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1. INTRODUCTION

This paper investigates the expressive power and computational properties of lan-
guages designed for speaking about distances. ‘Distances’ can be induced by dif-
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2 · Oliver Kutz et al.

ferent measures. We may be interested in the physical distance between two cities
a and b, i.e., in the length of the straight (or geodesic) line between a and b. More
pragmatic would be to bother about the length of the railroad connecting a and b,
or even better, the time it takes to go from a to b by train (plane, ship, etc.). But
we can also define the distance as the number of cities (stations, friends to visit,
etc.) on the way from a to b, as the difference in altitude between a and b, and so
forth.

The standard mathematical models, capturing common features of various no-
tions of distance, are known as metric spaces. A metric space is a pair 〈W,d〉, where
W is a set (of points) and d a function from W×W into the set R+ (of non-negative
real numbers) satisfying the following axioms

d(x, y) = 0 iff x = y, (1)

d(x, z) ≤ d(x, y) + d(y, z), (2)

d(x, y) = d(y, x) (3)

for all x, y, z ∈ W . The value d(x, y) is called the distance from the point x to the
point y. The perhaps most ‘popular’ metric spaces are the n-dimensional Euclidean
spaces 〈Rn, dn〉 with the metric

dn(~x, ~y) =

√

√

√

√

n
∑

i=1

(xi − yi)2.

Although acceptable in many cases, the concept of metric space is not universally
applicable to all interesting measures of distance between points, especially those
used in everyday life. Consider, for instance, the following two examples:

(i) If d(x, y) is the flight-time from x to y then, as we know it too well, d is
not necessarily symmetric, even approximately (just go from London to Tokyo and
back).

(ii) Often we do not measure distances by means of real numbers but rather
use more fuzzy notions such as ‘short,’ ‘medium’ and ‘long.’ To represent these
measures we can, of course, take functions d from W ×W into the subset {1, 2, 3}
of R+ and define short := 1, medium := 2, and long := 3. So we can still regard
these distances as real numbers. However, for measures of this type the triangular
inequality (2) usually doesn’t hold (short plus short can still be short, but it can
also be medium or long).

Metric spaces as well as more general distance spaces 〈W,d〉 satisfying only axiom
(1) are the intended models of the languages we construct in this paper.

We begin by considering the first-order languages FM[M ], for M ⊆ R+, with
monadic predicates (for subsets of W ), individual constants (for points in W ), and
the binary predicates δ(x, y) < a and δ(x, y) = a, a ∈M , saying that the distance
between x and y is smaller than a or equal to a, respectively. Typical sets M
of possible distances will be Q+ (the non-negative rational numbers) and N (the
natural numbers including 0).

The following example will be used to illustrate the expressive power of our
languages.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Logics of metric spaces · 3

Example 1.1. Imagine that you are going to buy a house in London. You then
inform your estate agent about your intention and provide her with a number of
constraints:

(A) The house should not be too far from your college, say, not more than 10 miles.

(B) The house should be close to shops and restaurants; they should be reachable,
say, within 1 mile.

(C) There should be a ‘green zone’ around the house, at least within 2 miles in
each direction.

(D) Factories and motorways must be far from the house, not closer than 5 miles.

(E) There must be a sports center around, and moreover, all sports centers of the
district should be reachable on foot, i.e., they should be within, say, 3 miles.

(F) Public transport should be easily accessible: whenever you are not more than
8 miles away from home, there should be a bus stop or a tube station within
a distance of 2 miles.

(G) And, of course, there must be a tube station around, not too close, but not
too far either—somewhere between 0.5 and 1 mile.

The constraints in Example 1.1 can be formalized in FM[Q+] by the following
formulas:

(A′) δ(college, house) ≤ 10, where college and house are constants.

(B′) ∃x
(

δ(house, x) ≤ 1∧ shop(x)
)

and ∃x
(

δ(house, x) ≤ 1∧ restaurant(x)
)

, where
shop and restaurant are unary predicates.

(C′) ∀x
(

δ(house, x) ≤ 2 → green zone(x)
)

, where green zone is a unary predicate.

(D′) ∀x
(

factory(x) ∨motorway(x) → δ(house, x) > 5
)

, where factory and motorway

are unary predicates.

(E′) ∃x
(

δ(house, x) ≤ 3 ∧ district sports center(x)
)

∧ ∀x
(

δ(house, x) > 3 →

¬district sports center(x)
)

, where district sports center is a unary predicate.

(F′) ∀x
(

δ(house, x) ≤ 8 → ∃y
(

δ(x, y) ≤ 2 ∧ public transport(y)
))

, where pub-

lic transport is a unary predicate, and

(G′) ∃x
(

δ(house, x) > 0.5 ∧ δ(house, x) ≤ 1 ∧ tube station(x)
)

, where tube station

is a unary predicate.

As one might expect, the satisfiability problem for FM[Q+]- and FM[N]-formulas
in any class of distance spaces containing the class M of all metric spaces is un-
decidable (see Theorem 2.1 below). Trying to find decidable but still reasonably
expressive sublanguages of FM[Q+], we then consider its two-variable fragment
FM

2[Q+] consisting of all FM[Q+]-formulas with the variables x and y only. (All
formulas in the example above belong to this fragment.) The two-variable frag-
ment of classical first-order logic is known to be decidable (which was proved for
the language without equality in [Scott 1962] and for the language with equality in
[Mortimer 1975]) and NExpTime-complete [Fürer 1984; Grädel et al. 1997] (we
refer the reader to [Grädel and Otto 1999; Börger et al. 1997] for more information).
We use this result to show that the satisfiability problem for FM

2[Q+]-formulas is
decidable

—in the class D of arbitrary distance spaces, and

—in the class Dsym of all distance spaces satisfying (3).

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



4 · Oliver Kutz et al.

Unfortunately, this does not hold any more as soon as we add the triangular inequal-
ity (2): we show that the satisfiability problem for FM

2[Q+]-formulas is undecidable
both in

—the class M of all metric spaces and in

—the class Dtr of distance spaces satisfying the triangular inequality.

We then introduce variable-free languages MS[M ], M ⊆ R+, which instead of
first-order quantifiers use distance operators ‘somewhere in the circle of radius a,’
‘somewhere outside the circle of radius b,’ etc., where a, b ∈M . This brings us close
to the field of temporal, modal, and description logics, which also avoid the use of
first-order quantification by replacing it with various kinds of ‘modal’ operators
like ‘sometime in the future,’ ‘it is possible,’ etc. The constraints in Example 1.1
can be formulated in MS as follows. As before, we treat ‘house’ and ‘college’ as
constants representing certain points in the space; however, ‘shop,’ ‘restaurant’ and
other unary predicates are now understood as set variables interpreted as subsets
of the domain of the distance space.

(A′′) δ(house, college) ≤ 10.

(B′′) house@(E≤1shop u E≤1restaurant).

(C′′) house@ A≤2green zone.

(D′′) house@¬E≤5(factories tmotorways).

(E′′) house@(E≤3district sports center u A>3
¬district sports center).

(F′′) house@A≤8E≤2public transport.

(G′′) house@E>0.5
≤1 tube station.

The intended meaning of the set term constructors above is as follows. The set
E≤1shop contains all points in the domain from which at least one shop is reachable
within 1 mile. Likewise, for every point x in A≤2green zone, the whole circle of
radius 2 around x belongs to the green zone, whereas E>0.5

≤1 tube station denotes the
set of all points located in a distance between 0.5 and 1 mile (excluding 0.5) from
at least one tube station.1

By replacing quantifiers with distance operators, we do not loose expressive power
as compared with FM

2[M ]. In fact, we show that MS[M ] is expressively complete
for FM

2[M ] in the class M of all metric spaces, for any M ⊆ R+. This theorem (the
proof of which is similar to proofs in [Etessami et al. 1997] and [Lutz et al. 2001])
has two interesting consequences. First, any (decidable) fragment of FM

2[M ] can
be obtained as a (decidable) fragment of MS[M ]. And second, since the translation
from FM

2[M ] into MS[M ] is effective, decidable fragments of MS[M ] have to be
proper, in particular, MS[Q+] itself is undecidable when interpreted in distance
spaces satisfying the triangular inequality.

1By the way, the end of the imaginary story about buying a house in London was not satisfactory.
Having checked her knowledge base, the estate agent said: “Unfortunately, your constraints (A)–
(G) are not satisfiable in London, where we have

tube station v E≤3.5(factory tmotorway).

In view of the triangular inequality, this contradicts constraints (D) and (G).”
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We prove two results concerning fragments of MS[M ]. The first one identifies a
rather expressive and natural fragment MS

#[M ], which has the finite model prop-
erty (even for parameters from R+) and is decidable (if parameters are taken from
Q+). All the constraints in Example 1.1 save (G) can be formulated in MS

#[Q+].
The second result shows that seemingly weak fragments of MS[N] are already un-
decidable. Roughly speaking, we loose decidability as soon as we are able to speak
about ‘rings,’ as in constraint (G).

Table 1 summarizes the main decidability results of this paper: + (−) means that
the satisfiability problem for the corresponding language in the corresponding class
of structures is decidable (undecidable). The results do not depend on whether the
parameters are from N or Q+. For various fragments we will also obtain NExp-

Time upper bounds for the computational complexity. The fragments MSi[Q
+/N]

are defined in Section 3.

D Dsym Dtr M

FM[Q+/N] − − − −

FM
2[Q+/N] + + − −

MS[Q+/N] + + − −

MSi[Q
+/N] + + − −

MS
#[Q+/N] + + + +

Table I. The satisfiability problem for metric logics.

The structure of the paper is as follows: Section 2 introduces the syntax and
semantics of both the first-order and the ‘modal’ languages of metric spaces. Here,
we also establish the expressive completeness result for FM

2[M ]. In Section 3, we
prove the undecidability of MSi[Q

+/N] by means of a reduction to the undecidable
N×N-tiling problem. Finally, in Sections 4 and 5, we prove our decidability results
for metric and weaker distance spaces.

