Efficient Optimization of Simple Chase Join Expressions

PAOLO ATZENI
IASI-CNR
and
EDWARD P. F. CHAN
University of Toronto

Abstract

Simple chase join expressions are relational algebra expressions, involving only projection and join operators, defined on the basis of the functional dependencies associated with the database scheme. They are meaningful in the weak instance model, because for certain classes of schemes, including independent schemes, the total projections of the repesentative instance can be computed by means of unions of simple chase join expressions. We show how unions of simple chase join expressions can be optimized efficiently, without constructing and chasing the corresponding tableaux. We also present efficient algorithms for testing containment and equivalence, and for optimizing individual simple chase join expressions.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—relational algebra; H.2.4 [Database Management]: Systems-query processing

General Terms: Algorithms, Languages, Theory Additional Key Words and Phrases: Chase, functional dependency, query equivalence, query optimization, relational database, tableau

1. INTRODUCTION

The weak instance model is an approach to relational databases that allows us to consider in a single framework databases composed of more than one relation. The motivation for its study lies in the importance of the notion of decomposition; that is, the replacement of a relation with two or more new relations, during the design or restructuring of a database.
The weak instance model was originally introduced in order to define the notion of global satisfaction of a set of dependencies [14], then used as a basis

[^0]© 1989 ACM 0362-5915/89/0600-0212 \$01.50
ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989, Pages 212-230.
for query answering [22, 23, 29, 30], and to study equivalence [21] and desirable properties of database schemes $[7,8,9]$.

With respect to query answering, it allows the formulation of queries on the original relation, providing the possibility of producing answers from data in the decomposed database. This idea has been carried further by some authors, who conceived a user interface, called universal relation interface, which presents the database as if it were composed of a single relation, thus relieving the user from specifying access paths and connections among the actual relations (see, for example, [19, 28] for surveys, and [4, 16, 27] for discussions).

Queries are posed on a relation defined on all the attributes in the various relations, but not actually stored in the database. The connection between the original (or universal) relation and the actual relations is provided by the representative instance, a relation over the universe U of the attributes, defined, for each database state \mathbf{r}, as follows. First, a relation over U (called the state tableau for \mathbf{r}, denoted by $T_{\mathbf{r}}$) is formed by taking the union of all the relations in \mathbf{r} extended to U by means of distinct variables (or nulls). Then, the chase procedure [18] is applied to $T_{\mathbf{r}}$ to equate variables and generate new tuples. The chase process essentially performs inferences on data using the given constraints. If a contradiction is found during the chase process, then the representative instance is assumed to be empty. Any given query Q involves a set of attributes X that is a subset of the universe U; at the same time, each tuple in the representative instance contains constants only on a given subset of the universe U. Therefore, it is meaningful to consider, as the answer to such a query Q, the set of tuples in the representative instance that have only constants as values for the attributes in X. This set of tuples is called the X-total projection of the representative instance. It was shown that the X-total projection corresponds to the set of sentences that is logically implied by the database state and the constraints [20]. In this sense, the answer generated by this method is correct.

Example 1. Consider the database scheme

$$
\begin{aligned}
\mathbf{R}= & \left\{R_{1}(\text { Course }, \text { Tutor, Instructor, Department }),\right. \\
& \left.\left.R_{2} \text { (Course, Tutor, Room }\right)\right\} \\
F= & \{\text { Course } \rightarrow \text { Instructor }, \text { Course } \rightarrow \text { Department }\}
\end{aligned}
$$

and the database state \mathbf{r} :

r_{1}| Course | Tutor | Instructor | Department |
| :---: | :---: | :---: | :---: |
| CSC101 | White | Smith | CS |
| ELE301 | Red | Jones | EE |

r_{2}| Course | Tutor | Room |
| :---: | :---: | :---: |
| CSC101 | Green | A227 |
| CSC201 | Black | A325 |

The state tableau $T_{\mathbf{r}}$ for state \mathbf{r} is the following:

Course	Tutor	Instructor	Department	Room
CSC101	White	Smith	CS	v_{1}
ELE301	Red	Jones	EE	v_{2}
CSC101	Green	v_{3}	v_{4}	A227
CSC201	Black	v_{5}	v_{6}	A325

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

The representative instance for \mathbf{r} is obtained by chasing $T_{\mathbf{r}}$: since the first and third rows in T_{r} agree on the Course-component, and the functional dependency Course \rightarrow Instructor is defined, the Instructor-component of the third row is set to "Smith"; similarly, its Department-component is set to "CS", because of the dependency Course \rightarrow Department. Since no contradiction is found and no other inferences can be made from the state and the constraints, the corresponding representative instance is as follows:

Course	Tutor	Instructor	Department	Room
CSC101	White	Smith	CS	v_{1}
ELE301	Red	Jones	EE	v_{2}
CSC101	Green	Smith	CS	A227
CSC201	Black	v_{5}	v_{6}	A325

Suppose we want to know who are the instructor and the tutors of a course: the total projection on Course Instructor Tutor is required. It is obtained by projecting the representative instance on the attributes Course Instructor Tutor, and then removing the rows that contain variables:

Course	Tutor	Instructor
CSC101	White	Smith
ELE301	Red	Jones
CSC101	Green	Smith

The most straightforward way of finding an X-total projection is to follow the definitions, as we have just done in the example: first build the state tableau, then chase it to obtain the representative instance, and finally perform the total projection on the representative instance. Unfortunately, in this way, the whole database is involved in the answer to any query; in the easy cases (functional dependencies together with a full acyclic join dependency), time and space proportional to the size of the database are needed; in general, the upper bounds are exponential. Therefore more efficient strategies have been looked for.

Sagiv [22, 23] showed that, for a restricted class of database schemes, for any set of attributes $X \subseteq U$, there is a relational algebra expression E that can be used to compute the X-total projection; E is independent of the database state, and can be generated in time polynomial in the size of the database scheme. Clearly this strategy guarantees an enormous improvement over the previous one, since the size of the database scheme is much smaller than the size of the database state.

More recently, various authors [3, 15, 24] have extended this result to a larger class: the schemes that are independent with respect to functional dependencies [12]. Moreover, it was shown $[6,19]$ that, for this class, the expression E is always the union of simple chase join expressions (scje's), ${ }^{1}$ which are relational algebra expressions of a restricted form, involving only projections and joins, and defined on the basis of the functional dependencies associated with the database scheme. For instance, in Example 1, the total projection on Course Instructor

[^1]Tutor can be computed by means of the following expression, which is a union of simple chase join expressions:

$$
\pi_{\text {Course,Instructor,Tutor }}\left(R_{1}\right) \cup \pi_{\text {Course,Instructor,Tutor }}\left(R_{2} \bowtie \pi_{\text {Course, Instructor }}\left(R_{1}\right)\right) .
$$

The subject of this paper is the optimization of expressions of this class; we say that a union of projection-join expressions E is optimal [26] if there is no other union of projection-join expressions that is equivalent to E and involves a smaller number of joins. It is known [26] that a union of projection-join expressions is optimal if and only if (i) there is no redundant term in the union, and (ii) each term is optimal. So, since scje's are projection-join expressions, our problem can be reduced to the problems of testing containment and optimizing individual scje's. Efficient solutions for these problems for more general projection-join operations already exist in the literature [1,2,25]; however, they require the construction and chase of the tableaux corresponding to the expressions, an operation that takes time $O\left(S^{2} \log S\right)$, where S is the size of the input, that is, the size of the tableau plus the space needed to represent the fd's [10]. We show that, for the restricted class of scje's, it is not needed to consider the tableaux explicitly, since their structure can be predicted on the basis of the dependencies; more efficient algorithms are therefore devised.

The paper is organized as follows. Section 2 reviews the relevant definitions. In Section 3, we study containment and equivalence of scje's (which allow the elimination of redundant terms in the unions). In Section 4, we study the optimization of scje's. In Section 5, we discuss the applications of our results.

2. DEFINITIONS AND NOTATION

2.1 Basics

The universe $U=A_{1} A_{2} \cdots A_{m}$ is a finite set of attributes. A relation scheme R is a subset of $U .^{2}$ A database scheme $\mathbf{R}=\left\{R_{1}, \ldots, R_{n}\right\}$ is a collection of relation schemes, such that the union of the R_{i} 's is U.

Associated with each attribute $A \in U$ there is a set of constants, called the domain of A and indicated with $\operatorname{dom}(A)$. A tuple on a set of attributes X is a function t that maps each attribute $A \in X$ to a constant in $\operatorname{dom}(A)$; the notation $t[A]$ is used for the value of t on an attribute $A \in X$. If t is a tuple on X, and Y is a subset of X, then $t[Y]$ denotes the restriction of the mapping t to Y, and is therefore a tuple on Y. A relation on R is a set of tuples on R. A state (or a database) of a database scheme \mathbf{R} is a function \mathbf{r} that maps each relation scheme $R_{i} \in \mathbf{R}$ to a relation on R_{i}; with a slight abuse of notation, given $\mathbf{R}=$ $\left\{R_{1}, \ldots, R_{n}\right\}$, we write $\mathbf{r}=\left\{r_{1}, \ldots, r_{n}\right\}$.

We shall consider relational expressions in which the only operators are project (π), (natural) join (\pitchfork), and union (\cup). If only the operators project and join are involved, the expressions are called $P J$-expressions. In the subsequent discussion, the operands of a relational expression are relation schemes in a database scheme.

