
Late -Break ing Results ACM ISBN: 1-58113-158-5 CHI 99 1 5 - 2 0 MAY 1999

Redirecting Direct Manipulation or What Happens When
the Goal is in Front of You but the Interface Says t,o Turn

Left?

Wai-Tat Fu & Wayne D. Gray
H u m a n Factors & Applied Cogni t ion

George M a s o n Univers i ty

Fairfax, VA 22030 U S A

+1 703 993 1357

[wf iggray]@gmu.edu

ABSTRACT
The feeling of directness arises when the interface permits
the user to manipulate an interface object in a way
analogous to manipulating the real object. However, we
argue here that the essence of direct manipulation is not
directness per se, but manipulation of task relevant objects
in a task relevant manner. The research reported studies
users of HyperCard after 20 hours of practice. We found that
when users deviated flom taught strategies that 25% of the
time they invented new strategies that attempted a more
direct manipulation of the task object than that permitted
by the design of the interface.

Keywords
direct manipulation, difference-reduction, hill-climbing,
means-ends analysis

INTRODUCTION
Two decades after they were introduced, most users would
agree that direct manipulation interfaces are easy to learn
and to use, and few developers would consider designing
anything else. As the name claims, direct manipulation
allows the user to directly manipulate objects rather than
issuing commands to tell the computer to manipulate
objects. In the first decade, essays on "directness"
abounded (e.g., see Hutchius, Hollan & Norman 1985,
Shneiderman 1982). However, none of these essays resulted
in a recipe for making new direct manipulation interfaces.
Indeed, after two decades of use, it is clear that some direct
manipulation interfaces work better than others, but we
have few, if any, engineering principles to guide our
designs.

In a direct manipulation interface, users act as if the
representations of objects are the objects themselves. The
feeling of directness arises when the interface permits the
user to directly manipulate an interface object in a way
analogous to manipulating the real object. However, we
argue here that the essence of direct manipulation is not

directness per se, but manipulation of task :relevant objects
in a task relevant manner. This distinction becomes
important when the interface imposes a structure on the task
that is not inherent in the task itself. In these cases, rather
than directly manipulating interface objects, users may
attempt to directly manipulate task objects.

In this brief report, we present two situations in which
taking the interface object as analogous to the real object
suggested a simple, difference-reduction (i.e., hill-climbing)
strategy for accomplishing the task. Unfortunately, in both
of these situations, the optimal solution - that which was
engineered by the designer - required speciahzed interface
objects that were not an inherent part of the task. Both
solutions required direct manipulation; however, the former
suggested direct manipulation of a task object, whereas the
later required direct manipulation of an interlace object.

This paper is an advanced report on methods our users
discovered that enabled them to successfiflly accomplish
their assigned task. From the perspective of the task, the
methods invented were more direct than the simpler
methods favored by the designer. When the designer's
more elegant solution required them to turn left, users
discovered the less elegant, straight-ahead strategy.

METHOD
Participants and Training
Students were recorded as they completed their third, three
card HyperCard stack. The first stack had been created by
following step-by-step procedures in their textbook
(Beekman, 1991). Hence, all students had been exposed to
the designer's methods for building a three card stack. At
the time of the study, diaries kept by the students indicated
that they had worked on HyperCard for an average of 20 hr
each (in class, homework, reading, doing). At this time, we
have analyzed protocols from four students who successfully
completed the stack.

The Task and Procedures

Complete specifications, including sample screen prints of
the completed cards, were provided for creating a
HyperCard stack. Variations of the positions of the buttons,
text style and font, and the user-created graphics were
acceptable. Students worked at their own pace.

226

http://crossmark.crossref.org/dialog/?doi=10.1145%2F632716.632857&domain=pdf&date_stamp=1999-05-15

CHI 99 1 5 - 2 0 M A Y 1999 ACM ISBN: 1-58113,.158-5 Late -Break ing Results

RESULTS
Action protocols were transcribed. Whereas 98 designer
methods were required to build the stack, the users
averaged 145 methods (ranging from 106 to 210). The user
methods included an average of 91 of the designer methods
(from 80 to 97) with an average of 54 methods that deviated
from the designers methods (ranging from 13 to 116).