The idea of constructing logical formalisms capable of speaking about distances
is not new. For example, somewhat weaker spatial ‘modal logics of distance’ were
introduced in [Rescher and Garson 1968; von Wright 1979; Segerberg 1980; Jansana
1994; Lemon and Pratt 1998]. However, their computational behavior has remained
unexplored (see Section 6 for some interesting open problems). More attention has
recently been devoted to metric (or quantitative) temporal logics (see e.g. [Alur and
Henzinger 1992; Montanari 1996; Henzinger 1998; Hirshfeld and Rabinovich 1999]),
which clearly reflects the fact that temporal logic in general is more developed than
spatial logic. For example, starting with Kamp’s [Kamp 1968] classical result on
the expressive completeness of temporal logic with respect to monadic first-order
logic, a beautiful theory comparing the expressive power of first-order, second-order
and temporal languages for trees and linear orderings has been developed [Gabbay
et al. 1994; Rabinovich 2000]. Nothing like this has been done for spatial logics.
We hope this paper, which has grown up from [Suzuki 1997; Sturm et al. 2000],
will help to fill the gap.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



6 · Oliver Kutz et al.

2. THE LOGICS

2.1 First-order metric logic FM[M ]

Suppose that M ⊆ R+ contains 0; we will call such sets of reals parameter sets .
The language FM[M ] (of first-order metric logic) contains a countably infinite set
c1, c2, . . . of constant symbols, a countably infinite set x1, x2, . . . of individual vari-
ables, a countably infinite set P1, P2, . . . of unary predicate symbols, the equality
symbol

.
=, two (possibly infinite) sets of binary predicates

δ( , ) < a and δ( , ) = a (a ∈M),

the Booleans (including the propositional constants > for verum and ⊥ for falsum),
and the quantifier ∃xi for every variable xi. Thus, the atomic formulas of FM[M ]
are of the form

>, ⊥, δ(t, t′) < a, δ(t, t′) = a, t
.
= t,′ and Pi(t),

where t and t′ are terms, i.e., variables or constants, and a ∈ M . Compound
FM[M ]-formulas are obtained from atomic ones by applying the Booleans and
quantifiers in the usual way:

ϕ ::= atom | ¬ϕ | ϕ1 ∧ ϕ2 | ∃xiϕ.

We use δ(t1, t2) > a as an abbreviation for ¬(δ(t1, t2) < a) ∧ ¬(δ(t1, t2) = a).
If M = Q+, we usually write FM instead of FM[Q+]. The same applies to the
languages MS[M ] introduced below. FM

2[M ] denotes the two-variable fragment of
FM[M ], that is, the set of all FM[M ]-formulas containing occurrences of at most
two variables, say, x and y.

FM[M ]-formulas are interpreted in structures of the form

A =
〈

W,d, PA

1 , . . . , c
A

1 , . . .
〉

,

where 〈W,d〉 is a distance space, the PA
i are subsets of W interpreting the unary

predicates Pi, and the cAi are elements of W interpreting the constants ci. An
assignment a in A is a function assigning elements of W to variables. The pair
M = 〈A, a〉 will be called an FM[M ]-model. For a term t, let tM denote cAi if t is
the constant ci, and a(x) if t is the variable x. Now, the truth-relation M � ϕ, for
an FM[M ]-formula ϕ, is defined inductively as follows:

—M � > and M 2 ⊥;

—M � δ(t1, t2) < a iff d(tM1 , tM2 ) < a;

—M � δ(t1, t2) = a iff d(tM1 , tM2 ) = a;

—M � t1
.
= t2 iff tM1 = tM2 ;

—M � Pi(t) iff tM ∈ PA
i ;

—M � ∃xi ϕ iff 〈A, b〉 � ϕ for some assignment b in A that may differ from a only
on xi;

—M � ¬ϕ iff M 2 ϕ;

—M � ϕ ∧ ψ iff M � ϕ and M � ψ.

Unfortunately, from the computational point of view, the constructed logic turns
out to be too expressive. We have the following undecidability result, where M is

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Logics of metric spaces · 7

the class of all metric spaces and Dtr the class of all distance spaces satisfying the
triangular inequality, (2). Recall that the notation FM[Q+/N] means that M can
be either of Q+ and N.

Theorem 2.1. (i) Let K be any class of distance spaces containing M. Then
the satisfiability problem for FM[Q+/N]-formulas in (models based on spaces from)
K is undecidable.

(ii) The satisfiability problem for FM
2[Q+/N]-formulas in any class C of distance

spaces such that C ⊆ Dtr and
〈

R2, d2

〉

∈ C is undecidable as well.

Proof. To prove the former claim, it suffices to observe that FM[N] is powerful
enough to interpret the theory of graphs (i.e., the theory of structures 〈W,R〉,
where R is a symmetric and reflexive binary relation on W ), which is known to be
hereditarily undecidable2 [Rabin 1965]. Indeed, let ϕ(x, y) be the formula

δ(x, y) = 1 ∨ δ(x, y) = 0.

Given a graph 〈W,R〉, we can define a metric space 〈W,d〉 by taking, for all a, b ∈ W ,

d(a, b) =











0, if a = b,

1, if a 6= b and aRb,

2, if not aRb.

We then clearly have 〈W,d〉 � ϕ[a, b] iff aRb. For a formula γ in the signature
of graph theory, denote by γ• the result of replacing every occurrence of an atom
R(x, y) in γ by ϕ(x, y). Obviously, γ• is an FM[N]-formula and, for every graph
〈W,R〉, the formula γ is satisfiable in 〈W,R〉 iff γ• is satisfiable in 〈W,d〉. Now
consider the set Γ of formulas γ in the signature of graph theory such that γ• is
true in all FM[N]-models based on distance spaces in K. By the result of [Rabin
1965] mentioned above, the theory Γ is undecidable, which yields (i).

(ii) follows from Theorems 2.2 (i) and 3.1 to be proved below.

2.2 ‘Modal’ metric logic MS[M ]

As an alternative to the first-order language FM[M ], whereM is a parameter set, we
now introduce a purely propositional language MS[M ], whose ‘distance operators’
are similar to various operators considered in modal logic. The alphabet of MS[M ]
contains the following symbols:

—an infinite list of set (or region) variables X1, X2, . . . ;

—an infinite list of location constants c1, c2, . . . ;

—atoms (propositional constants) δ(c, d) = a and δ(c, d) < a for every a ∈M and
location constants c, d;

—a set constant {ci} for every location constant ci;

—the set constants > and ⊥;

—the Boolean operators for set terms (u and ¬) and formulas (∧ and ¬);

—the equality symbol
.
= for set terms as well as the symbol @ for elementship;

2This means that every subtheory of graph theory is undecidable.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



8 · Oliver Kutz et al.

—the set term constructors E<a, E>a, E=a and E>a<b (and their duals A<a, A>a,
A=a, A>a<b ), where a, b ∈M and a < b.

Set terms s of MS[M ] are defined as follows

s ::= Xi | {ci} | > | ⊥ | ¬s | s1 u s2 | E
<as | E>as | E=as | E>a<bs.

Set variables and set constants are called atomic set terms. Atomic formulas of
MS[M ] are of the form:

—c@s, where c is a location constant and s a set term,

—s
.
= t, where s and t are set terms,

—δ(c1, c2) = a and δ(c1, c2) < a, where c1, c2 are location constants and a ∈M .

Finally, an MS[M ]-formula ϕ is simply a Boolean combination of atomic ones, i.e.,

ϕ ::= c@s | s
.
= t | δ(c1, c2) = a | δ(c1, c2) < a | ¬ϕ | ϕ1 ∧ ϕ2.

As we have already mentioned, the language MS[M ] contains a number of con-
structors known from modal and description logic. First, we have an analogue of
the difference operator [de Rijke 1990]: A>0t (i.e., ¬E>0¬t) says that t holds ‘ev-
erywhere but here’. The universal modalities of [Goranko and Passy 1992], denoted
here by 2 (‘everywhere’) and 3 (‘somewhere’), can be defined by putting

2t := t u A>0t and 3t := t t E>0t,

where t is the dual of u (i.e., stt = ¬(¬su¬t)). Furthermore, the set constants {c}
play the role of nominals [Blackburn 1993]. Using these we can state, for example,
that

(E≤1100{Leipzig} u E≤1100{Malaga}) v France,

i.e., ‘if you are not more than 1100 km away from Leipzig and not more than 1100
km away from Malaga, then you are in France.’ Here, s v t stands for s u t

.
= s.

An MS[M ]-model is a structure of the form

B =
〈

W,d,XB

1 , X
B

2 , . . . , c
B

1 , c
B

2 . . .
〉

,

where 〈W,d〉 is a distance space, the XB
i are subsets of W , and the cBi are elements

of W . Thus, B defines explicitly the values of set variables and location constants.
The value sB of an arbitrary MS[M ]-term in B is computed inductively as follows:

—{ci}
B = {cBi }, where {ci} is a set constant;

—(>)B = W and (⊥)B = ∅;

—(s1 u s2)B = sB
1 ∩ sB

2 , where s1 and s2 are set terms;

—(¬s)B = W − sB;

—(E=as)B = {x ∈W : ∃y ∈ W
(

d(x, y) = a & y ∈ sB
)

};

—(E<as)B = {x ∈W : ∃y ∈ W
(

d(x, y) < a & y ∈ sB
)

};

—(E>as)B = {x ∈W : ∃y ∈ W
(

d(x, y) > a & y ∈ sB
)

};

—(E>a<bs)
B = {x ∈W : ∃y ∈ W

(

a < d(x, y) < b & y ∈ sB
)

}.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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The truth-relation B � ϕ, ϕ an MS[M ]-formula, is defined in the expected way:

—B � c@s iff cB ∈ sB,

—B � s1
.
= s2 iff sB

1 = sB
2 ,

—B � δ(c1, c2) = a iff d(cB1 , c
B
2 ) = a,

—B � δ(c1, c2) < a iff d(cB1 , c
B
2 ) < a,

plus the standard definitions for the Boolean connectives.

In what follows we will be using abbreviations like E≤as, E≥a, E
≥a
≤bs, E

≥a
<b and

E>a≤b , the meaning of which should be clear. For instance, E
≥a
≤bs stands for

E>a<bs t E=as t E=bs.

Every FM[M ]-structure A =
〈

W,d, PA
1 , . . . , c

A
1 , . . .

〉

gives rise to its MS[M ] coun-
terpart

A∗ =
〈

W,d,XA∗

1 , . . . , cA∗

i , . . .
〉

,

where XA∗

i = PA
i and cA∗

i = cAi for all i. This correspondence is clearly bijective.
If an FM[M ]-structure (or an MS[M ]-model) is based on a metric space, we call it
a metric FM[M ]-structure (MS[M ]-model).

The theorem we are about to prove shows that, when speaking about metric
spaces, MS[M ] is expressively complete for (i.e., has the same expressive power as)
the two-variable fragment of FM[M ].

Theorem 2.2. (i) For every MS[M ]-formula ϕ there exists an FM
2[M ]-sentence

ϕ† such that its length is linear in the length of ϕ and, for any FM[M ]-structure
A, we have

A � ϕ† iff A∗ � ϕ.