[^2]
2.2 Tableaux

A tableau consists of a body and a possibly empty summary row. The body of a tableau is composed of rows, which are defined as tuples on the universe augmented with a special attribute $T A G$ (called the tag of the row), but on different domains. The definition of row requires a number of preliminary concepts. We fix a finite set $V_{D}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of distinguished variables $\{d v$'s\}, in one-to-one correspondence with the universe, and a countable set $V_{N}=\left\{v_{1}, v_{2}, \ldots\right\}$ of nondistinguished variables (ndv's). The two sets V_{D} and V_{N} are disjoint from one another and disjoint from all the domains of the attributes; for each $1 \leq i \leq n$, the dv a_{i}, associated with A_{i}, is called the distinguished variable for A_{i}. Then, for each attribute $A_{i} \in U$ we define the tableau domain of A_{i} (indicated with $\operatorname{tdom}\left(A_{i}\right)$) as the disjoint union of three sets: (i) $\operatorname{dom}\left(A_{i}\right)$, (ii) the singleton set $\left\{a_{i}\right\}$, and (iii) V_{N}. The domain of the additional attribute $T A G$ is the set of relation schemes. Finally, a row is a function that maps each element A of $U^{\prime}=U \cup\{T A G\}$ to a value in $\operatorname{tdom}(A)$; the summary row of a tableau is a function from a subset X of U, the target relation scheme, that maps each $A_{i} \in X$ to the $d v\left\{a_{i}\right\}$; an attribute A_{i} belongs to the target relation scheme if and only if the $d v a_{i}$ appears in at least one of the rows of the body. When considering a given tableau, an ndv is called unique if it appears only once in the tableau, repeated otherwise. A symbol is called significant if it is not a unique ndv.

Tableaux are used in various ways in relational theory; we need two of them in this paper:
(1) Given a database state $\mathbf{r}=\left\{r_{1}, \ldots, r_{k}\right\}$, the state tableau for \mathbf{r} is a tableau T_{r}, with an empty summary row, containing, for each relation $r_{i} \in \mathbf{r}$, and for each tuple $t \in r_{i}$, a row u with the same constants as t. Row u is defined as follows:

$$
\begin{aligned}
& -u[T A G]=R_{i}, \\
& -u[A]=t[A], \text { if } A \in R_{i}, \\
& -u[A] \text { is a unique ndv, if } A \in U-R_{i} .
\end{aligned}
$$

An example of state tableau was shown in the Introduction.
(2) Tableaux can be associated with expressions of a subset of relational algebra [1, 2], and used to study their properties, such as containment, equivalence, or optimization. The method for the construction of a tableau for a generic expression of this class is out of the scope of this paper; we will show in Section 2.5 the tableaux for the restricted class of expressions of interest in this paper, the scje's.

It is useful to define a partial order \leq on the elements of the tableau domains, as follows:
-Tags are pairwise incomparable and incomparable with all other elements. Constants are pairwise incomparable. Dv's are pairwise incomparable.
-If c is a constant and v a variable (either $d v$ or ndv), then $c \leq v$.
ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.
-If a_{j} is a dv and v a ndv, then $a_{j} \leq v$.
-The countable set V_{N} is totally ordered according to $\leq .^{3}$
Let T be a tableau and t a row of T and X a subset of U. We say $t[X]$ is total if $t[A]$ is a constant, for all $A \in X$. The total projection (indicated with π^{\downarrow}) is an operator on tableaux that produces relations: $\pi^{\downarrow}(T)=\{t[X] \mid t \in T$ and $t[X]$ is total\}.

2.3 The Chase Procedure and the Representative Instance

The kinds of constraints considered in this paper are functional dependencies ($f d$'s). Given a set of fd's, there are additional dependencies implied by this set. The set of dependencies that are logically implied by F is the closure of F, denoted by F^{+}. Given a set of attributes X, the closure of X with respect to F, denoted by X^{+}, is the set of attributes $\left\{A \mid X \rightarrow A \in F^{+}\right\}$. An $\mathrm{fd} X \rightarrow Y$ is embedded in a relation scheme R if $X Y \subseteq R$.
The chase [18] is a procedure that, given a tableau T and a set of dependencies (in our case fd's), F, transforms, if possible, T into another tableau, denoted by $\operatorname{CHASE}_{F}(T)$, whose body satisfies F. It involves the exhaustive application of transformations. A transformation can be applied to a tableau if there are an $\mathrm{fd} X \rightarrow Y$ in F and two rows, l_{s}, l_{t}, in the body of the tableau, such that $l_{s}[X]=$ $l_{t}[X]$ and $l_{s}[Y] \neq l_{t}[Y]$: for every attribute $A \in Y$ such that $l_{s}[A] \neq l_{t}[A]$, if $l_{s}[A]$ and $l_{t}[A]$ are comparable (with respect to the partial order \leq), then all the occurrences of the higher entry are replaced with the other entry, otherwise the tableau is replaced with the empty tableau, and it is said to contradict the set F of dependencies.

Given a set of dependencies F, the representative instance for a database state \mathbf{r} is the tableau $\operatorname{CHASE}_{F}\left(T_{\mathrm{r}}\right)$ obtained by chasing, with respect to F, the state tableau for $T_{\mathbf{r}}$. The representative instance is important in this framework for two reasons:
-The notion of consistency of states is based on the representative instance: a state \mathbf{r} is said to be (globally) consistent [14] if its representative instance is produced without encountering contradictions.
-The answer to a query involving a set of attributes $X \subseteq U$ is defined as the X-total projection of the representative instance [22, 23].

We have shown in the Introduction the representative instance for a simple database state, produced by means of the chase procedure, and the answer to a query, obtained by executing a total projection on it.

2.4 Containment Mappings and Containment and Optimality of Expressions

A valuation function is a function ν from $D^{\prime}=U_{A \in U^{\prime}} \operatorname{tdom}(A)$ to itself, with the condition that $\nu(c) \leq c$, for each $c \in D^{\prime}$. (Therefore, ν is the identity mapping on constants and tags.) A valuation function v can be extended to rows and tableaux: if t is a row in the body of a tableau, then $\nu(t)$ is a row such that, for every $A \in$

[^3]$U^{\prime}, \nu(t)[A]=\nu(t[A])$; similarly, if s is a summary row with target relation scheme X, then $\nu(s)$ is defined on X, with $\nu(s)[A]=\nu(s[A])$, for every $A \in X$; finally, given a tableau T, with summary row s and body $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$, then $\nu(T)$ is a tableau with summary $\nu(s)$, and body $\left\{\nu\left(t_{1}\right), \nu\left(t_{2}\right), \ldots, \nu\left(t_{n}\right)\right\}$.

A tableau T_{1} is said to contain another tableau T_{2} (written $T_{1} \supseteq T_{2}$) if there is a valuation function ν (called containment mapping from T_{1} to T_{2}) such that the summaries of $\nu\left(T_{1}\right)$ and T_{2} are the same and the body of $\nu\left(T_{1}\right)$ is contained in the body of T_{2}. T_{1} is equivalent to $T_{2}^{\prime}\left(T_{1} \cong T_{2}\right)$, if $T_{1} \supseteq T_{2}$ and $T_{2} \supseteq T_{1}$.

Let E be a relational expression with operands in $\mathbf{R}=\left\{R_{1}, \ldots, R_{k}\right\}$. Then $E(\mathbf{r})$ denotes the value returned by E if a database state $\mathbf{r}=\left\{r_{1}, \ldots, r_{k}\right\}$ on \mathbf{R} is substituted into the corresponding relation variables in E and is evaluated according to the usual definitions of the various operators. Let E_{1} and E_{2} be two relational expressions with operands defined on \mathbf{R}, with an associated set of dependencies F. E_{1} is said to contain E_{2}, denoted by $E_{1} \supseteq E_{2}$, if, for every state \mathbf{r} of \mathbf{R} consistent with respect to F, it is the case that $E_{1}(\mathbf{r}) \supseteq E_{2}(\mathbf{r}) . E_{1}$ is said to be equivalent to E_{2}, denoted by $E_{1} \equiv E_{2}^{\prime}$, if $E_{1} \supseteq E_{2}^{\prime}$ and $E_{2}^{\prime} \supseteq E_{1}^{\prime}$. A union of PJ-expressions E is optimal (or minimal) if there does not exist a union of PJexpressions equivalent to E, with a fewer number of join operations.

2.5 Derivation Sequences and Simple Chase Join Expressions

Given a set of fd's F, a derivation sequence ($d s$) of some relation scheme $R_{i_{0}}$ is a finite sequence of fd's $\tau=\left\langle f_{1}: Y_{1} \rightarrow Z_{1}, \ldots, f_{m}: Y_{m} \rightarrow Z_{m}\right\rangle$ from F^{+}such that, for all $1 \leq j \leq m$:
(1) f_{j} is embedded in some relation scheme $R_{i_{j}}$, with $i_{j} \neq i_{0}$, and
(2) $Y_{j} \subseteq R_{i_{0}} Z_{1} \cdots Z_{j-1}$ and $Z_{j} \cap R_{i_{0}} Z_{1} \cdots Z_{j-1} \neq \varnothing$.

We say that τ covers a set of attributes X if $R_{i_{0}} Z_{1} \cdots Z_{j} \supseteq X$. Essentially, a ds of $R_{i_{0}}$ is a sequence of embedded fd's used in computing (part of) the closure of $R_{i_{0}}$.

