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Abstract: We describe the solution of linear systems 
of equations, Ax = b, on distributed-memory concur- 
rent computers whose interconnect topology contains 
a two-dimensional mesh. A is assumed to be an MxM 
banded matrix. The problem is generalized to the 
case in which there are 7tb distinct right-hand sides, 
b, and can thus be expressed as AX = B, where X and 

B are both M xnb matrices. The solution is obtained 
by the LU decomposition method which proceeds in 
three stages: (1) LU decomposition of the matrix A, 
(2) forward reduction, (3) back substitution. Since 

the matrix A is banded a simple rectangular subblock 
decomposition of the matrices A, X, and B over the 
nodes of the ensemble results in excessive load im- 
balance. A scattered decomposition is therefore used 
to decompose the data. The sequential and concur- 
rent algorithms are described in detail, and models of 
the performance of the concurrent algorithm are pre- 
sented for each of the three stages of the algorithm. 
In order to ensure numerical stability the algorithm 
is extended to include partial pivoting. Performance 
models for the pivoting case are also given. Results 

from a 128-node Caltech/JPL Mark II hypercube are 
presented, and the performance models are found to 
be a good agreement with these data. Indexing over- 

head was found to contribute significantly to the total 
concurrent overhead. 

1. Introduction 

The solution of systems of linear equations is 
of fundamental importance in many fields of science 
and engineering, and in recent years much work has 
been done on the efficient solution of such systems 
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on concurrent processors ([Heller 781, [Dongarra 84a], 
[Ortega 851). D irect methods, in particular Gaussian 
elimination and the closely-related LU and Cholesky 
decompositions, have received much attention. In 

this paper we describe the solution of narrow-banded, 
non-symmetric systems of linear equations by means 
of LU decomposition with partial pivoting, followed 

by forward reduction and back substitution. The con- 
current algorithms that we describe in Sec. 4, 5, and 

6 are based on work by [Fox 841, and were designed for 
use on hypercube multiprocessors, although they will 
run with very little modification on any distributed 

memory, MIMD multiprocessor whose interconnect 
topology contains that of a 2-dimensional grid. 

The rest of this section will attempt to convey 
the scope and fecundity of recent research into the so- 
lution of linear systems on multiprocessors by Gaus- 
sian elimination and related methods. This is not 

intended to be a full ( or even adequate) review of the 
current state of research in the field, but should rather 
provide pointers for the interested reader. Section 2 
gives a statement of the problem addressed by this 

paper. The sequential LU decomposition, forward re- 
duction and back substitution algorithms are outlined 
in Sec. 3. Sections 4 and 5 discuss the decomposition 

and communication strategies used in the concurrent 
implementation, which is described in Sec. 6. In 
Sec. 7 performance models are developed, and these 
are compared in Sec. 8 with timings made on the 
Caltech/JPL 128-node Mark II hypercube. The code 
used for the timings is written in the C programming 
language, and the hypercube version makes use of the 
CrOS III communication system and CUBIX, both of 
which are described in [Fox 87a]. Conclusions drawn 

from this work are presented in Sec. 9. 

Kung and Leiserson [Kung 801 have described 
an LU decomposition algorithm for a bi-dimensional 

systolic array processor (SAP). This method restricts 
the size of the input matrix for a SAP of a given 
size. In [Johnsson 811 a Gaussian elimination algo- 
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rithm for solving banded linear systems on a linear 
SAP with no size restriction was described. More 
recently Navarro et al. [Navarro 871 have investi- 
gated LU decomposition algorithms for linear SAPS 
with no sire restriction. Thakore and Su [Thakore 871 
have described algorithms for performing matrix in- 
version by Gaussian elimination, and LU decompo- 

sition on the SM3 multiprocessor system [Baru 861, 

and have compared performance models for the SM3 

and hypercube multiprocessors. Cholesky factoriea- 
tion of symmetric, positive-definite matrices, and LU 

factorisation with partial pivoting of non-symmetric 
matrices have been investigated by Geist and Heath 
[Geist 861. Chu and George have developed the work 

of Geist and co-workers further, and have described 
[Chu 871 an algorithm for Gaussian elimination with 
partial pivoting. Both Geist and Heath, and Chu and 
George present timings for the algorithms run on an 
INTEL iPSC hypercube. 

The numerical solution of many types of par- 
tial differential equations by both the finite difference 
and finite element methods leads to banded linear 
systems of equations (see, for example, Chaps. 7 and 
8 of [Fox 87a]). Chan et al. [Chan 861 have con- 
sidered the solution on hypercubes of banded linear 
systems generated by the solution of elliptic PDE’s, 
and discuss the Alternating Direction Implicit (ADI) 
method, Gaussian elimination, and multigrid tech- 
niques. The use of the AD1 method on multipro- 
cessors to solve parabolic PDE’s has recently been 
investigated by Johnsson et al. [Johnsson 87a, 87b]. 
Concurrent algorithms for the Cholesky factorieation 
of banded matrices are discussed in [Utku 861. O’Neil 
et al. [O’Neil87] have studied the solution of a three- 
dimensional elasticity problem by the finite element 
method, and used a concurrent Gaussian elimina- 
tion algorithm to solve the resultant linear system on 
the BBN Butterfly Parallel Processor. Dongarra and 
Sameh [Dongarra 84b] have considered algorithms 
for solving narrow-banded, diagonally-dominant lin- 
ear systems on different concurrent processors, and 
present timings made on the Cray X/MP-4 and 

Denelcor HEP multiprocessors. Johnsson has investi- 

gated in [Johnsson 851 the communication and calcu- 
lation complexity of Gaussian elimination and block 

cyclic reduction for the solution of block tridiagonal 

systems on multiprocessors with ring, 2-D mesh, and 
hypercube interconnect topologies. In [Dongarra 871, 
Dongarra and Johnsson have extended their analy- 
sis of Gaussian elimination to bus-based and switch- 
based shared memory concurrent processors, and give 
timing measurements for runs made on the Alliant 
FX/8 and Sequent Balance 21000 multiprocessors. 

2. Problem Statement 

This paper describes the solution of linear sys- 
tems of equations of the type: 

Axk = bk (1) 

where the coefficient matrix, A, is an M x M non- 

symmetric, narrow-banded matrix (i.e., bandwidth, 

w < M), and xk and bk (h = 0, 1, . . . , nb - 1) are 

vectors. For convenience Eq. (1) will be rewritten in 
the form: 

AX=B (2) 

where X is an M x nb matrix the columns of which 

are simply the vectors Xk, and similarly B is the M x 
nb matrix whose columns are the vectors bk. The 
need to solve such systems of equations arises, for 
example, when solving a partial differential equation 
for a number of different boundary conditions. 

Equation (2) will be solved using LU decompo- 
sition, followed by forward reduction and back sub- 
stitution. Both the non-pivoting and partial pivoting 
cases will be considered. Timing results obtained on 

a 128-node Caltech/JPL Mark II hypercube will be 
presented and compared with performance models. 

