
Efficient Optimization of Simple Chase Join
Expressions

PAOLO ATZENI
IASI-CNR
and
EDWARD P. F. CHAN
University of Toronto

Simple chase join expressions are relational algebra expressions, involving only projection and join
operators, defined on the basis of the functional dependencies associated with the database scheme.
They are meaningful in the weak instance model, because for certain classes of schemes, including
independent schemes, the total projections of the repesentative instance can be computed by means
of unions of simple chase join expressions. We show how unions of simple chase join expressions can
be optimized efficiently, without constructing and chasing the corresponding tableaux. We also
present efficient algorithms for testing containment and equivalence, and for optimizing individual
simple chase join expressions.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages-relational algebra;
H.2.4 [Database Management]: Systems--query processing

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Chase, functional dependency, query equivalence, query opti-

mization, relational database, tableau

1. INTRODUCTION

The weak instance model is an approach to relational databases that allows us to
consider in a single framework databases composed of more than one relation.
The motivation for its study lies in the importance of the notion of decomposition;
that is, the replacement of a relation with two or more new relations, during the
design or restructuring of a database.

The weak instance model was originally introduced in order to define the
notion of global satisfaction of a set of dependencies [14], then used as a basis

The work by P. Atzeni was supported by Consiglio Nazionale delle Richerche, Italy while visiting the
Department of Computer Science at the University of Toronto. The work of E. P. F. Chan was
supported by the National Sciences and Engineering Research Council of Canada.
Authors’ current addresses: P. Atzeni, IASI-CNR, Viale Manzoni 30, 00185 Rome, Italy; E. P. F.
Chan, Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada,
N2L 3Gl.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1989 ACM 0362.59X/89/0600-0212 $01.50

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989, Pages 212-230.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F63500.63520&domain=pdf&date_stamp=1989-06-01

Efficient Optimization of Simple Chase Join Expressions - 213

for query answering [22, 23, 29, 301, and to study equivalence [21] and desirable
properties of database schemes [7, 8, 91.

With respect to query answering, it allows the formulation of queries on the
original relation, providing the possibility of producing answers from data in the
decomposed database. This idea has been carried further by some authors, who
conceived a user interface, called universal relation interface, which presents the
database as if it were composed of a single relation, thus relieving the user from
specifying access paths and connections among the actual relations (see, for
example, [19, 281 for surveys, and [4, 16, 271 for discussions).

Queries are posed on a relation defined on all the attributes in the various
relations, but not actually stored in the database. The connection between
the original (or universal) relation and the actual relations is provided by the
representative instance, a relation over the universe U of the attributes, defined,
for each database state r, as follows. First, a relation over U (called the state
tableau for r, denoted by Tr) is formed by taking the union of all the relations in
r extended to U by means of distinct variables (or nulls). Then, the chase
procedure [lS] is applied to T, to equate variables and generate new tuples. The
chase process essentially performs inferences on data using the given constraints.
If a contradiction is found during the chase process, then the representative
instance is assumed to be empty. Any given query Q involves a set of attributes
X that is a subset of the universe U; at the same time, each tuple in the
representative instance contains constants only on a given subset of the universe
U. Therefore, it is meaningful to consider, as the answer to such a query Q, the
set of tuples in the representative instance that have only constants as values for
the attributes in X. This set of tuples is called the X-total projection of the
representative instance. It was shown that the X-total projection corresponds to
the set of sentences that is logically implied by the database state and the
constraints [20]. In this sense, the answer generated by this method is correct.

Example 1. Consider the database scheme

R = (R, (Course, Tutor, Instructor, Department),
R,(Course, Tutor, Room))

F = {Course + Instructor, Course + Department)

and the database state r:

,., Course Tutor Instructor Department

CSClOl White Smith
ELE301 Red Jones

The state tableau T, for state r is the following:

Course Tutor Instructor Department Room

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

214 - P. Atzeni and E. P. F. Chan

The representative instance for r is obtained by chasing Tr: since the first and
third rows in T, agree on the Course-component, and the functional dependency
Course + Instructor is defined, the Instructor-component of the third row is set
to “Smith”; similarly, its Department-component is set to “CS”, because of the
dependency Course + Department. Since no contradiction is found and no other
inferences can be made from the state and the constraints, the corresponding
representative instance is as follows:

Course Tutor Instructor Department Room 1

CSClOl White Smith cs VI
ELE301 Red Jones EE
CSClOl Green Smith cs A&
CSC201 Black VS V6 A325

Suppose we want to know who are the instructor and the tutors of a course:
the total projection on Course Instructor Tutor is required. It is obtained by
projecting the representative instance on the attributes Course Instructor Tutor,
and then removing the rows that contain variables:

The most straightforward way of finding an X-total projection is to follow the
definitions, as we have just done in the example: first build the state tableau,
then chase it to obtain the representative instance, and finally perform the total
projection on the representative instance. Unfortunately, in this way, the whole
database is involved in the answer to any query; in the easy cases (functional
dependencies together with a full acyclic join dependency), time and space
proportional to the size of the database are needed; in general, the upper bounds
are exponential. Therefore more efficient strategies have been looked for.

Sagiv [22, 231 showed that, for a restricted class of database schemes, for any
set of attributes X C U, there is a relational algebra expression E that can be
used to compute the X-total projection; E is independent of the database state,
and can be generated in time polynomial in the size of the database scheme.
Clearly this strategy guarantees an enormous improvement over the previous
one, since the size of the database scheme is much smaller than the size of the
database state.

More recently, various authors [3, 15, 241 have extended this result to a larger
class: the schemes that are independent with respect to functional dependencies
[la]. Moreover, it was shown [6, 191 that, for this class, the expression E is
always the union of simple chase join expressions (scje’s),’ which are relational
algebra expressions of a restricted form, involving only projections and joins, and
defined on the basis of the functional dependencies associated with the database
scheme. For instance, in Example 1, the total projection on Course Instructor

’ Maier et al. [191 use the term fd-join.

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

Efficient Optimization of Simple Chase Join Expressions - 215

Tutor can be computed by means of the following expression, which is a union
of simple chase join expressions:

rrCourse,,nslrurror,T~lor(R1) u TCourse,In,sfrucfor,Tutor (R, w rr~ourse,1nslructor(R1)).

The subject of this paper is the optimization of expressions of this class; we
say that a union of projection-join expressions E is optimal [26] if there is no
other union of projection-join expressions that is equivalent to E and involves a
smaller number of joins. It is known [26] that a union of projection-join expres-
sions is optimal if and only if (i) there is no redundant term in the union, and
(ii) each term is optimal. So, since scje’s are projection-join expressions, our
problem can be reduced to the problems of testing containment and opti-
mizing individual scje’s. Efficient solutions for these problems for more general
projection-join operations already exist in the literature [l, 2, 251; however, they
require the construction and chase of the tableaux corresponding to the expres-
sions, an operation that takes time O(S’log S), where S is the size of the input,
that is, the size of the tableau plus the space needed to represent the fd’s [lo].
We show that, for the restricted class of scje’s, it is not needed to consider the
tableaux explicitly, since their structure can be predicted on the basis of the
dependencies; more efficient algorithms are therefore devised.