(ii) For every FM
2[M ]-sentence ϕ there is an MS[M ]-formula ϕ‡ such that its

length is exponential in the length of ϕ and, for any metric FM-structure A, we
have

A � ϕ iff A∗ � ϕ‡.

Proof. Assume, for simplicity, that M = Q+.
(i) The proof of the first claim is pretty standard; cf. [Gabbay 1971]. We first

translate set terms occurring in ϕ into FM
2-formulas with at most one free variable

and then extend the translation to subformulas of ϕ using only two variables, x and
y.

Let z and z′ be metavariables ranging over {x, y}. The translation ·† of set terms

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



10 · Oliver Kutz et al.

is defined inductively as follows:

(Xi)
† = Pi(x);

(>)† = > and (⊥)† = ⊥;

({ci})
† = (ci

.
= x);

(s1 u s2)
† = s†1[x/z] ∧ s

†
2[x/z

′]), where z, z′ are free in s†1 and s†2, respectively;

(¬s)† = ¬s†;

(E<as)† = ∃z (δ(z′, z) < a ∧ s†(z)), where z 6= z′ is free in s†;

(E>as)† = ∃z (δ(z′, z) > a ∧ s†(z)), where z 6= z′ is free in s†;

(E=as)† = ∃z (δ(z′, z) = a ∧ s†(z)), where z 6= z′ is free in s†;

(E>a<bs)
† = ∃z (a < δ(z′, z) < b ∧ s†(z)), where z 6= z′ is free in s†.

Now, turning to MS-formulas, we define ·† as commuting with the Booleans and
by taking

(c@s)† = s†[c/z], where z is free in s†;

(s1
.
= s2)

† = ∀x (s†1[x/z1] ↔ s†2[x/z2]), z1, z2 free in s†1, s
†
2, respectively;

(δ(c1, c2) = a)† = (δ(c1, c2) = a);

(δ(c1, c2) < a)† = (δ(c1, c2) < a).

By a straightforward induction one can easily check that A � ϕ† iff A∗ � ϕ.

(ii) To define the converse translation, we first observe that the following transfor-
mations of an FM

2-formula ϕ(x, y) result in an equivalent formula with respect to
metric spaces: every occurrence of equality t1

.
= t2 can be replaced by δ(t1, t2) = 0;

δ(t, t) = 0 by >; δ(t, t) < 0 by ⊥; δ(t, t) = a by ⊥ if a > 0; δ(t, t) < a by > if a > 0;
δ(y, t) = a by δ(t, y) = a; δ(y, t) < a by δ(t, y) < a; δ(t, x) = a by δ(x, t) = a, and
δ(t, x) < a by δ(x, t) < a. In what follows, we assume that these transformations
have been applied to all our formulas, in particular, to ϕ.

We distinguish between three types of atomic formulas in FM
2: binary atoms are

of the form δ(x, y) < a or δ(x, y) = a (they have two free variables); unary atoms
are of the form δ(x, c) < a, δ(x, c) = a, Pi(x), Pi(y), δ(c, y) < a or δ(c, y) = a
(having only one free variable); atoms without free variables can be called nullary.

Given an FM
2-sentence ϕ, we first translate it into a set term ϕ? by inductively

defining a map ·? from subformulas of ϕ with ≤ 1 free variable into MS-set terms
(using the ‘universal modalities’ 2 and 3 defined on page 8):

(1) If ψ = > then ψ? = >, and if ψ = ⊥ then ψ? = ⊥.

(2) If ψ ∈ {Pi(x), Pi(y)} then ψ? = Xi.

(3) If ψ = Pi(c) then ψ? = 2({c} → Xi).

(4) If ψ ∈ {δ(x, c) = a, δ(c, y) = a} then ψ? = E=a{c}.

(5) If ψ is δ(c1, c2) = a then ψ? = 2({c1} → E=a{c2}).

(6) If ψ is δ(c1, c2) < a then ψ? = 2({c1} → E<a{c2}).

(7) If ψ ∈ {δ(x, c) < a, δ(c, y) < a} then ψ? = E<a{c}.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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(8) If ψ = χ1 ∧ χ2 then ψ? = χ?1 u χ
?
2.

(9) If ψ = ¬χ then ψ? = ¬(χ?).

The remaining cases of ψ = ∃yχ(x, y) and ψ = ∃xχ(x, y) are more sophisticated.
We consider only the former. The formula χ(x, y) can be regarded as a Boolean
combination of binary atoms βi and formulas υi(x) and ξi(y) with at most one free
variable. Denote this Boolean combination by κ, i.e.,

χ(x, y) = κ(β1, . . . , βr, υ1(x), . . . , υl(x), ξ1(y), . . . , ξs(y)).

Let us first move all components in κ without free y out of the scope of the outmost
∃y in ψ. Then ψ can be equivalently rewritten as

∨

〈ν1,...,νl〉∈{>,⊥}l

(

∃y κ(β1, . . . , βr, ν1, . . . , νl, ξ1, . . . , ξs) ∧
∧

1≤i≤l

(υi ↔ νi)
)

.

Now let 0 = a0 < a1 < · · · < an be the list of all rational numbers occurring in
ψ together with 0. So this list is non-empty. Consider the set Rψ containing the
following formulas:

—δ(x, y) = ai, for i ≤ n;

—ai < δ(x, y) < ai+1, for i < n;

—δ(x, y) > an.

For every β ∈ Rψ and every binary atom βi in ψ, we have either β � βi or β � ¬βi.
In other words, by assigning a truth-value to some β in Rψ, we fix the truth values

of all binary atoms in ψ. Let ββi = > if β � βi, and ββi = ⊥ otherwise. Then ψ is
equivalent to the formula

∨

〈ν1,...,νl〉∈{>,⊥}l

(

∨

β∈Rψ

∃y
(

β ∧ κ(ββ1 , . . . , β
β
r , ν1, . . . , νl, ξ1, . . . , ξs)

)

∧
∧

1≤i≤l

(υi ↔ νi)
)

.

Next, we replace each β ∈ Rψ with the distance operator β∗ defined by taking

—(δ(x, y) = ai)
∗ = E=ai , for i ≤ n;

—(ai < δ(x, y) < ai+1)
∗ = E>ai<ai+1

, for i < n;

—(δ(x, y) > an)
∗ = E>an ,

delete the quantifier ∃y and recursively compute the values of υ?i and ξ?i . This
yields

ψ? =
⊔

〈ν1,...,νl〉∈{>,⊥}l

(

⊔

β∈Rψ

β∗
(

κ(ββ1 , . . . , β
β
r , ν1, . . . , νl, ξ

?
1 , . . . , ξ

?
s )

)

u

u 1≤i≤l(υ
?
i ↔ νi)

)

.

Finally, we put ϕ‡ = (ϕ?
.
= >). It should be clear from the construction that

A � ϕ iff A∗ � ϕ‡.

The reader can restore details of the proof using the example below.
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Example 2.3. Consider the FM
2-sentence

ϕ = ∃y
(

∃x
(

δ(x, y) > 0 ∧ Pi(x)
)

∧ ¬Pi(y)
)

.

Let ξ1(y) = ∃x
(

δ(x, y) > 0 ∧ Pi(x)
)

and ξ2(y) = ¬Pi(y). Then we represent ϕ as

∃y
(

ξ1(y) ∧ ξ2(y)
)

which is equivalent to

∃y
(

δ(x, y) = 0 ∧ ξ1(y) ∧ ξ2(y)
)

∨ ∃y
(

δ(x, y) > 0 ∧ ξ1(y) ∧ ξ2(y)
)

.

Thus, we obtain the MS-set term

ϕ? = E=0(ξ?1 u ξ
?
2 ) t E>0(ξ?1 u ξ

?
2),

where ξ?1 = E=0(⊥uXi)tE>0(>uXi) or, equivalently, ξ?1 = E>0Xi, and ξ?2 = ¬Xi.
So the resulting translation is

ϕ? = E=0(E>0Xi u ¬Xi) t E>0(E>0Xi u ¬Xi).

Using the universal 3, we finally obtain

ϕ‡ =
(

3(E>0Xi u ¬Xi)
.
= >

)

.

The reader can easily check that ϕ and ϕ‡ indeed say the same.

3. UNDECIDABILITY

In this section we show that the satisfiability problem for fragments of MS[Q+/N]
containing distance operators like E>0

≤a is undecidable in natural classes of spaces
satisfying the triangular inequality. Consider the following languages:

—MS1[Q
+/N] is the fragment of MS[Q+/N] whose set terms are constructed from

set variables, the operators u, ¬, and E>0
≤b for b ∈ Q+/N, and whose formulas are

Boolean combinations of atoms of the form s v t.

—MS2[Q
+/N] results from MS1[Q

+/N] by replacing E>0
≤b with E>0

<b .

—MS3[Q
+/N] results from MS1[Q

+/N] by replacing E>0
≤b with E

≥1
≤b .

—MS4[N] results from MS1[Q
+/N] by replacing E>0

≤b with E
≥1
<b .

Theorem 3.1. Let K ⊆ Dtr contain
〈

R2, d2

〉

. Then the satisfiability problem
for MSi[Q

+/N]-formulas in (models based on spaces from) K is undecidable for any
1 ≤ i ≤ 4.

Proof. We consider only MS1[N]; the other languages are treated analogously.
The proof is by reduction to the undecidable N × N tiling problem (see [van
Emde Boas 1997; Börger et al. 1997] and references therein). We remind the
reader that the tiling problem for N × N is formulated as follows: given a finite
set T = {T1, . . . , Tl} of tile types (i.e., squares Ti with colors left(Ti), right(Ti),
up(Ti), and down(Ti) on their edges), decide whether the grid N × N can be cov-
ered with tiles, each of a type from T, in such a way that the colors of adjacent
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edges on adjacent tiles match, or, more precisely, whether there exists a function
τ : N× N → T such that, for all n,m ∈ N, we have

right(τ(n,m)) = left(τ(n+ 1,m)),

up(τ(n,m)) = down(τ(n,m + 1)).

So suppose a set of tile types T = {T1, . . . , Tl} is given. Our aim is to construct
an MS1[N]-formula which is satisfiable in K iff T can tile N× N.

Note that E≤bt is definable in MS1[N] as ttE>0
≤b t. Hence, A≤b is definable as well.