3. The Seauential Algorithm 

The sequential algorithm described here follows 

that of [Martin 671, and divides the solution of the 
banded system in Eq. (2) into three stages. In the 
first stage the LU decomposition of the coefficient ma- 
trix A is performed. This factorires A into the prod- 
uct of a lower triangular matrix, L, and an upper 
triangular matrix, U: 

A=L.U (3) 

The matrices L and U both have a band structure 
similar to that of A, and the factorisation is unique if 
we require that L have unit diagonal elements. Other 
factorieations, such as the Cholesky factorization in 
which the diagonal elements of L and U are the same, 
are also possible. It is convenient to store L and U 

in the same memory locations as A, with L replacing 
the lower triangular part of A, and U the remaining 

part of A. There is no need to explicitly store the 

unit diagonal of L. 

The LU decomposition of A proceeds in M steps 
(see [Golub 831). If m is the halfwidth of the band, 
given by w = 2m-1, then at step Ic (k: = 0, 1, . . . , M- 
l), only those elements of A within an active mx m 
“window” centered on the diagonal are affected (see 
Fig. 1). At step k the first row and column of the 
window lie on the krh row and column of A, and the 
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k th row of U and the kth column of L are evaluated 
according to: 

Lk,k = 1 

Lk+i,k = Ak+i,k&,k l<i<m (4) 

Uk,k+j = Ak,k+j O<j<m (5) 

The elements of A in the window, but not in the first 
row or column, are then modified as follows: 

Ak+i,k+j = Ak+i,k+j - Lk+i,kUk,k+j (6) 

where 0 < i < m, 0 < j < m. As the algorithm 
proceeds the window moves along the main diagonal 
of A, having factored those elements over which it has 
passed (i.e., those to the left and above the window). 
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Figure 1. Schematic representation of step k of LU dccompo- 

sition for an M x M matrix, d, with bandwidth w. The m x m 
window is represented by the dark shaded square. The light 
shaded part of the band above and to ths left of the window has 
akeady been factoriacd, and contains tha appropriata elements 
of L and U. The unshaded part of the band below and to the 
right of the window has not yet been modified. The shaded 
region of the matrix B represents the m x TIN window updated 
in the forward reduction and back substitution phases. 

In the forward reduction stage both sides of Eq. 
(2) are multiplied by L-’ to give: 

UX = L-‘B = BpR (7) 

The matrix BFR can be stored in the same memory 
location as B. As in the LU decomposition algorithm, 
forward reduction is performed in a series of M steps, 
with only those elements lying in an active window 
of B of size m x nb elements being modified in each 
step. In fact, the LU decomposition and forward re- 
duction stages can be merged, thereby reducing the 
indexing overhead. However, for clarity we will treat 
LU decomposition and forward reduction as separate 
stages. In forward reduction the window moves down 
the matrix B one row at a time. At each step the 
elements of B lying within the window are updated 
according to: 

Bk+i,j = Bk+i,j - Bk,jLk+i,k (8) 

where 1 5 i < m, 0 5 j < nb. Thus at step k the ele- 
ments of B lying above the window have already been 

modified to BFR. The final back substitution stage 
evaluates the solution matrix, X, by multiplying Eq. 
(7) by U-l: 

X = U-‘BFR (9) 
The back substitution algorithm again consists of M 
steps, but in this case we start with the last row and 
work up the matrix towards the first row. Thus the 
active window of B begins at the bottom of B and 
moves one row upwards with each step. The steps 
are numbered from k = M - 1 to 0, and at step k 
the elements of B within the window are updated as 
follows: 

Xk,j = Bk,jlUk,k 

Bk-i,j = Bk-i,j - Xk,jUk-i,k 
(10) 

where 1 5 i < m, 0 < j < nb. The solution matrix 
X can also be placed in the same storage location 
as BFR. Thus in the forward reduction and back 
substitution steps the matrix B is first modified to 
BFR, and then to X. 

4. Concurrent Decomposition 

We now consider how to decompose the prob- 
lem on a concurrent processor containing a two- 
dimensional mesh in its interconnect topology. In the 
case of a simple algorithm, such as matrix multipli- 
cation, the square subblock decomposition has been 
shown to be optimal ([Fox 851, [Fox 87b]). However, 
such a decomposition is not appropriate for the prob- 
lem at hand since at each step of the algorithm only 
a few of the processors would be involved. In fact, 
as shown in Fig. 2(a), those processors lying entirely 
outside the band of matrix A perform no useful work 
at all. 

In order to minimize the effects of load imbal- 
ance the scattered square decomposition, shown in 
Fig. 2(b), will b e used [Fox 841. This ensures that all 
processors are involved in computation at each stage 
of the algorithm in as load-balanced a fashion as pos- 
sible. In the scattered square decomposition a de- 
composition template is placed periodically over the 
data so that adjacent matrix elements lie in different 
processors. Decomposition templates for concurrent 
processors with 2-D mesh and hypercube topologies 
are shown in Fig. 3(a) and (b), respectively. We will 
discuss here only square templates, which restricts us 
to the use of hypercubes of even dimension, The ex- 
tension to rectangular templates is straightforward, 
In Fig. 3(b) the d ecomposition template for the hy- 
percube topology is based on a a-dimensional Grey 
code ordering ([Gilbert 581, [Salmon 84]), which en- 
sures that adjacent cells in the decomposition tem- 
plate correspond to nearest neighbors in the hyper- 
cube topology. Moreover, it should be noted that the 
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nodes in any row or column constitute a subcube of 
the hypercube. This feature can be exploited to al- 
low rows and columns of a matrix to be broadcast by 
means of a pipe algorithm, as explained in Sec. 5. 

as in our decomposition. A comparison of these two 
decompositions is given in [Beernaert 871. 

lb) 

Figure 2. Decomposition templates for (a) 2-D mesh and (b) 
hypcrcube topologies. 

5. Communication Strategies 

(b) 

Figure 2. Comparison of (a) local square and (b) scattered 
square decompositions of a 16x 16 bandtd matrix onto a 16 
node concurrent processor. ‘The band is shown shaded, and the 

eero elements outside the band arc not actually stored. Each 
cell rcprcatnts a matrix element, and the number in the cell 
indicates the node in which this clement is stored. This figure 
shows the numbering of nodes appropriate for a 2-dimensional 
array of processors. The numbering for a hypercubc would be 
based on the 2-dimensional Grey codt scheme shown in Fig. 

3(b). 

