
separation and hand-off rules. Addition of further rules,
case-by-case, without a more rigorous formalized
approach could lead to the creation of the expert system
which is not fully competent and effective in executing
complex ATC actions. Thus, based on ATC literature
studies and exhaustive discussions with experts, a more
rigorous approach has been proposed.

Most of the controller's actions result in verbal
communication to a pilot, another controller, or an
aviation authority. Each of these actions has unique
phraseology. Some of them will require parameters given
either in symbolic or numeric form (e.g., airport, airway
name, aircraft identification, altitude, heading).
Interviewing t~he ATC experts we have found that each
action is originated by some primary situation fact (e.g.,
radar contact, pilot request, predicted separation violation,
need for hand--off). The goal of the controller's action is to
eliminate thh; primary fact. The controller's action
depends, however, on some other secondary situation facts
describing the situation at the moment of decision (e.g.
other traffic, type of aircraft, flight plan, weather, airport
situation, knowledge of area).

To present the system in a formal way separate
groups of controller actions need to be identified. There
are groups of actions related to: initial clearance,
departures, pilot requests and emergencies, separation,
hand-offs, arrivals, weather, etc. For all these groups a
specific actions with their respective phraseology have
been identified. These actions need to be represented as
facts identified by the name, appended with possible
parameters (symbolic or numeric) including time of issue,
time of validity, etc. Both primary situation facts
(originating a ~,;pecific group of actions), and the secondary
situation facts (defining conditions to launch a specific
action) have been identified.

As the ATC actions conform the cause-effect
paradigm, we represent the controller's knowledge in a
rule-based form. To simplify the explanation, the situation
facts constitute premises (IF clause), and the action facts
constitute the conclusion (THEN clause). An inference
engine is resl~onsible for searching the knowledge base
and firing the rules. Asserting facts to and/or retracting
facts from the knowledge base constitutes a principal
knowledge control handling mechanism. The knowledge
control issues are crucial for the efficiency and correct
performance of any expert system. An available expert
system shell - Inference ' s Automated Reasoning Tool -
has been used in the initial project phase to expedite the
ATEC development.

The presented considerations review the scope of the
ATEC project concentrating mainly on the operational
knowledge acquisition problem. Using formalized
approach for the specified acquisition problem. Using a
formalized approach for the specified domain knowledge
acquisition we have identified facts and rules as
components of the ATC Expert System. The approach is
general enough to be applied for building an expert
software for most of the controller-dispatcher type of
systems. Most of the situation facts represent knowledge
about the current system state and are acquired from the
simulation module. To create a fully intelligent system
capable of simulating the human expert is a visionary
goal. But the first steps to achieve this goal have been
accomplished. Subsequent modifications, modules
interfacing, verification, and validation of the system
represent the future tasks in the project realization.

A Knowledge Acquisition Model With
Applications For Requirements Specification

And Definition

Tetsuo Kinoshita
Systems Laboratories

OKI Electric Industry Co., Ltd.
11-22, Shibaura 4-Chome,

Minato-ku, Tokyo 108, JAPAN

Introduction

From a practical point of view, the knowledge
acquisition task for developing knowledge-based systems
may be viewed as a cooperative task between domain
experts, knowledge engineers, and support systems
(environments). Based on this perspective, a system called
the Multi-Layered Knowledge Acquisition Model
(MLKAM), has been proposed [1].

MLKAM consists of three kinds of knowledge
representation layers: Domain Concept Structure Layer
(DCSL), Knowledge Representation Structure Layer
(KRSL), and System Oriented Model Layer (SOML). Each
layer provides the descriptive primitives for representing
domain knowledge and transformation rules between the
primitives of each layer. Primitives and rules are stored in
the acquisition support knowledge base of each layer.

