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The construction of an algorithm is described for generating interpolatory quadrature rules of the 
highest degree of precision with arbitrarily preassigned nodes for general constant signed weight 
functions. It is of very wide application in that to operate, only the definition of the 3-term recurrence 
relation for the orthogonal polynomials associated with the weight function need be supplied. The 
algorithm can be used to produce specific individual quadrature rules or sequences of rules by iterative 
application. 
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1. INTRODUCTION 

The problem of creating high precision interpolatory quadrature rules with 
preassigned nodes has been discussed in detail by Krylov [7]. The rules take the 
general form 

’ s 

b 

w(x)f(x) dx = c%‘(n, m) = i Afbd + i &+nfh+n) (1.1) 
a k=l k=l 

where the n nodes x1, . . . , n, are preassigned. The m free nodes x,+~, . . . , x,+, 
are calculated to achieve the highest possible degree of precision and are said to 
be optimally added. The weight function w(x) is of the constant sign in [a, b]. 
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In 1964, Kronrod [6] calculated tables of such rules, which had the effect of 
stimulating a fresh interest in this approach to numerical integration. Kronrod 
chose the n preassigned nodes as the zeros of the Legendre polynomial P,(X) 
corresponding to the well-known Gauss-Legendre rule and computed n + 1 
additional nodes (the minimum possible) to provide a new 2n + 1 node rule of 
an a!gebraic degree of precision of at least 3n + 1. It may be noted that any 
arbitrary set of n preassigned nodes leads to exactly the same degree of precision 
in the new 2n + 1 node rule (providing of course it exists), but by selecting the 
nodes of the Gauss rule, two high-precision results could be obtained without 
discarding work already invested in a Gaussian calculation. 

The additional nodes calculated by Kronrod can be shown to be the zeros of 
the polynomial E,+1 (x) which satisfies 

s 

1 

Pn(X)E,+l(X)Xk dx = 0, for k = 0, . . . , n. (1.2) 
-1 

It is interesting to note that a study of the properties of the polynomial Encl (3~) 
can be traced back to 1894 as the subject of a correspondence [14] between no 
less mathematicians than Hermite and Stieltjes. The problem of existence was 
discussed further by Szego [ 171 in 1934 for a particular class of weight functions. 
In fact the polynomial E,+,(x) is orthogonal with respect to a variable signed 
weight function [16] for which the results of standard orthogonality theory 
relating to the existence and distribution of its zeros are not applicable. An 
account of the historical background and the theoretical properties of the so- 
called Stieltjes polynomials can be found in an excellent review article by 
Monegato [9]. 

The ideas have been developed by a number of authors including Patterson 
[lo], Piessens and Branders [12], and Monegato [8]. The calculations of 
Kronrod [6] did not proceed beyond the single extension based on preassigned 
Gaussian nodes. However, the paper of Patterson [lo] exploited the idea of 
iteratively applying the Krylov procedure to obtain sequences of rules of increas- 
ing polynomial precision with interlacing nodes, the so-called optimal extensions, 
and resulted in the development of an efficient high precision quadrature algo- 
rithm [ll]. Many scientific software libraries now incorporate the Kronrod 
scheme or its derivatives as the basis of general purpose adaptive integrators. 

In this paper we discuss the construction of a stable and efficient algorithm 
for generating quadrature rules of the form (1.1). The algorithm is of very wide 
application in that, to operate, it need be supplied only with a definition of the 
recurrence relation for the orthogonal system of polynomials appropriate to the 
weight function. The value of the zero moment integral, ho, for the domain of 
integration (defined in Section 2.1) is required as a normalizing factor in the 
calculation of the quadrature weights. 

High precision integration rules with preassigned nodes are of importance in 
many situations where high accuracy is needed but certain nodes must be 
constrained. This can occur, for example, in solving some types of integral 
equations. Further, the properties of quadrature rules arising from variable 
signed weight functions are still poorly understood, and the algorithm can thus 
form a useful investigative tool. 
ACM Transactions on Mathematical Software, Vol. 15, No. 2, June 1989. 
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2. THEORETICAL BACKGROUND 

2.1 Basic Equations 

Let 4i(X), i = 0, 1, . . . be a set of polynomials, orthogonal on the interval [a, b] 
with respect to the constant signed weight function w(x), and let 