A similar scattered decomposition has been 
used by Saad and Schultz [Saad 851 in their discussion 
of the Gaussian elimination algorithm on hypercubes. 
Saad and Schultz, however, allow each cell of the de- 
composition template to hold a subblock of fix & 
elements (see Eq. (13)), rather than just one element 

In order to update the current window elements 

of the matrix A according to Eq, (6), the first column 

of the window (Lk+i,k, 0 < i < m) must be sent 
across the window to the right, and the first row of 
the window (Uk,k+jr 0 < j < m) must be sent down 
the window. This means that each node to which 
elements in the first column of the current window 
are assigned must send their part of the first column 
to all the nodes in the same row of the decomposition 
template. Similarly each node to which elements in 
the first row of the current window are assigned must 
send their part of the first row to all the nodes in the 

same column of the decomposition template. After 

the first row and column of the window have been 
transmitted each node contains all the information 

necessary to update the window elements assigned to 
it, 

On a hypercube the nodes lying in a particular 
row, or column, of the decomposition template consti- 
tute a subcube, and the communication of rows and 

columns across the current window could therefore be 
performed by means of the tree-based broadcast al- 
gorithm described in Chap. 14 of [Fox 87a]. However, 

we will use a pipe broadcast method, which has the 
advantage of being simple to implement, and which 
can be used on any multiprocessor whose connection 

topology contains a ring. In the simplest pipe broad- 
cast, called a linear pipe, the communicating nodes 
are mapped onto a line, with the source node at one 
end. The source node sends the data one packet at 

a time to the next node in the line. As this node 
receives each packet it passes it on to the next node, 
and so on until all of the nodes have received all of 
the packets sent by the source node. If t,,,, is the 
time taken to read a floating-point number from one 
node and then write it to the next, then the first 
number arrives at the last node in the pipe in time 

(D - &mwn, where D is the number of nodes in the 
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pipe. Thereafter one number arrives every t,,,, sec- 
onds, so the total time to broadcast r numbers to all 
nodes in the pipe is: 

Tlinea+ = (r + D - 2)kmm (11) 
The quantity (D - 2)t,,,, is commonly called the 
pipe startup time. 

In the split pipe algorithm the communicating 
nodes are again mapped onto a line, but in this case 
the source node is placed, as nearly as possible, at the 
middle of the line, rather than at one end. The source 
node then sends each packet in turn to the two nodes 
on either side of it, which in turn pass on the incoming 
packets to the next nodes. The nodes at each end of 
the line receive packets, but do not forward any. If 
the source node is capable of simultaneously sending 
a packet out on two communication channels in the 
same time that it takes to send it on one channel, 
then the split pipe broadcast has the advantage of 
having only half the pipe startup time of the linear 
pipe: 

It should be noted that if there are only two nodes in 
the pipe, the implementation of the split pipe reduces 
to that of the linear pipe. 

In the concurrent algorithms described in Sec. 
6, we will use the split pipe algorithm to broadcast 
rows and columns across the windows of the matrices 
A and B. 

6. The Concurrent Algorithm 

6.1. LU Decomposition With No Pivoting 

We now consider the concurrent implementa- 
tion of the basic LU decomposition algorithm given 
in Eqs. (4), (5) and (6). We first introduce the quan- 
tity: 

;n=?-Il/dZ (13) 

where N is the number of nodes in the concurrent pro- 
cessor. At some step Ic of the LU decomposition each 
processor holds riz’ matrix elements in the active win- 
dow. Since we are using a scattered decomposition, 
these elements do not comprise a contiguous in x in 
submatrix, but are scattered uniformly throughout 
the window. By comparing the windows for steps Ic 
and k + 1, we see that row k and column k are active 
at step k, but not thereafter. However, at step k + 1 
the nodes to which these now inactive elements are 
assigned obtain a compensating amount of new work 
from row Ic + m and column k + m, thereby preserv- 
ing load balance. This useful feature arises from the 
periodicity of the scattered decomposition. 

Each step k of the concurrent LU decomposition 
algorithm consists of five stages: 

(a> 

(b) 

(4 

Evaluate l/Ak,k in the node to which the top 
left corner element of the current window is as- 
signed. 
The top row of the window, which by Eq. (5) 
is just the noneero elements of row k of U, is 
broadcast downwards, except that the top left 
corner node sends l/Ak,k, instead of Ak,k. This 
broadcast is done using the split-pipe algorithm 
described in Sec. 5. 

(4 

(e) 

The nodes assigned to the elements in the first 
column of the window evaluate the kth column 
of L according to Eq. (4). The other nodes are 
idle at this time. The quantity l/Ak,k is avail- 
able to each of the first column of nodes since it 
was broadcast downwards in step (b). Since the 
matrix L overwrites the lower triangular part 
of A, the matrix element Ak+;,k is replaced by 
Ak+;,k/Ak,k, for 6 < i < 7-R. 
The first column in the widow (i.e., the kth col- 
umn of L), except for the element in the top 
left corner, is broadcast across the window, so 
that all nodes in the same row of the decompo- 
sition template contain identical subsets of the 
multipliers Lk+i,k (0 < i < m). 
The matrix elements of A lying in the window, 
but not in the first row or column, are updated 
according to Eq. (6). Following the split pipe 
broadcasts performed in stages (b) and (d), all 
the information necessary to do this for a given 
matrix element is contained in the processor 
holding that element. 
The load imbalance arising in steps (a) and (c) 

is summarieed in Table 1. In the evaluation of l/Ak,k 
in stage (a), only the node assigned to the top left 
corner of the current window is doing any work. For- 
tunately this does not constitute a serious sequential 
bottleneck as only one floating-point operation is in- 
volved. Thus although stage (a) is very inefficient, 
it is irrelevant when compared with the time taken 
by the dominant stage (e). Stage (c) is more effi- 
cient than stage (a), but contributes more to the to- 
tal concurrent overhead. Stages (a) and (c) are poorly 
implemented from the concurrent point of view, but 
do not significantly impact the performance of the 
concurrent algorithm for sufficiently large grain size 
problems, since the dominant concurrent stage (e) re- 
quires time of order riza, while the sequential stages 
take time of order iiz. 

6.2. LU Decomnosition With Partial Pivotinc 

The LU decomposition algorithm described in 
Sec. 6-1 is appropriate when the diagonal elements, 
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Time Local Contribution to Total 
Sequential Concurrent Ef’fciency Concurrent Overhead 

00) 00) w/N) O(llrn2) 

I?lfi-1 Ii3 w/m O(l/fi~ 

(fifi-1)2 fi2 l-O(l/fifi) 0(1/x?&) 

Table 1 The utilization of the concurrent processor during the three calculation phases of the LU decomposition 
algorithm. The a,squcntial and concurrent times arc given in units of t,.lc, the time to perform one floating-point 
operation. 

Ak,k, are dominant. This is often the case, but in 
general attention must be given to numerical insta- 
bility resulting from di,vision by Ak,k when its value 
is small or vanishing. This problem can be avoid- 
ing by performing partial pivoting. This is done by 
searching the first column of the current window for 
the maximum entry Ak+i,k, 0 5 i < m. If this row 
corresponds to row number k + i,,, then the rows of 
the window corresponding to rows i = 0 and i = i,,, 
are swapped, and the algorithm continues as before. 
One complication is that the window must be at least 
m + i,,, columns in width to accommodate the el- 
ements that are now located in the first row. This 
possible increase in window size affects the speed of 
the algorithm, but does. not alter in any essential way 
the steps (a) to ( ) e outlined above. The variable size 
of the window encountered here is handled naturally 
by the scattered decomposition, which ensures that 
the loads of the different nodes differ by at most one 
column. This illustrates the utility of this simple de- 
composition approach. While originally motivated by 
the need to cope with the banded structure of the ma- 
trix, it has proved to be a powerful method for dealing 
with other sources of imbalance. The added compli- 
cations arising from the: variable window width could 
be reduced by assuming that the width of the window 
is always the maximum value of (2m - 1) columns, 
and padding the unused part of the window with ze- 
ros. However, in our .implementation this was not 
done, and the variable size of the window was fully 
taken into account. Th,is makes it necessary to store 
the window width at each step of the LU decomposi- 
tion algorithm so that the correct value can be used in 
the forward reduction and back substitution stages. 
Furthermore if, as in our implementation, the LU de- 
composition and forward reduction are performed in 
distinct stages, it is also necessary to store the pivot 
row numbers so the corresponding pivot operations 
can be performed on the matrix B prior to the for- 
ward reduction stage. Clearly, in any production code 
the LU decomposition <and forward reduction stages 
should be merged. 