Let R_{1} and R_{2} be a pair of relation schemes for which there exists $Y \subseteq R_{2}-R_{1}$ such that $R_{1} \cap R_{2} \rightarrow Y \in F^{+}$. The join of r_{1} and $\pi_{\left(R_{1} \cap R_{2}\right) \cup Y}\left(r_{2}\right)$ is called an extension join [13]. A variant of extension joins, called simple chase join expressions (scje's) can be defined on the basis of ds's. Given the ds τ above, assuming it covers X, the scje for τ with target X is the PJ-expression:

$$
\pi_{X}\left(R_{i_{0}} \bowtie \pi_{Y_{1} Z_{1}}\left(R_{i_{1}}\right) \bowtie \cdots \bowtie \pi_{Y_{m} Z_{m}}\left(R_{i_{m}}\right)\right) .
$$

Example 2. Consider the following database scheme:

$$
\begin{aligned}
\mathbf{R} & =\left\{R_{1}(A B), R_{2}(A B C D E G)\right\} \\
F & =\{A B \rightarrow D, B C \rightarrow E, B \rightarrow C, D \rightarrow G, E \rightarrow G\} .
\end{aligned}
$$

Then the following are ds's.
(1) $\langle B \rightarrow C, B C \rightarrow E, E \rightarrow G\rangle$ is a ds of R_{1} covering $A B C G$.
(2) $\langle\Lambda B \rightarrow D, D \rightarrow G, B \rightarrow C\rangle$ is a ds of R_{1} covering $A B C G$.
(3) $\left\rangle\right.$ (the empty sequence) is a ds of R_{2} covering $A B C G$.

The following are scje's for the above three ds's, respectively.
(1) $E_{1}=\pi_{A B C G}\left(R_{1} \bowtie \pi_{B C}\left(R_{2}\right) \bowtie \pi_{B C E}\left(R_{2}\right) \bowtie \pi_{E G}\left(R_{2}\right)\right)$,
(2) $E_{2}=\pi_{A B C G}\left(R_{1} \bowtie \pi_{A B D}\left(R_{2}\right) \bowtie \pi_{D G}\left(R_{2}\right) \bowtie \pi_{B C}\left(R_{2}\right)\right)$,
(3) $E_{3}=\pi_{A B C G}\left(R_{2}\right)$.

Now, as anticipated in Section 2.2, we show how to construct a tableau for a scje, as a special case of the general construction method [1, 2]. Given a scje

$$
E=\pi_{X}\left(R_{i_{0}} \bowtie \pi_{Y_{1} z_{1}}\left(R_{i_{1}}\right) \bowtie \cdots \bowtie \pi_{Y_{m} z_{m}}\left(R_{i_{m}}\right)\right)
$$

corresponding to a ds $\tau=\left\langle f_{1}: Y_{1} \rightarrow Z_{1}, \ldots, f_{m}: Y_{m} \rightarrow Z_{m}\right\rangle$, the tableau T_{E} for E has a summary containing distinguished variables on the attributes in X, and undefined on the other attributes, and a body composed of $m+1$ rows, l_{0}, l_{1}, \ldots, l_{m}, corresponding to the $m+1$ factors in the join, defined as follows:
-for every $0 \leq j \leq m$, row l_{j} has tag $R_{i_{j}}$
-for every $A \in U, l_{0}[A]$ is the distinguished variable a if $A \in X$, and an ndv otherwise.
-for every $j \geq 1, l_{j}$ is defined on the basis of rows $l_{0}, l_{1}, \ldots, l_{j-1}$:
-if $A \in\left(Y_{j} \cap X\right)$, then $l_{j}[A]$ is the $\mathrm{dv} a$;
-if $A \in\left(Y_{j}-X\right)$, then by definition of ds, there is an integer k, such that $1 \leq k \leq j-1$ and $A \in Z_{k}$: then $l_{j}[A]$ is set equal to $l_{k}[A]$, and is therefore a repeated ndv;
-if $A \in\left(U-Y_{j}\right)$, the $l_{j}\lfloor A\rfloor$ is a ndv not appearing in rows $l_{0}, l_{1}, \ldots, l_{j-1}$.
Example 3. The tableau corresponding to the scje E_{1} in Example 2 is the following:

A	B	C	D	E	G	TAG
a	b	c			g	
a	b	v_{1}	v_{2}	v_{3}	v_{4}	R_{1}
v_{5}	b	c	v_{6}	v_{7}	v_{8}	R_{2}
v_{9}	b	c	v_{10}	v_{11}	v_{12}	R_{2}
v_{13}	v_{14}	v_{15}	v_{16}	v_{11}	g	R_{2}

If the chase procedure is applied to T_{E}, the following tableau $\operatorname{chaSE}_{F}\left(T_{E}\right)$ is obtained:

A	B	C	D	E	G	TAG
a	b	c			g	
a	b	c	v_{2}	v_{3}	g	R_{1}
v_{5}	b	c	v_{6}	v_{3}	g	R_{2}
v_{9}	b	c	v_{10}	v_{3}	g	R_{2}
v_{13}	v_{14}	v_{15}	v_{16}	v_{3}	g	R_{2}

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

3. CONTAINMENT AND EQUIVALENCE OF SCJE'S

The goal of this paper is the efficient optimization of unions of scje's. Scje's are PJ-expressions, and Sagiv and Yannakakis [26, pp. 642-643] have shown that a union of PJ-expressions has a minimum number of joins if and only if (i) there is no redundant expression in the union, and (ii) each expression in the union has a minimum number of joins. Therefore, we study containment and equivalence of scje's (in order to be able to eliminate redundant expressions in the unions) in this section, and minimization of scje's in the following. In both cases we find efficient algorithms, which take into account the restricted nature of scje's, and do not require the construction and the chase of the tableaux corresponding to the expressions.
The plan for this section is the following. We first recall existing results that relate containment and equivalence of expressions to containment and equivalence of the corresponding chased tableaux. Then we study the structure of the chased tableaux for scje's, and, finally, we characterize containment (and equivalence) of scje's on the basis of the associated ds's.

Graham and Mendelzon [11] studied the equivalence of SPJ-expressions with respect to a given set of dependencies. Chan [6] extended their results to containment of expressions, proving the following fact.

Fact 3.1. Given a database scheme \mathbf{R} with an associated set of fd's F and two SPJ-expressions E_{1}, E_{2}, then $E_{1} \supseteq E_{2}$ if and only if $\operatorname{CHASE}_{F}\left(T_{E_{1}}\right) \supseteq$ CHASE $_{F}\left(T_{E_{2}}\right)$.

On the basis of Fact 3.1, we show some properties of scje's, which are a special case of SPJ-expressions. Let $\tau=\left\langle f_{1}: Y_{1} \rightarrow Z_{1}, \ldots, f_{m}: Y_{m} \rightarrow Z_{m}\right\rangle$ be a ds for a relation scheme $R_{i_{0}}$ covering a set of attributes $X \subseteq U$, let $E=\pi_{X}\left(R_{i_{0}} \bowtie\right.$ $\left.\pi_{X_{1} Y_{1}}\left(R_{i_{1}}\right) \bowtie \cdots \bowtie \pi_{Y_{k} Z_{k}}\left(R_{i_{k}}\right)\right)$ be the corresponding scje, and let T_{E} be the tableau corresponding to E. We use l_{0}, \ldots, l_{k} to denote the rows in the body of T_{E} corresponding to the subexpressions $R_{i_{0}}, \ldots, \pi_{X_{k} Y_{k}}\left(R_{i_{k}}\right)$ respectively. The following is a way to obtain $\operatorname{CHASE}_{F}\left(T_{E}\right)$. Also, without loss of generality, we assume that the ndv's in l_{0} follow, in the total order \leq defined on the set V_{N}, all the other ndv's appearing in T_{E}. (In this way, whenever row l_{0} is involved in a transformation during the chase, the values in l_{0} will always be modified, and equated to the values in the other row involved.)

Algorithm 3.1. A method for chasing the tableau for an scje.
INPUT: The tableau T_{s} for an scje, as above, and a set of $f d$'s F.
OUTPUT: CHASE $_{F}\left(T_{E}\right)$.
METHOD:
(1) For $j=1$ to m
apply to T_{E} the transformation involving rows l_{0} and l_{j}, and the jth fd in $\tau, Y_{j} \rightarrow Z_{j}$.
Let the resulting tableau be T_{E}^{\prime}.
(2) Apply all possible transformations to T_{E}^{\prime} to obtain $\operatorname{CHASE}_{F}\left(T_{E}\right)$.

Lemma 3.1. Algorithm 3.1 correctly produces the chased tableau $\operatorname{ChaSE}\left(T_{E}\right)$, and, for each $1 \leq j \leq m$, the j th transformation applied during step (1) equates $l_{\mathrm{n}}\left[Z_{j}\right]$ to $l_{j}\left[Z_{j}\right]$.
ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989.