SIGART Newsh)tter, April 1989, Number 108, Knowledge Acquisition Special Issue Page 166

http://crossmark.crossref.org/dialog/?doi=10.1145%2F63266.63299&domain=pdf&date_stamp=1989-04-01

These layers are structured (connected) hierarchically, i.e.,
DCSL -> KRSL -> SOML, in order to acquire domain
knowledge based on the successive refinement strategies
encountered at each layer, and to create the knowledge
bases of the objective system.

The acquisition process of MLKAM consists of three
steps. First, domain knowledge is acquired in DCSL.
Second, the domain knowledge in DCSL is formalized by
the knowledge models in KRSL, and third, formalized
knowledge is translated into the descriptions of knowledge
representation languages of the objective knowledge-based
system in SOML.

In DCSL, without concern to what kind of knowledge
representation languages will be used to implement the
knowledge bases of the objective knowledge-based
systems, domain knowledge is described freely by domain
experts in the form of graph structured representations
through the interactive man-machine interface system and
interview facilities.

In KRSL, domain knowledge in DCSL is translated by
knowledge engineers (KEs) into the form of knowledge
representation models (e.g., Rule Model, Frame Model,
Network Model, Logic Model or any knowledge model
based on any framework). These knowledge models are
abstractions of existing knowledge representation
languages. According to structure and properties of (any
portion of) domain knowledge in DCSL, KEs select the
most suitable knowledge representation model and convert
(any portion of) the domain knowledge in DCSL into
descriptions of the selected knowledge representation
model. The control structures provided by the knowledge
representation model are then attached to the domain
knowledge.

In SOML, the formalized knowledge in KRSL is
translated into internal descriptions of existing knowledge
representation languages of the objective knowledge-based
systems. Actual descriptions which are stored in the
knowledge base of the objective systems can be generated
from those descriptions in SOML.

Separating the process of the acquisition of domain
knowledge from the process of the
transformation/generation of formalized knowledge
(represented by knowledge representation
models/languages), can avoid excessive confusion of
domain knowledge and mixed control knowledge provided
by knowledge representation languages. Further using the
transformation rules of each layer, the semi-automatic
conversions between knowledge layers can be realized.
Using the graph structured knowledge representation as

the surface representation in DCSL and KRSL, it is easy
for domain experts and KEs to understand, manipulate,
and modify the represented knowledge. While the
frame-based knowledge base system [3] is adopted as the
internal representation scheme which supports the whole
implementation of MLKA_M.

On the other hand, in knowledge-based systems for
design tasks, it is important not only to acquire design
knowledge (heuristics) from domain experts, but also to
acquire design specifications from requirements definers
(in many cases, end users). The former is the problem of
current knowledge acquisition, and the latter is the
problem of requirements/specification definition. There
have been several studies concerned with requirements
specification definitions [4][5], but complete solutions
have not been given. From the knowledge engineering
point of view, the process of extracting
requirements/specifications from requirements definers
(end users) can be formalized as the process of knowledge
acquisition. In order to get a more useful methodology of
the requirments specification definition, one promising
approach may be to apply the techniques of the knowledge
acquisition.

In this sense, the framework of MLKAM is applied to
formalize the process of the requirements/specification
definition of the design task. In order to build a supportive
environment for defining requirement/specifications,
representation primitives of the knowledge layers of
MLKAM had to be customized in accordance with the
specific design task. The design problems associated with
computer communication systems was selected where the
representational primitives of DCSL and KRSL were
customized according to the knowledge-based design
methodology for computer communication systems
(KDM-CS) [2]. In this case, SOML was omitted because it
was enough to represent the formal
requirements/specifications in the form of the internal
representations of MLKAM and send them on to the next
design phase of KDM-CS.

In KDM-CS, the requirements/specification definition
is the first phase in the design process, and three kinds of
knowledge models (virtual machine models) of computer
communication systems were defined to formalize end
user requirements. According to these knowledge models,
end user requirements (initial requirements) are collected
by the first model, analyzed by the second model, and
formalized into the requirements/specifications by the
third model. Final requirements/specifications are
represented by the sets of virtual commands which realize
end user requirements.