At step k the concurrent partial pivoting algo- 
rithm incorporates the following five additional steps: 

(1) 

(2) 

(3) 

(4) 

(5) 

Each node containing elements in the first col- 
umn of the current window determines the local 
maximum of 1 Ak+i,k 1 (0 < i < ??I) for those ele- 
ments in the node. This step only involves fi 
nodes; the other nodes are idle. 

The global maximum oft he fl local pivot can- 
didates found in step (1) is determined. This 
could be done by means of the hypercube- 
specific subcube combine algorithm described in 
Chap. 20 of [Fox 87a], however we have used a 
more general algorithm based on the pipe al- 
gorithm described in Sec. 5. Each of the fi 
nodes, except the top node to which the top 
left corner element in the window has been as- 
signed, passes its candidate pivot element and 
its row number up to the top node, which finds 
the maximum of all the candidates and the cor- 
responding number of the pivot row. 

The pivot IOW number is next broadcast to all 
nodes. In our implementation this was done us- 
ing a tree broadcast. The location of the pivot 
row, and the window width are stored for use 
in the subsequent forward reduction and back 
substitution steps. 

The pivot row is swapped with the top row of 
the window. If the pivot row and the old top row 
are both assigned to the same row of the decom- 
position template this step requires no commu- 
nication, otherwise the transfer is effected via 
the shortest connecting linear pipe. 

Finally the pivot row is sent to all nodes. This 
completes the swap, and also implements stage 
(b) of the non-pivoting algorithm above. 

These pivoting steps are followed by those of 
the non-pivoting algorithm with the obvious changes 
required by the variable window width. It is apparent 
that while pivoting is an almost trivial operation on a 
sequential machine, it can require a fairly complicated 
algorithm in the concurrent implementation. 
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6.3. Forward Reduction and Back Substitution 

In the ICth step of the forward reduction algo- 
rithm the elements in the current active window of 
B must be updated according to Eq. (8). As in the 
LU decomposition stage, we must first communicate 
the first row of the window of A (the Lk+;,k in Eq. 
(8)) across the window. Then the top row of the win- 
dow of B must be communicated downward across 
the window. Both of these broadcast operations are 
performed using the split pipe algorithm. Each node 
then has all the data necessary to update the window 
elements of B assigned to it. 

The kth step of the back substitution algorithm 
(Eq. (10)) is similar to that of the forward reduction 
algorithm. The elements in the last column of the 
current window of A (the Uk-ik in Eq. (10)) are 
broadcast to the left across the wkdow. Each node to 
which elements in the bottom row of the window are 
assigned evaluates the kCh row of the solution matrix 
X by multiplying the bottom row of the window of B 
by l/Uh,k, This step involves nodes in only one row of 
the decomposition template; the other nodes are idle 
at this time. The bottom row of B is overwritten with 
the newly determined row of the solution matrix, and 
is then broadcast upwards across the window. The 
window elements are then updated according to Eq. 

00 
If partial pivoting is performed in the LU de- 

composition the above description of the forward re- 
duction and back substitution stages are unchanged, 
expect that the variable window size must be taken 
into account, and before performing the forward re- 
duction the rows of B must be pivoted to match the 
pivoting in the LU decomposition stage. 

7. Performance Models 

Models of the performance of concurrent algo- 
rithms are important since they indicate whether the 
algorithm is efficient on massively parallel systems 
for a given grain size. Also discrepancies between the 
predicted and measured performance often point out 
non-optimal coding. 

7.1. The Seauential Alaorithm. 

The time taken for one step of the sequential LU 
decomposition algorithm is just the time to evaluate 
the multipliers (Eq. (4)), plus the time to update the 
elements of A in the window (Eq. (6)). Thus, for the 
non-pivoting case, the total time for the M steps of 
the sequential algorithm is given by: 

T-l(m) = M[(m - l)tl + 2(7n - 1)2tz] (14) 

where M is the order of the matrix. We have assumed 
that M >> m, and have ignored the time to evaluate 

l/Ah,k. The quantity tl is the “average” time to eval- 
uate one of the multipliers Lk+;,k, and is made up of 
the time tcalc to perform one floating-point operation, 
plus the overhead incurred in each pass through the 
outer loop. We will ascribe this overhead to the index- 
ing of the matrix elements referred to in the loop, but 
there are other sources of overhead, such as that aris- 
ing from setting up and and controlling the inner loop. 
Similarly, tz is the time per floating-point operation 
spent in each inner loop, and equals tcalc plus half 
the indexing overhead in each pass through the inner 
loop. In this context the outer and inner loops corre- 
spond to loops over rows and columns, respectively. 
In the absence of indexing overhead tl = t2 = tCalC. 

The time taken for one step of the sequential 
forward reduction stage is just the time to update 
the elements in the active window of the matrix B 

0% (8)). 

T&vQ) = M[2( 7-n - l)nbf3 + ~bfind] (15) 

where ts is the time per floating-point operation for 
the inner loop, and rind is the indexing time in each 
outer loop. 

The time taken by the back substitution stage is 
similar, except the time taken to evaluate the solution 
vector in the last row of the window must be included. 

z(m, nb) = M[2(m - l)nbt3 + nbt4] (16) 

where as usual t4 is the time per floating-point oper- 
ation for the outer loop. 

7.2 The Concurrent Algorithm. 

We next consider the concurrent LU decomposi- 
tion for the case in which there is no pivoting, and in 
which the window size, m, is an exact multiple of fi. 
In this case, each node is assigned an equal number of 
matrix elements in the window, so the decomposition 
is completely balanced. 