Proof. We first prove that, for each $1 \leq j \leq m$, the j th transformation applied during step (1) of Algorithm 3.1 is valid and equates $l_{0}\left[Z_{j}\right]$ to $l_{j}\left[Z_{j}\right]$. We proceed by induction on j. The basis $(j=1)$ is trivial. Then, let $j>1$, and assume that, for all $1 \leq i \leq j-1$, the i th transformation is valid, and equates $l_{0}\left[Z_{i}\right]$ and $l_{i}\left[Z_{i}\right]$. Let us consider $Y_{j} \rightarrow Z_{j}$, the j th fd in the ds τ. By definition of ds, $Y_{j} \subseteq$ $R_{i_{0}} Z_{1} \cdots Z_{j-1}$. Let $Y_{j}=Y^{\prime} Y^{\prime \prime}$, where $Y^{\prime} \subseteq R_{i_{0}}$ and $Y^{\prime \prime} \subseteq Z_{1} \cdots Z_{j-1}$. By definition of T_{E}, for each $A \in Y^{\prime}, l_{0}[A]=l_{j}[A]$ in T_{E}. Similarly for each $B \in$ $Y^{\prime \prime}, l_{j}[B]=l_{i}[B]$ in T_{E}, where $B \in Z_{i}$, for some $1 \leq i \leq j-1$. By the induction hypothesis, $l_{0}\left[Z_{i}\right]=l_{i}\left[Z_{i}\right]$, for all $1 \leq i \leq j-1$. Hence $l_{0}\left[Y^{\prime \prime}\right]=l_{j}\left[Y^{\prime \prime}\right]$, and so $l_{0}\left[Y_{j}\right]=l_{0}\left[Y^{\prime} Y^{\prime \prime}\right]=l_{j}\left[Y^{\prime} Y^{\prime \prime}\right]=l_{j}\left[Y_{j}\right]$. Therefore, the j th transformation is valid. Since $Z_{j} \cap R_{i_{0}} Z_{1} \cdots Z_{j-1}=\varnothing$, all the values in $l_{0}\left[Z_{j}\right]$ are unique ndv's before the application of the transformation, and therefore no contradiction arises; as a consequence of the assumption made just before presenting the algorithm, the values in $l_{0}\left[Z_{j}\right]$ are modified, and equated attribute-wise to those in $l_{j}\left[Z_{j}\right]$. This completes the induction.

We have therefore proved the second part of the claim, together with the validity of the transformations applied in step (1) of the algorithm. To complete the proof, we have to show that the algorithm correctly computes the chase of the tableau T_{E}. Now all transformations are valid, and, in step (2), transformations are applied as long as possible. Therefore, the algorithm specifies a possible sequence of valid transformations that produces a tableau that is no longer modifiable. Since the chase is a Church-Rosser process (that is, its result is independent of the order of application of the individual transformations [17, pp. 168-174]), the algorithm produces $\operatorname{CHASE}_{F}\left(T_{E}\right)$.

The following lemmas summarize some fundamental properties about the chased tableau $\operatorname{CHASE}_{F}\left(T_{E}\right)$, which will enable us to know its content without actually building and chasing T_{E}.

Lemma 3.2. Let l_{p} be a row in T_{E}, with $p \geq 1$. Then the following are equivalent.
(1) $A \in Y_{p}^{+}$.
(2) $l_{p}[A]=l_{0}[A]$ in $\operatorname{CHASE}_{F}\left(T_{E}\right)$.
(3) $l_{p}[A]$ is a significant symbol in $\operatorname{CHASE}_{F}\left(T_{E}\right)$.

Proof. (1) \Rightarrow (2). After step (1) of Algorithm 3.1, $l_{p}\left[Y_{p}\right]=l_{0}\left[Y_{p}\right]$, for all $1 \leq p \leq k$. Since chasing T_{E} cannot encounter contradiction, if $A \in Y_{p}^{+}$, then $l_{p}[A]=l_{0}[A]$ in $\operatorname{CHASE}_{F}\left(T_{E}\right)$.
$(2) \Rightarrow(3)$. Follows directly from the definition of significant symbols.
$(3) \Rightarrow(1)$. We show that, if $A \notin Y_{p}^{+}$, then $l_{p}[A]$ is a unique ndv in $\operatorname{CHASE}_{F}\left(T_{E}\right)$. We proceed by induction on the number j of transformations applied to T_{E}^{\prime} in step (2).

Basis: $j=0$. Transformations in step (1) only change entries in l_{0}, and so, if $p \neq 0$, then every entry in l_{p} is unchanged after step (1). Therefore if $A \notin Y_{p}^{+}$, the value $l_{p}[A]$ is a unique ndv. Hence the basis is established.

Induction: $j>0$. Suppose that, after the application of $(j-1)$ transformations to T_{E}^{\prime}, for all $p \neq 0$, for all $A \notin Y_{p}^{+}, l_{p}[A]$ is a unique ndv. Let the j th transformation involve the $\mathrm{fd} X \rightarrow A$ and rows l_{s} and l_{t}. Now the claim is violated
only if $s \neq 0, A \notin Y_{s}^{+}$, and $l_{s}[A]$ is a unique ndv (before the application of the transformation), or $t \neq 0, A \notin Y_{t}^{+}$, and $l_{t}[A]$ is a unique ndv.

If $s \neq 0$ and $l_{s}[X]=l_{t}[X]$, then the symbols in l_{s} are not unique ndv's, and so, by the induction hypothesis, $X \subseteq Y_{s}^{+}$; therefore, by the property of transitivity for fd's, $A \in Y_{s}^{+}$. The same argument can be carried out for l_{t}, thus completing the induction.

A tableau for a PJ-expression E is simple [25] if, for each attribute $A \in U$, the corresponding column in $\operatorname{CHASE}_{F}\left(T_{E}\right)$, contains at most one significant symbol.

Lemma 3.3. The tableau Chase $_{F}\left(T_{E}\right)$ is simple.
Proof. Suppose there exist two distinct significant symbols $l_{p}[A]$ and $l_{q}[A]$ in column A. By Lemma 3.2, $l_{p}[A]=l_{0}[A]$ and $l_{q}[A]=l_{0}[A]$. Hence $l_{0}[A]=$ $l_{p}[A]=l_{q}[A]$, a contradiction. Hence there is at most one significant symbol in column A.

Let T_{E} and T_{F} be tableaux for scje's E and F, respectively, and l_{s} and l_{t} be any two rows in T_{E} and T_{F}, respectively. The row l_{s} is said to subsume l (written $l_{s} \geq l_{t}$) if, for all $A \in U$ whenever $l_{t}[A]$ is a significant symbol, then $l_{s}[A]$ is also a significant symbol.

Lemma 3.4. $l_{0}[A]$ is a significant symbol in $\operatorname{CHASE}_{F}\left(T_{E}\right)$ if and only if $A \in$ $X Y_{1}^{+} Y_{2}^{+} \ldots Y_{k}^{+}$.

Proof. (If) If A belongs to $Y_{p}^{+}-R_{i_{0}}$, for some $1 \leq p \leq k$, then, by Lemma 3.2, we know that $l_{0}[A]=l_{p}[A]$ in $\operatorname{CHASE}_{F}\left(T_{E}\right)$, and so $l_{0}[A]$ is a significant symbol. If A belongs to $X-Y_{1}^{+} Y_{2}^{+} \cdots Y_{k}^{+}$, then, by definition of ds, we have that $A \in X \cap R_{i_{0}}$, and so $l_{0}[A]$ is a dv and hence a significant symbol in T_{E}.
(Only if) Suppose, by way of contradiction, that there exists an attribute A not belonging to $X Y_{1}^{+} Y_{2}^{+} \ldots Y_{k}^{+}$, such that $l_{0}[A]$ is a significant symbol. Since $A \notin X$, there is no dv in the A-column, and so $l_{0}[A]$ is a repeated ndv in $\operatorname{CHASE}_{F}\left(T_{E}\right)$. Therefore, there exists a row $l_{p} \in \operatorname{CHASE}_{F}\left(T_{E}\right)$, with $p>0$ such that $l_{0}[A]=l_{p}[A]$. Then, by Lemma 3.2, A belongs to Y_{P}^{+}-a contradiction.

Lemma 3.5. Let $l_{p}[A]$ be a repeated symbol in CHASE $_{F}\left(T_{E}\right)$, for some $0 \leq p \leq$ m. Then there exists another row l_{q} in $\operatorname{CHASE}_{F}\left(T_{E}\right)$ such that l_{p} and l_{q} have different tags and $l_{p}[A]=l_{q}[A]$.

Proof. Let us distinguish two cases.
(1) $p=0$. Since $l_{0}[A]$ is a repeated symbol, there exists l_{q} such that $l_{0}[A]=l_{q}[A]$. But l_{0} has a tag $R_{i_{0}}$ that appears nowhere else, and so l_{0} and l_{q} have different tags.
(2) $p \neq 0$. Since $l_{p}[A]$ is a significant symbol, by Lemma 3.2, $l_{p}[A]=l_{0}[A]$. Again, we know that l_{p} and l_{0} have different tags.

On the basis of the previous results, we can characterize containment of scje's, in terms of chased tableaux.

Theorem 3.1. Let E_{1} and E_{2} be two scje's with the same target $X . E_{1} \supseteq E_{2}$ if and only if for each row s_{i} in $\operatorname{CHASE}_{F}\left(T_{E_{1}}\right)$ there exists a row t_{j} in $\operatorname{CHASE}_{F}\left(T_{E_{2}}\right)$ such that $s_{i}[T A G]=t_{j}[T A G]$ and $t_{j} \geq s_{i}$.

Proof. By Fact 3.1, $E_{1} \supseteq E_{2}$ if and only if $\operatorname{CHASE}_{F}\left(T_{E_{1}}\right) \supseteq \operatorname{CHASE}_{F}\left(T_{E_{2}}\right)$. Therefore it suffices to show that $\operatorname{CHASE}_{F}\left(T_{E_{1}}\right) \supseteq \operatorname{CHASE}_{F}\left(T_{E_{2}}\right)$ if and only if for each row s_{i} in $\operatorname{CHASE}_{F}\left(T_{E_{1}}\right)$ there exists a row t_{j} in $\operatorname{CHASE}_{F}\left(T_{E_{2}}\right)$ such that $s_{i}[T A G]=t_{j}[T A G]$ and $t_{j} \geq s_{i}$.
(If) Let it be the case that, for each row s_{i} in $\operatorname{CHASE}_{F}\left(T_{E_{1}}\right)$, there exists t_{j} in $\operatorname{CHASE}_{F}\left(T_{E_{2}}\right)$, with the same tag as s_{i} and subsuming it. On the basis of this correspondence, we consider the mapping ν, from the symbols $T_{E_{1}}$ to the symbols in $T_{E_{2}}$, that, for every $s_{i} \in \operatorname{CHASE}_{F}\left(T_{E_{1}}\right)$, for every $A \in U^{\prime}$, maps $s_{i}[A]$ to $t_{j}[A]$, and prove that it is a containment mapping. Following the definition of containment mapping, we show that ν is a function and that it is the identity on dv's (since there are no constants, no symbol is lower than dv's with respect to the partial order \leq) and tags.