Take set variables Z1, . . . , Zl, X0, . . . , X4, Y0, . . . , Y4. Let χi,j = A≤9(Xi u Yj), for
i, j ≤ 4, and let Γ be the set of the following formulas, where i, j ≤ 4 and k ≤ l:

Xi u Yj v E≤9χi,j , χi,j v A>0
≤80¬χi,j , χi,j v ¬χm,n ((i, j) 6= (m,n)), (4)

χi,j v
⊔

k≤l

A≤9Zk, Zm v ¬Zn (n 6= m), (5)

χi,j u Zk v E≤20(E≤20χi,j u χi+51,j u
⊔

right(Tk)=left(Tm)

Zm), (6)

χi,j u Zk v E≤20(E≤20χi,j u χi,j+51 u
⊔

up(Tk)=down(Tm)

Zm), (7)

where +5 denotes addition modulo 5.3 The first formula in (4) is satisfied in a
model B iff XB

i ∩Y
B
j is the union of a set of spheres of radius 9. The second one is

satisfied in B iff the distance between any two distinct centers of spheres of radius
9, all points in which belong to XB

i ∩Y B
j , is more than 80, while the third formula

guarantees that the sets χB
i,j are pairwise disjoint. We think of χB

i,j , for i, j ≤ 4, as
a finite family of infinite sets making up the grid for the tiling (see Fig. 1). The
formulas in (5) ensure that every point of the grid is covered by some tile and that
different tiles never cover the same point. Finally, formulas (6) and (7) ensure the
tiling conditions in the horizontal and vertical directions, respectively.

Note that if x ∈ χB
i,j then, in view of (6), there exist y ∈ χB

i+51,j and z ∈ χB
i,j

for which d(x, y) ≤ 20 and d(y, z) ≤ 20. But then, by the triangular inequality,
d(x, z) ≤ 40, and so, by the second formula in (4), x = z. The situation in the
vertical direction is similar.

We are going to show that the conjunction of formulas in {¬(χ0,0 v ⊥)} ∪ Γ is
satisfiable in K iff T can tile N× N. This will be done in two steps.

Lemma 3.2. If T tiles N × N, then {¬(χ0,0 v ⊥)} ∪ Γ is satisfiable in the 2-
dimensional Euclidean space

〈

R2, d2

〉

.

Proof. Suppose τ : N× N → T is a tiling. For r ∈ R2, put

S(r) = {y ∈ R2 : d2(r, y) ≤ 9}.

3The first conjunct in the right hand sides of (6) and (7) is redundant if K consists of symmetric
spaces only.
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Fig. 1. Building the grid.

Define a model B on
〈

R2, d2

〉

by taking, for i, j ≤ 4 and k ≤ l,

XB

i =
⋃

m,n∈N

S(20(5n+ i), 20m),

Y B

j =
⋃

m,n∈N

S(20n, 20(5m+ j)),

ZB

k =
⋃

τ(n,m)=Tk

S(20n, 20m).

It is not difficult to see that this model satisfies {¬(χ0,0 v ⊥)} ∪ Γ; see Fig. 1.

Lemma 3.3. Suppose that a model B based on a space 〈W,d〉 ∈ Dtr satisfies the
conjunction of {¬(χ0,0 v ⊥)} ∪ Γ. Then there exists a function f : N × N → W
such that, for all i, j ≤ 4 and k1, k2 ∈ N,

(a) f(5k1 + i, 5k2 + j) ∈ χB
i,j ;

(b) d(f(k1, k2), f(k1 + 1, k2)) ≤ 20 and d(f(k1 + 1, k2), f(k1, k2)) ≤ 20;

(c) d(f(k1, k2), f(k1, k2 + 1)) ≤ 20 and d(f(k1, k2 + 1), f(k1, k2)) ≤ 20.
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Logics of metric spaces · 15

The map τ : N × N → T defined by taking τ(n,m) = Tk iff f(n,m) ∈ ZB

k , for all
k ≤ l and all n,m ∈ N, is a tiling.

Proof. We define f inductively. Pick some f(0, 0) ∈ χB
0,0. By (6), we can find

then a sequence wn ∈W , for n ∈ N, such that

—w0 = f(0, 0),

—w5k+i ∈ (χi,0)
B for all i ≤ 4 and k ∈ N,

—d(wn, wn+1) ≤ 20 and d(wn+1, wn) ≤ 20.

We put f(n, 0) = wn for all n ∈ N. Similarly, by (7), we find a sequence vn, for
n ∈ N, such that

—v0 = f(0, 0),

—v5k+j ∈ (χ0,j)
B for all j ≤ 4 and k ∈ N,

—d(vn, vn+1) ≤ 20 and d(vn+1, vn) ≤ 20.

Put f(0,m) = vm for all m ∈ N. Suppose now that f has been defined for all
(m′, n′) with m′ + n′ < m+ n so that it satisfies conditions (a)–(c). Without loss
of generality we can assume that n = 5k1, m = 5k2 + 1, for some k1, k2 ∈ N.
Then f(n,m − 1) ∈ (χ0,0)

B, and hence f(n,m − 1) ∈ (E≤20χ0,1)
B. So we can

find a w′ ∈ (χ0,1)
B with d(f(n,m − 1), w′) ≤ 20 and d(w′, f(n,m− 1)) ≤ 20. We

then put f(n,m) = w′. It remains to prove that f still satisfies (a)–(c). To this
end it suffices to show that d(f(n − 1,m), w′) ≤ 20 and d(w′, f(n − 1,m)) ≤ 20.
We have f(n − 1,m) ∈ (χ4,1)

B, and so there exists a w′′ ∈ (χ0,1)
B such that

d(f(n − 1,m), w′′) ≤ 20 and d(w′′, f(n − 1,m)) ≤ 20. Thus it is enough to show
that w′ = w′′. Suppose otherwise. Then we have

—d(w′′, f(n− 1,m)) ≤ 20;

—d(f(n− 1),m), f(n− 1,m− 1)) ≤ 20;

—d(f(n− 1,m− 1), f(n,m− 1)) ≤ 20;

—d(f(n,m− 1), w′) ≤ 20.

By the triangular inequality, it follows that d(w′′, w′) ≤ 80, contrary to the second
formula in (4). It is readily seen now that τ is a tiling.

This completes the proof of Theorem 3.1.

4. DECIDABLE LOGICS OF METRIC SPACES

Consider the language MS
#[M ] whose set term constructors are the Booleans, E>a

and E≤a, for all a ∈M , their duals A>a and A≤a, as well as the nominal constructor
which gives the set term {c} for any location constant c. Thus, the MS

#[M ] set
terms s are:

s ::= Xi | {ci} | > | ⊥ | ¬s | s1 u s2 | E
>as | E≤as | A>as | A≤as.

The atomic formulas of MS
#[M ] are δ(c, d) < a and δ(c, d) = a, for a ∈M , c@s and

s1
.
= s2, where c, d are constants and s1, s2 set terms. Complex MS

#[M ]-formulas
are Boolean combinations of atoms:

ϕ ::= c@s | s1
.
= s2 | δ(c1, c2) = a | δ(c1, c2) < a | ¬ϕ | ϕ1 ∧ ϕ2.
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Note that in MS
#[Q+] we can express all constraints from Example 1.1, save (G)

(the formula house@E>0.5tube stationuE≤1tube station is clearly not equivalent to

house@E>0.5
≤1 tube station). Note also that the difference operator and the universal

modality are still definable in MS
#[M ].

The satisfiability problem for arbitrary MS
#[M ]-formulas can be reduced to the

satisfiability problem for MS
#[M ]-formulas without the nominal constructor. In-

deed, suppose that c1, . . . , cn are all location constants occurring in an MS
#[M ]-

formula ϕ as set terms {ci}. Take fresh set variables X1, . . . , Xn and let ϕ′ be the
result of replacing all the {ci} in ϕ with Xi. It is readily checked that ϕ is satisfiable
in a model based on a distance space D iff the formula

ϕ′ ∧
∧

i≤n

3(Xi ∧ A>0¬Xi)
.
= >

is satisfiable in D.4 Since our main concern is the finite model property and decid-
ability, we will, for purely technical reasons, from now on assume that no nominals
{c} occur in MS

#[M ]-formulas.
Our aim in the remaining part of this section is to prove that MS

#[R+] inter-
preted in metric spaces has the finite model property and that MS

#[Q+] interpreted
in metric spaces is decidable. But before turning to the details of the proof, we
introduce a relational semantics that enables us to use tools and techniques from
standard modal logic.

4.1 Relational semantics

As we have two kinds of ‘modal operators’ in MS
#[R+], namely, E≤a and E>a,

relational metric M -models of MS
#[R+] should be quadruples of the form

S = 〈W, (Ra)a∈M , (Ra)a∈M , a〉 , (8)

where W is a non-empty set, (Ra)a∈M and (Ra)a∈M are two families of binary
relations on W , M is a parameter set, and a is an assignment in W associating
with every set variable Xi a subset a(Xi) of W and with every location constant ci
an element a(ci) of W . We understand relations uRav and uRav as ‘v is at most a
(units) far from u’ and ‘v is more than a (units) far from u,’ respectively.

The value tS of a set term t in S is now inductively defined in the standard
Kripkean way:

(E≤at)S = {w ∈W : ∃v ∈ tS wRav},

(E>at)S = {w ∈W : ∃v ∈ tS wRav}.

The values of A≤at and A>at are defined dually. (As we have no explicit metric
in the relational model, there is no straightforward way to interpret atoms of the
form δ(c, d) < a or δ(c, d) = a. Satisfiability of these formulas will be simulated by
other constructors introduced in the next section.)

Aiming to represent metric models by means of relational models, we have to
impose a number of restrictions on the accessibility relations. Namely, we say that

4Recall that we always have 0 ∈ M .
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a model S of the form (8) is M -standard if the following conditions are satisfied for
all a, b ∈M and w, u, v ∈ W :

(i) Ra ∪Ra = W ×W ,

(ii) Ra ∩Ra = ∅,

(iii) if uRav and a ≤ b, then uRbv,

(iv) if uRav and a ≥ b, then uRbv,

(v) uR0v iff u = v,

(vi) if uRav and vRbw, then uRa+bw whenever a+ b ∈M ,

(vii) uRav iff vRau and uRav iff vRau.

Properties (v), (vi) and (vii) reflect axioms (1)–(3) of metric spaces. Note that as
a consequence of (i), (ii) and (vi) we have:

(viii) if uRav and uRa+bw then vRbw whenever a+ b ∈M .

With every metric space model B =
〈

W,d,XB
1 , . . . , c

B
1 , . . .