The paper is organized as follows. Section 2 reviews the relevant definitions.
In Section 3, we study containment and equivalence of scje’s (which allow the
elimination of redundant terms in the unions). In Section 4, we study the
optimization of scje’s. In Section 5, we discuss the applications of our results.

2. DEFINITIONS AND NOTATION

2.1 Basics

The universe U = A,A, . . . A,,, is a finite set of attributes. A relation scheme R is
a subset of U.’ A database scheme R = [R,, . . . , R,) is a collection of relation
schemes, such that the union of the Ri’s is U.

Associated with each attribute A E U there is a set of constants, called the
domain of A and indicated with dom(A). A tuple on a set of attributes X is a
function t that maps each attribute A E X to a constant in dam(A); the notation
t [A] is used for the value of t on an attribute A E X. If t is a tuple on X, and Y
is a subset of X, then t [Y] denotes the restriction of the mapping t to Y, and
is therefore a tuple on Y. A relation on R is a set of tuples on R. A state
(or a database) of a database scheme R is a function r that maps each relation
scheme Ri E R to a relation on Ri; with a slight abuse of notation, given R =
I&, . . . , &,I, wewriter=(rl ,..., r,J.

We shall consider relational expressions in which the only operators are project
(r), (natural) join (w), and union (U). If only the operators project and join are
involved, the expressions are called PJ-expressions. In the subsequent discussion,
the operands of a relational expression are relation schemes in a database scheme.

2 In the weak instance model it is usually required that no pair of relations are defined on the same
set of attributes. As a consequence, it is possible to omit reMon names, and identify the various
relations by means of the involved sets of attributes.

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

216 * P. Atzeni and E. P. F. Chan

2.2 Tableaux

A tableau consists of a body and a possibly empty summary row. The body of a
tableau is composed of rows, which are defined as tuples on the universe
augmented with a special attribute TAG (called the tag of the row), but on
different domains. The definition of row requires a number of preliminary
concepts. We fix a finite set V, = (a,, a2, . . . , a,,) of distinguished variables
(dv’sj, in one-to-one correspondence with the universe, and a countable set
v, = (u,, u2, . . .] of nondistinguished variables (ndu’s). The two sets V, and
V, are disjoint from one another and disjoint from all the domains of the attri-
butes; for each 1 5 i I n, the dv oi, associated with A,, is called the distinguished
variable for Ai. Then, for each attribute Ai E U we define the tableau domain of
Ai (indicated with tdom(Ai)) as the disjoint union of three sets: (i) dom(Ai),
(ii) the singleton set (al 1, and (iii) V,. The domain of the additional attribute
TAG is the set of relation schemes. Finally, a row is a function that maps each
element A of U’ = U U (TAG/ to a value in tdom(A); the summary row of a
tableau is a function from a subset X of U, the target relation scheme, that
maps each Ai E X to the dv (a;); an attribute Ai belongs to the target relation
scheme if and only if the dv oi appears in at least one of the rows of the body.
When considering a given tableau, an ndv is called unique if it appears only once
in the tableau, repeated otherwise. A symbol is called significant if it is not a
unique ndv.

Tableaux are used in various ways in relational theory; we need two of them
in this paper:

(1) Given a database state r = (rl, . . . , rk), the state tableau for r is a tableau T,,
with an empty summary row, containing, for each relation r, E r, and for
each tuple t E ri, a row u with the same constants as t. Row u is defined as
follows:

-u[TAG] = R;,
-u[A] = t[A], if A E Ri,
-u[A] is a unique ndv, if A E U - Ri.

An example of state tableau was shown in the Introduction.
(2) Tableaux can be associated with expressions of a subset of relational algebra

[1, 21, and used to study their properties, such as containment, equivalence,
or optimization. The method for the construction of a tableau for a generic
expression of this class is out of the scope of this paper; we will show in
Section 2.5 the tableaux for the restricted class of expressions of interest in
this paper, the scje’s.

It is useful to define a partial order 5 on the elements of the tableau domains,
as follows:

-Tags are pairwise incomparable and incomparable with all other elements.
Constants are pairwise incomparable. Dv’s are pairwise incomparable.

-If c is a constant and v a variable (either dv or ndv), then c I v.
ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

Efficient Optimization of Simple Chase Join Expressions - 217

-If aj is a dv and v a ndv, then oj I V.

-The countable set V, is totally ordered according to s.~

Let T be a tableau and t a row of T and X a subset of U. We say t[X] is total
if t[A] is a constant, for all A E X. The total projection (indicated with 7rl) is an
operator on tableaux that produces relations: a’x(T) = (t[X]] t E T and r[X] is
total].

2.3 The Chase Procedure and the Representative Instance

The kinds of constraints considered in this paper are functional dependencies
(fd’s). Given a set of fd’s, there are additional dependencies implied by this set.
The set of dependencies that are logically implied by F is the closure of F, denoted
by F’. Given a set of attributes X, the closure of X with respect to F, denoted by
X+, is the set of attributes (A 1 X + A E F+). An fd X + Y is embedded in a
relation scheme R if XY C R.

The chase [181 is a procedure that, given a tableau T and a set of dependencies
(in our case fd’s), F, transforms, if possible, T into another tableau, denoted by
CHAS.Q(T), whose body satisfies F. It involves the exhaustive application of
transformations. A transformation can be applied to a tableau if there are an
fd X ---, Y in F and two rows, lS, 1,) in the body of the tableau, such that lSIX] =
lt[X] and l,[Y] # l,[Y]: for every attribute A E Y such that l,[A] # l,[A], if l,[A]
and l,[A] are comparable (with respect to the partial order I), then all the
occurrences of the higher entry are replaced with the other entry, otherwise the
tableau is replaced with the empty tableau, and it is said to contradict the set F
of dependencies.

Given a set of dependencies F, the representative instance for a database state
r is the tableau CHASE~(T,.) obtained by chasing, with respect to F, the state
tableau for T,. The representative instance is important in this framework for
two reasons:

-The notion of consistency of states is based on the representative instance: a
state r is said to be (globally) consistent [14] if its representative instance is
produced without encountering contradictions.

-The answer to a query involving a set of attributes X C U is defined as the
X-total projection of the representative instance [22, 231.

We have shown in the Introduction the representative instance for a simple
database state, produced by means of the chase procedure, and the answer to a
query, obtained by executing a total projection on it.

2.4 Containment Mappings and Containment and Optimality of Expressions

A valuation function is a function u from D’ = UaEuT tdom(A) to itself, with the
condition that U(C) 5 c, for each c E D ‘. (Therefore, u is the identity mapping on
constants and tags.) A valuation function v can be extended to rows and tableaux:
if t is a row in the body of a tableau, then u(t) is a row such that, for every A E

3 We will assume that the order coincides with the natural order of subscripts: ui 5 U, if and only if
i5j.

ACM Transactions on Database Systems, Vol. 14, NO. 2, June 1989.