Since, for every s_{i}, the corresponding t_{j} has the same tag $\left(s_{i}[T A G]=t_{j}[T A G]\right)$, the mapping ν is the identity on tags.

Let $s_{i}[A]$ be a dv; by definition of $\nu, \nu\left(s_{i}[A]\right)=t_{j}[A]$; we show that $t_{j}[A]=$ $s_{i}[A]$, and therefore $\nu\left(s_{i}[A]\right)=s_{i}[A]$. Since $s_{i}[A]$ is a dv (the dv for attribute A), then $A \in X$ and therefore the $d v$ for A appears in column A in $T_{E_{2}}$. Then, by definition of subsumption, since $t_{j} \geq s_{i}$ and $s_{i}[A]$ is a dv, we have that $t_{j}[A]$ is also a significant symbol. By Lemma 3.3, the dv is the only significant symbol in column A in $\operatorname{CHASE}_{F}\left(T_{E_{2}}\right)$, and therefore $t_{j}[A]=s_{i}[A]$.

We now show that ν is in fact a function, that is, if $s_{i}[A]=s_{h}[A]$, then $\nu\left(s_{i}[A]\right)=\nu\left(s_{h}[A]\right)$. Let $s_{i}[A]=s_{h}[A]=v$. If v is a dv, we already know that $\nu(v)=v$ and therefore $\nu\left(s_{i}[A]\right)=\nu\left(s_{h}[A]\right)$. Otherwise, v is a repeated ndv, and so $A \notin X$. Therefore, there is no dv in column A in $T_{E_{2}}$. Hence, since $t_{j} \geq s_{i}, t_{j}[A]=\nu\left(s_{i}[A]\right)$ is a repeated ndv. Similarly, we could prove that $\nu\left(s_{h}[A]\right)$ is a repeated ndv. By Lemma 3.3, there is only one repeated ndv in column A in $\operatorname{CHASE}_{F}\left(T_{E_{2}}\right)$, and so $\nu\left(s_{i}[A]\right)=\nu\left(s_{h}[A]\right)$.

Summarizing, the two tableaux have identical target relation schemes (because E_{1} and E_{2} are scje's with the same target) and ν is a containment mapping; therefore, $\operatorname{CHASE}_{F}\left(T_{E_{1}}\right) \supseteq \operatorname{CHASE}_{F}\left(T_{E_{2}}\right)$.
(Only if) Assume that $\operatorname{CHASE}_{F}\left(T_{E_{1}}\right) \supseteq \operatorname{CHASE}_{F}\left(T_{E_{2}}\right)$; therefore there exists a containment mapping from $\operatorname{CHASE}_{F}\left(T_{E_{1}}\right)$ to $\operatorname{CHASE}_{F}\left(T_{E_{2}}\right)$. Let s_{i} be a row in $\operatorname{CHASE}_{F}\left(T_{E_{1}}\right)$ and let t_{j} be the row to which s_{i} is mapped; we show that $t_{j} \geq s_{i}$ and $t_{j}[T A G]=s_{i}[T A G]$. This last claim is immediate, since containment mappings are the identity on tags. To complete the proof, we show that, for every attribute $A \in U$, if $s_{i}[A]$ is significant, then $t_{j}[A]$ is also significant. Let us distinguish two cases:
(1) $s_{i}[A]$ is a dv. Since (when no constants are involved) a containment mapping is the identity on dv's, $t_{j}[A]=s_{i}[A]$, and so $t_{j}[A]$ is a dv, a significant symbol.
(2) $s_{i}[A]$ is a repeated ndv. By Lemma 3.3, there is no dv in column A in $\operatorname{CHASE}_{F}\left(T_{E_{1}}\right)$, and hence $A \notin X$, and so there is no dv in column A in $\operatorname{CHASE}_{F}\left(T_{E_{2}}\right)$ either. We claim that $t_{j}[A]$ is also a repeated ndv. Since $s_{i}[A]$
is a repeated ndv, by Lemma 3.5, there exists another row s_{p} in $\operatorname{CHASE}_{F}\left(T_{E_{1}}\right)$ such that $s_{p}[\Lambda]=s_{i}[\Lambda]$ and $s_{p}[T A G] \neq s_{i}[T \Lambda G]$. If $t_{j}[\Lambda]$ were a unique ndv, then s_{p} would be mapped to t_{j}, and the valuation function would not be the identity on tags, against the definition. Therefore $t_{j}[A]$ is not a unique ndv, and it is therefore significant.

The above theorem characterizes containment of scje's in terms of their chased tableaux. However, it is not necessary to generate the chased tableaux physically, since, by Lemmas 3.2 and 3.4, we know exactly which values in each row of a chased tableau are significant symbols. This is confirmed by the following corollary, which characterizes containment of scje's in terms of the associated ds's. It refers to the scje's $E_{\tau}=\pi_{X}\left(R_{i_{0}} \bowtie \pi_{Y_{1} Z_{1}}\left(R_{i_{1}}\right) \bowtie \cdots \bowtie \pi_{Y_{m} Z_{m}}\left(R_{i_{m}}\right)\right)$ and $E_{\chi}=\pi_{X}\left(R_{p_{0}} \bowtie \pi_{V_{1} W_{1}}\left(R_{p_{1}}\right) \bowtie \cdots \bowtie \pi_{V_{n} W_{n}}\left(R_{p_{n}}\right)\right)$, corresponding to the ds's $\tau=$ $\left\langle Y_{1} \rightarrow Z_{1}, \ldots, Y_{m} \rightarrow Z_{m}\right\rangle$, and $\chi=\left\langle V_{1} \rightarrow W_{1}, \ldots, V_{n} \rightarrow W_{n}\right\rangle$, respectively.

Corollary 3.1. $E_{\tau} \supseteq E_{\chi}$ if and only if:
(1) If $R_{i_{0}} \neq R_{p_{0}}$, then there is an fd $V_{k} \rightarrow W_{k}$ in χ such that $R_{i_{0}}=R_{p_{k}}$ and $V_{k}^{+} \supseteq$ $X Y_{1}^{+} \cdots Y_{m}^{+}$, and
(2) for each $Y_{j} \rightarrow Z_{j}$ in τ, if $R_{i_{j}}=R_{p_{0}}$, then $X V_{1}^{+} \cdots V_{n}^{+} \supseteq Y_{j}^{+}$; otherwise, there exists a $V_{k} \rightarrow W_{k}$ in χ such that $V_{k}^{+} \supseteq Y_{j}^{+}$and $R_{p_{k}}=R_{i_{j}}$.
Proof. Let the sets of rows in $T_{E_{\tau}}$ and $T_{E_{\chi}}$ be $\left\{u_{0}, \ldots, u_{m}\right\}$ and $\left\{v_{0}, \ldots, v_{n}\right\}$, respectively. By Theorem 3.1, $E_{\tau} \supseteq E_{\chi}$ if and only if for each row u_{j} in $\operatorname{CHASE}_{F}\left(T_{E_{\tau}}\right)$, there exists a row v_{k} in $\operatorname{CHASE}_{F}\left(T_{E_{x}}\right)$ such that u_{j} and v_{k} have the same tag and $v_{k} \geq u_{j}$. Therefore we show that it is the case that, for each row u_{j} in $\operatorname{CHASE}_{F}\left(T_{E_{r}}\right)$, there exists a row v_{k} in $\operatorname{CHASE}_{F}\left(T_{E_{\chi}}\right)$ such that u_{j} and v_{k} have the same tag and $v_{k} \geq u_{j}$ if and only if conditions (1) and (2) in this corollary hold.
(If) Assume that conditions (1) and (2) hold. Consider row u_{0}. If $R_{i_{0}}=R_{p_{0}}$, then v_{0} is the only row in $\operatorname{CHASE}_{F}\left(T_{E_{\chi}}\right)$ with the same tag as u_{0}; by Lemma 3.4, u_{0} and v_{0} have significant symbols on the attributes of $X Y_{1}^{+} \cdots Y_{m}^{+}$and $X V_{1}^{+} \ldots V_{n}^{+}$, respectively; then, it follows from (2) that $X V_{1}^{+} \ldots V_{n}^{+} \supseteq$ $X Y_{1}^{+} \ldots Y_{m}^{+}$, and therefore, by definition of subsumption, $v_{0} \geq u_{0}$. If $R_{i_{0}} \neq R_{p_{0}}$, by (1), there is an fd $V_{k} \rightarrow W_{k}$ in χ such that $V_{k}^{+} \supseteq X Y_{1}^{+} \cdots Y_{m}^{+}$and $R_{i_{0}}=R_{p_{k}}$; then u_{0} and v_{k} have the same tag, and, by Lemmas 3.4 and 3.2 , they have significant symbols on $X Y_{1}^{+} \cdots Y_{m}^{+}$and V_{k}^{+}, respectively, and so $v_{k} \geq u_{0}$.