〉

we can associate the
relational metric M -model

S(B) = 〈W, (Ra)a∈M , (Ra)a∈M , a〉

in which the relations Ra and Ra are defined by taking, for all w, v ∈ W ,

wRav iff d(w, v) ≤ a,

wRav iff d(w, v) > a,

a(Xi) = XB
i and a(ci) = cBi . Clearly, S(B) isM -standard. Moreover, the following

obvious lemma shows that S(B) can be regarded as a relational representation of
B.

Lemma 4.1. For every metric space model B and every MS
#[M ] set term t, the

value of t in B coincides with the value of t in S(B).

At the end of Section 4.2 (Step 5) we will show how under certain conditions a
finite M -standard model can be transformed into a finite metric model. (However,
the technique we use does not apply to infinite models.)

4.2 The finite model property

In this section we prove the following

Theorem 4.2. An MS
#[R+]-formula ϕ is satisfiable in a metric space model iff

it is satisfiable in a finite metric space model.

Proof. We first outline the idea of the proof which consists of five steps. Sup-
pose B � ϕ for some metric MS-model B =

〈

W,d,XB
1 , . . . , c

B
1 , . . .

〉

.

Step 1. Depending on B, we transform ϕ into a set Φ with B � Φ, containing

only formulas of the form c@t, s
.
= t, s 6

.
= t, and δ(c, d) = a, in such a way that

ϕ is satisfiable in a finite model whenever Φ is finitely satisfiable (see Lemma 4.3).
Starting from Φ, we compute a finite set M [Φ] of real numbers containing, in
particular, all the numbers occurring in Φ.
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Step 2. We replace the metric d by a new metric d′ with the (finite) range M [Φ]
and obtain a new model B1 which still satisfies Φ.

Step 3. The next step is to filtrate (as in modal logic; see e.g. [Chagrov and Za-
kharyaschev 1997]) the relational metric model S = S(B1) through some suitable
set of terms cl(Φ). To define cl(Φ), for each δ(c, d) = a in Φ we add to Φ the terms
Xd, Xc, and A≥b¬Xd, where b = max{a′ ∈M [Φ] : a′ < a} and Xc, Xd are fresh
set variables (these additional terms are required to prove Lemma 4.7 (2) below).
The set cl(Φ) is the closure of the resulting set of terms under rules that are similar
to the rules of the Fischer–Ladner closure for PDL-formulas (cf. [Harel 1984]). As
a result of the filtration we get a finite relational metric model S

f .

Step 4. However, unlike S, in general Sf is not M [Φ]-standard, which means

that we cannot directly transform it into a finite metric space model. In fact, Sf

satisfies all the properties (i)–(viii) save (ii): there may exist a v ∈ W f such that
wRav and wRav, for some w ∈ W f and a ∈M [Φ]. To ‘cure’ these defects, we make
copies of such ‘bad’ points v and modify the relations Ra and Ra in Sf obtaining a
finite standard relational metric model S∗. (The ‘copying-method’ was developed
by the Bulgarian school of modal logic; see [Gargov et al. 1988; Vakarelov 1991].
Our technique follows [Goranko 1990].)

Step 5. The final step is to transform S∗ into a finite metric MS-model B∗ and
to show that B∗ satisfies Φ.

Let us now turn to technical details. Suppose B � ϕ.

Step 1. Denote by term(ϕ) the set of all set terms occurring in ϕ including
all subterms; sub(ϕ) stands for the set of all subformulas of ϕ. Define a set Φ =
Φ1 ∪ Φ2 ∪ Φ3 by taking:

Φ1 = {c@t : (c@t) ∈ sub(ϕ), B � c@t} ∪ {c@¬t : (c@t) ∈ sub(ϕ), B 6� c@t},

Φ2 = {s
.
= t : (s

.
= t) ∈ sub(ϕ), B � s

.
= t} ∪ {s 6

.
= t : (s

.
= t) ∈ sub(ϕ), B � s 6

.
= t},

Φ3 = {δ(c, d) = a : δ(c, d) occurs in ϕ, a = d(a(c), a(d))}.

Note that the set of parameters from R+ that occur in Φ3 depends on the model
B and not just on the initial formula ϕ. It should be clear from the definition that
we have the following:

Lemma 4.3. Suppose Φ is associated with the model B satisfying ϕ. Then the
following hold:

(1) B � Φ.
(2) For every metric MS-model B

′, if B
′ � Φ then B

′ � ϕ.

Next we construct M [Φ]. Let

M(Φ) = {a ∈ R : a occurs in Φ} ∪ {0, 1}.

So M(Φ) depends on B, whereas the cardinality of M(Φ) can be bounded in terms
of ϕ. Denote by γ the smallest natural number that is greater than all numbers in
M(Φ) and define M [Φ] as follows:

M [Φ] = {γ, 0} ∪ {a ∈ R : a = a1 + · · ·+ an < γ, a1, . . . , an ∈M(Φ), n < ω}.

Let µ = min{M(Φ)−{0}} and let χ be the least natural number such that χ ≥ γ/µ.
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Lemma 4.4. |M [Φ]| ≤ |M(Φ)|χ.

Proof. For any a1, . . . , an ∈M(Φ)−{0} with a1 + · · ·+ an ≤ γ we have n ≤ χ
(for otherwise, if n > χ, we would have γ ≤ χµ < nµ ≤ γ, which is a contradiction).
The claim follows immediately.

Step 2. We show now that Φ is satisfied in a metric MS-model

B1 =
〈

W,d′, XB1
1 , . . . , cB1

1 , . . .
〉

such that the range of d′ is a subset of M = M [Φ]. Indeed, define d′ by taking, for
all w, v ∈ W ,

d′(w, v) = min
(

{γ} ∪ {a ∈M : d(w, v) ≤ a}
)

,

XB1

i = XB
i for all Xi, and cB1

i = cBi for all ci.
Clearly, the range of d′ is a subset of M . Let us check that d′ is a metric. It

satisfies (1) because 0 ∈M . That d′ is symmetric follows from the symmetry of d.
To show (2), we prove first that

{a ∈M : d′(w, v) + d′(v, u) ≤ a} ⊆ {a ∈M : d′(w, u) ≤ a}. (9)

Suppose d′(w, v) + d′(v, u) ≤ a, for a ∈M . If d′(w, v) = γ then d′(v, u) = 0, and so
d(v, u) = 0 and v = u. Similarly, d′(v, u) = γ implies w = v. Hence we may assume
that both d′(w, v) < γ and d′(v, u) < γ. Then there are a1, a2 ∈ M such that
d′(w, v) = a1, d

′(v, u) = a2. Moreover, d(w, v) ≤ a1, d(v, u) ≤ a2 and a1 + a2 < a.
Thus d′(w, u) ≤ a, which proves (9). Now, if d′(w, u) > d′(w, v) + d′(v, u) then
γ > d′(w, v) and γ > d′(v, u). Hence there are a1, a2 ∈ M such that d′(w, v) = a1,
d′(v, u) = a2 and γ > a1 + a2. Thus a1 + a2 ∈ M and d′(w, u) ≤ a1 + a2, which is
a contradiction. It follows that d′(w, u) ≤ d′(w, v) + d′(v, u).

Lemma 4.5. The set Φ is satisfied in B1.

Proof. Clearly, for each (δ(c, d) = a) ∈ Φ3, d(a(c), a(d)) = d′(a(c), a(d)) = a.
So B1 � Φ3. To show B1 � Φ1 ∪ Φ2, it suffices to prove that

∀w ∈W∀t ∈ term(Φ1 ∪ Φ2) (w ∈ tB ↔ w ∈ tB1).

This can be done by a straightforward induction on the construction of t. The
basis of induction and the case of Booleans are trivial. So suppose that t is A≤as
(whence a ∈M). Then we have:

w ∈ tB ⇔1 ∀v ∈ W (d(w, v) ≤ a→ v ∈ sB)

⇔2 ∀v ∈ W (d′(w, v) ≤ a→ v ∈ sB1)

⇔3 w ∈ tB1 .

The equivalences ⇔1 and ⇔3 are obvious; ⇔2 holds by the induction hypothesis
and the fact that, for all w, v ∈ W and a ∈ M , d(x, y) ≤ a iff d′(x, y) ≤ a. The
case of A>as is considered in a similar way.

Step 3. For each location constant d occurring in Φ3 we pick a new set variable

Xd and define

t(Φ) = term(Φ) ∪ {Xd : d occurs in Φ3} ∪ {¬X
d : d occurs in Φ3} ∪

{A≤b¬Xd : (δ(c, d) = a) ∈ Φ3, b = max{a′ ∈M [Φ] : a′ < a}}.
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Clearly, t(Φ) is closed under subterms.
Since theXd, for d ∈ Φ3, do not occur in Φ, we may assume that (Xd)B1 = {dB1}

for all constants d in Φ3.
Define the closure cl(Φ) of t(Φ) as the smallest set T of terms such that t(Φ) ⊆ T

and

(1) T is closed under subterms;

(2) if t ∈ T , then A≤0t ∈ T whenever t is not of the form A≤0s;

(3) if A≤at ∈ T and a ≥ a1+ · · ·+an, for ai ∈M [Φ]−{0}, then A≤a1 . . .A≤ant ∈ T ;

(4) if A>at ∈ T and b ∈M [Φ], then ¬A≤b¬A>at ∈ T ;

(5) if A>at ∈ T and b > a (b ∈ M [Φ]), then A>bt ∈ T and if c + a ∈ M [Φ]
(c ∈M [Φ]− {0}), then ¬A>a+c¬A>at ∈ T .

Lemma 4.6. |cl(Φ)| ≤ S(Φ) = 2χ+3 · |t(Φ)| · |M [Φ]|2χ+1.

Proof. Observe that cl(Φ) can be obtained from t(Φ) step-by-step as follows:
First, take the closure of t(Φ) under subterms and (5) and denote the result by

cl1(Φ). Second, take the closure of cl1(Φ) under subterms and (4) and denote the
result by cl2(Φ), which is still closed under (5). Third, take the closure of cl2(Φ)
under subterms and (3), denote the result by cl3(Φ) and notice that cl3(Φ) is closed
under (4) and (5). Finally, take the closure of cl3(Φ) under (2). This is closed under
(1)–(5).

The following is now readily checked:

—|cl1(Φ)| is bounded by |t(Φ)| · 2χ · |M [Φ]|χ, because the introduced terms are of
the form (¬)A>a1(¬)A>a2 (¬) . . . (¬)A>ak t, with ai − ai+1 ≥ µ and (¬) marking
a possible occurrence of ¬. The length k of such sequences of parameters ai is
bounded by χ, because a1 ≤ γ.