218 l P. Atzeni and E. P. F. Chan

U ‘, v (t) [A] = v (t [A]); similarly, if s is a summary row with target relation scheme
X, then u(s) is defined on X, with u(s)[A] = u(s[A]), for every A E X; finally,
given a tableau T, with summary row s and body (tl , tz, . . . , tn), then U(T) is a
tableau with summary V(S), and body (u(h), u(tz), . . . , u(t,)).

A tableau T, is said to contain another tableau T2 (written TI > Tz) if there is
a valuation function u (called containment mapping from TI to T2) such that the
summaries of v (T,) and Tz are the same and the body of v(TI) is contained in
the body of Tz. T, is equivalent to Tz (T, = T2), if TI 1 T2 and T2 1 T,.

Let E be a relational expression with operands in R = (RI, . . . , Rk). Then E(r)
denotes the value returned by E if a database state r = {rl, . . . , rkj on R is
substituted into the corresponding relation variables in E and is evaluated
according to the usual definitions of the various operators. Let E, and E, be two
relational expressions with operands defined on R, with an associated set of
dependencies F. E, is said to contain EP, denoted by E, > Ez, if, for every state
r of R consistent with respect to F, it is the case that E,(r) > E2(r). E, is said
to be equivalent to E,, denoted by E, = E2, if E, > E, and E, > E, . A union of
PJ-expressions E is optimal (or minimal) if there does not exist a union of PJ-
expressions equivalent to E, with a fewer number of join operations.

2.5 Derivation Sequences and Simple Chase Join Expressions

Given a set of fd’s F, a derivation sequence (ds) of some relation scheme Ri, is a
finite sequence of fd’s 7 = (fi: Y, ---, 2,) . . . , fm: Y, + 2,) from F+ such that,
for all 1 5 j 5 m:

(1) f, is embedded in some relation scheme R,, , with ij # iO, and
(2) Y, C Ri,Zl * * * Zj-1 and 2, n R;,Z, . . . Zj-1 # 0.

We say that r covers a set of attributes X if Ri,Zl . . . Z, > X. Essentially,
a ds of Ri, is a sequence of embedded fd’s used in computing (part of) the closure
of Ri,.

Let RI and R, be a pair of relation schemes for which there exists Y c RS - R,
such that RI fl R, += Y E F’. The join of r1 and x(R!nR21UY(r2) is called an
extension join [13]. A variant of extension joins, called simple chase join expres-
sions (scje’s) can be defined on the basis of ds’s. Given the ds 7 above, assuming
it covers X, the scje for 7 with target X is the PJ-expression:

nx(Ri, w T~,,z,(R~,) w ... w ry,Z,(Ri,)).

Example 2. Consider the following database scheme:

R = (R, (AB), R, (ABCDEG))
F=(AB+D,BC-+E,B+C,D+G,E+G].

Then the following are ds’s.

(1) (B + C, BC + E, E + C) is a ds of R, covering ABCG.
(2) (AB + D, D + G, B + C) is a ds of R, covering ABCG.
(3) () (the empty sequence) is a ds of R, covering ABCG.
ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

Efficient Optimization of Simple Chase Join Expressions * 219

The following are scje’s for the above three ds’s, respectively.

Now, as anticipated in Section 2.2, we show how to construct a tableau for a
scje, as a special case of the general construction method [l, 21. Given a scje

E = ?rx(Ri, w ry,z,(Ri,) w . . . w ry_z,,,(R;J)

corresponding to a ds 7 = (f, : Y1 + 2,) . . . , f,,, : Y,,, + 2,), the tableau TE’
for E has a summary containing distinguished variables on the attributes in X,
and undefined on the other attributes, and a body composed of m + 1 rows, lo,
1 1, -a’, l,, corresponding to the m + 1 factors in the join, defined as follows:

-for every 0 % j % m, row lj has tag Ri,
-for every A E U, l,[A] is the distinguished variable a if A E X, and an ndv

otherwise.
-for every j L 1, lj is defined on the basis of rows lo, II, . . . , lj-1:

-ifAE(YjnX),thenlj[A]isthedva;
-if A E (Yj - X), then by definition of ds, there is an integer k, such that

1 5 k 5 j - 1 and A E Zk: then lj[A] is set equal to &[A], and is therefore a
repeated ndv;

-ifA E (U- Yj),thelj[A] isandvnotappearinginrowslo,ll,ljP1.

Example 3. The tableau corresponding to the scje E, in Example 2 is the
following:

A B C D E G TAG

t a b c z

If the chase procedure is applied to TE, the following tableau CHASES is
obtained:

A B C D E G TAG

a b c g
a b c us Q3 g RI
US b c us ua g R,
u9 b c vlo vz g R,
VIZ7 VI4 VlS V16 uz F: R,

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

220 * P. Atzeni and E. P. F. Chan

3. CONTAINMENT AND EQUIVALENCE OF SCJE’S

The goal of this paper is the efficient optimization of unions of scje’s. Scje’s are
PJ-expressions, and Sagiv and Yannakakis [26, pp. 642-6431 have shown that a
union of PJ-expressions has a minimum number of joins if and only if (i) there
is no redundant expression in the union, and (ii) each expression in the union
has a minimum number of joins. Therefore, we study containment and equiva-
lence of scje’s (in order to be able to eliminate redundant expressions in the
unions) in this section, and minimization of scje’s in the following. In both cases
we find efficient algorithms, which take into account the restricted nature of
scje’s, and do not require the construction and the chase of the tableaux corre-
sponding to the expressions.

The plan for this section is the following. We first recall existing results that
relate containment and equivalence of expressions to containment and equiva-
lence of the corresponding chased tableaux. Then we study the structure of the
chased tableaux for scje’s, and, finally, we characterize containment (and equiv-
alence) of scje’s on the basis of the associated ds’s.

Graham and Mendelzon [ll] studied the equivalence of SPJ-expressions with
respect to a given set of dependencies. Chan [6] extended their results to
containment of expressions, proving the following fact.

FACT 3.1. Given a database scheme R with an associated set of fd’s F and two
SPJ-expressions El, Ez, then E, 2 E, if and only if CHASE,(T,,) 2
CHASE,(T&

On the basis of Fact 3.1, we show some properties of scje’s, which are a special
case of SPJ-expressions. Let T = (fi : Y, + Z1, . . . , fm: Y, + 2,) be a ds for
a relation scheme Ri, covering a set of attributes X G U, let E = rx(Ri,, w
rX,Y,(Ri,) W . . . w rykz,(Rik)) be the corresponding scje, and let TE be the tableau
corresponding to E. We use lo, . . . , lk to denote the rows in the body of TE:
corresponding to the subexpressions Ri,, . . . , TX, yk (Ri,) respectively. The follow-
ing is a way to obtain CHASES. Also, without loss of generality, we assume
that the ndv’s in lo follow, in the total order I defined on the set VN, all the
other ndv’s appearing in TE. (In this way, whenever row 1, is involved in a
transformation during the chase, the values in 1, will always be modified, and
equated to the values in the other row involved.)