As in the sequential algorithm, we ignore the 
time taken to evaluate l/Ak,k in the node in the top 
left corner of the current window. There are then 
two calculation steps: the evaluation of the multipli- 
ers, and the updating of the window elements, the 
times for which are iiztl and 2hatz, respectively. The 
routine split-pipe is called twice to broadcast the first 
row and column of the window. In the first phase of 
the routine the data to be sent by the source nodes 
are copied to a buffer, taking time 6&,,. Ideally on 
packetizing machines such as the Mark II hypercube, 
this step could be omitted, since the data to be sent 
lie at regularly-spaced storage locations so split-pipe 
could be implemented using the CrOS III routines 
vread and vwriie (see Chap. 14 of [Fox 87a]). How- 
ever, vread and vwrite have not been optimally im- 
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plemented on the Mark II hypercube, so the buffering 
stage is necessary. In the second phase of split-pipe, 
the datais piped to the destination nodes as described 
in Sec. 5. Thus the total time for the concurrent al- 
gorithm is given by: 

Tnr(;“)= 
M 

2ti29.J -j- ii-& + 27?Lt,,, 

+2 [,t 5-21 t,,,, (17) 

The concurrent overhead, f, is defined as: 

thus from Eqs. (14) and (17) the concurrent overhead 
of the LU decomposition ,algorithm when m = Gafi 

is: 

71 
fLU = -+ 

4 - 71 

2% 
m+!q+ (yhy2L (19) 

where rl = tl/t2, rC = t,:opy/t2r I- = tcomm/t2, and 

terms of order l/i%r2fl have been neglected. 
If m is not an exact multiple of fl then the 

nodes in the first row and column of the decompo- 
sition template will be assigned more window ele- 
ments than others, resulting in an imbalanced de- 
composition. The most imbalanced case occurs when 
m exceeds an exact multiple of fi by 1, i.e., m= 

7jzfi+ 1. Following the analysis given above for the 
balanced case, we find the following total time for the 
concurrent algorithm: 

TN(~) 

M =2&l- q2t2 t (;n+ l)tl 

+ 26 + l)Lp, (201 

L .I 

which leads to a concurrent overhead of: 

fLU = (4-t -3) Tl + (Tc + 7) 
27% --- 2&m - 

+ 
(2 + n/T + 71 + 2~~; 

2??L2 

(21) 

In the concurrent fo:cward reduction algorithm 

the time taken to update the elements in the active 
window of matrix B is similar to that for the sequen- 

tial algorithm given in Eq. (14). However, the multi- 

pliers Lk+;,k in Eq. (8) must be piped across the win- 
dow. This communication. step is also performed in 
the LU decomposition stage, and the forward reduc- 
tion and LU decomposition stages could be merged, 
thereby avoiding the need ,to communicate the multi- 
pliers twice. However, for clarity we present forward 

reduction and LU decomposition as two distinct al- 
gorithms. A second communication step is necessary 
to pipe the nb elements in the top row of the win- 

dow of B (the Bk,j in Eq. (8)) down the window. 
Adding the times for the calculation and communi- 
cation steps together we obtain the total time for the 
concurrent forward reduction algorithm: 

(22) 

+ (A + fib + a - +comm 

where we have assumed a balanced composition, i.e, 

m = jjLfi. From Eqs. (15) and (22), the concurrent 

overhead for the forward reduction phase is therefore: 

1 
~FR = - 

Miif 

+ (1 - wq 
2% I 

+ ( > ;+; (7: + 7’) 
2 (23) 

where -ri = ti,,d/ts, rt = tcomm/t3, and 7: = tcopy/ts. 
The back substitution phase involves communi- 

cation steps similar to those in the forward reduction 
phase, except that in the former case the right-hand 
column of the window of A and the bottom row of the 
window of B are communicated (see Eq. (10)). The 
time for the concurrent back substitution algorithm 
in the balanced decomposition case is therefore: 

TN{‘-% fib) 

M = 2hfibt3 + fibt4 + (;it + jlb)tcopy (24) 

+(iiz+h,+fi--)t,,,, ’ ’ 
From Eqs. (16) and (24), the concurrent overhead for 
the back substitution phase is therefore: 

+ m- 2JT, 
2ihfib 

where 74 = tg/ta. 

7.3 Partial Pivotina 

In general, the time taken for the LU decompo- 
sition algorithm in the partial pivoting case depends 
on which rows take part in the pivoting, and this in 
turn depends on the elements of A. At any given stage 
of the LU decomposition the width of the window de- 

pends on the previous pivoting history. Moreover the 
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time to send the top row in the window to the posi- 
tion of the pivot row via the shortest geodesic pipe, 
depends on the location of the pivot row. Thus a time 

for the general case of LU decomposition with partial 

pivoting cannot be derived, In Table 2 we present the 

times for each stage of the sequential and concurrent 
LU decomposition algorithms. For clarity we assume 
here that indexing overhead is negligible. At step k of 
the algorithm the active window of matrix A will, in 

general, be rectangular, being m rows by mk columns. 
In the case of no pivoting mk = m at each step, how- 
ever, in the case of partial pivoting m 5 mk < 2m. 
In Table 2 &k equals [mk/fij, where [zl is the 
smallest integer greater than or equal to CC. At stage 
(d) in Table 2 we give the time to send the top row 

in the window to the position of the pivot row. If 
the top row and pivot row are assigned to the same 
row of the decomposition template no communication 

is necessary, so this stage takes no time (a memory- 
to-memory copy is performed which we ignore). If 

the top row and pivot row are not assigned to the 
same row of the decomposition template then the top 
row is sent to the pivot row position via the shortest 
geodesic pipe. In Table 2 we denote the number of 
nodes involved in this pipe by Ik. If each row of the 
decomposition template is equally likely to contain 

the pivot row then the expectation value of the time 
taken by stage (d) is: 

a/2+1 

Ed = c P(lk)(hk + lk - 2)~,,,, (26) 

lhC2 

where P(lk) is the probability that there are lk nodes 
in the shortest pipe from the top row to the pivot 
row. 

p(lk) = 
if lk = 2,3,. , , , O/2 
if Ik = n/2 + 1 

(27) 

Equations (26) and (27) give the expectation value of 
stage (d) in the case of “random” pivoting, as: 

(n- 1)&k + tJN- 2)2 t,,,, 
0 40 1 (28) 

If we further assume that for most of the M steps the 

width of the window is at its maximum value, i.e., 
mk = 2m - 1, then &j2h = 27% and the overhead for 
LU decomposition with partial pivoting is: 

fLU = 
1 

-+ 0.5+;+(1-22/fi)& 
?%&T 6-L 

(29) 
-t wq+ 

where h(N) is a function of N. 

Stage 

(a) Find Pivot 

(b) Transmi t to 
Corner Node 

(c) Inform All Nodes 
of Pivot Paramctcrs 

Sequential 

m kc 

0 

0 

Time 

Concurrent 

~Lllc 

2 w- 1) tcomm 

2 lois2 N hnn, 

(d) Send Top Row in 0 
Window to Position 0 
of Pivot Row (&+*,0~2) t,,,, 

(e) Send Pivot Row 
Everywhere 0 bl;+GpIl LJmm 

(f) Invert Ak,k tinv tinv 

(g) Form Multipliers (1~~ - 1) t talc n^l tcalc 

(h) Pipe Mu1 tipliers 
Across Window 0 [ fi+ (+)I tconun 

(i) Correct Matrix 2b- M-k- 1) tcdc 25% Lalc 

Table 2 Expected timings for csch stage of the LU decomposition algorithm with partial pivoting for the 
sequential and concurrent cedes. Indexing overhead has been ignored. 
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Comparing Eq. (29) with Eq. (21), for the non- 
pivoting case in which 71 = 1 and rc = 0, we see that 
the increased width of the window in the pivoting case 

results in a larger grain size, and so tends to decrease 

the overhead. However, this decrease is offset by the 
increase arising from the extra communication nec- 
essary to perform the pivoting. Nevertheless, if the 
grain size is sufficiently large that the l/h2 terms 
in the overhead are negligible, then the pivoting case 
will have less overhead provided r is less than about 
2. 