8 

b 

w(x)di(x)tij(x) dx = hj&,j (2.1) 
a 

define the jth moment integral. 
The 4i(x) are taken to satisfy the 3-term recurrence relation 

4 k+l = (Ckx + dk)tik + ek4k-1 (2.2) 

with &1 = 0 and c$,, = 1. 
The coefficients ck, ek, and hk are related according to 

which gives immediately, 

ekckel hkml = -Ckhk (2.3) 

b/ho = (-l)k(Co/Cd I? ei. 
i=l 

(2.4) 

We wish to construct an n + m node quadrature rule consisting of n preassigned 
nodes, together with m nodes determined to give the rule the highest possible 
algebraic degree of precision. Let the preassigned nodes be the zeros of the 
polynomial H,,(X) expressed as 

and let 

Ha(x) = i (7ilhi)tii(X) 
i=m, 

(2.5) 

Em(x) = Z cih(X) 
i=O 

(2.6) 

be the polynomial to be determined whose m zeros are the required optimal 
nodes. The scaling of the coefficients of H,(x) with respect to hi is beneficial. It 
postpones the need to compute the moments until the quadrature weights are 
required and generally makes the numbers appearing in the course of the 
calculations more manageable. It can be shown (Krylov [7]) that to achieve the 
highest possible precision, namely, n + 2m - 1, requires 

S b 

w(x)H,(x)E,(x)xk dx = 0, k = 0, . . . , m - 1. (2.7) a 
The polynomial E,(x) is orthogonal with respect to the variable signed weight 

w(x)H,(x). Thus, its zeros are not only the m optimal nodes for the n + m point 
extended rule with respect to the constant signed weight w(x), but are also the 
nodes of the Gaussian rule of degree 2m - 1 appropriate to the variable signed 
weight w (x)H, (x). 
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2.2 Properties of the Extended Rules 

In this section we briefly summarize some theoretical results on the minimum 
value of m and on the integrating degree of (1.1) which give guidance on the 
structure of the rules which may be usefully constructed. 

We have noted in Section 1.1 that the situation is complicated by the fact that 
generally the polynomial orthogonality is with respect to a variable signed weight 
function, and the concept of degeneracy [16] must be introduced. We define 
degeneracy as follows. 

Definition. Let V(x) be a weight function which may change sign in the 
domain of integration [a, b] and let p,(x) be an orthogonal polynomial of exact 
degree m such that 

s b 

V(x)p,(x)xi dx = 0, j=O,...,m+~-1 
a G53) 

If p > 0, we say that the orthogonality is p-fold degenerate. If P = 0, we say that 
the orthogonality is nondegenerate. 

The following two simple theorems can be readily established. 

THEOREM 2.1. Let 9(n, m) be the extended interpolutory quadrature rule (1.1) 
resulting from adding m nodes to n preassigned nodes, and let H,(x) and E,(x) 
be the polynomials whose roots are the respective nodes. Let E,(x) be p-fold 
degenerate with respect to the weight w(x)H,(x). Then G?(n, m) has integrating 
degree n + 2m + P - 1. 

PROOF. A general polynomial of degree n + 2m + p - 1 can be expressed as 

G n+an+,,--1(x) = Qn+m-1(~) + Hn(xP-L(xhn+,-l(x) (2.9) 

where Q and q are arbitrary polynomials of respective degrees n + m - 1 and 
m + p - 1. Multiplying by w(x) and integrating gives 

S 
b 

w(~En+a,z+r-~(~) dx 
0 

S 
b 

S 
b 

(2.10) 

= w(x)Qn+m-I(X) dx + w(x)H,(x)E,(x)q,+,-lo dx. 
a a 

The second term on the right of (2.10) vanishes due to the degeneracy condition 
(2.8). Both terms are integrated exactly by 9(n, m), the first because the rule is 
interpolatory, and the second due to the presence of the root factors E,(x) and 
H,(x). The result follows. 0 

THEOREM 2.2. Let 9(n, m), H,(x) and E,(X) be defined us in Theorem 2.1. 
Then the quadrature weights associated with the s optimal nodes of 9(n + m, s) 
corresponding to the extension of yZ(n, m) will be zero unless s > m + I.L. 
ACM Transactions on Mathematical Software, Vol. 15, No. 2, June 1989. 
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PROOF. From the Lagrangian interpolation formula, the weights associated 
with the s optimal nodes ul, . . . , u, are given by 