Algorithm 3.1. A method for chasing the tableau for an scje.
INPUT: The tableau TE for an scje, as above, and a set of fd’s F.
OUTPUT: CHASEp(Tp;).
METHOD:

(1) Forj = 1 to m
apply to TI, the transformation involving rows 1, and I,,
and the jth fd in 7, Y, -+ Z,.

Let the resulting tableau be Tk.
(2) Apply all possible transformations to Ti: to obtain CHASE~(T~..).

LEMMA 3.1. Algorithm 3.1 correctly produces the chased tableau CHASE(T~:),
and, for each 1 5 j I m, the j th transformation applied during step (1) equates
10[z,] to lj[zjl.
ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

Efficient Optimization of Simple Chase Join Expressions * 221

PROOF. We first prove that, for each 15 j I m, the jth transformation applied
during step (1) of Algorithm 3.1 is valid and equates lo[Z’j] to 1, [Z, 1. We proceed
by induction on j. The basis (j = 1) is trivial. Then, let j > 1, and assume that,
for all 1 5 i 5 j - 1, the ith transformation is valid, and equates lo[Z;] and
li[Zi]. Let US consider Yj + Z,, the jth fd in the ds T. By definition of ds, Y, G
Ri,]Z, ... Z,-,. Let Yj = Y’Y”, where Y’ G R,, and Y” G 2, *.* Zj-1. By
definition of T,:, for each A E Y’, 10IA] = lj[A] in TE. Similarly for each B E
Y”, lj[B] = 1;[B] in TE, where B E Zi, for some 1 5 i 5 j - 1. By the induction
hypothesis, lo[Zi] = li[Z<], for all 1 I i sj - 1. Hence &[Y”] = 1j[Y”], and SO

1,[YJ = 1,[Y’ Y”] = lj[Y’Y”] = lj[Yj]. Therefore, the jth transformation is
valid. Since 2, f~ Ri,,Z, . . . Zj-1 = 0, all the values in lo[Zj] are unique ndv’s
before the application of the transformation, and therefore no contradiction
arises; as a consequence of the assumption made just before presenting the
algorithm, the values in lo[Zj] are modified, and equated attribute-wise to those
in lj [Z, 1. This completes the induction.

We have therefore proved the second part of the claim, together with the
validity of the transformations applied in step (1) of the algorithm. To complete
the proof, we have to show that the algorithm correctly computes the chase of
the tableau TE. Now all transformations are valid, and, in step (Z), transforma-
tions are applied as long as possible. Therefore, the algorithm specifies a possible
sequence of valid transformations that produces a tableau that is no longer
modifiable. Since the chase is a Church-Rosser process (that is, its result is
independent of the order of application of the individual transformations [17,
pp. 16%174]), the algorithm produces CHAS.Q(T~). q

The following lemmas summarize some fundamental properties about the
chased tableau CHASES, which will enable us to know its content without
actually building and chasing TE.

LEMMA 3.2. Let 1, be a row in TE, withp 1 1. Then the following are equivalent.

(1) A E Y,‘.
(2) l,[A] = l,[A] in WASI+(
(3) l,[A] is a significant symbol in CHASES.

PROOF. (1) + (2). After step (1) of Algorithm 3.1, l,[Y,] = l,[Y,], for all
1 5 p I k. Since chasing TE cannot encounter contradiction, if A E Y,‘, then
l,[A] = l,[A] in CHASES.

(2) + (3). Follows directly from the definition of significant symbols.
(3) + (1). We show that, if A 4 Y,‘, then l,[A] is a unique ndv in CHASES.

We proceed by induction on the number j of transformations applied to TA in
step (2).

Basis: j = 0. Transformations in step (1) only change entries in lo, and so, if
p # 0, then every entry in 1, is unchanged after step (1). Therefore if A 4 Yz,
the value l,[A] is a unique ndv. Hence the basis is established.

Induction: j > 0. Suppose that, after the application of (j - 1) transformations
to TL, for all p # 0, for all A @ Y,‘, l,[A] is a unique ndv. Let the jth
transformation involve the fd X + A and rows 1, and 1,. Now the claim is violated

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

222 - P. Atzeni and E. P. F. Chan

only if s # 0, A 4 Y,Z, and &[A] is a unique ndv (before the application of the
transformation), or t # 0, A @ Y:, and l,[A] is a unique ndv.

Ifs # 0 and Is[X] = lt[X], then the symbols in 1, are not unique ndv’s, and so,
by the induction hypothesis, X C Yz; therefore, by the property of transitivity
for fd’s, A E Y.Z. The same argument can be carried out for 1, , thus completing
the induction. 0

A tableau for a PJ-expression E is simple [25] if, for each attribute A E U, the
corresponding column in CHASE~(TE), contains at most one significant symbol.

LEMMA 3.3. The tableau CHASES is simple.

PROOF. Suppose there exist two distinct significant symbols l,[A] and &[A]
in column A. By Lemma 3.2, l,[A] = &[A] and l,[A] = &[A]. Hence lo[A] =
l,[A] = l,[A], a contradiction. Hence there is at most one significant symbol in
column A. Cl

Let TE and Tr be tableaux for scje’s E and F, respectively, and 1, and 1, be any
two rows in TE and TF, respectively. The row 1, is said to subsume 1 (written
1, 2 1,) if, for all A E U whenever 1, [A] is a significant symbol, then l,[A] is also
a significant symbol.

LEMMA 3.4. &[A] is a significant symbol in CHASEAT~) if and only if A E
xu:y: -.* Yk+.

PROOF. (If) If A belongs to Y,’ - Ri,, for some 1 5 p I 12, then, by
Lemma 3.2, we know that lo[A] = l,[A] in CHASES, and so l,[A] is a
significant symbol. If A belongs to X - Y: Yg . . . Yi, then, by definition
of ds, we have that A E X n Ri,,, and so lo[A] is a dv and hence a significant
symbol in TE.

(Only if) Suppose, by way of contradiction, that there exists an attribute A
not belonging to XY: Y: . . . Yk+, such that &[A] is a significant symbol. Since
A 4 X, there is no dv in the A-column, and so &,[A] is a repeated ndv in
CHASES. Therefore, there exists a row 1, E CHASES, with p > 0 such that
l,[A] = l,[A]. Then, by Lemma 3.2, A belongs to Y,‘-a contradiction. q

LEMMA 3.5. Let l,[A] be a repeated symbol in CHASES, for some 0 5 p 5
m. Then there exists another row 1, in CHASE&T~) such that 1, and lq have different
tags and l,[A] = &[A].

PROOF. Let us distinguish two cases.

(1) p = 0. Since &,[A] is a repeated symbol, there exists 1, such that &[A] = &[A].
But lo has a tag Ri, that appears nowhere else, and so 1, and 1, have different
tags.