8. Hypercube Timings 

In this Section we present timings made on the 
128-node Caltech/JPL Mark II hypercube. Since the 
decomposition template is restricted to a square grid, 
only hypercubes of even dimension may be used. We 
therefore made timings on 0, 2, 4 and 6 dimensional 

hypercubes. The l-node timings were used to de- 
duce concurrent overheads for the 4, 16, and 64 node 
results. In some cases, the matrix data would not 

fit into the memory of a single node, so a model 

of the l-node program was used to extrapolate the 
expected run time. In the LU decomposition algo- 

rithm the window size is progressively reduced for 
steps k; > M - m + 1 as the window moves off the 
bottom right corner of the matrix. A similar effect oc- 
curs in the forward reduction and back substitution 
algorithms. These “end effects” have been ignored 
in the analysis of Sec. ‘7, and result in slightly lower 
execution times. We are interested in narrow-banded 
matrices for which the end effects are negligible, and 

the timings presented in this section have therefore 
been corrected for end effects by measuring the time 

for the first M - m + l steps and then multiplying 

this time by M/( M - m + 1). 

8.1 LU Decomposition IResults 

In Table 3(a) we present the l-node timings for 

LU decomposition with no pivoting for a matrix of 
order M = 150. As expected from Eq. (14), the plot 
of T1(m)/(m - 1) against bandwidth, w = 2m - 1, 

shown in Fig. 4, yields a straight line. A least-squares 

fit to this data gives tr = 219.7 psec and t2 = 48.8 

psec, so that ~1 = tl/tz = 4.5. Equation (14) can 
therefore be written as: 

wd - = 48.8 x (m - 1)[2( 
M 

m - 1) + 4.51 psec (30) 

From Eq. (19), we see that indexing overhead makes a 
substantial contribution to the total concurrent over- 
head. In the code that produced the timings in Table 
3(a) little effort was mafde to minimize the indexing 
overhead. In Table 3(b) we present timings for code 
a which matrix elements are accessed by means of 

pointers, rather than be explicitly subscripted arrays. 
This minor change results in the program running 
about 15% faster, and the timings for this case are 

also shown in Fig. 4. For the optimized version of 

the code tl = 202.3 psec and t2 = 40.7 psec, giv- 

ing 71 = 5.0. The optimized code runs faster, but 
increases the concurrent overhead. This is because 
the indexing overhead in the inner loop has been re- 
duced by a greater factor than that in the outer loop. 
The value of t2 = 40.7 psec corresponds to a speed 
of about 25 kflops for one node of the Mark II hyper- 
cube. 

Window Bandwidth 

Size, m 

16 31 

18 35 

20 39 

22 43 

24 47 

26 51 

28 55 

30 59 

32 63 

w=2m- 3 
Z(m) 

(seconds) 

3.79 
4.78 
5.90 

7.14 
8.49 

9.96 

11.56 
13.27 
15.08 

(m-1) 
0.253 
0.281 
0.311 

0.340 
0.369 

0.398 

0.428 

0.458 
0.486 

Table S(a) Timings for the sequential LU decomposition ol- 
gorithm running on a single node of the la&node Caltech/JPL 
hypcrcubo. The order of the matrix was 150. No pivoting was 
performed, and matrix elements were accessed by explicit in- 
dexing. 

Window 

Size, m 

16 

18 
20 
22 
24 
26 
28 

30- 
32 

3andwidth 

0=2m- 1 

31 

35 

39 
43 
47 

51 
55 
59 
63 

a4 Tb-4 
(seconds) (m-1) 

3.20 0.214 

4.05 0.238 
4.98 0.262 
6.03 0.287 
7.15 0.311 
8.40 0.336 
9.72 0.360 

11.17 0.385 
12.68 0.409 

Table 3(b) Same as for Table 3(a), except that matrix clc- 
mcnts wcrt acccsscd using pointers instead of explicit indexing. 

In Tables 4(a), (b) and (c) we present timings, 

efficiencies, and concurrent overheads for the LU de- 

composition algorithm for 4, 16, and 64 node hyper- 
cubes. No pivoting was performed, and matrix ele- 
ments were accessed by explicit indexing. The band- 
widths considered correspond to the case of a bal- 
anced decomposition, i.e., m = +nfi. Tables 5(a), 
(b), and (c) give results for the case of maximum im- 
balance, when m = 7jtfl+ 1. 
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(m-l) * 
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LU decomposition on the Mark II hypercube 
Sequential code on 1 node 

- No pivoting 
,*-- 

&’ l .h” 
.- 

“.” , 

0 lb $0 40 

Bandwidth, b 

;0 80 -;O 

Figure 4 Timing results for the sequential LU decomposition algorithm running on one 
node of the hypercube. The triangles correspond to the data in Table 3(a), and the circles 
to the date, in Table 3(b). The dashed 1 incs give the least-squares best fit to the data, and 
give tl = 219.7 /.wx, t2 = 48.8 pscc (upper line) and tl = 202.3 /ASCC, t2 = 40.7 /.MCC (lower 
line). 

0.4 1 

LU Decomposition on the Caltech/JPL Mark II Hypercube 
No pivoting, 
-------- 4 processors 7 

0.3 - -----.--- 16 processors 

d -----’ 64 processors 
I 

-r; 

9 0.2- 
2 
2 
6 

0 4 processors 
+ 16 processors 
x 64 processors 

Figure 6 Concurrent overhead for the LU decomposition algorithm with no pivoting, for 4, 
16 and 64 node hypercubes. The lines correspond to the performance models of Eqs. (19) 
and (21) and arc discussed in the text. 
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In Fig. 5 we plot concurrent overhead, fl;r~, as 
a function of l/ti for the both the balanced and im- 
balanced cases. Equations (19) and (21) indicate that 
flu should depend almost linearly on l/;it for large 
values of 7iz. In Fig. 5 we also plot the dependence of 
flu upon l/ti predicted by the performance models 
discussed in Sec. 4. The upper set of curves corre- 
spond to the imbalanced case, and the lower set to 
the balanced case. A value of r1 = 4.5, deduced from 

the l-node results in Table 3(a), was used, and rc was 
taken to be 0.3. The results for the 16 and 64 node 
hypercubes were found to be well fitted by value of 
r = 1.8, however the results for the 4-node hyper- 

cube lie below the curve predicted by this value on 
the model line corresponding to r = 1.2. The reason 
for this apparent discrepancy lies in the implementa- 

tion of the CrOS III routine cwrite, which sends data 
out from one node on a set of communication chan- 
nels specified in the argument list. The time to send 

a packet out on hrcha,, communication channels is: 

T currite = a + PNchon (31) 

where a: is the overhead incurred in initializing the 
transmission, and p is the asymptotic time to send 

a packet over one channel. In the split pipe routine 
described in Sec. 5, the source node must send each 
packet out on two communication channeIs. Thus 
the value of t,,,, in Eq. (12) has the form of Eq. 
(31) with Ncha,., = 2. However, if there are only 2 
nodes in the pipe, as is the case for a 2-dimensional 
hypercube mapped onto a 2 x 2 decomposition tem- 
plate, the source node writes on only one channel, so 
N than = 1. Thus, when using the split pipe algorithm 
we would expect t,,,, to be lower for a 2-dimensional 
hypercube than for hypercubes of higher dimension. 