Ak a 8 

b 

~(XML(X)En(X) Ii b - Vi) dx, (2.11) 
a i=l 

i#k 

which vanish due to the degeneracy condition (2.8) unless s > m + p. Cl 

These results are easily demonstrated for the weight w(z) = (1 - x”) -I” in 
[-1, l] with the n roots of the Chebyshev polynomial T,(x) of the first kind of 
degree n being preassigned and n + 1 nodes being added optimally. It is simple 
to show that En+l(~) = (1 - x”)Unel(x) is (n - 2)-fold degenerate where U,-, (3~) 
is the Chebyshev polynomial of the second kind of degree n - 1. That is, 

s 1 (1 - x2)-1’2Tn(~)E,+1(~)Xj dx = 0, j = 0, 2n - . . . , 2 -1 (2 12) 

# 0, j = 2n - 1. 

Theorem 2.1 indicates that the degree of the resulting 2n + 1 point rule will 
be 4n - 1. Theorem 2.2 shows that the minimum number of nodes by which this 
new rule may be usefully extended is 2n. 

3. COMPUTATIONAL DETAILS 

3.1 Calculation of the Polynomial f,,,(x) 

There are a number of techniques available for determining the coefficients of 
E,(x) from (2.7). A numerically satisfactory procedure can be obtained from the 
observation that if 

Hn+m(X) = Hn(X)Em(X) = E cj i (7ilhi)4i4j = “5 (Pjlhj)4ji, (3.1) 
j=O i=m, j=O 

then (2.7) implies 

and so, 

pj = 0, J ' = 0, . . . , m - 1, (3.2) 

To obtain the coefficients of E,(x), we multiply (3.1) by w(x)&(x) and 
integrate over [a, b]. Then, 

b 

Ps = 5 fj i t7ilhi) W(lt)di$jds dx = g 4 5 7iaiS.i) (3.4) 
j=O i=mc S a j=O i=mo 

where 
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The coefficients up’ are simply the coefficients of the expansion of &k, 
namely, 

s+j 

$sdj = C Up’4i* (3.6) 
i=ls-jl 

Expressions for a, (‘*j) for a number of orthogonal systems can be found in books 
such as that by Gradshteyn and Ryzhik [4], for example, but to ensure complete 
generality we show in Section 3.2 how they can be generated from the defining 
recurrence relation (2.2). 

Equation (3.2) requires that 

5 4 i Tiais’j’ = 0, 
j=O i=m, 

for s = 0, . . . , m - 1, (3.7) 

and arbitrarily taking E, = 1, we obtain a symmetric system of m linear equations 
in the m unknowns eo, tl, . . . , E,-~ which completely determine E,(x). Once 
E,(x) is known, the coefficients pm, . . . , pm+,, can be calculated from (2.4) and 
(3.4) by direct substitution. Thus, H,+,(X) is k nown, and another extension can 
be generated with n + m replacing n and m replacing no. At each stage the zeros 
of E,(x) can be calculated and a complete optimal interpolatory quadrature rule 
obtained. 

This procedure has the advantage over that discussed originally by Patterson 
[lo] in that the roots of E,(x) play no direct part in the calculation of the next 
extension, thus minimizing the accumulation of errors. We note that the form of 
(3.3) also allows (2.5) to be interpreted as the polynomial whose zeros represent 
the nodes of a quadrature rule arising by the same process as (2.7) from optimally 
adding m. nodes to a set of n - m. preassigned nodes. 

The form of (3.5) allows certain terms to be eliminated from the summation. 
Due to the orthogonality property (2.1), a?’ is zero if j + s < i, i + s < j, 
or i + j < s, and (3.4) becomes 

m min(n,s+ j) 

Ps = c c; c 
7 .u @j) 

1, * (3.3) 
j=O i=max(mo, 1 s-j 1) 

Consequently, the symmetric linear system (3.7) becomes 
min(n,s+j) 

i Ej C I L’ 7.u( 2) = 0 for s = 0, . . . , m - 1. (3.9) 
j=O i=max(mo,ls-jl) 

If the domain of integration and the weight function are symmetric, the coeffi- 
cients up’ are zero when i + s + j is odd. Taking account of this halves the size 
of the linear system (3.9). Note that due to the definition adopted for the 
coefficients in (2.5), hi does not appear in (3.7) or (3.9), giving a natural scaling 
to the system of equations. 

