
separation and hand-off rules. Addition of further rules, 
case-by-case, without a more rigorous formalized 
approach could lead to the creation of the expert system 
which is not fully competent and effective in executing 
complex ATC actions. Thus, based on ATC literature 
studies and exhaustive discussions with experts, a more 
rigorous approach has been proposed. 

Most of the controller's actions result in verbal 
communication to a pilot, another controller, or an 
aviation authority. Each of these actions has unique 
phraseology. Some of them will require parameters given 
either in symbolic or numeric form (e.g., airport, airway 
name, aircraft identification, altitude, heading). 
Interviewing t~he ATC experts we have found that each 
action is originated by some primary situation fact (e.g., 
radar contact, pilot request, predicted separation violation, 
need for hand--off). The goal of the controller's action is to 
eliminate thh; primary fact. The controller's action 
depends, however, on some other secondary situation facts 
describing the situation at the moment of decision (e.g. 
other traffic, type of aircraft, flight plan, weather, airport 
situation, knowledge of area). 

To present the system in a formal way separate 
groups of controller actions need to be identified. There 
are groups of actions related to: initial clearance, 
departures, pilot requests and emergencies, separation, 
hand-offs, arrivals, weather, etc. For all these groups a 
specific actions with their respective phraseology have 
been identified. These actions need to be represented as 
facts identified by the name, appended with possible 
parameters (symbolic or numeric) including time of issue, 
time of validity, etc. Both primary situation facts 
(originating a ~,;pecific group of actions), and the secondary 
situation facts (defining conditions to launch a specific 
action) have been identified. 

As the ATC actions conform the cause-effect 
paradigm, we represent the controller's knowledge in a 
rule-based form. To simplify the explanation, the situation 
facts constitute premises (IF clause), and the action facts 
constitute the conclusion (THEN clause). An inference 
engine is resl~onsible for searching the knowledge base 
and firing the rules. Asserting facts to and/or retracting 
facts from the knowledge base constitutes a principal 
knowledge control handling mechanism. The knowledge 
control issues are crucial for the efficiency and correct 
performance of any expert system. An available expert 
system shell - Inference ' s  Automated Reasoning Tool - 
has been used in the initial project phase to expedite the 
ATEC development. 

The presented considerations review the scope of the 
ATEC project concentrating mainly on the operational 
knowledge acquisition problem. Using formalized 
approach for the specified acquisition problem. Using a 
formalized approach for the specified domain knowledge 
acquisition we have identified facts and rules as 
components of the ATC Expert System. The approach is 
general enough to be applied for building an expert 
software for most of the controller-dispatcher type of 
systems. Most of the situation facts represent knowledge 
about the current system state and are acquired from the 
simulation module. To create a fully intelligent system 
capable of simulating the human expert is a visionary 
goal. But the first steps to achieve this goal have been 
accomplished. Subsequent modifications, modules 
interfacing, verification, and validation of the system 
represent the future tasks in the project realization. 
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Introduction 

From a practical point of view, the knowledge 
acquisition task for developing knowledge-based systems 
may be viewed as a cooperative task between domain 
experts, knowledge engineers, and support systems 
(environments). Based on this perspective, a system called 
the Multi-Layered Knowledge Acquisition Model 
(MLKAM), has been proposed [1]. 

MLKAM consists of three kinds of knowledge 
representation layers: Domain Concept Structure Layer 
(DCSL), Knowledge Representation Structure Layer 
(KRSL), and System Oriented Model Layer (SOML). Each 
layer provides the descriptive primitives for representing 
domain knowledge and transformation rules between the 
primitives of each layer. Primitives and rules are stored in 
the acquisition support knowledge base of each layer. 
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These layers are structured (connected) hierarchically, i.e., 
DCSL -> KRSL -> SOML, in order to acquire domain 
knowledge based on the successive refinement strategies 
encountered at each layer, and to create the knowledge 
bases of the objective system. 

The acquisition process of MLKAM consists of three 
steps. First, domain knowledge is acquired in DCSL. 
Second, the domain knowledge in DCSL is formalized by 
the knowledge models in KRSL, and third, formalized 
knowledge is translated into the descriptions of knowledge 
representation languages of the objective knowledge-based 
system in SOML. 

In DCSL, without concern to what kind of knowledge 
representation languages will be used to implement the 
knowledge bases of the objective knowledge-based 
systems, domain knowledge is described freely by domain 
experts in the form of graph structured representations 
through the interactive man-machine interface system and 
interview facilities. 

In KRSL, domain knowledge in DCSL is translated by 
knowledge engineers (KEs) into the form of knowledge 
representation models (e.g., Rule Model, Frame Model, 
Network Model, Logic Model or any knowledge model 
based on any framework). These knowledge models are 
abstractions of existing knowledge representation 
languages. According to structure and properties of (any 
portion of) domain knowledge in DCSL, KEs select the 
most suitable knowledge representation model and convert 
(any portion of) the domain knowledge in DCSL into 
descriptions of the selected knowledge representation 
model. The control structures provided by the knowledge 
representation model are then attached to the domain 
knowledge. 