Although the split pipe algorithm has a smaller pipe 
startup time than the linear pipe, the implementation 

of cwriie on the Mark II hardware makes it slower if 
many packets are transmitted. The values of T given 
above are consistent with values found in other work 
on the Mark II hypercube. In the almost linear regime 
plotted in Fig. 5 it is difficult to distinguish the ef- 
fects due to changes in rc and T. As may be seen in 

Eq. (19), the important quantity is rc + T. The close 
similarity between the observed and predicted results 
shown in Fig 5. indicates that the performance mod- 
els of Sec. 4 correctly represent the behavior of the 

algorithm. For large grain sizes the overhead tends 
asymptotically to zero, and provided iita > 27fi 
the algorithm scales well as the number of nodes in- 
creases. In the case of the Mark II hypercube, over- 
heads of less than about 20% were obtained in the 
balanced case for all hypercube dimensions consid- 
ered for in > 25. 

Results for the sequential LU decomposition al- 
gorithm with partial pivoting are given in Table 6. 

The performance model outlined in Table 2 predicts 

that Tl(m)/(m - 1) should be proportional to the 

window width, r~, averaged over the M steps of the 
algorithm. The value of fi is in turn proportional m. 
In Fig. 6 Tl(m)/(m - 1) is plotted against m, and 

as expected the measured data are fitted well by a 
straight line. The non-zero y intercept of this line in- 
dicates that there are additional sources of overhead, 

such as indexing overhead, which are not accounted 
for in the simple model in Table 2. Some of this 

overhead can doubtless be removed by more careful 

coding, however, as for the non-pivoting case, some 
overhead will remain, Thus the model presented in 
Table 2 can be expected to give only a qualitative 
description of the performance of a real program. A 
straight line fit to the data plotted in Fig. 6 gives the 
following model for the performance of the sequential 
LU decomposition algorithm with partial pivoting: 

w-4 
M 

= 45.9 x(m - 1)(23.2 + 4m) psec (32) 

Equation (32) h as been written so that if ii~ 
equals the maximum possible value of 2m - 1, then 
the time to perform a single float-point operation in 
the inner loop is 45.9 psec. This time also includes 
any overhead associated with the inner loop. The 
value of 45.9 psec is close to the corresponding value 
of 48.8 psec found in the non-pivoting case, in fact 
the ratio of the two numbers can be interpreted as 
fi/2m, giving iiz = 1.89m. This result indicates that 

for most of the algorithm, the window width is close 
to the maximum value. 

Window Bandwidth Wm) T&4 
Size, m w=2m- 1 (seconds) cm- 1) 

10 19 5.24 0.582 
11 21 6.20 0.620 

12 23 7.14 0.649 

13 25 8.29 0.691 
14 27 9.39 0.722 

15 29 10.72 0.766 

16 31 11.99 0.799 
17 33 13.45 0.841 

Table 8 Timings for the sequential LU decomposition algo- 
rithm running on a single node of the 128-node Caltcch/JPL 
hyparcubc. The order of the matrix was 200. Partial pivoting 
w&s performed, and matrix elements were accessed by explicit 
indexing. 

Results for the concurrent LU decomposition al- 
gorithm with partial pivoting are given in Tables 7(a), 
(b) and (c) for 4, 16, and 64 nodes, respectively. In 
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m 

r 30 32 34 24 26 28 20 22 

97-i l/r+% q+q Z(m) CLU fLV 

16 14 15 17 11 12 33 10 0.0625 0.0714 0.0667 0.0588 0.0909 0.0833 0.0769 0.1000 12.17 13.60 15.08 10.87 9.59 6.30 7.31 8.44 33.52 38.14 48.25 21.44 25.18 29.20 43.05 18.00 0.761 0.771 0.783 0.791 0.714 0.733 0.746 0.800 0.314 0.297 0.276 0.264 0.400 0.364 0.341 0.250 

Table 7(a) Timings, efficiencies, and overheads for the LU decomposition algorithm 
on a 4-node hvacrcubc. Partial uivoting was performed and the matrix order, M = 
200. The l-node times, Tl(m), were estimated from Eq. (32). 

-- 
m 

-- 
40 

44 
48 

52 
56 
60 
64 
68 

-- 

in 
10 

11 
12 

13 
14 
15 
16 
17 

l/G-L TI@) w-4 ELU fLlJ 

0.1000 13.53 131.24 0.606 0.650 

0.0909 15.61 157.34 0.630 0.587 
0.0833 18.15 185.80 0.640 0.563 

0.0769 19.51 216.60 0.694 0.441 
0.0714 21.82 249.76 0.715 0.398 
0.0667 25.50 285.27 0.699 0.430 
0.0625 28.30 323.13 0.714 0.401 
0.0588 31.42 363.35 0.723 0.384 

Table 7(b) Same as for Table 7(a), but f or a l&node hypcrcubc, and M = 400. 
-- 

m 
-- 

80 
88 
96 

104 
112 
120 
128 

136 
-- 

7% 

10 
11 
12 
13 
14 
15 
16 

17 

l/f?2 

a.1000 
0.0909 
0.0833 
0.0769 
0.0714 
0.0667 
0.0625 
0.0588 

27.37 996.19 
32.56 1199.38 
38.27 1421.38 
41.83 1662.20 
48.48 1921.83 
52.40 2200.28 
58.30 2497.54 

64.37 2813.62 

Z(m) ELV fLU 

0.569 0.758 
0.578 0.737 
0.580 0.723 
0.621 0.611 
0.619 0.614 
0.656 0.524 
0.669 0.494 
0.683 0.464 

Table 7(c) Same as for Table 7(a), but f or a 64-node hypcrcube, and M = 800. 

Fig. 7, these data are plotted as concurrent over- 
head against l/r%. The sequential algorithm results, 
modeled by Eq. (32), show that there are additional 
sources of overhead present not included in the simple 
model in Table 2. If it is assumed that the inner and 
outer loops are subject to differing overheads then the 

predicted form of the concurrent overhead, given by 
Eq. (29), becomes: 

fLV = 
0.5r; 3 - I-; 
-+- 

7% 2+-i-&T 

+ (5 -2,~)!:7y'~ + h(N)& 

(33) 

where 7: = t:/tk, 7’ = tcopy/t~, and r’ = t,,,,/t&. 
The quantities ti aid ti are the times per floating- 
point operation spent in the outer and inner loops, 
respectively. The l-node results give ri = 12.55. The 

dashed curves in Fig. 7 show the concurrent over- 
head predicted by Eq. (28) with T’ = 12.55. The 1 
values of 7: and r’ were taken to be 0.3 and 1.8 (or 
1.2 for the 4-node case), respectively, as in the case 
of no pivoting. The predicted curves lie above the 
data, suggesting that a lower value of pi might be 

more appropriate. Part of the discrepancy between 
the measured and predicted results plotted in Fig. 7 
might be due to the fact that in Eq. (33) we have 

assumed that the window width is at the maximum 

value throughout the algorithm. The scatter in the 
data points is attributable to the dependence of the 
algorithm’s performance on the values of the elements 
of A. 
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running on a single node of the 128-node Mark II hypcrcubc. The matrix order was 200. 
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Figure 7 Concurrent overhead, fau, as ~5 function of l/A for LU decomposition with 

pivoting. 
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8.2 Forward Reduction Results 

In Table 8 we present timings for the sequential 
forward reduction and back substitution algorithms, 
run on a single node of the hypercube. Equation (12) 
indicates that at fixed nb, the time depends linearly 
on (m - 1). We therefore plot in Fig. 8 !Z’i(na, m) 
as a function of (m - 1). The data values are fitted 
very well by a straight line, the least-squares best-fit 
to which gives: 

TIFR 
- = 49.5 x [2(m - 1) + 0.981 
naM 

psec (34 

In Fig. 8 the intercept on the y axis is close 
to sero, indicating that the overhead associated with 
the outer loop is small. Equation (34) shows that 
each floating-point operation in the inner loop takes 

49.5 psec, which is consistent with the value of 48.8 
psec found for the LU decomposition algorithm. 