3.2 Calculation of the Orthogonal Product Expansion 

To obtain values of the coefficients a, (‘*j) for use in (3.8) and (3.9), we must 
calculate the expansion of 6,&j. Assume without loss of generality that s I j. 
ACM Transactions on Mathematical Software, Vol. 15, No. 2, June 1989. 
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Using (2.2) and (3.6) we obtain 

$sdj = (Cj-1X + dj-l)$s$j-1 + ej-i4,4j-2 

s+j-1 

Ix 

(3.10) 
= Cj-1 U~‘jwl)X~i~, + dj-l4,4j-l + ej-l$s$j-2* 

i=s-j+l 

Again using (2.2), substituting for 3~4; gives 
s+j-1 a!hj-l) 

4.94j = Cj-1 C L (k+l- di& - eih-1) + dj-l4s$j-l+ ej-l&&-z 
i=s-j+l Ci 

s+j G-1) 

= Cj-1 i=s-j+2 yy A + c i:Iz:l (dj-1 - Cj-1 $).pe1)4i c 

s+j 

= c uW)$. 
I I* 

i=s-j 

(3.11) 

Clearly, from (3.11) it is a simple matter to calculate up) by recurrence using 
the values of c@‘-” and u,!““-~‘. To begin the recurrence requires the expansion 
of &&, and &&. We have trivially, 

wo = 4s 

Using (2.2) gives immediately, 

(i.e., a, W) = 1). 

(3.12) 

3.3 Calculation of the Roots of Em(x) 

This can be accomplished using a generalization of the Bairstow process due to 
Golub and Robertson [l]. Let us consider the general problem of finding the 
roots of 

SN(X) = Z Tik(r)- (3.13) 
i=O 

We require to compute the decomposition 
N-2 

- PRO) C fiih + Ah + BOO 
i=O i=O (3.14) 

= ($2 - @I - &‘o)&N-s(x) + A$, + BOO. 

Writing 

and 

4k61 = lk+l@k+l + mk$k + rk-ldk-1 (3.15) 

@k$‘2 = Sk+2@k+2 + tk+l6k+l + Ukd’k + vk-l@k-1 + Wk--2$k-2, (3.16) 
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we can compute 6i, A, and B from 

6k = & hk+2 + talk+2 - tk+2)6k+l + (P + mk+2 - uk+2)6k+2 
(3.17) 

+ (ark+2 - vk+2)bk+3 - Wk+2Ak+4) 

for k = N - 2, N - 1, . . . , 0 with 

aN+2 = 6N+l = bN = 6N.-1 = 0 (3.18) 

and 

A = y1 + a& + (p + am1 - rl)& + (arl - v1)tJ2 - wl&, 
B = yo + 06, + aroS1 - ~~6~. 

(3.19) 
(3.20) 

The quantities lk, mk, rk, Sk, tk, uk, uk, and wk in (3.16) and (3.17) Can be 
expressed in terms of the coefficients of the recurrence relation (2.2). Equation 
(3.12) immediately gives expressions for &, mk, and rk; thus 

lk = CO/CL--1 (3.21) 
mk = do - Cod&k = do - d&+1 

rk = -COek+l/Ck+l = -ek+llk+2. 

(3.22) 
(3.23) 

A little algebra using (2.2) gives 

Sk+2 = Cllk+l/Ck+l, (3.24) 
t k+2 = dllk+?2 - C11k+2dk+2/Ck+2 + Clmk+l/Ck+l, (3.25) 

uk+2 = &mk+n + el - Cllk+3ek+hk+3 - Clmk+2dk+2/Ck+2 + Clrk+l/Ck+l, (3.26) 
vkc2 = dlrk+2 - C1mk+3ek+3/Ck+3 - Clrk+2dk+2/Ck+2, (3.27) 

wkc2 = -C1rk+3ek+3/Ck+3. (3.28) 

The calculation now proceeds in the standard Bairstow manner. The quantities 
A and B depend on (Y and /3. We seek to find LY* and /3* such that 

Ata*, fl*) = B(a*, ,t?*) = 0. (3.29) 