In SOML, the formalized knowledge in KRSL is 
translated into internal descriptions of existing knowledge 
representation languages of the objective knowledge-based 
systems. Actual descriptions which are stored in the 
knowledge base of the objective systems can be generated 
from those descriptions in SOML. 

Separating the process of the acquisition of domain 
knowledge from the process of the 
transformation/generation of formalized knowledge 
(represented by knowledge representation 
models/languages), can avoid excessive confusion of 
domain knowledge and mixed control knowledge provided 
by knowledge representation languages. Further using the 
transformation rules of each layer, the semi-automatic 
conversions between knowledge layers can be realized. 
Using the graph structured knowledge representation as 

the surface representation in DCSL and KRSL, it is easy 
for domain experts and KEs to understand, manipulate, 
and modify the represented knowledge. While the 
frame-based knowledge base system [3] is adopted as the 
internal representation scheme which supports the whole 
implementation of MLKA_M. 

On the other hand, in knowledge-based systems for 
design tasks, it is important not only to acquire design 
knowledge (heuristics) from domain experts, but also to 
acquire design specifications from requirements definers 
(in many cases, end users). The former is the problem of 
current knowledge acquisition, and the latter is the 
problem of requirements/specification definition. There 
have been several studies concerned with requirements 
specification definitions [4][5], but complete solutions 
have not been given. From the knowledge engineering 
point of view, the process of extracting 
requirements/specifications from requirements definers 
(end users) can be formalized as the process of knowledge 
acquisition. In order to get a more useful methodology of 
the requirments specification definition, one promising 
approach may be to apply the techniques of the knowledge 
acquisition. 

In this sense, the framework of MLKAM is applied to 
formalize the process of the requirements/specification 
definition of the design task. In order to build a supportive 
environment for defining requirement/specifications, 
representation primitives of the knowledge layers of 
MLKAM had to be customized in accordance with the 
specific design task. The design problems associated with 
computer communication systems was selected where the 
representational primitives of DCSL and KRSL were 
customized according to the knowledge-based design 
methodology for computer communication systems 
(KDM-CS) [2]. In this case, SOML was omitted because it 
was enough to represent the formal 
requirements/specifications in the form of the internal 
representations of MLKAM and send them on to the next 
design phase of KDM-CS. 

In KDM-CS, the requirements/specification definition 
is the first phase in the design process, and three kinds of 
knowledge models (virtual machine models) of computer 
communication systems were defined to formalize end 
user requirements. According to these knowledge models, 
end user requirements (initial requirements) are collected 
by the first model, analyzed by the second model, and 
formalized into the requirements/specifications by the 
third model. Final requirements/specifications are 
represented by the sets of virtual commands which realize 
end user requirements. 
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According to the knowledge models of KDM-CS, 
representational primitives and transformation rules of 
MLKAM are defined and stored in the acquisition support 
knowledge base of each layer of MI_KAM. DCSL 
primitives are defined based on the first knowledge model 
of KDM-CS. and KRSL primitives are also defined based 
on the secord and third knowledge models of KDM-CS. 

In DCSL, end users (requirements definers) describe 
their requirements by using graph structured 
representational primitives (templates) with interview 
facilities. Missing or inconsistent information is detected 
and correcte:l through the interviews of DCSL. Basically, 
those interviews are extracted from representational 
templates. In KRSL, initial requirements collected in 
DCSL are analyzed and transformed into the formal 
representations of requirements/specifications by designers 
of requirements specifications. Control structure of 
requirements/specifications, such as a sequence of virtual 
commands, ~re also mixed with initial requirements in this 
layer. Final descriptions of requirements/specifications are 
stored in the frame-based knowledge base of MLKAM. 
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Introduction 

Knowledge Support System Zero (KSS0) is a system 
providing an integrated set of tools for knowledge 
acquisition for knowledge based-systems. Elicit provides 
facilities for eliciting the important dimensions of an 
expert's thinking on a topic; Exchange extends this to share 
entities and attributes between experts and elicits 
differences in perspective and terminology as well as 
disagreements on the topic. SOCIO processes results from 
several experts to reveal the similarities and differences in 
the concept systems of different experts, or the same 
experts at different times, construing a domain defined 
through common entities or attributes. It can be used to 
focus discussion between experts on those differences 
between them which require resolution, enabling them to 
be classified in terms of differing terminologies, levels of 
abstraction, disagreements, and so on. It provides a 
framework for identifying consensus, correspondence, 
conflict, and contrast in a knowledge acquisition system 
with multiple experts. 

KSS0 has been evaluated against a model for a 
knowledge support system and experiments are reported in 
knowledge acquisition of spatial interpolation techniques 
for contour maps. Results are described on validation 
experiments to show the extent to which this system can 
replace standard interviewing techniques: 1) Does an 
expert always use the same terminology? 2) Do experts 
agree on their terminology in talking about a topic? 3) To 
what extent to experts agree among themselves about the 
topic? 4) To what extent does each expert agree with the 
knowledge at a different time? 5) To what extent does an 
expert find the generated rules meaningful? 

KSS0 provides facilities to combine information from 
a number of different sources, including text, expert 
interviews, expert decision-making using a variety of 
different techniques including text analysis, entity and 
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