(2) p # 0. Since l,[A] is a significant symbol, by Lemma 3.2, l,[A] = l,[A 1.
Again, we know that 1, and 1, have different tags. 17

On the basis of the previous results, we can characterize containment of scje’s,
in terms of chased tableaux.
ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

Efficient Optimization of Simple Chase Join Expressions * 223

THEOREM 3.1. Let E, and E, be two scje’s with the same target X. E, 2 E, if
and only if for each row si in CHASE~(T~,) there exists a row tj in CHASE~(T~*)
such that s;[TAG] = tj[TAG] and tj 2 s;.

PROOF. By Fact 3.1, E, 1 E, if and only if CHASE~T~,) 2 CHASE~(T~~).
Therefore it suffices to show that CHASE~(T~,) 2 CHASE&T~*) if and only
if for each row St in CHASE~(T~,) there exists a row tj in CHASE~(T~,) such
that s;[TAG] = t, [TAG] and tj 2 si.

(If) Let it be the case that, for each row si in CHASQ(T~,), there exists tj in
CHASE~(T~,), with the same tag as si and subsuming it. On the basis of this
correspondence, we consider the mapping V, from the symbols TE, to the symbols
in TE,, that, for every si E CHASE~(T~,), for every A E U’, maps Si[A] to tj[A],
and prove that it is a containment mapping. Following the definition of contain-
ment mapping, we show that v is a function and that it is the identity on dv’s
(since there are no constants, no symbol is lower than dv’s with respect to the
partial order I) and tags.

Since, for every s,, the corresponding tj has the same tag (si[TAG] = tj[TAG]),
the mapping u is the identity on tags.

Let s;[A] be a dv; by definition of v, v(s,[A]) = t;[A]; we show that tj[A] =
si[A], and therefore v(si[A]) = si[A]. Since si[A] is a dv (the dv for attribute A),
then A E X and therefore the dv for A appears in column A in TEp. Then, by
definition of subsumption, since tj 2 s; and si[A] is a dv, we have that tj[A] is
also a significant symbol. By Lemma 3.3, the dv is the only significant symbol in
column A in CHASE~(T~J, and therefore tj[A] = si[A].

We now show that Y is in fact a function, that is, if s;[A] = sh[A], then
v(si[A]) = v(sh[A]). Let s~[A] = sh[A] = u. If u is a dv, we already know that
v(u) = u and therefore v(s;[A]) = v(sh[A]). Otherwise, u is a repeated ndv,
and so A 4 X. Therefore, there is no dv in column A in T,,. Hence, since
tj P S,, tj[A] = v(s,[A]) is a repeated ndv. Similarly, we could prove that
v(s,,[A]) is a repeated ndv. By Lemma 3.3, there is only one repeated ndv in
column A in CHASE~(T~~), and so v(si[A]) = u(sh[A]).

Summarizing, the two tableaux have identical target relation schemes (because
El and E, are scje’s with the same target) and Y is a containment mapping;
therefore, CHASE~T~,) 2 CHASE~(T~,).

(Only if) Assume that CHASE~(T~,) 2 CHASE~(T~,); therefore there exists a
containment mapping from CHASE~(T~,) to CHASE~(T&. Let si be a row in
CHASE~(T~,) and let tj be the row to which s; is mapped; we show that tj 2 si and
tj [TAG] = s,[TAG]. This last claim is immediate, since containment mappings
are the identity on tags. To complete the proof, we show that, for every attribute
A E U, if si[A] is significant, then t, [A] is also significant. Let us distinguish two
cases:

(1) Si [A] is a dv. Since (when no constants are involved) a containment mapping
is the identity on dv’s, tj [A] = si[A], and SO tj [A] is a dv, a significant symbol.

(2) s,[A] is a repeated ndv. By Lemma 3.3, there is no dv in column A in
CHASE~(T&,), and hence A @ X, and so there is no dv in column A in
CHASE~(T~*) either. We claim that tj[A] is also a repeated ndv. Since si[A]

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

224 - P. Atzeni and E. P. F. Chan

is a repeated ndv, by Lemma 3.5, there exists another row s, in
CHASEF(T~,) such that s,[A] = s;[A] and s,[TAG] # si[TAG]. If tj[A] were a
unique ndv, then s, would be mapped to tj , and the valuation function would
not be the identity on tags, against the definition. Therefore tj [A] is not a
unique ndv, and it is therefore significant. Cl

The above theorem characterizes containment of scje’s in terms of their chased
tableaux. However, it is not necessary to generate the chased tableaux physically,
since, by Lemmas 3.2 and 3.4, we know exactly which values in each row of a
chased tableau are significant symbols. This is confirmed by the following
corollary, which characterizes containment of scje’s in terms of the associated
ds’s. It refers to the scje’s E, = r&&, w ~Ty,z,(Ri,) w . . . w ~y_z_(Ri_)) and
E, = ~~(RpO w xv, w, (R,,) w - . . w nv,w,(Rp,)), corresponding to the ds’s T =
(Y,-21, yrn +Z,),andx=(V1+W1, V,+W,),respectively.

COROLLARY 3.1. E, > E, if and only if:

(1) If Ri, # Rp,,, then there is an fd Vk + Wh in x such that Ri, = R,, and Vi >
XY: . . . YL, and

(2) for each Yj + Zj in r, if R, = R,,, then XV: *. - V,’ > Y,+; otherwise, there
exists a V, + Wk in x such that V,C 1 Y,: and Rpk = Ri,.

PROOF. Let the sets of rows in TE, and TE, be (u,, . . . , u,) and (uO, . . . , u,],
respectively. By Theorem 3.1, E, > E, if and only if for each row Uj in
CHASEF(T&, there exists a row uk in CHASEF(T~x) such that Uj and vk have the
same tag and vk 2 Uj. Therefore we show that it is the case that, for each row Uj
in CHASEF(TE‘,), there exists a row uk in CHASEF(TE',) such that Uj and uk have
the same tag and uk 2 Uj if and only if conditions (1) and (2) in this corollary
hold.

(If) Assume that conditions (1) and (2) hold. Consider row uo. If R,, = R,,,
then u. is the only row in CHASE~(T~~) with the same tag as uo; by Lemma 3.4,
u. and u. have significant symbols on the attributes of XY: . . . Yt and
xv: . . . Vi, respectively; then, it follows from (2) that XV: . . . Vz >
xu: * * * YL, and therefore, by definition of subsumption, ug 2 uo. If Ri, # Rp,,,
by (l), there is an fd Vk -+ wk in x such that Vi > XY: . . . Yz and Ri, = RPL;
then u. and !.& have the same tag, and, by Lemmas 3.4 and 3.2, they have
significant symbols on XY: . . . Yz and Vi, respectively, and so uk > uo.

Now, consider a generic row uj in CHASE~(T&, with j 2 1, and the associated
fd Yj --+ 2, in r; by (a), if RG = RpO, then XV: . * . Vi > YIT ; otherwise, there
exists a Vk + wk in x such that V: > Y,? and R,,& = R,, . In the first case, arguing
as above about significant symbols, we can conclude that u. 2 Uj; in the second
case, that uk I Uj. Therefore, in either case, there is a row uh in CHASEF(TE~) with
the same tag as Uj such that t$, > Uj.