Tables 9(a), (b), and (c) give the results for the 

concurrent forward reduction algorithm on 4, 16, and 

64 nodes. In all cases the value of ti is held fixed 

at 20. The corresponding concurrent overheads are 
plotted in Fig. 9 as a fu:nction of l/fib. The dashed 
lines in Fig. 9 are the concurrent overheads predicted 
by Eq. (23), for 7: = 0.3, and 7’ = 1.2 and 1.8 for the 
N = 4 and N > 4 cases, respectively. The value of 
pi was taken to be 0.98 from the l-node results. The 
agreement between the m.easured and predicted over- 
heads is reasonably good, although it appears from 
Fig. 9 that a larger value of pi would give a better 

2.0 1 

fit. A larger value of ri might be attributabIe to ad- 
ditional overhead in the outer loop that is present in 
the concurrent algorithm but not in the sequential 

algorithm. 

Window 

Sine, rn 

11 
13 
16 
18 
21 
23 
26 
28 
31 

Bandwidth 

w=2m- 1 

21 
25 
31 
35 
41 
45 
51 
55 
61 

TfR(nb! m> 

(seconds) 

0.62 
0.75 
0.91 
1.04 
1.22 
1.33 
1.51 
1.65 
1.80 

Table 8 Timings for the sequential forward reduction and 
back substitution algorithms running on a single node of the 
128-node Cdtcch/JPL hypcrcubt. The order of the matrix 
was 150 and the number of right-hand sides, nb, was 4. No 
pivoting was performed, and matrix elements wore accessed by 
explicit indexing. 

8.3 Back Substitution Results 

Equation (16) predicts that the time for the se- 

quential back substitution algorithm in the no pivot- 
ing case depends linearly upon (m - 1). We there- 
fore plot in Fig. 10 the sequential back substitution 
times on one node of the hypercube given in Table 8 
against (m- 1). The resulting plot can be fitted with 

1.8 - 
ForlNard reduction on the Mark II hypercube 
Sequential code on 1 node .* 
n,=4,M= 150 1.6 4’.=- - 

.-* 
ix” 

.’ 

1.4 - .’ 
‘fs.” 

1.2 - fi.0 
.- 

Tl(n,m> .- .- 
1.0 

A- 
- .- 

‘.A= 

0.8 - //.’ 

0.6 - // 

.’ 

.- 

.- 
0.4 .- - .* .- .- 

0.2 - 

0.0 *=** 

/--=* 

I I I I I I 
0 5 10 20 25 30 

Figure 8.. 

(l5) 

Timings for the sequential forward reduction algorithm on l-node of the hypcr- 
cube as a function of (m - 1). In all cases the matrix order was M = 150, and the number 
of right-hand sides was tab = 4. 
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Forward reduction on the Caltcch/JPL Mark II Hypcrcube 

-------a 4 processors 
- -------- 16 processors 

- - - - - 64 processors 

0 4 processors 
+ 16 processors 
x 64 processors 

Figure 0. Concurrent overhead as a function of 1 f h, f or the forward reduction algorithm. 

In all cases the vslue of tir equals 20. The dashed curves show the results predicted by Eq. 
(23), 8s discussed in the text. 

a straight line as follows: 

TBS 1 -= 
n&f 

49.0 x [2(m - 1) + 2.731 psec (35) 

The value of 49 psec for each pass through the in- 
ner loop is in good agreement with that found in the 
forward reduction (49.5 psec) and LU decomposition 
algorithms (48.8 psec). 

In Tables 10(a), (b), and (c) we present timings, 
efficiencies and overheads for the back substitution 
algorithm on the Mark II hypercube for dimensions 

2, 4, and 6. As in the forward reduction case, the 
value of 7iz is held fixed at 20, and fZb is varied. The 

overheads are plotted in Fig. 11 as a function of l/&b. 

The dashed lines in Fig. 11 are the model predictions 
of Eq. (25). The value of r4 was taken from the l- 

node results to be 2.73. The other model parameters 
were the same as in Fig. 9 for the forward reduction 
algorithm, i.e., T: = 0.3, and 7’ = 1.2 for N = 4, 

and r’ = 1.8 for N > 4. The agreement between the 
measured and predicted overheads is excellent. 

9. Conclusions 

In general the overheads measured on the Mark 

II hypercube are in very good agreement with the 
performance models developed in Sec. 7, and we can 
therefore be confident that these models can be used 
to predict the performance for larger grain sizes, and 
for higher dimensional hypercubes. 

This work has identified the following key issues 
in the implementation of LU decomposition, forward 

reduction, and back substitution algorithms on hy- 

percubes such as the Mark II. 

(1) 

(2) 

(3) 

(4) 

(5) 

The scattered square subblock decomposition is 
important in reducing load imbalance. 

For sufficiently large grain sizes, n, the commu- 
nication overhead is proportional to l/fi, as in 
the matrix multiplication algorithm. 
Indexing overhead makes an important contri- 
bution to the concurrent overhead. 

Although many nodes are idle during certain 
stages of the algorithms, the overhead is still 

small for sufficiently large grain size problems. 
The algorithms scale well at fixed grain size to 
higher dimensional hypercubes. 

In the case of a balanced decomposition the ef- 

ficiency of the LU decomposition with no piv- 

oting exceeds 80% for hypercubes of dimen- 
sion less than or equal to 6, for grain sizes, 

n = h2 > 400. In the case of partial pivot- 

ing the corresponding grain size is about 1000. 
For forward reduction and back substitution, if 
riz = 20 for number of righthand sides, fib, must 
exceed about 10 for the efficiency to exceed 80% 
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Figure 10. Timings for the sequential back substitution algorithm on l-node of the hypcr- 

cube as a function of (m - 1). In all cases the matrix order was M = 150, and the number 
of right-hand sides was n) = 4. 
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-------- 16 processors 
----- 64 processors 

0 4 processors 
+ 16 processors 
x 64 processors 

Figure 11. Concurrent overhead as a function of l/Gib for the back substitution algorithm. 
In all cr~scs the value of fi equals 20. The dashed curves show the results expected from the 
performance model (Eq. (25)), as discussed in the text. 
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