Across users, we identified 69 unique methods that
deviated from the 98 designers methods. These methods
were classified into one of four categories. Three of these
categories represented various mistakes or inefficiencies that
concluded with the successful completion of the designers'
method. The fourth category, difJbrence-reduction (also
known as hill-climbing), resulted in a more direct, but
more inefficient, method of accomplishing the task.
Difference-reduction represented 25% (17/69) of the deviate
methods.

For example, a major subtask entailed typing and centering
the title on each of the three cards. The designers' method
included opening the font palette, selecting sty&, selecting
center, closing the palette. Clicking on the middle of the
card, typing. In contrast, two of the four students opened
the font palette, selected style, and closed the palette
(without selecting center). They then clicked on the card,
typed the title, clicked on the lasso tool, circled the words
of the rifle, and dragged the words, centering them by eye.
The students' method enabled them to work directly on the
task, first reducing one difference (no text - type it), then
reducing a second difference (text not centered - center it).
In contrast, the designers' method, although more efficient,
was less direct as the object manipulated was not a task
object, but an interface object.

Of the four users, only s01 flawlessly executed the
designers' methods for centering text. Compared to sO 1,
the two users - s02 and s03 - who used the difference-
reduction strategy required 176% and 268% more rime to
type the rifles on the three cards. The difference-reduction
strategy required more error-prone actions. Both s02 and
s03 spent 13.4% and 29.7%, respectively, of their rime in
error recovery. Although the strategy was time-consuming
and error-prone, both s02 and s03 consistently used this
method throughout the three cards.

A second example deserves a brief mention. Two of the
cards required labeled buttons. The designer method for
labeling a button entails opening the button palette, typing
a button name in the field provided, and clicking on a
checkbox labeled "show button name." An alternative
difference-reduction method attempted by two of the users,
entailed attempting to type directly on the button object -
not in the button palette. Making this approach work
requires typing the label on the card (not on the button -
that is impossible in HyperCard), making the button
transparent, and moving the button so that it is on top of
the label. This method requires many more steps than the
designer's method. However, it allows the user to directly

manipulate task objects - text and buttons - rather than an
interface object - the palette.

DISCUSSION
HyperCard is a flexible tool that allows for many ways of
accomplishing the same task. The difference-reduction
methods, invented by the users, were much more efforlful
than the designer's methods. Their apparent advantage is
that they permit the user to directly manipulate a task
object (e.g., the text being centered or the button being
labeled) rather than a purely interface object (the font palette
or the button palette). When the task object was in front of
them, these users preferred to go straight rather than turning
left as per the designer method. Unfortunately for our users,
they could not beat the designer. In the cases we have
studied, the shortest distance between two points was not a
straight line, but a zig. The hill-climbing strategy brought
the users to a local minimum and they ended up spending
more effort than necessary to finish their tasks. Although
the designers' methods were direct manipulation methods,
they directly manipulated the interface but only indirectly
manipulated the task.

These results yield a suggestion for redirecting direct
manipulation. To the extent that the tool follows the
structure of the task, then direct manipulation is fine.
However, to the extent that the tool imposes a structu~
that the task must follow, then direct manipulation may
misdirect users (Gray, 1998). Our proposed redirection
emphasizes the distinction between the device space and the
task space that has been noted by other (e.g., Payne,
Squibb, & Howes, 1990). Direct manipulation works by
providing an interface that is transparent to the user. A
transparent interface should provide an environment in
which the users do not feel that they are using the device,
but are directly accomplishing their tasks.

ACKNOWLEDGMENTS
The work on this paper was supported by a grant from the
National Science Foundation (IRI-9618833) to Wayne D.
Gray.

REFERENCES
1. Beckman, G. (1991). HyperCard 2 in a hurty,.

Belmont, CA: Wadsworth Publishing Company.

2. Gray, W. D. (1998). Cognitive reverse-engineering of a
simple, rule-based task: PerJbrmance, errors, error
detection and correction (ARCH Lab Report 98.-08/06).

3. Hutchins, E. L., Hollan, J. D. & Norman, D. A.
(1985). Direct Manipulation Interfaces. Human
Computer Interaction 1, 311 - 338.

4. Payne, S. J., Squibb, H. R., & Howes, A. (1990). The
Nature of Device Models: The Yoked State Space
Hypothesis and Some Experiments with Text Editors.
Human-Computer Interaction, 5(4), 415-444.

5. Shneidermam B. (1982). The future of interactive
systems and the emergence of direct manipulation.
Behavior and Information Technology, 1,237 - 256.

227