(Only if) Assume that, for each row u, in CHASEF(TR,), there exists a row uk
in CHASE,P(T~,) such that Uj and vk have the same tag and uk 2 u, . We show that
conditions (1) and (2) hold.

(1) Let Ri, # Rp,; therefore, since u. and u. have different tags, there is a row Uj
in CHASE~(T~J, with the tag R,, such that Uj 2 uo. Then, by Lemmas 3.2 and
3.4, it follows that VL > XY: . . . Y”,.

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989

Efficient Optimization of Simple Chase Join Expressions 225

(2) Let Y, -+ 2, be an fd in 7. Let us consider two subcases.
(a) Ri, = R,,. Then, u. is the only row in CHASE~(T~J with the same tag as

uj; therefore, it is the case that u. 2 uj, and SO, by Lemmas 3.2 and 3.4,
xv: * . . v; 2 y,+.

(b) Ri, # R,,. Then there is a row uk in CHASE~(T~J, with k 2 1, with the
same tag as Uj and subsuming it. Then, by Lemma 3.2, Vl1 YT , and SO,
there is an fd vh -P W, in x such that Vi 2 Y:. 0

Given E, and E, as above, in order to test whether E, 2 E,, we can proceed as
follows:

(1) Compute the closures of the Yi’s and Vj’s.
(2) If R;, # R,,, test the existence of the fd in x, required by condition (1) of

Corollary 3.1.
(3) For each fd in 7, check for the satisfaction of condition (2) of Corollary 3.1.

Step (1) can be executed in time O((m + n) x](F 1)), where m, n are the
lengths of the two derivation sequences, and ((F (1 is the space required to
write the set of fd’s F, by applying the widely known closure algorithm in [5]
to each set of attributes in the ds’s. Steps (2) and (3) essentially require
pairwise comparisons of sets of attributes, and can therefore be executed in
time O(m x n x] U]), where m, n are as above, and] U] is the number of
attributes in the universe. Therefore, containment of scje’s can be tested in time
O((m+n)x IIFIJ +mXnX ILlI).

The following corollary is the special case of Corollary 3.1, if E, and E, are
scje’s for the same relation scheme.

COROLLARY 3.2. Let T, x, E,, E, be as above, with the further condition
that Ri, = RPO. Then, E, 1 E, if and only if for each Y, + Z, in 7 there exists
a V, + wh in x such that V: 2 Y,? and R,, = R,.

Example 4. Consider again the database scheme and the scje’s in Example 2:

R = (R, (AB), R,(ABCDEF)).
F ={AB+D,BC+E,B+C,D+F,E-+F].
E, = ~/uw,& w .rr,c(Rd w nm(R,) ~4 nmd&)).
E, = ~zww(R, w ~,m(Rz) w *,A&) w n,dR,)).
E, = ~,M&M.

Let us try to eliminate redundant subexpressions from the union of the three
scje’s. Let us consider E, and E2: since ABD+ = ABCDEF = U, by Corollary 3.2,
E, > E,. Then, E, cannot contain E3, by Theorem 3.1, since TE, has a row with
tag R, and TE, does not. Finally, E3 2 E, if and only if one of the closures of BC,
BCE, or EF contains ABCF. Since BC+ = BCEF, BCE’ = BCEF and EF+ = EF,
Ea does not contain E,. Hence E, U E3 is an equivalent expression to E, U
E, U ES, and it does not contain redundant subexpressions. In the next section,
we will see how to minimize the individual scje’s, in order to obtain the optimal
expression.

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989

226 l P. Atzeni and E. P. F. Chan

4. OPTIMIZATION OF SCJE’S

In this section we study the problem of optimization of scje’s. As usual for
PJ-expressions, optimization means minimization of the number of joins in the
expression, which corresponds to minimization of the corresponding tableau. The
general problem of minimizing a tableau is NP-complete, whereas for simple
tableaux the problem can be solved in polynomial time [l, 2, 251. By Lemma 3.3,
the chased tableaux for scje’s are simple, and therefore can be minimized
efficiently; however, the above methods require us to construct and chase the
tableaux. In this section, we show that this is not necessary. We first characterize
when a chased tableau for an scje is minimal. Then we show how, on the basis
of this result, it is possible to obtain a minimal equivalent expression for an scje,
without generating the chased tableau.

It is known [2, p. 4461 that, for every tableau T, there is an equivalent minimal
tableau whose body is a subset of the body of T. The following lemma character-
izes this minimal tableau if T is the tableau for an scje.

LEMMA 4.1. Let E be an scje, TE the corresponding tableau, and Tg the minimal
tableau contained in CHASES. Then a row 1, in the body of CHASE&T~) is in
Tg if and only if there is no other row lk in the body of CHASES, with
the same tag, such that lk 1 1,.

PROOF. (If) Let 1,, lk be distinct rows in CHAS&(T~); assume, by way of
contradiction, that they are both in Tz, have the same tag, and lk L lj. Now, let
u be the mapping that (i) maps the unique symbols in lj to the respective symbols
in lk, and (ii) is the identity on the other symbols. Clearly, v is a containment
mapping from Ti toTg - (lj}, and so, since there is always a containment
mapping from Tg - (I, 1 to T& Ti is not minimal, a contradiction.

(Only if) Let 1, be a row in the body of CHASES such that there is no other
row lk in the body of Tg such that lk 1 l, and lk[TAG] = lj [TAG]. Then, since Tg
is equivalent to CHASE& TE), there is a containment mapping v, from CHASED TE)
to Tg; therefore, r(lj) is in the body of Ti. By definition of containment mapping
and of subsumption, v (1,) > 1, and u(lj) [TAG] = 1, [TAG], and SO, if there is no
row lk in the body of Tg, distinct from lj, such that lk > lj and lh[TAG] = lj[TAG],
it must be the case that r(lj) = 1, , and SO 1, is in the body of Tz. Cl

By Lemma 4.1, the chased tableau for an scje can be minimized by repeatedly
eliminating rows subsumed by other tuples. We have therefore proved the
correctness of the following algorithm.

Algorithm 4.1. Minimizing the chased tableau for an scje.

INPUT: A tableau CHASES, where E is an scje:

E = ax(R, w ~,z,(Ri,) w . . . ~4 ~,z_(Ri_)).

OUTPUT: A minimal tableau Ts equivalent to CHASE,C(T~).
METHOD:

(1) Let T= CHASES
(2) For j = 1 to m do:

If there is a row lk in T, such that k # j, l,[TAG] = l,[TAG] and 1; 2 lb,
then delete lk from T.

(3) Let Tg = T.
ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

Efficient Optimization of Simple Chase Join Expressions l 227

Algorithm 4.1 can be executed in quadratic time in the number of rows of the
tableau, after having chased it. Let 1, be a row in CHASE~T~). Row l,, is called a
dominant row if 1, is in Tz. Otherwise it is called a deleted row.

By Theorems 3.2 and 3.4, we know exactly which symbol in CHASE~T~) is
significant. Therefore we can generate a minimal tableau TE for CHASEF(TE)
(and therefore an optimal expression for the scje E) without constructing the
tableau TE and chasing it. The following algorithm performs this task.