SIGART Newsletter, April 1989, Number 108, Knowledge Acquisition Special Issue Page 16"7

According to the knowledge models of KDM-CS,
representational primitives and transformation rules of
MLKAM are defined and stored in the acquisition support
knowledge base of each layer of MI_KAM. DCSL
primitives are defined based on the first knowledge model
of KDM-CS. and KRSL primitives are also defined based
on the secord and third knowledge models of KDM-CS.

In DCSL, end users (requirements definers) describe
their requirements by using graph structured
representational primitives (templates) with interview
facilities. Missing or inconsistent information is detected
and correcte:l through the interviews of DCSL. Basically,
those interviews are extracted from representational
templates. In KRSL, initial requirements collected in
DCSL are analyzed and transformed into the formal
representations of requirements/specifications by designers
of requirements specifications. Control structure of
requirements/specifications, such as a sequence of virtual
commands, ~re also mixed with initial requirements in this
layer. Final descriptions of requirements/specifications are
stored in the frame-based knowledge base of MLKAM.

References

1. Kinoshita, T., et al., "Multi-Layered knowledge
Acquisition Model" (in Japanese), Proc. Syrup.
Frameworl~ of Artificial Intelligence System, IPSJ, pp.
141-150, :L987.

2. Kinoshita, T., et al., "Knowledge-based Design Support
System for Computer Communication System," Journal
SAC, Vol. 6, No. 5, IEEE, pp. 850--861, 1988.

3. Kinoshita, T., et al., "Experimental Knowledge Base
System based on the Frame Model," OKI Tech. Rev.,
Vol. 52, OKI Electric Industry, pp. 1-8, 1985.

4. Rzepka, W., et al, (Eds), "Speical Issue: Requirements
Engineering Environment: Software Tools for Modeling
User Needs," IEEE Computer, Vol. 18, No. 4, 1985.

5. Balzer, R., et al., "Software Technology in the 1990's:
Using a New paradigm," Computer, Vol. 16, No. 11,
IEEE, pp. 39-45, 1983.

A G r i d - B a s e d Tool For K n o w l e d g e
Acquis i t ion: V a l i d a t i o n With M u l t i p l e Experts

Mildred L. G. Shaw
Knowledge Science Institute

Department of Computer Science
University of Calgary

Calgary, Alberta CANADA

Introduction

Knowledge Support System Zero (KSS0) is a system
providing an integrated set of tools for knowledge
acquisition for knowledge based-systems. Elicit provides
facilities for eliciting the important dimensions of an
expert's thinking on a topic; Exchange extends this to share
entities and attributes between experts and elicits
differences in perspective and terminology as well as
disagreements on the topic. SOCIO processes results from
several experts to reveal the similarities and differences in
the concept systems of different experts, or the same
experts at different times, construing a domain defined
through common entities or attributes. It can be used to
focus discussion between experts on those differences
between them which require resolution, enabling them to
be classified in terms of differing terminologies, levels of
abstraction, disagreements, and so on. It provides a
framework for identifying consensus, correspondence,
conflict, and contrast in a knowledge acquisition system
with multiple experts.

KSS0 has been evaluated against a model for a
knowledge support system and experiments are reported in
knowledge acquisition of spatial interpolation techniques
for contour maps. Results are described on validation
experiments to show the extent to which this system can
replace standard interviewing techniques: 1) Does an
expert always use the same terminology? 2) Do experts
agree on their terminology in talking about a topic? 3) To
what extent to experts agree among themselves about the
topic? 4) To what extent does each expert agree with the
knowledge at a different time? 5) To what extent does an
expert find the generated rules meaningful?

KSS0 provides facilities to combine information from
a number of different sources, including text, expert
interviews, expert decision-making using a variety of
different techniques including text analysis, entity and

SIGART Newl;letter, April 1989, Number 108, Knowledge Acquisition Special Issue Page 168