—|cl2(Φ)| is bounded by 4 · |cl1(Φ)| · |M [Φ]|.

—|cl3(Φ)| is bounded by |cl2(Φ)| · |M [Φ]|χ because, as follows from the proof of
Lemma 4.4, no chain A≤a1 · · ·A≤an of length > χ is introduced when taking the
closure under (3).

—|cl(Φ)| is bounded by 2 · |cl3(Φ)|.

So we obtain that |cl(Φ)| is bounded by S(Φ) = 2χ+3 · |t(Φ)| · |M [Φ]|2χ+1.

Recall that B1 � Φ. Consider now the relational counterpart of B1, i.e., the
model

S(B1) = 〈W, (Ra)a∈M , (Ra)a∈M , b〉

which, for brevity, will be denoted by S. We are going to filtrate S through
Θ = cl(Φ). Define an equivalence relation ≡ on W by taking u ≡ v if u ∈ tS iff
v ∈ tS, for all t ∈ Θ. Let [u] = {v ∈ W : u ≡ v}. Note that if d is a location
constant in Φ3, then [b(d)] = {b(d)}, since Xd ∈ Θ.

Construct a filtration Sf =
〈

W f , (Rfa)a∈M , (R
f
a)a∈M , b

f
〉

of S through Θ by

taking

—W f = {[u] : u ∈W};

—bf (c) = [b(c)];
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—bf (X) = {[u] : u ∈ b(X)};

—[u]Rfa [v] iff for all terms A≤at ∈ Θ,

—u ∈ (A≤at)S implies v ∈ tS and
—v ∈ (A≤at)S implies u ∈ tS;

—[u]Rfa [v] iff for all terms A>at ∈ Θ,

—u ∈ (A>at)S implies v ∈ tS and
—v ∈ (A>at)S implies u ∈ tS.

Since Θ is finite, W f is finite as well. Note also that we have bf (Xd) = {bf (d)}
whenever d is a location constant in Φ3.

Lemma 4.7. (1) For every t ∈ Θ and every u ∈ W , u ∈ tS iff [u] ∈ tS
f

.

(2) For every (δ(c, d) = a) ∈ Φ3, a = min{b ∈M : bf (c)Rfb b
f (d)}.

(3) Sf satisfies (i) and (iii)–(viii) from Section 4.1.

Proof. Claim (1) is proved by an easy induction on the construction of t.
To prove (2), take (δ(c, d) = a) ∈ Φ3. We must show that bf (c)Rfab

f (d) and

¬bf (c)Rfb b
f (d), for all b ∈ M such that a > b. Notice first that uRav implies

[u]Rfa [v] and uRav implies [u]Rfa [v]. Since B1 � Φ, we have B1 � δ(c, d) = a, and so
d′(b(c), b(d)) = a. Hence b(c)Rab(d) and bf (c)Rfab

f (d). Suppose now that b′ ∈M
is maximal with b′ < a and consider A≤b′¬Xd. By definition, b(Xd) = {b(d)}.
Hence b(d) /∈ (¬Xd)S. On the other hand, we have b′ < d′(b(c), b(d)), from which

b(c) ∈ (A≤b′¬Xd)S. Since (A≤b′¬Xd) ∈ Θ, we then obtain ¬bf (c)Rfb′b
f (d). Then,

for arbitrary b ∈M such that b < a, it follows by (3)(iii) that ¬bf (c)Rfb b
f (d).

To prove (3), let us check conditions (i) and (iii)–(viii).

(i): We have to show that Rfa ∪ R
f
a = W f ×W f . Let ¬[u]Rfa [v]. Then ¬uRav,

and so uRav, since S satisfies (i). Thus [u]Rfa [v].

(iii): If [u]Rfa [v] and a ≤ b then [u]Rfb [v]. Let [u]Rfa [v] and a < b, for b ∈ M .
Suppose u ∈ (A≤bt)S. By the definition of Θ = cl(Φ), A≤at ∈ Θ, and so u ∈
(A≤at)S. Hence v ∈ tS. That v ∈ (A≤bt)S implies u ∈ tS is shown in the same
way.

(iv): If [u]Rfa [v] and a ≥ b then [u]Rf
b
[v]. Let [u]Rfa [v] and a > b. Suppose

u ∈ (A>bt)S. Then A>at ∈ Θ, u ∈ (A>at)S, and so v ∈ tS. Again, the other
direction is treated analogously.

(v): [u]Rf0 [v] iff [u] = [v]. The implication (⇐) is obvious. So suppose [u]Rf0 [v].
Take some t ∈ Θ with u ∈ tS. Without loss of generality we may assume that t is
not of the form A≤0s. Then, by the definition of Θ, u ∈ (A≤0t)S and A≤0t ∈ Θ.
Hence v ∈ tS. In precisely the same way one can show that for all t ∈ Θ, v ∈ tS

implies u ∈ tS. Therefore, [u] = [v].

(vi): If [u]Rfa [v] and [v]Rfb [w], then [u]Rfa+b[w], for (a + b) ∈ M . Suppose u ∈

(A≤a+bt)S. Then A≤aA≤bt ∈ Θ and u ∈ (A≤aA≤bt)S. So v ∈ (A≤bt)S, whence
w ∈ tS. Now suppose that w ∈ (A≤a+bt)S. Again, we have A≤bA≤at ∈ Θ and
w ∈ (A≤bA≤at)S. Then v ∈ (A≤at)S, whence u ∈ tS.

(vii): [w]Rfa [u] iff [u]Rfa [w] and [w]Rfa [u] iff [u]Rfa [w] hold by definition.
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(viii): If [u]Rfa [v] and [u]Rf
a+b

[w], then [v]Rf
b
[w], for (a + b) ∈ M . Suppose

that v ∈ (A>bt)S. Then ¬A≤a¬A>bt ∈ Θ and u ∈ (¬A≤a¬A>bt)S. Hence u ∈
(A>(a+b)t)S and so w ∈ tS. For the other direction suppose w ∈ (A>bt)S. Then
u ∈ (¬A>(a+b)¬A>bt)S and ¬A>(a+b)¬A>bt ∈ Θ. Hence u ∈ (A≤at)S and so
v ∈ tS.

Step 4. Unfortunately, Sf does not necessarily satisfy (ii) which is required to
construct the model B

∗ we need: it may happen that for some points [u], [v] in

W f and a ∈ M , we have both [u]Rfa [v] and [u]Rfa [v]. To ‘cure’ these defects, we
have to perform some surgery. The defects form the set

D(W f ) = {v ∈ W f : ∃a ∈M∃u ∈W f (uRfav & uRfav)}.

Let

W ∗ = {〈v, i〉 : v ∈ D(W f ), i ∈ {0, 1}} ∪ {〈u, 0〉 : u ∈ W f −D(W f )}.

So for each v ∈ D(W f ) we now have two copies 〈v, 0〉 and 〈v, 1〉. Define an assign-
ment b∗ in W ∗ by taking

—b∗(c) =
〈

bf (c), 0
〉

and

—b∗(X) = {〈u, i〉 ∈W ∗ : u ∈ bf (X)}.

Finally, we define accessibility relations R∗
a and R∗

a as follows:

—if a > 0 then 〈u, i〉R∗
a 〈v, j〉 iff either

—uRfav and ¬uRfav, or
—uRfav and i = j;

—if a = 0 then 〈u, i〉R∗
a 〈v, j〉 iff 〈u, i〉 = 〈v, j〉;

—R∗
a is defined as the complement of R∗

a, i.e., 〈u, i〉R∗
a 〈v, j〉 iff ¬ 〈u, i〉R∗

a 〈v, j〉.

Lemma 4.8. S∗ = 〈W ∗, (R∗
a)a∈M , (R

∗
a)a∈M , b

∗〉 is an M -standard relational
metric model.

Proof. That S∗ satisfies (i), (ii), and (v) follows immediately from the defini-
tion. Let us check the remaining conditions.

(iii) Suppose that 〈u, i〉R∗
a 〈v, j〉 and b ∈ M is such that a < b. If i = j then

clearly 〈u, i〉R∗
b 〈v, j〉. So assume i 6= j. Then, by definition, uRfav and ¬uRfav.

Since Sf satisfies (iii) and (iv), we obtain uRfb v and ¬uRf
b
v. Thus 〈u, i〉R∗

b 〈v, j〉.

(iv) Suppose that 〈u, i〉R∗
a 〈v, j〉 and b ∈ M is such that a ≥ b, but

¬ 〈u, i〉R∗
b
〈v, j〉. By (i), 〈u, i〉R∗

b 〈v, j〉. And by (iii), 〈u, i〉R∗
a 〈v, j〉. Finally, (ii)

yields ¬ 〈u, i〉R∗
a 〈v, j〉, which is a contradiction.

(vi) Suppose 〈u, i〉R∗
a 〈v, j〉, 〈v, j〉R

∗
b 〈w, k〉 and a+b ∈M . Then uRfav and vRfbw.

As Sf satisfies (vi), we have uRfa+bw. If i = k then clearly 〈u, i〉R∗
a+b 〈w, k〉. So

assume i 6= k. If i = j 6= k then, using (viii) for Sf , ¬uRf
a+b

w, since uRfav and

¬vRf
b
w. The case i 6= j = k is considered analogously using the fact that the

relations in Sf are symmetric.

(vii) follows from the symmetry of Rfa and Rfa .
Now, the symmetry of R∗

a follows from the symmetry of R∗
a and (i), (ii).
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Lemma 4.9. For all 〈v, i〉 ∈W ∗ and t ∈ Θ, we have 〈v, i〉 ∈ tS
∗

iff v ∈ tS
f

.

Proof. The proof is by induction on t. The basis of induction and the case of
Booleans are trivial (we remind the reader that Θ contains no set constants {c}).
The cases t = (A≤as) and t = (A>as) are consequences of the following claims:

Claim 1: If uRfav and 〈u, i〉 ∈ W ∗ (i ∈ {0, 1}), then there exists a j such that
〈u, i〉R∗

a 〈v, j〉. Indeed, this is clear for i = 0. Suppose i = 1. If v was duplicated,

then 〈v, 1〉 is as required. If v was not duplicated, then ¬uRfav, and so 〈v, 0〉 is as
required.

Claim 2: If 〈u, i〉R∗
a 〈v, j〉, then uRfav. This should be obvious.