Given an initial approximation (a(O), /3(O)), we calculate the sequence 

a(i+l) = a(j) + ALU, pCi+l) = p(i) + up, for j = 0, 1, . . . (3.30) 

where 

Aa! = (BA, - AB,)/(A,BB - A,A,) (3.31) 
43 = (A& - BA,)I(A& - &4J (3.32) 

with 

dA 
&=z, Ao=$, B-=$f, BP=:. (3.33) 
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The various quantities in (3.31) and (3.32) are evaluated at (a(j), /3(j)). The partial 
derivatives of A and B are calculated from (3.19) and (3.20); thus, 

dA 
- = 6. + ml& + rl& + a 2 + (p + am1 - rl) z 
da 

+(url-ul)~-wl~ 

(3.34) 

dA 
- = a1 + a f$ + (@ + am1 - rl) f$ + (arl - ul) z - w1 ap 
w 

as3 (3.35) 

dB aso ab aa2 
- = rO& + 0 - + are - - w. d, 
da da da 

(3.36) 

(3.37) 

The partial derivative in (3.34)-(3.37) is obtained from (3.17); thus, 

ask i as -=- 
da 

ik+Zak+l 
Sk+2 

+ mk+Zak+Z + rk+26k+3 + talk+2 - tk+Z) 2 

ask+2 
+ (b + amk+Z - uk+Z) - 

ask+3 

aa + (ark+2 - uk+Z) da (3.38) 

- Wk+2 

atik i as k+l ask+2 -=- 

a@ 
8k+2 + talk+2 - tk+Z) - 

ap 
+ (P + mk+2 - uk+Z) - 

Sk+2 ap 

ask+3 
+ (ark+2 - uk+Z) - - 

as 
(3.39) 

k+4 
- 

ap wk+2 w 

for k = N - 2, N - 1, . . . , 0 with 

a?ik ask -=-co 
da ap ’ 

for k = N - 1, N, N + 1, N + 2. (3.40) 

The recurrences (3.38) and (3.39) are calculated simultaneously with (3.17). 
The partial derivatives of c?~, &, a2, and & are then used in (3.34)-(3.37). Golub 
and Robertson [l] show that the process converges quadratically, provided the 
roots of the quadratic factor are not also roots of the quotient QNbz(x). In 
practice, the numbers can be kept more manageable by calculating the recurrences 
(3.17), (3.38), and (3.39) in terms of the scaled quantities Sk+&, &+&k/d& and 
sk+Za6kiw 

The algorithm used to find the roots of E,(x) is now described. Let E be a 
small positive real number (typically 8(10m7)). We define the real seed approxi- 
mation as the values of CY and p which make 6 and zero (or c and -E when 
symmetry is present) roots of the quadratic factor (c$~ - a& - pdo). The complex 
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seed approximation is defined as the values of (Y and p which make c f ie roots 
of the quadratic factor. If m is odd, a single real root is first extracted, and the 
polynomial is deflated using Newton iterations beginning with c as the initial 
approximation. Details of that are covered in the next section. The Bairstow 
process is used to find the remaining roots. 

Initially, set Qm(x) = E,(x) (or equal to the Newton-deflated polynomial if m 
is odd) and choose (cY,+~, &+Z) using the real seed approximation. For j = m, 
m - 2, m - 4, . . . , carry out the following operations: 

(1) Root Location. Use the Bairstow process to find (a:, ,6,*) so that 

QjCx) = ($2 - a761 - PTh)Qj-2(X) (3.41) 

where Qj(x) is the appropriate quotient of degree j with earlier roots eliminated. 
If convergence for the previous quadratic factor (iteration j + 2) was satisfactory, 
use the initial approximation (aj+z, pj+z); otherwise, use the real seed approxi- 
mation. If the convergence on the present step is unsatisfactory, repeat using the 
complex seed approximation. If this is still unsatisfactory, the failure is recorded 
and the latest quadratic factor accepted. 

(2) Root Refinement. With initial approximation (LY;, /3,*) from step 1, use the 
Bairstow process on the full expansion E,(X) to find (aj, pi) so that 

Em(x) = ($2 - aj41- Pj40)Sn-2(X) (3.42) 

where Sm-p(x) is the appropriate quotient of degree m - 2. 
(3) Quotient Refinement. With (aj, @j) from step 2, update the quotient Qj-z(x) 

using the division operation (3.17) to give 

&j(x) = (62 - ajdl - Pj6o)Qj-p(x)* (3.43) 

The successive quotients Qj(x) decrease in degree by two at each stage, reducing 
the computational work. Since the approximation to the quadratic factor at the 
start of step 2 is normally good, convergence for the full expansion is rapid 
(usually only one iteration is required). This process of root location on the 
reduced expansion followed by root refinement on the full expansion is effective 
in minimizing the accumulation of errors. 

