (seconds) (seconds)
11 21 0.62 0.67
13 25 0.75 0.79
16 31 0.91 0.96
18 35 1.04 1.07
21 41 1.22 1.25
23 45 1.33 1.38
26 51 1.51 1.56
28 55 1.65 1.65
31 61 1.80 1.85

Table 8 Timings for the sequential forward reduction and
back substitution algorithms running on a single node of the
128-node Caltech/JPL hypercube. The order of the matrix
was 150 and the number of right-hand sides, n,, was 4. No
pivoting was performed, and matrix clements were accessed by
explicit indexing.

8.3 Back Substitution Results

Equation (16) predicts that the time for the se-
quential back substitution algorithm in the no pivot-
ing case depends linearly upon (m — 1). We there-
fore plot in Fig. 10 the sequential back substitution
times on one node of the hypercube given in Table 8
against (m— 1). The resulting plot can be fitted with

Forward reduction on the Mark II hypercube

0 5

T
15

—
20 25 30

Figure 8. Timings for the sequential forward reduction algorithm on 1-node of the hyper-
cube as e function of (m — 1), In all cases the matrix order was M = 150, and the number

of right-hand sides was n, = 4.
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Figure 9. Concurrent overhead as a function of 1/#; for the forward reduction algorithm.
In all cases the value of M equals 20. The dashed curves show the results predicted by Eq.

(23), as discussed in the text.

a straight line as follows:

TES
T 49.0x [2(m — 1) + 2.73] usec

(35)
The value of 49 usec for each pass through the in-
ner loop is in good agreement with that found in the
forward reduction (49.5 usec) and LU decomposition
algorithms (48.8 usec).

In Tables 10(a), (b), and (c) we present timings,
efficiencies and overheads for the back substitution
algorithm on the Mark II hypercube for dimensions
2, 4, and 6. As in the forward reduction case, the
value of 7z is held fixed at 20, and 7 is varied. The
overheads are plotted in Fig. 11 as a function of 1/#,.
The dashed lines in Fig. 11 are the model predictions
of Eq. (25). The value of 74 was taken from the 1-
node results to be 2.73. The other model parameters
were the same as in Fig. 9 for the forward reduction
algorithm, ie., 7/ = 0.3, and 7' = 1.2 for N = 4,
and 7' = 1.8 for N > 4. The agreement between the
measured and predicted overheads is excellent.

9. Conclusions

In general the overheads measured on the Mark
IT hypercube are in very good agreement with the
performance models developed in Sec. 7, and we can
therefore be confident that these models can be used
to predict the performance for larger grain sizes, and
for higher dimensional hypercubes.

This work has identified the following key issues
in the implementation of LU decomposition, forward

reduction, and back substitution algorithms on hy-
percubes such as the Mark II.

(1) The scattered square subblock decomposition is

important in reducing load imbalance.

(2) For sufficiently latge grain sizes, n, the commu-
nication overhead is proportional to 1/4/n, as in
the matrix multiplication algorithm.

Indexing overhead makes an important contri-
bution to the concurrent overhead.

Although many nodes are idle during certain
stages of the algorithms, the overhead is still
small for sufficiently large grain size problems.
The algorithms scale well at fixed grain sizge to
higher dimensional hypercubes.

In the case of a balanced decomposition the ef-
ficiency of the LU decomposition with no piv-
oting exceeds 80% for hypercubes of dimen-
sion less than or equal to 6, for grain siges,
n = m? > 400. In the case of partial pivot-
ing the corresponding grain size is about 1000.
For forward reduction and back substitution, if
m = 20 for number of righthand sides, #;, must
exceed about 10 for the efficiency to exceed 80%

(3)
(4)

(5)
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Figure 10. Timings for the sequential back substitution algorithm on 1-node of the hyper-
cube as a function of (m — 1). In all cases the matrix order was M = 150, and the number
of right-hand sides was np = 4.
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In all cases the value of M equals 20. The dashed curves show the results expected from the
performance model (Eq. (25)), as discussed in the text.
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