Claim 3: If uRfav and 〈u, i〉 ∈ W ∗ (i ∈ {0, 1}), then there exists a j such that
〈u, i〉R∗

a 〈v, j〉. Suppose i = 0. If v was not duplicated, then ¬uRfav. Hence
¬ 〈u, 0〉R∗

a 〈v, 0〉. If v was duplicated, then ¬ 〈u, 0〉R∗
a 〈v, 1〉. In the case of i = 1

we have ¬ 〈u, 1〉R∗
a 〈v, 0〉, i.e., 〈u, 1〉R∗

a 〈v, 0〉.

Claim 4: If 〈u, i〉R∗
a 〈v, j〉, then uRfav. Indeed, if i = j then ¬uRfav and so uRfav.

And if i 6= j, then uRfav.

Step 5. To complete the proof, we transform S∗ into a finite metric MS-model
and show that this model satisfies Φ. Let

B
∗ = 〈W ∗, d∗, X∗

1 , . . . , c
∗
1, . . .〉 ,

where for all w, v ∈ W ∗, set variables Xi, and constants ci,

d∗(w, v) = min({γ} ∪ {a ∈M : wR∗
av}), X∗

i = b
∗(Xi), c∗i = b

∗(ci).

As M is finite, d∗ is well-defined. Using (v)–(vii), it is easy to see that d∗ is a
metric with range M [Φ]. So B∗ is a finite metric space model. It remains to show
that B∗ satisfies Φ. Observe first that

(z) for all w ∈W ∗ and t ∈ t(Φ), we have w ∈ tS
∗

iff w ∈ tB
∗

.

This is proved by induction on t. The basis of induction and the case of Booleans
are clear. So let t = (A≤as) for some a ∈M . Then

w ∈ (A≤as)S
∗

⇔1 ∀v (wR∗
av → v ∈ sS

∗

)

⇔2 ∀v (wR∗
av → v ∈ sB

∗

)

⇔3 ∀v (d∗(w, v) ≤ a→ v ∈ sB
∗

)

⇔4 w ∈ (A≤as)B
∗

.

Equivalences ⇔1 and ⇔4 are obvious; ⇔2 holds by the induction hypothesis; ⇐3

is an immediate consequence of the definition of d∗, and ⇒3 follows from (iii). The
case t = (A>as) is considered analogously.

We can now show that B∗ � Φ. Let (c@t) ∈ Φ1. Then we have:

B
∗

� c@t⇔1 c
∗ ∈ tB

∗

⇔2 b
∗(c) ∈ tS

∗

⇔3

〈

b
f (c), 0

〉

∈ tS
∗

⇔4

b
f (c) ∈ tS

f

⇔5 [b(c)] ∈ tS
f

⇔6 b(c) ∈ tS ⇔7 c
B1 ∈ tB1 ⇔8 B1 � c@t.

Equivalences ⇔1 and ⇔8 are obvious; ⇔2 follows from (z); ⇔3 and ⇔5 hold
by definition; ⇔4 follows from Lemma 4.9, ⇔6 from Lemma 4.7, and ⇔7 from
Lemma 4.1.
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Since B1 � Φ, we have B∗ � Φ1. That B∗ � Φ2 is proved analogously using (z).
It remains to show that B∗ � Φ3. Take any δ(c, d) = a from Φ3. We must prove

that d∗(c∗, d∗) = a. By Lemma 4.7 (2),

a = min{b ∈M : b
f (c)Rfb b

f (d)}.

So a = min{b ∈ M :
〈

bf (c), 0
〉

R∗
b

〈

bf (d), 0
〉

}. By the definition of b∗, we have
a = min{b ∈M : b∗(c)R∗

bb
∗(d)}, which means that d∗(b∗(c), b∗(d)) = a.

We have proved the following:

Theorem 4.10. Φ is satisfied in a metric MS-model

B
∗ = 〈W ∗, d∗, X∗

1 , . . . , c
∗
1, . . .〉

such that |W ∗| ≤ 2 · 2S(Φ) and the range of d∗ is a subset of M [Φ].

From Theorem 4.10 and Lemma 4.3 (2), it follows that ϕ is satisfied in the finite
model B∗, which completes the proof of Theorem 4.2.

4.3 Decidability

The main result of this section is the following:

Theorem 4.11. (i) The satisfiability problem for MS
#[Q+]-formulas in the class

M of metric spaces is decidable.
(ii) Let q ∈ N. The satisfiability problem for MS

#[{0, . . . , q}]-formulas in M is
decidable in NExpTime.

We will first concentrate on (i). Note that the finite model property of MS
#[R+]

proved above is not enough to establish the decidability of MS
#[Q+]: we still do

not know an effectively computable upper bound for the size of a finite model
satisfying a given formula ϕ. Indeed, the set M(Φ) depends not only on ϕ, but
also on the initial model B satisfying ϕ because of the possible introduction of new
parameters a ∈ R by expressions of the form δ(c, d) occurring in ϕ. Note however
that by Lemmas 4.4 and 4.6, an upper bound for the size of B∗ can be computed
effectively from the maximum of M(Φ), the minimum of M(Φ)−{0}, and ϕ. Thus,
to obtain an effective upper bound, it suffices to start the construction with a model
satisfying ϕ for which both the maximum of M(Φ) and the minimum of M(Φ)−{0}
are bounded. The next lemma shows how to obtain such a model. Let nϕ and mϕ

be the minimal and the maximal positive numbers occurring in ϕ, respectively; if
no such numbers exist, then put mϕ = nϕ = 1.

Lemma 4.12. Suppose that an MS
#[Q+]-formula ϕ is satisfied in a metric MS-

model B =
〈

W,d,XB
1 , . . . , c

B
1 , . . .

〉

. Denote by D the set of all expressions of the
form δ(c, d) occurring in ϕ and assume that D 6= ∅. Then there is a metric d′ on
W such that ϕ is satisfied in B

′ =
〈

W,d′, XB
1 , . . . , c

B
1 , . . .

〉

and

min{d′(cB, dB) > 0 : δ(c, d) ∈ D} ≥ nϕ/2,

max{d′(cB, dB) : δ(c, d) ∈ D} ≤ 2mϕ.

Proof. Let a = nϕ and b = mϕ. Set

a′ = min{d(cB, dB) > 0 : δ(c, d) ∈ D},

b′ = max{d(cB, dB) : δ(c, d) ∈ D}.
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We consider the case where a′ < a/2 and 2b < b′. The other cases are even easier
and left to the reader. Define d′ by taking for all v, w ∈ W

d′(v, w) :=







d(v, w) if a ≤ d(v, w) ≤ b or d(v, w) = 0,
b+ (b/(b′ − b)) · (d(v, w) − b) if d(v, w) > b,
a+ (a/2(a− a′)) · (d(v, w) − a) if 0 < d(v, w) < a.

One can easily compute that if d(v, w) > b then d′(v, w) < d(v, w), and if 0 <
d(v, w) < a then d′(v, w) > d(v, w). It is a routine exercise now to show that
d′ is a metric. Clearly, it satisfies conditions (1) and (3). Let us see that for all
u, v, w ∈ W , we have

d′(u,w) ≤ d′(u, v) + d′(v, w). (10)

We consider here only two cases and leave the remaining ones to the reader.

Case 1: d(u,w) > b and 0 < d(u, v), d(v, w) < a. Then, as was observed above,
we have d′(u,w) < d(u,w), d(u, v) < d′(u, v) and d(u, v) < d′(u, v), which together
with 〈W,d〉 satisfying the triangular inequality yields (10).

Case 2: d(u,w) > b, 0 < d(u, v) < a and d(v, w) > b. Note first that we again
have d′(u, v) > d(u, v), and in view of (2), d(u, v) ≥ d(u,w) − d(v, w). It remains
to observe that 0 < b/(b′ − b) < 1 and

d′(u,w)− d′(v, w) =
b

b′ − b
· (d(u,w) − d(v, w)),

which yields d′(u, v) ≥ d′(u,w)− d′(v, w), i.e., (10).
To complete the proof, it remains to observe that for every parameter a occurring

in ϕ, every relation ≈ in {=, <,≤, >,≥}, and all x, y ∈W , we have

d(x, y) ≈ a iff d′(x, y) ≈ a.

It follows that tB = tB
′

for every term t occurring in ϕ, and so ϕ is satisfied in
B′.

It follows that we can start the filtration with a model B for which we obtain
(by Lemmas 4.4 and 4.6) the following upper bound for cl(Φ):

—|cl(Φ)| is bounded by l(ϕ)p(mϕ/nϕ), where p is a polynomial function of degree 2
not depending on ϕ and l(ϕ) is the length of ϕ.5

Summarizing the results obtained so far, we have

Theorem 4.13. There exists a quadratic polynomial p such that every
MS

#[Q+]-formula ϕ which is satisfiable in a metric space model is satisfiable in
a metric space whose domain is bounded by

f(ϕ) = 2 · 2l(ϕ)
p(
mϕ
nϕ

)

.

5This is done as follows. First, by Lemma 4.12 and the definition of χ, we obtain that χ ≤
4mϕ+2

nϕ
+ 1. Further, we clearly have |M(Φ)| ≤ l(ϕ) and |t(Φ)| ≤ 4 · l(ϕ), whence, by Lemma

4.4, |M [Φ]| ≤ l(ϕ)χ. Hence, by Lemma 4.6, we obtain |cl(Φ)| ≤ 2χ+3 · 22 · l(ϕ) · l(ϕ)χ·(2χ+1) ≤

l(ϕ)χ+6 · l(ϕ)2χ2+χ = l(ϕ)2χ2+2χ+6.
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In contrast to many standard satisfiability problems even this result does not
directly imply the decidability of the satisfiability problem for MS

#[Q+]–formulas,
because there are infinitely many (even uncountably many) different metric spaces
based on a finite set. We now address this problem.

Fix a formula ϕ and n ≤ f(ϕ). Put W = {1, . . . , n}. Suppose that ϕ contains
constants C(ϕ) = {c1, . . . , ck}, set variables V (ϕ) = {X1, . . . , Xl} and parameters
P (ϕ) = {a0, a1, . . . , ap}, where a0 = 0 belongs to P (ϕ) even if it does not occur
in ϕ. Assume that 0 < a1 < a2 < · · · < ap. Further, take variables xij , for every
i, j ∈ W . These variables are intended to ‘simulate’ the distance d(i, j) between i
and j.