3.4 Division of the Orthogonal Expansion by a Linear Factor 

This procedure is required to evaluate the orthogonal expansion and its first 
derivative for application to the Newton iteration (Section 3.3) and the calcula- 
tion of the quadrature weights (Section 3.5). 

We wish to divide the expansion S&) = CEO Y~C#J~ by (x - CY) to give a 
quotient QNml(x) and remainder R. Thus, 

SN(X) = ~ ~k~k = (X - (Y)QN-~(x) + R = (X - a) No’ 6i~i + R. (3.44) 
k=O i=O 
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Using the recurrence (2.2) and (3.15), it is easily established that 

co ; ,,k$k = ; bk-llkd’k - “il &l/s+l(diz + (YCk)& 
k=O k=l k=O 

N-2 

(3.45) 

- c 6k+lek+llk+dk + cOR 
k=O 

and 

coR = coy0 + Soll(do + ace) + &e1Z2. 

Equation (3.45) reduces to 

(3.46) 

ik6k--l = cOyk + bklk+l(dk + ack) + ek+llk+dk+l, (3.47) 

and since lo = 1 it is clear that 

c,,R = 6-,. (3.48) 

To obtain the solution we apply (3.47) for k = N, N - 1, . . . , 0, giving 
6N-1, . . . , ao, L1 starting from 6N = 8N+1 = 0. The relations can be simplified 
if we let 

Then (3.47) becomes 

bk = lk6k--1/CO = 6k-&k-l. (3.49) 

bk = Yk + (dk + aCk)bk+l + ek+lbk+n (3.50) 

for k = N, N - 1, . . . , 0, with bN+l = bN+, = 0, and the required quotient 
coefficients are given by 

dk = Ckbk+l, for k = 0, . . . , N - 1. (3.51) 

It is trivial to show that the remainder is 

We note that 

R = bo. (3.52) 

SNh> = R, (3.53) 

giving a convenient method of calculating the value of the expansion at x = CY. 
The recurrence (3.50) is a particularly stable one and has been discussed in a 
different context by Smith [13]. 

The derivative of SN(X) at x = (Y can also be evaluated as dR/da. Differentiating 
(3.50) gives 

dbk da = (dk + ack) % + ek+l 2 + ‘&bk+l. (3.54) 

Application of (3.54), simultaneously with (3.50), for k = N, N - 1, . . . , 0 with 
dbN+l/da = dbN+z/da = 0 gives 

dR dbo -=- 
da da 

(3.55) 
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These results can be used to carry out stably a Newton iteration of SN(x) for a 
single root as referred to in Section 3.3. If x(j) is an approximation to the root, 
then the iteration sequence is 

x(i+l) = x(i) _ R = x (A _ bo 

dR/da dbo/da ’ 
(3.56) 

3.5 Calculation of the Quadrature Weights 

Once the expansion H,+,(x) as defined by (3.1) has been calculated together 
with the optimally extended nodes (the roots of E,(x)), the process of construct- 
ing the quadrature rule (1.1) can be completed in a simple manner. To calculate 
the weight Ai corresponding to any node xi, we let 

g(x) = 
H,+,(x) n+m-1 

= C 6itii (3.57) 
x - xi i=O 

where the coefficients 6i are computed using the procedure of Section 3.4 applied 
to H,+,(x). Since the rule must be interpolatory, we have 

s b 

Ai = 
a 

w(x) z dx = 2 
I I 

due to orthogonality. The procedure of Section 3.4 can be repeated to divide g(x), 
as given by (3.57), by (x - Xi), yielding g(Xi) as the remainder (see Eq. (3.52)). 
The weights Ai are now fully determined, assuming that the zero moment integral 
& has been specified. 