Now, consider a generic row u_{j} in $\operatorname{CHASE}_{F}\left(T_{E_{r}}\right)$, with $j \geq 1$, and the associated $\mathrm{fd} Y_{j} \rightarrow Z_{j}$ in τ; by (2), if $R_{i j}=R_{p_{0}}$, then $X V_{1}^{+} \cdots V_{n}^{+} \supseteq Y_{j}^{+}$; otherwise, there exists a $V_{k} \rightarrow W_{k}$ in χ such that $V_{k}^{+} \supseteq Y_{j}^{+}$and $R_{p_{k}}=R_{i_{j}}$. In the first case, arguing as above about significant symbols, we can conclude that $v_{0} \geq u_{j}$; in the second case, that $v_{k} \geq u_{j}$. Therefore, in either case, there is a row v_{h} in $\operatorname{CHASE}_{F}\left(T_{E_{x}}\right)$ with the same tag as u_{j} such that $v_{h} \geq u_{j}$.
(Only if) Assume that, for each row u_{j} in $\operatorname{CHASE}_{F}\left(T_{E_{r}}\right)$, there exists a row v_{k} in $\operatorname{CHASE}_{F}\left(T_{E_{x}}\right)$ such that u_{j} and v_{k} have the same tag and $v_{k} \geq u_{j}$. We show that conditions (1) and (2) hold.
(1) Let $R_{i_{0}} \neq R_{p_{0}}$; therefore, since u_{0} and v_{0} have different tags, there is a row v_{j} in $\operatorname{CHASE}_{F}\left(T_{E_{\chi}}\right)$, with the tag $R_{i_{0}}$ such that $v_{j} \geq u_{0}$. Then, by Lemmas 3.2 and 3.4, it follows that $V_{k}^{+} \supseteq X Y_{1}^{+} \cdots Y_{m}^{+}$.
(2) Let $Y_{j} \rightarrow Z_{j}$ be an fd in τ. Let us consider two subcases.
(a) $R_{i_{j}}=R_{p_{0}}$. Then, v_{0} is the only row in $\operatorname{CHASE}_{F}\left(T_{E_{x}}\right)$ with the same tag as u_{j}; therefore, it is the case that $v_{0} \geq u_{j}$, and so, by Lemmas 3.2 and 3.4, $X V_{1}^{+} \cdots V_{n}^{+} \supseteq Y_{j}^{+}$.
(b) $R_{i_{j}} \neq R_{P_{0}}$. Then there is a row v_{k} in $\operatorname{CHASE}_{F}\left(T_{E_{x}}\right)$, with $k \geq 1$, with the same tag as u_{j} and subsuming it. Then, by Lemma 3.2, $V_{k}^{+} \supseteq Y_{j}^{+}$, and so, there is an $\mathrm{fd} V_{k} \rightarrow W_{k}$ in χ such that $V_{k}^{+} \supseteq Y_{j}^{+}$.

Given E_{τ} and E_{χ} as above, in order to test whether $E_{\tau} \supseteq E_{\chi}$, we can proceed as follows:
(1) Compute the closures of the Y_{i} 's and V_{j} 's.
(2) If $R_{i_{0}} \neq R_{j_{9}}$, test the existence of the fd in χ, required by condition (1) of Corollary 3.1.
(3) For each fd in τ, check for the satisfaction of condition (2) of Corollary 3.1.

Step (1) can be executed in time $O((m+n) \times\|F\|)$, where m, n are the lengths of the two derivation sequences, and $\|F\|$ is the space required to write the set of fd's F, by applying the widely known closure algorithm in [5] to each set of attributes in the ds's. Steps (2) and (3) essentially require pairwise comparisons of sets of attributes, and can therefore be executed in time $O(m \times n \times|U|)$, where m, n are as above, and $|U|$ is the number of attributes in the universe. Therefore, containment of scje's can be tested in time $O((m+n) \times\|F\|+m \times n \times|U|)$.

The following corollary is the special case of Corollary 3.1, if E_{τ} and E_{χ} are scje's for the same relation scheme.

Corollary 3.2. Let $\tau, \chi, E_{\tau}, E_{\chi}$ be as above, with the further condition that $R_{i_{0}}=R_{p_{0}}$. Then, $E_{\tau} \supseteq E_{\chi}$ if and only if for each $Y_{j} \rightarrow Z_{j}$ in τ there exists a $V_{k} \rightarrow W_{k}$ in χ such that $V_{k}^{+} \supseteq Y_{j}^{+}$and $R_{p_{k}}=R_{i j}$.

Example 4. Consider again the database scheme and the scje's in Example 2:

$$
\begin{aligned}
& \mathbf{R}=\left\{R_{1}(A B), R_{2}(A B C D E F)\right\} . \\
& F=\{A B \rightarrow D, B C \rightarrow E, B \rightarrow C, D \rightarrow F, E \rightarrow F\} . \\
& E_{1}=\pi_{A B C F}\left(R_{1} \bowtie \pi_{B C}\left(R_{2}\right) \bowtie \pi_{B C E}\left(R_{2}\right) \bowtie \pi_{E F}\left(R_{2}\right)\right) . \\
& E_{2}=\pi_{A B C F}\left(R_{1} \bowtie \pi_{A B D}\left(R_{2}\right) \bowtie \pi_{D F}\left(R_{2}\right) \bowtie \pi_{B C}\left(R_{2}\right)\right) . \\
& E_{3}=\pi_{A B C F}\left(R_{2}\right) .
\end{aligned}
$$

Let us try to eliminate redundant subexpressions from the union of the three scje's. Let us consider E_{1} and E_{2} : since $A B D^{+}=A B C D E F=U$, by Corollary 3.2, $E_{1} \supseteq E_{2}$. Then, E_{1} cannot contain E_{3}, by Theorem 3.1, since $T_{E_{1}}$ has a row with tag R_{1} and $T_{E_{3}}$ does not. Finally, $E_{3} \supseteq E_{1}$ if and only if one of the closures of $B C$, $B C E$, or $E F$ contains $A B C F$. Since $B C^{+}=B C E F, B C E^{+}=B C E F$ and $E F^{+}=E F$, E_{3} does not contain E_{1}. Hence $E_{1} \cup E_{3}$ is an equivalent expression to $E_{1} \cup$ $E_{2} \cup E_{3}$, and it does not contain redundant subexpressions. In the next section, we will see how to minimize the individual scje's, in order to obtain the optimal expression.

4. OPTIMIZATION OF SCJE'S

In this section we study the problem of optimization of scje's. As usual for PJ-expressions, optimization means minimization of the number of joins in the expression, which corresponds to minimization of the corresponding tableau. The general problem of minimizing a tableau is NP-complete, whereas for simple tableaux the problem can be solved in polynomial time [1, 2, 25]. By Lemma 3.3, the chased tableaux for scje's are simple, and therefore can be minimized efficiently; however, the above methods require us to construct and chase the tableaux. In this section, we show that this is not necessary. We first characterize when a chased tableau for an scje is minimal. Then we show how, on the basis of this result, it is possible to obtain a minimal equivalent expression for an scje, without generating the chased tableau.

It is known [2, p. 446] that, for every tableau T, there is an equivalent minimal tableau whose body is a subset of the body of T. The following lemma characterizes this minimal tableau if T is the tableau for an scje.

Lemma 4.1. Let E be an scje, T_{E} the corresponding tableau, and T_{E}^{*} the minimal tableau contained in $\operatorname{CHASE}_{F}\left(T_{E}\right)$. Then a row l_{k} in the body of $\operatorname{CHASE}_{F}\left(T_{E}\right)$ is in T_{E}^{*} if and only if there is no other row l_{k} in the body of $\operatorname{CHASE}_{F}\left(T_{E}\right)$, with the same tag, such that $l_{k} \geq l_{j}$.

Proof. (If) Let l_{j}, l_{k} be distinct rows in $\operatorname{CHASE}_{F}\left(T_{E}\right)$; assume, by way of contradiction, that they are both in T_{E}^{*}, have the same tag, and $l_{k} \geq l_{j}$. Now, let ν be the mapping that (i) maps the unique symbols in l_{j} to the respective symbols in l_{k}, and (ii) is the identity on the other symbols. Clearly, ν is a containment mapping from T_{E}^{*} to $T_{E}^{*}-\left\{l_{j}\right\}$, and so, since there is always a containment mapping from $T_{E}^{*}-\left\{l_{j}\right\}$ to T_{E}^{*}, T_{E}^{*} is not minimal, a contradiction.
(Only if) Let l_{j} be a row in the body of $\operatorname{CHASE}_{F}\left(T_{E}\right)$ such that there is no other row l_{k} in the body of T_{E}^{*} such that $l_{k} \geqq l_{j}$ and $l_{k}[T A G]=l_{j}[T A G]$. Then, since T_{E}^{*} is equivalent to $\operatorname{CHASE}_{F}\left(T_{E}\right)$, there is a containment mapping ν, from $\operatorname{CHASE}_{F}\left(T_{E}\right)$ to T_{E}^{*}; therefore, $\nu\left(l_{j}\right)$ is in the body of T_{E}^{*}. By definition of containment mapping and of subsumption, $\nu\left(l_{j}\right) \geq l_{j}$ and $\nu\left(l_{j}\right)[T A G]=l_{j}[T A G]$, and so, if there is no row l_{k} in the body of T_{E}^{*}, distinct from l_{j}, such that $l_{k} \geq l_{j}$ and $l_{k}[T A G]=l_{j}[T A G]$, it must be the case that $\nu\left(l_{j}\right)=l_{j}$, and so l_{j} is in the body of T_{E}^{*}.

By Lemma 4.1, the chased tableau for an scje can be minimized by repeatedly eliminating rows subsumed by other tuples. We have therefore proved the correctness of the following algorithm.