Algorithm 4.2. Optimizing an scje.

INPUT: AnscjeE = rX(R,, w ?T~,~,(R,,) w ... w ~Ymz,(R,m)).
OUTPUT: An optimal expression E’ equivalent to E.
METHOD:

(1) Initialize three arrays of length m as follows.
Forj := 1 to m do:

TAG[j] := Ri,
SUBEXP[j] := Y,Z,
CLOSURE[j] := Y,+

(2) Forj := 1 to m do:
Zf there exists k, k # j, 1 % k 5 m, such that TAG[k] = TAG] j] and

CLOSURE[k] > CLOSURE[j] then
SUBEXP[k] := SUBEXP[k] U SUBEXP[j]
TAG[j] := 0.

(3) Construct an expression J as follows.
J := R,,
Forj=ltomdo:

If TAG[j] # 0 then J := J w ~SLI~~~~,j,(TAG[j]).

(4) Return the final expression.
E’ := K~(J).

Let us call a subexpression 7r7z, (R;,) in E a dominant subexpression if
TAG[J’] # 0 after step (2) of Algorithm 4.2. Otherwise, it is called a deleted sub-
expression. By Lemma 3.2, lP > 1, exactly when Y,’ 2 Y,‘. Hence step (2) of
Algorithm 4.2 is essentially the same as step (2) of Algorithm 4.1. That is, the
jth row of CHASES is in Ti if and only if TAG[J’] # 0 after step (2) of
Algorithm 4.2. Hence there is a one-to-one correspondence between dominant
rows in the tableau CHASES and dominant subexpressions in E. Hence the
number of join operations in E’ is the same as in any optimal expression
equivalent to E. To complete the proof of correctness of Algorithm 4.2 we show
that the expression E ’ is in fact equivalent to E. We prove this by showing that
CHASE~(T~,) = Tz, where Tz is the tableau produced by Algorithm 4.1.

LEMMA 4.2. CHASE~(T~,) = Tz.

PROOF. From the argument presented above, there is a one-to-one correspon-
dence between the rows in Ti and the subexpressions in E ‘. Let {s, , . . . , So} be
the set (j] TAG[j] # 0); therefore, E’ = Ri,, w ~,,,,,,,,,(R,~) W . . . w

~SUBEXP,.q, (R,,q). Consider the tableau TE, for E’, and let uo, . . . , u, be the rows in
CHAsEF(TE,). Also, let wg, wy be the rows in T& respectively equal to the
rows uo, u,,, . . . , u,~ of CHASEF(T~).

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

228 - P. Atzeni and E. P. F. Chan

Clearly, w, [TAG] = u, [TAG], for 1 P j 5 4. To complete the proof, we show
that W, 1 Uj and uj 2 Wj; by Theorem 3.1, this will imply Ti 2 CHASE~(T~#) and
CHASE~(T~,) > TE and so CHASE~(T~,) = Ti. By Lemma 3.2, ifj L 1, u,[A] is
significant if and only if A E SUBEXP[sj]+ and wj[A] is significant if and only
if A E Y’. :, , by step (2) of Algorithm 4.2, SUBEXP[sj]’ = Y;, and therefore
U; [A] is significant if and only if wj [A] is significant; SO wj 2 uj and uj > wj .

Similarly, by Lemma 3.4, w,[A] is significant if and only if A E
U~=,(SUBEXP[sj])’ U R,, and uOIA] is significant if and only if A E R,,,YG 1..
Y,:; again, by step (2) of Algorithm 4.2, we have Uy=,(SUBEXP[.sj])+ U Ri, =
R,, Y,; - . . Yc, and so uo[A] is significant if and only if w,[A] is significant, that
is,wozuu,anduo>wo. q

The most significant factor in step (1) of Algorithm 4.2 is computing the
closures. Computing the closure for Y, requires O(1) F 1)) steps. Therefore step (1)
requires O(m X]] F]]). In step (2) the most significant factor is the comparison
of two closures. There are at most m2 comparisons in this step, each of which
requires O(] U]) operations. Hence step (2) has complexity O(m2 X I U I) steps.
Steps (3) and (4) are negligible with respect to the previous ones. Therefore, the
time complexity of Algorithm 4.2 is O(m x]] F]] + m2 X] U]). So we proved the
following theorem.

THEOREM 4.1. The expression E ’ produced by Algorithm 4.2 is equivalent to E
and is minimal in the number of join operations. The time complexity of Algorithm
4.2 is O(m X I(F II + m2 X I U ().

The combined use of the results in Section 3 and Section 4 yields an efficient
method for optimizing unions of scje’s: given an expression of this class, redun-
dant subexpressions (i.e., scje’s) can be discovered by means of Corollary 3.1, and
therefore eliminated from the union; then, each of the remaining scje’s is
minimized by means of Algorithm 4.2. Since each stage can be done efficiently,
optimization of unions of scje’s can be done efficiently.

Example 5. Let us consider again the database scheme in Examples 2 and 4.

R= (R, (AB),R,(ABCDEG)).

F=(AB+D,BC+E,B+C,D+G,E--tG).

Let us consider the expression E, U E3 in Example 3, where

E, U E, = ~/t,m;(R, w r~c(Rz) w em w ~dR2)) U TUG.

Since E, is already minimal, let us consider E,. BC’ = BCEG, BCE’ = BCEG
and EG’ = EG. Hence in step (2) of Algorithm 4.2, TAG[l] and TAG[3] are set
to 0 and SUBEXP[B] = BCEG. Hence rABcC;(R1 w 7rBoo(R2)) is returned in
step (3) of the Algorithm 4.2. Therefore the optimal expression equivalent to
El U & U J% is rABCC(R1 W ~BCEC(&)) U XABCGUL).

5. CONCLUSIONS

The common feature of the results of this paper is that it is possible to study the
major properties of expressions of a restricted class, scje’s, without explicitly
building and chasing the tableaux corresponding to the expressions. With the
ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

Efficient Optimization of Simple Chase Join Expressions 229

results existing in the literature, the optimization of a union of PJ-expressions,
E=E,U . . . U Ek, where, for each 1 I j 5 k, Ej contains at most m joins, would
require time O(k x (m X I U(+ IIFII)’ X log(m X I UI + IIFII)) just to build
and chase the k tableaux corresponding to the subexpressions; then, every
comparison, or minimization, of tableau would require an amount of time that is
quadratic in the size of the tableaux, for a restricted subclass, and bigger in
general: in the favorable case [25] O(k2 X m2 X (U 1”) time would therefore be
required to execute pairwise comparisons of the k subexpressions. Our results
show that, for the restricted class of scje’s, the whole process can be carried out
in time O(k x m x II F II + k2 x m2 x I U)), by means of an implementation of
the process suggested by Corollary 3.1, where the closures of the sets of attributes
are never computed twice. Therefore we have shown that it is possible to take
advantage of the restricted nature of scje’s, in order to obtain more efficient
algorithms.