Although this computational procedure is numerically stable, there is an 
inherent potential for cancellation in extreme situations when some of the weights 
are effectively zero. The high order Gauss-Laguerre rules are a typical example. 
When this occurs, the computed small weights will be approximated by a number 
close to the smallest possible relative machine precision. In practical terms, the 
resulting rule will be identical within machine precision to that using the exact 
weights. The difficulty is caused by the absence of a Christoffel-Darboux identity 
(which would implicitly remove terms which cancel exactly) in the case of 
orthogonal systems for variable signed weight functions. To minimize the diffi- 
culty, the standard Christoffel-Darboux result is applied in the algorithmic 
implementation when H,+,(x) h as only one term (which occurs, for example, 
when n = 0); thus 

H,+,(x) = 4,+,(x). 

In this case the standard result gives immediately 

(3.59) 

(3.60) 

The quantity 4:+,( x i) is calculated using the recurrence (2.2) and its derivative. 
Careful scaling is required in calculating (3.60) for some weight functions to avoid 
overflow in the computer representation of the numbers. 
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3.6 Incorporating the Preassigned Nodes 

The algorithm as described requires specification of the polynomial (2.5), whose 
roots are the preassigned nodes. This can be done either explicitly or by gener- 
ating the coefficients 7i indirectly from the values of the nodes. In the latter case 
we simply solve the linear system 

for k = 1, . . . , n (3.61) 

with T, = 1. In the algorithmic implementation this procedure can be carried out 
automatically if desired. 

4. TESTS AND GENERAL COMMENTS 

The algorithm has been tested on a number of classical weight functions including 

(1) W(X) = 1 
(2) w(x) = Ji 

x E [-1, l] 
27 E 10, 11 

(3) w(x) = e-” x E P, m) (4.1) 

(4) w(x) = epx2 x E (-a, 03). 

A formal initial test was done to generate the corresponding classical quadra- 
ture rule by preassigning zero nodes and calculating m optimal nodes to give a 
rule of degree 2m - 1. The Gauss-Radau rules were formed by choosing -1 as a 
preassigned node. For the Gauss-Lobatto rules, -1 and 1 were preassigned. In 
these cases the polynomial (2.5) was generated as described in Section 3.6. 
Further tests involved the generation of sequences of rules by iteratively extend- 
ing particular sets of classical nodes. As is well known, some of these sequences 
are short lived in that imaginary nodes soon appear. The Gauss-Legendre, Gauss- 
Lobatto, and Gauss-Radau generally produce many extended sequences. The 
Gauss-Laguerre and Gauss-Hermite are unfruitful in this respect, as can be 
verified theoretically [5]. 

In most of the tests carried out, the algorithm performed to expectations and 
produced accurate results. Of course, many excellent algorithms exist for gener- 
ating single Gaussian type rules (e.g., [3]) which would be expected to perform 
more efficiently and robustly. However, the present algorithm is designed to 
generate sequences of extended rules for any weight function for which a 3-term 
recurrence relation can be specified, and thus it would be surprising if difficulties 
did not appear on occasion. The most critical section is the calculation of the 
roots of the extended polynomial E,(x). No general expression based on the 
recurrence relation (2.2) is available for accurately approximating the zeros, and 
polynomial deflation must be used to prevent spurious convergence to those 
already computed. Failures must ultimately occur when high-order rules are being 
constructed (the limiting order depending on the particular weight function) and 
is generally attributable to an accumulation of errors in the calculation of the 
deflated polynomials. 

For example, in the case of Gaussian rules based on (l)-(4), the maximum 
number of nodes in the rules which could be reliably generated using double- 
precision arithmetic were, respectively, 94, 46, 51, and 66. For the Lobatto and 
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Radau rules, the corresponding respective numbers were 94 and 91. (The values 
of the machine parameters (& t, L, U), using the notation of Golub and Van 
Loan [2], were (2, 56, -127, 127).) In such circumstances it is frequently found 
that the direct application of the root solver to the full expansion, with careful 
user guidance on good initial root approximations, allows highly accurate nodes 
to be obtained. Although the user must then become more intimately involved 
with the orchestration of the calculations, and the convenience of automatic 
calculation is forgone, the range of application of the algorithm can be enhanced. 
However, for the highest order rules it is difficult to avoid ultimately using 
multiple precision arithmetic (as adopted in the well-known Stroud and Secrest 
[17] calculations). Indeed, in principle, one would prefer that the precision used 
to compute the rules should exceed the precision under which they are to be 
applied in practice. 
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