Algorithm 4.1. Minimizing the chased tableau for an scje.
INPUT: A tableau $\operatorname{CHASE}_{F}\left(T_{E}\right)$, where E is an scje:

$$
E=\pi_{X}\left(R_{i_{0}} \bowtie \pi_{Y_{1} Z_{1}}\left(R_{i_{1}}\right) \bowtie \cdots \bowtie \pi_{Y_{m} Z_{m}}\left(R_{i_{m}}\right)\right) .
$$

OUTPUT: A minimal tableau T_{E}^{*} equivalent to $\operatorname{CHASE}_{F}\left(T_{E}\right)$.
METHOD:
(1) Let $T=\operatorname{CHASE}_{F}\left(T_{E}\right)$
(2) For $\dot{j}=1$ to m do:

If there is a row l_{k} in T, such that $k \neq j, l_{j}[T A G]=l_{k}[T A G]$ and $l_{j} \geq l_{k}$, then delete l_{k} from T.
(3) Let $T_{E}^{*}=T$.

Algorithm 4.1 can be executed in quadratic time in the number of rows of the tableau, after having chased it. Let l_{p} be a row in $\operatorname{CHASE}_{F}\left(T_{E}\right)$. Row l_{p} is called a dominant row if l_{p} is in T_{E}^{*}. Otherwise it is called a deleted row.

By Theorems 3.2 and 3.4 , we know exactly which symbol in $\operatorname{CHASE}_{F}\left(T_{E}\right)$ is significant. Therefore we can generate a minimal tableau T_{E}^{*} for $\operatorname{CHASE}_{F}\left(T_{E}\right)$ (and therefore an optimal expression for the scje E) without constructing the tableau T_{E} and chasing it. The following algorithm performs this task.

```
Algorithm 4.2. Optimizing an scje.
INPUT: An scje \(E=\pi_{X}\left(R_{i_{0}} \bowtie \pi_{Y_{1} z_{1}}\left(R_{i_{1}}\right) \bowtie \cdots \bowtie \pi_{Y_{m} z_{m}}\left(R_{i_{m}}\right)\right)\).
OUTPUT: An optimal expression \(E^{\prime}\) equivalent to \(E\).
METHOD:
    (1) Initialize three arrays of length \(m\) as follows.
    For \(j:=1\) to \(m d o\) :
        \(T A G[j]:=R_{i j}\)
        \(\operatorname{SUBEXP}[j]:=Y_{j} Z_{j}\)
        CLOSURE \([j]:=Y_{j}^{+}\)
    (2) For \(j:=1\) to mdo :
            If there exists \(k, k \neq j, 1 \leq k \leq m\), such that \(T A G[k]=T A G[j]\) and
                CLOSURE \([k] \supseteq\) CLOSURE \([j]\) then
                \(\operatorname{SUBEXP}[k]:=\operatorname{SUBEXP}[k] \cup \operatorname{SUBEXP}[j]\)
            \(T A G[j]:=\varnothing\).
(3) Construct an expression \(J\) as follows.
\(J:=R_{i_{0}}\)
For \(j=1\) to \(m\) do:
            If \(T A G[j] \neq \varnothing\) then \(J:=J \bowtie \pi_{s u B E x P[j]}(T A G[j])\).
(4) Return the final expression.
\(E^{\prime}:=\pi_{X}(J)\).
```

Let us call a subexpression $\pi_{Y_{j} Z_{j}}\left(R_{i_{j}}\right)$ in E a dominant subexpression if TAG[j] $\neq \varnothing$ after step (2) of Algorithm 4.2. Otherwise, it is called a deleted subexpression. By Lemma 3.2, $l_{p} \geq l_{q}$ exactly when $Y_{p}^{+} \supseteq Y_{q}^{+}$. Hence step (2) of Algorithm 4.2 is essentially the same as step (2) of Algorithm 4.1. That is, the j th row of $\operatorname{CHASE}_{F}\left(T_{E}\right)$ is in T_{E}^{*} if and only if TAG $[j] \neq \varnothing$ after step (2) of Algorithm 4.2. Hence there is a one-to-one correspondence between dominant rows in the tableau $\operatorname{CHASE}_{F}\left(T_{E}\right)$ and dominant subexpressions in E. Hence the number of join operations in E^{\prime} is the same as in any optimal expression equivalent to E. To complete the proof of correctness of Algorithm 4.2 we show that the expression E^{\prime} is in fact equivalent to E. We prove this by showing that $\operatorname{CHASE}_{F}\left(T_{E^{\prime}}\right) \equiv T_{E}^{*}$, where T_{E}^{*} is the tableau produced by Algorithm 4.1.

Lemma 4.2. $\operatorname{CHASE}_{F}\left(T_{E^{\prime}}\right) \equiv T_{E}^{*}$.
Proof. From the argument presented above, there is a one-to-one correspondence between the rows in T_{E}^{*} and the subexpressions in E^{\prime}. Let $\left\{s_{1}, \ldots, s_{q}\right\}$ be the set $\{j \mid T A G[j] \neq \varnothing\}$; therefore, $E^{\prime}=R_{i_{0}} \bowtie \pi_{S U B E X P| |_{11} \mid}\left(R_{i_{1}}\right) \bowtie \cdots \bowtie$ $\pi_{\text {SUBEXP }}\left(R_{i_{i_{q}}}\right)$. Consider the tableau $T_{E^{\prime}}$ for E^{\prime}, and let u_{0}, \ldots, u_{q} be the rows in $\operatorname{CHASE}_{F}\left(T_{E}\right)$. Also, let w_{0}, \ldots, w_{q} be the rows in T_{E}^{*}, respectively equal to the rows $v_{0}, v_{s_{1}}, \ldots, v_{s_{q}}$ of $\operatorname{CHASE}_{F}\left(T_{E}\right)$.

Clearly, $w_{j}[T A G]=u_{j}[T A G]$, for $1 \leq j \leq q$. To complete the proof, we show that $w_{j} \geq u_{j}$ and $u_{j} \geq w_{j}$; by Theorem 3.1, this will imply $T_{E}^{*} \supseteq \operatorname{CHASE} E_{F}\left(T_{E^{\prime}}\right)$ and $\operatorname{CHASE}_{F}\left(T_{E^{\prime}}\right) \supseteq T_{E}^{*}$ and so $\operatorname{CHASE}_{F}\left(T_{E}\right) \equiv T_{E}^{*}$. By Lemma 3.2, if $j \geq 1, u_{j}[A]$ is significant if and only if $A \in S U B E X P\left[s_{j}\right]^{+}$and $w_{j}[A]$ is significant if and only if $A \in Y_{s,}^{+}$; by step (2) of Algorithm 4.2, SUBEXP $\left[s_{j}\right]^{+}=Y_{s_{i}}^{+}$, and therefore $u_{i}[A]$ is significant if and only if $w_{j}[A]$ is significant; so $w_{j} \geq u_{j}$ and $u_{j} \geq w_{j}$.

Similarly, by Lemma 3.4, $w_{0}[A]$ is significant if and only if $A \in$ $\cup_{j=1}^{\varphi}\left(S U B E X P\left[s_{j}\right]\right)^{+} \cup R_{i_{0}}$ and $u_{0}[A]$ is significant if and only if $A \in R_{i_{0}} Y_{s_{1}}^{+} \ldots$ $Y_{s_{q}}^{+}$; again, by step (2) of Algorithm 4.2, we have $\cup_{j=1}^{q}\left(\operatorname{SUBEXP}\left[s_{j}\right]\right)^{+} \cup R_{i_{0}}=$ $R_{i_{0}} Y_{s_{1}}^{+} \cdots Y_{s_{q}}^{+}$, and so $u_{0}[A]$ is significant if and only if $w_{0}[A]$ is significant, that is, $w_{0} \geq u_{0}$ and $u_{0} \geq w_{0}$.

The most significant factor in step (1) of Algorithm 4.2 is computing the closures. Computing the closure for Y_{j} requires $O(\|F\|)$ steps. Therefore step (1) requires $O(m \times\|F\|)$. In step (2) the most significant factor is the comparison of two closures. There are at most m^{2} comparisons in this step, each of which requires $O(|U|)$ operations. Hence step (2) has complexity $O\left(m^{2} \times|U|\right)$ steps. Steps (3) and (4) are negligible with respect to the previous ones. Therefore, the time complexity of Algorithm 4.2 is $O\left(m \times\|F\|+m^{2} \times|U|\right)$. So we proved the following theorem.

Theorem 4.1. The expression E^{\prime} produced by Algorithm 4.2 is equivalent to E and is minimal in the number of join operations. The time complexity of Algorithm 4.2 is $O\left(m \times\|F\|+m^{2} \times|U|\right)$.

The combined use of the results in Section 3 and Section 4 yields an efficient method for optimizing unions of scje's: given an expression of this class, redundant subexpressions (i.e., scje's) can be discovered by means of Corollary 3.1, and therefore eliminated from the union; then, each of the remaining scje's is minimized by means of Algorithm 4.2. Since each stage can be done efficiently, optimization of unions of scje's can be done efficiently.