Scje’s are a meaningful subclass of PJ-expressions, since they can be used to
compute the total projections of the representative instance [6,19]: if the database
scheme is independent then, for every X, the X-total projection of the represent-
ative instance can be computed by means of a union of scje’s. Therefore, our
results show how to optimize the expressions that compute the total projections.
As a matter of fact, various algorithms have been proposed that, given X, generate
the expression that computes the X-total projection [3, 15, 241; the algorithm
proposed by Ito et al. [15] produces an expression that is already optimal, and
therefore need not be optimized. However it is possible to implement this
algorithm following a strategy proposed by Atzeni and Chan [3, p. 1881: essen-
tially, a number of precomputations (including the closures of all the sets of
attributes involved in fd’s, and some subexpressions associated with the attri-
butes) are performed in the beginning, when the scheme is defined, and never
repeated; then, each time a total projection is needed, the union of scje’s is
generated more efficiently, and optimized taking advantage of the precomputed
closures. If this method is adopted, the use of our optimization algorithm is
definitely convenient.

ACKNOWLEDGMENTS

We would like to thank Fred Lochovsky, Albert0 Mendelzon, and the referees
for their helpful comments on earlier drafts of this paper.

REFERENCES

1. AHO, A. V., SAGIV, Y., AND ULLMAN, J. D. Equivalence of relational expressions. SIAM J.
Comput. 8, 2 (May 1979), 218-246.

2. AHO, A. V., SAGIV, Y., AND ULLMAN, J. D. Efficient optimization of a class of relational
expressions. ACM Trans. Database Syst. 4, 4 (Dec. 1979), 435-454.

3. ATZENI, P., AND CHAN, E. P. F. Efficient query answering in the representative instance
approach. In Fourth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems
(Portland, Ore., Mar. 25-27, 1985). ACM, New York, 1985, pp. 181-188.

4. ATZENI, P., AND PARKER, D. S., JR. Assumptions in relational database theory. In ACM
SIGACT-SZGMOD Symposium on Principles of Database Systems (Los Angeles, Calif., Mar.
29-31,1982). ACM, New York, 1982, pp. l-9.

5. BEERI, C., AND BERNSTEIN, P. A. Computational problems related to the design of normal form
relational schemas. ACM Trans. Database Syst. 4, 1 (Mar. 1979), 30-59.

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

230 l P. Atzeni and E. P. F. Chan

6. CHAN, E. P. F. Query Answering and Schema Analysis under the Weak Instance Model. Ph.D.
dissertation, University of Toronto, 1984.

7. CHAN, E. P. F., AND ATZENI, P. On the properties and characterization of connection-trap-free
schemes. In Fifth ACM SIGACT-SZGMOD Symposium on Principles of Database Systems (Cam-
bridge, Mass., Mar. 24-26, 1986). ACM, New York, 1986, pp. 140-147.

8. CHAN, E. P. F., AND MENDELZON, A. 0. Answering queries on embedded-complete database
schemes. J. ACM 34, 2 (Apr. 1987), 349-375.

9. CHAN, E. P. F., AND MENDELZON, A. 0. Independent and separable database schemes. SIAM
J. Comput. 16,5 (Oct. 1987), 841-851.

10. DOWNEY, P. J., SETHI, R., AND TARJAN, R. E. Variations on the common subexpression
problem. J. ACM 27, 4 (Oct. 1980), 758-771.

11. GRAHAM, M. H., AND MENDELZON, A. 0. Strong equivalence of relational expressions under
dependencies. Inf. Process. Lett. 14, 2 (Apr. 1982), 57-62.

12. GRAHAM, M. H., AND YANNAKAKIS, M. Independent database schemas. J. Comput. Syst. Sci.
28, 1 (1984), 121-141.

13. HONEYMAN, P. Extension joins. In Sixth International Conference on Very Large Data Eases
(Montreal, Oct. 1-3, 1980). IEEE, New York, 1980, pp. 239-244.

14. HONEYMAN, P. Testing satisfaction of functional dependencies. J. ACM 29, 3 (July 1982),
668-677.

15. ITO, M., IWASAKI, M., AND KASAMI, T. Some results on the representative instance in relational
databases. SIAM J. Comput. 14, 2 (May 1985), 334-354.

16. KENT, W. Consequences of assuming a universal relation. ACM Trans. Database Syst. 6,4 (Dec.
1981), 539-556.

17. MAIER, D. The Theory of Relational Databases. Computer Science Press, Potomac, Md., 1983.
18. MAIER, D., MENDELZON, A. O., AND SAGIV, Y. Testing implications of data dependencies. ACM

Trans. Database Syst. 4, 4 (Dec. 1979), 455-468.
19. MAIER, D., ROZENSHTEIN, D., AND WARREN, D. S. Windows functions. In Advances in Com-

puting Research, Vol. 3. P. C. Kanellakis and F. Preparata, Eds. JAI Press, Greenwich, Conn.,
1986, pp. 213-246.

20. MAIER, D., ULLMAN, J. D., AND VARDI, M. On the foundations of the universal relation model.
ACM Trans. Database Syst. 9, 2 (June 1984), 283-308.

21. MENDELZON, A. 0. Database states and their tableaux. ACM Trans. Database Syst. 9, 2 (June
1984), 264-282.

22. SAGIV, Y. Can we use the universal instance assumption without using nulls? In ACM SZGMOD
International Conference on Management of Data (Ann Arbor, Mich., Apr. 29-May 1, 1981),
ACM, New York, 1981, pp. 108-120.

23. SAGIV, Y. A characterization of globally consistent databases and their correct access paths.
ACM Trans. Database Syst. 8,2 (June 1983), 266-286.

24. SAGIV, Y. Evaluation of queries in independent database schemes. 1984. Unpublished manu-
script.

25. SAGIV, Y. Quadratic algorithms for minimizing joins in restricted relational expressions. SIAM
J. Comput. 12,2 (May 1983), 316-328.

26. SAGIV, Y., AND YANNAKAKIS, M. Equivalence among relational expressions with the union and
difference operators. J. ACM 27, 4 (Oct. 1980), 633-655.

27. ULLMAN, J. D. The U.R. strikes back. In ACM SIGACT-SZGMOD Symposium on Principles of
Database Systems (Los Angeles, Calif., Mar. 25-27, 1982), ACM, New York, 1982, pp. 10-22.

28. ULLMAN, J. D. Universal relation interfaces for database systems. In IFIP Congress (Paris,
Sept. 19-23, 1983). North-Holland, Amsterdam, 1983, pp. 243-252.

29. YANNAKAKIS, M. Algorithms for acyclic database schemes. In Seventh International Conference
on Very Large Data Bases (Cannes, Sept. 9-11, 1981). IEEE, New York, 1981, pp. 82-94.

30. YANNAKAKIS, M. Querying weak instances. In Advances in Computing Research, Vol. 3. P. C.
Kanellakis and F. Preparata, Eds. JAI Press, Greenwich, Conn., 1986, pp. 185-211.

Received December 1984 revised November 1987; accepted April 1988

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