Example 5. Let us consider again the database scheme in Examples 2 and 4.

$$
\begin{aligned}
\mathbf{R} & =\left\{R_{1}(A B), R_{2}(A B C D E G)\right\} . \\
F & =\{A B \rightarrow D, B C \rightarrow E, B \rightarrow C, D \rightarrow G, E \rightarrow G\} .
\end{aligned}
$$

Let us consider the expression $E_{1} \cup E_{3}$ in Example 3, where

$$
E_{1} \cup E_{3}=\pi_{A B C G}\left(R_{1} \bowtie \pi_{B C}\left(R_{2}\right) \bowtie \pi_{B C G}\left(R_{2}\right) \bowtie \pi_{E F}\left(R_{2}\right)\right) \cup \pi_{A B C G}\left(R_{2}\right) .
$$

Since E_{3} is already minimal, let us consider $E_{1} . B C^{+}=B C E G, B C E^{+}=B C E G$ and $E G^{+}=E G$. Hence in step (2) of Algorithm 4.2, TAG[1] and TAG[3] are set to \varnothing and SUBEXP[2] $=B C E G$. Hence $\pi_{A B C G}\left(R_{1} \bowtie \pi_{B C E G}\left(R_{2}\right)\right)$ is returned in step (3) of the Algorithm 4.2. Therefore the optimal expression equivalent to $E_{1} \cup E_{2} \cup E_{3}$ is $\pi_{A B C G}\left(R_{1} \bowtie \pi_{B C E G}\left(R_{2}\right)\right) \cup \pi_{A B C G}\left(R_{2}\right)$.

5. CONCLUSIONS

The common feature of the results of this paper is that it is possible to study the major properties of expressions of a restricted class, scje's, without explicitly building and chasing the tableaux corresponding to the expressions. With the
results existing in the literature, the optimization of a union of PJ-expressions, $E=E_{1} \cup \cdots \cup E_{k}$, where, for each $1 \leq j \leq k, E_{j}$ contains at most m joins, would require time $O\left(k \times(m \times|U|+\|F\|)^{2} \times \log (m \times|U|+\|F\|)\right)$ just to build and chase the k tableaux corresponding to the subexpressions; then, every comparison, or minimization, of tableau would require an amount of time that is quadratic in the size of the tableaux, for a restricted subclass, and bigger in general: in the favorable case [25] $O\left(k^{2} \times m^{2} \times|U|^{2}\right)$ time would therefore be required to execute pairwise comparisons of the k subexpressions. Our results show that, for the restricted class of scje's, the whole process can be carried out in time $O\left(k \times m \times\|F\|+k^{2} \times m^{2} \times|U|\right)$, by means of an implementation of the process suggested by Corollary 3.1, where the closures of the sets of attributes are never computed twice. Therefore we have shown that it is possible to take advantage of the restricted nature of scje's, in order to obtain more efficient algorithms.

Scje's are a meaningful subclass of PJ-expressions, since they can be used to compute the total projections of the representative instance [6, 19]: if the database scheme is independent then, for every X, the X-total projection of the representative instance can be computed by means of a union of scje's. Therefore, our results show how to optimize the expressions that compute the total projections. As a matter of fact, various algorithms have been proposed that, given X, generate the expression that computes the X-total projection [3, 15, 24]; the algorithm proposed by Ito et al. [15] produces an expression that is already optimal, and therefore need not be optimized. However it is possible to implement this algorithm following a strategy proposed by Atzeni and Chan [3, p. 188]: essentially, a number of precomputations (including the closures of all the sets of attributes involved in fd's, and some subexpressions associated with the attributes) are performed in the beginning, when the scheme is defined, and never repeated; then, each time a total projection is needed, the union of scje's is generated more efficiently, and optimized taking advantage of the precomputed closures. If this method is adopted, the use of our optimization algorithm is definitely convenient.

ACKNOWLEDGMENTS

We would like to thank Fred Lochovsky, Alberto Mendelzon, and the referees for their helpful comments on earlier drafts of this paper.

REFERENCES

1. Aho, A. V., Sagiv, Y., and Ullman, J. D. Equivalence of relational expressions. SIAM J. Comput. 8, 2 (May 1979), 218-246.
2. Aho, A. V., Sagiv, Y., and Ullman, J. D. Efficient optimization of a class of relational expressions. ACM Trans. Database Syst. 4, 4 (Dec. 1979), 435-454.
3. Atzeni, P., and Chan, E. P. F. Efficient query answering in the representative instance approach. In Fourth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems (Portland, Ore., Mar. 25-27, 1985). ACM, New York, 1985, pp. 181-188.
4. Atzeni, P., and Parker, D. S., Jr. Assumptions in relational database theory. In ACM SIGACT-SIGMOD Symposium on Principles of Database Systems (Los Angeles, Calif., Mar. 29-31, 1982). ACM, New York, 1982, pp. 1-9.
5. Beeri, C., and Bernstein, P. A. Computational problems related to the design of normal form relational schemas. ACM Trans. Database Syst. 4, 1 (Mar. 1979), 30-59.
6. Chan, E. P. F. Query Answering and Schema Analysis under the Weak Instance Model. Ph.D. dissertation, University of Toronto, 1984.
7. Chan, E. P. F., and Atzeni, P. On the properties and characterization of connection-trap-free schemes. In Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems (Cambridge, Mass., Mar. 24-26, 1986). ACM, New York, 1986, pp. 140-147.
8. Chan, E. P. F., and Mendelzon, A. O. Answering queries on embedded-complete database schemes. J. ACM 34, 2 (Apr. 1987), 349-375.
9. Chan, E. P. F., and Mendelzon, A. O. Independent and separable database schemes. SIAM J. Comput. 16, 5 (Oct. 1987), 841-851.
10. Downey, P. J., Sethi, R., and Tardan, R. E. Variations on the common subexpression problem. J. ACM 27, 4 (Oct. 1980), 758-771.
11. Graham, M. H., and Mendelzon, A. O. Strong equivalence of relational expressions under dependencies. Inf. Process. Lett. 14, 2 (Apr. 1982), 57-62.
12. Graham, M. H., and Yannakakis, M. Independent database schemas. J. Comput. Syst. Sci. 28, 1 (1984), 121-141.
13. Honeyman, P. Extension joins. In Sixth International Conference on Very Large Data Bases (Montreal, Oct. 1-3, 1980). IEEE, New York, 1980, pp. 239-244.
14. Honeyman, P. Testing satisfaction of functional dependencies. J. ACM 29, 3 (July 1982), 668-677.
15. Ito, M., Iwasaki, M., and Kasami, T. Some results on the representative instance in relational databases. SIAM J. Comput. 14, 2 (May 1985), 334-354.
16. Kent, W. Consequences of assuming a universal relation. ACM Trans. Database Syst. 6, 4 (Dec. 1981), 539-556.
17. Maier, D. The Theory of Relational Databases. Computer Science Press, Potomac, Md., 1983.
18. Maier, D., Mendelzon, A. O., And Sagiv, Y. Testing implications of data dependencies. ACM Trans. Database Syst. 4, 4 (Dec. 1979), 455-468.
19. Maier, D., Rozenshtein, D., and Warren, D. S. Windows functions. In Advances in Computing Research, Vol. 3. P. C. Kanellakis and F. Preparata, Eds. JAI Press, Greenwich, Conn., 1986, pp. 213-246.
20. Maier, D., Ullman, J. D., and Vardi, M. On the foundations of the universal relation model. ACM Trans. Database Syst. 9, 2 (June 1984), 283-308.
21. Mendelzon, A. O. Database states and their tableaux. ACM Trans. Database Syst. 9, 2 (June 1984), 264-282.
22. SAGIv, Y. Can we use the universal instance assumption without using nulls? In ACM SIGMOD International Conference on Management of Data (Ann Arbor, Mich., Apr. 29-May 1, 1981), ACM, New York, 1981, pp. 108-120.
23. Sagiv, Y. A characterization of globally consistent databases and their correct access paths. ACM Trans. Database Syst. 8, 2 (June 1983), 266-286.
24. Sagiv, Y. Evaluation of queries in independent database schemes. 1984. Unpublished manuscript.
25. SAGIV, Y. Quadratic algorithms for minimizing joins in restricted relational expressions. SIAM J. Comput. 12, 2 (May 1983), 316-328.
26. Sagiv, Y., and Yannakakis, M. Equivalence among relational expressions with the union and difference operators. J. ACM 27, 4 (Oct. 1980), 633-655.
27. Ullman, J. D. The U.R. strikes back. In ACM SIGACT-SIGMOD Symposium on Principles of Database Systems (Los Angeles, Calif., Mar. 25-27, 1982), ACM, New York, 1982, pp. 10-22.
28. Ullman, J. D. Universal relation interfaces for database systems. In IFIP Congress (Paris, Sept. 19-23, 1983). North-Holland, Amsterdam, 1983, pp. 243-252.
29. Yannakakis, M. Algorithms for acyclic database schemes. In Seventh International Conference on Very Large Data Bases (Cannes, Sept. 9-11, 1981). IEEE, New York, 1981, pp. 82-94.
30. Yannakakis, M. Querying weak instances. In Advances in Computing Research, Vol. 3. P. C. Kanellakis and F. Preparata, Eds. JAI Press, Greenwich, Conn., 1986, pp. 185-211.

Received December 1984 revised November 1987; accepted April 1988

[^0]: The work by P. Atzeni was supported by Consiglio Nazionale delle Richerche, Italy while visiting the Department of Computer Science at the University of Toronto. The work of E. P. F. Chan was supported by the National Sciences and Engineering Research Council of Canada.
 Authors' current addresses: P. Atzeni, IASI-CNR, Viale Manzoni 30, 00185 Rome, Italy; E. P. F. Chan, Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1.
 Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

[^1]: ${ }^{1}$ Maier et al. [19] use the term fd-join.

[^2]: ${ }^{2}$ In the weak instance model it is usually required that no pair of relations are defined on the same set of attributes. As a consequence, it is possible to omit relation names, and identify the various relations by means of the involved sets of attributes.

[^3]: ${ }^{3}$ We will assume that the order coincides with the natural order of subscripts: $v_{i} \leq v_{j}$ if and only if $i \leq j$.