Let I1, I2 and I3 be a partition of W ×W , and k a function from W ×W to
{0, 1, . . . , p}. There are only finitely many pairs E = (T,C) whose first component
is a structure

T =
〈

W, (XT : X ∈ V (ϕ)), (cT : c ∈ C(ϕ))
〉

and the second one is a set of ‘constraints’ of the form

C = {xij = ak(ij) : (i, j) ∈ I1}

∪ {xij > ap : (i, j) ∈ I2}

∪ {ak(ij) < xij < ak(ij)+1 : (i, j) ∈ I3},

where XT ⊆ {1, . . . , n} for every set variable X of ϕ, cT ∈ {1, . . . , n} for every
constant c of ϕ. The constraints in C specify for every ordered pair of elements i, j
from W whether the distance between i and j is equal to some ak(ij), greater than
ap or strictly between some ak(ij) and ak(ij)+1. Pairs E of this type will be called
(n-)constraint systems for ϕ. Constraint systems specify a class of models based
on the domain W in such a way that it is possible to determine from the system
the value of all those terms which contain parameters from P (ϕ) only. Define the
extension sE of a term s containing parameters from P (ϕ) only by induction:

—XE = XT for every set variable X of ϕ;

—(s1 u s2)E = sE
1 ∩ s

E
2 ;

—(¬s)E = W − sE;

—(E≤as)E = {i ∈ W : ∃j ∈W
(

(xij = a ∈ C & j ∈ sE) ∨ (xij < a ∈ C & j ∈ sE)
)

};

—(E>as)E = {i ∈ W : ∃j ∈W (a < xij ∈ C & j ∈ sE
)

}.

The truth-relation E � ϕ, ϕ an MS[M ]-formula with parameters from P (ϕ), is
defined as expected (we list only the interesting clauses):

—E � δ(c1, c2) = a iff xij = a ∈ C for i = cT1 and j = cT2 ;

—E � δ(c1, c2) < a iff xij < a ∈ C for i = cT1 and j = cT2 .

Say that E = (T,C) satisfies ϕ if E � ϕ. Of course, if ϕ is satisfiable in a model of
size n, then ϕ is satisfied in an n-constraint system for ϕ. The converse does not
hold, because it could be that there does not exist a metric d on W which conforms
to C, where a metric d conforms to C if by setting xij = d(i, j), for all i, j ∈W , all
constraints in C are satisfied.

So, say that E = (T,C) is satisfiable if the constraints in C together with the
following set of equalities and inequalities has a solution in R+:
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—xii = 0, for all i ∈W ;

—xij = xji, for all i, j ∈ W (symmetry);

—xik + xkj ≥ xij , for all i, j, k ∈W (triangular inequality).

The following is now easily checked:

Lemma 4.14. A formula ϕ ∈ MS
#[Q+] is satisfiable in a metric space model of

size n iff there exists a satisfiable n-constraint system for ϕ which satisfies ϕ.

Lemma 4.15. It is decidable in polynomial time ρ(n) whether an n-constraint
system E for ϕ is satisfiable and satisfies ϕ.

Proof. Clearly, given a satisfiable n-constraint system E for ϕ, it is decidable
in polynomial time whether ϕ is indeed satisfied in E.

Hence, it remains to show that checking satisfiability of E can be done in polyno-
mial time. First, notice that the decidability of this problem follows from Tarski’s
result on the decidability of the theory of real closed fields [Tarski 1951]. On the
other hand, the problem can be understood as a standard problem of linear pro-
gramming, where we can choose some arbitrary objective function to be maximized.
In fact, we are only interested in the question whether this system of equalities and
inequalities has a common solution, i.e., in the linear programming feasibility prob-
lem. Furthermore, since all parameters in the constraints are from Q, a solution
exists in R iff a solution exists in Q, because the set of solutions can be represented
as a (possibly unbounded) convex polyhydron. Hence we can restrict ourselves to
searching for rational solutions. This problem has been shown, e.g. in [Blum et al.
1998], to be solvable in polynomial time measured in the number of variables, i.e.,
in n.

Theorem 4.11 (i) follows from Theorem 4.13 and Lemmas 4.14 and 4.15. Theorem
4.11 (ii) follows from Theorem 4.13 and Lemmas 4.14 and 4.15, because for ϕ ∈
MS

#[{1, . . . , q}] the number q is an upper bound for mϕ/nϕ. Now the decision

procedure is as follows: given ϕ ∈ MS
#[{1, . . . , q}] guess an n-constraint system E

with n ≤ f(ϕ) and check in polynomial time (in n) whether E is both satisfiable
and satisfies ϕ.

We note that it is an open problem whether satisfiability of MS
#[{1, . . . , q}]-

formulas in metric spaces is NExpTime-hard.

5. SATISFIABILITY IN WEAKER DISTANCE SPACES

Let us now consider the satisfiability problem in the class D of arbitrary distance
spaces and its subclasses Dsym and Dtr. For D and Dsym we can prove decid-
ability even for the language FM

2[Q+]. For Dtr we will consider the languages
MS

#[{1, . . . , q}] and MS
#[Q+].

Theorem 5.1. The satisfiability problem for FM
2[Q+]-formulas in D and Dsym

is decidable. Moreover, both problems are in NExpTime and in both cases any
satisfiable formula is satisfiable in a finite model.

Proof. The proof is based on a simple reduction to the satisfiability problem for
the two-variable fragment of first-order logic. Recall that atomic formulas δ(x, y) <
a and δ(x, y) = a can be regarded as binary predicates P<a(x, y) and P=a(x, y).
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Denote by ϕ+ the result of replacing all subformulas in ϕ of the form δ(x, y) < a
and δ(x, y) = a by P<a(x, y) and P=a(x, y), respectively. Let

0 = a0 < a1 < · · · < an

be the list of rational numbers that occur in ϕ, together with 0, and let Γ be the
set of the following formulas, for i ≤ n:

∀x, y
(

P=ai(x, y) →
∧

0≤j<i

¬P<aj (x, y) ∧
∧

i6=j

¬P=aj (x, y) ∧
∧

n≥j>i

P<aj (x, y)
)

,

∀x, y
(

P<ai(x, y) →
∧

i<j≤n

P<aj (x, y)
)

,

∀x, y¬P<0(x, y),

∀x, y
(

P=0(x, y) ↔ x = y
)

.

We claim that the set Γ ∪ {ϕ+} is satisfiable in a first-order structure

A =
〈

W,PA

=a0
, . . . , PA

<a0
, . . . , PA

1 , . . . , c
A

1 , . . .
〉

iff ϕ is satisfiable in a distance space model.
The direction (⇐) is clear. So suppose that A satisfies Γ∪{ϕ+}. Define a distance

space structure

B =
〈

W,d, PA

1 , . . . , c
A

1 , . . .
〉

by taking, for a, b ∈W ,

d(a, b) = ai iff A � P=ai(a, b),

d(a, b) =
ai + ai+1

2
iff A � ¬P<ai(a, b) ∧ P<ai+1(a, b) ∧ ¬P=ai(a, b),

d(a, b) = 2 · an iff A � ¬P<an(a, b) ∧ ¬P=an(a, b).

It is not difficult to see that B satisfies ϕ. Hence, to decide whether ϕ is satisfiable
in a distance space model, it suffices to check whether Γ ∪ {ϕ+} is satisfiable in a
first-order structure. This proves the decidability of satisfiability in D.

For Dsym, we take the set Γsym which is

Γ ∪ {∀x, y
(

P<ai(x, y) ↔ P<ai(y, x)
)

, ∀x, y
(

P=ai(x, y) ↔ P=ai(y, x)
)

: i ≤ n}.

It is readily checked that ϕ is satisfiable in Dsym iff Γsym ∪ {ϕ+} is satisfiable.
The remaining claims follow immediately from the NExpTime-completeness of

the two-variable fragment of first-order logic and its finite model property [Mortimer
1975; Fürer 1984; Grädel et al. 1997].

Let us now consider the satisfiability problem in Dtr.

Theorem 5.2. (i) The satisfiability problem for MS
#[Q+]-formulas in Dtr is

decidable.
(ii) Any MS

#[Q+]-formula satisfiable in Dtr is satisfiable in a finite member of
Dtr.

(iii) The satisfiability problem for MS
#[{0, . . . , q}]-formulas in Dtr is in NExp-

Time.
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Proof. The proof is quite similar to that of Theorem 4.11. Steps 1 and 2 of
the proof are virtually as before. We start with a formula ϕ that is satisfied in a
distance space model B ∈ Dtr and, using the same terminology as in section 4.2,

again define the set Φ and the model B1 =
〈

W,d′, XB1
1 , . . . , cB1

1 , . . .
〉

such that

B1 � Φ. The main difference here is that d′ is now not necessarily symmetric.
However, in steps 3 and 4 two important modifications are required: one concerns

the filtration, another the copying technique:

Step 3. The closure cl(Φ) of t(Φ) is defined in almost the same way as on page
20; the only difference is that the last condition is replaced with the following one:

(5′) if A>at ∈ T and b > a, for b ∈M [Φ], then A>bt ∈ T .

The relational counterpart of B1, i.e., the model

S(B1) = 〈W, (Ra)a∈M , (Ra)a∈M , b〉 ,

will again be denoted by S. The filtration of B1 through Θ = cl(Φ) is modified in
the following way.

Define an equivalence relation ≡ on W by taking u ≡ v if for all t ∈ Θ we have
u ∈ tS iff v ∈ tS. Let [u] = {v ∈ W : u ≡ v}. Note again that if (d@Xd) ∈ Φ′

3

then [b(d)] = {b(d)}, since Xd ∈ Θ.

Construct a filtration Sf =
〈

W f , (Rfa)a∈M , (R
f
a)a∈M , b

f
〉

of S through Θ by

taking

—W f = {[u] : u ∈W};

—bf (c) = [b(c)];

—bf (X) = {[u] : u ∈ b(X)};

—[u]Rfa [v] for a > 0 iff for all terms A≤at ∈ Θ, u ∈ (A≤at)S implies v ∈ tS;

—[u]Rfa [v] for a = 0 iff [u] = [v];

—[u]Rfa [v] iff for all terms A>at ∈ Θ, u ∈ (A>at)S implies v ∈ tS.

Since Θ is finite, W f is finite as well. Note also that we have bf (Xd) = {bf (d)}

whenever (d@Xd) ∈ Φ′
3 and that uRav implies [u]Rfa [v], and uRav implies [u]Rfa [v].

Lemma 5.3. (1) For every t ∈ Θ and every u ∈ W , u ∈ tS iff [u] ∈ tS
f

.

(2) For every (δ(c, d) = a) ∈ Φ3, a = min{b ∈M : bf (c)Rfb b
f (d)}.

(3) Sf satisfies (i), (iii)–(vi) and (viii) from Section 4.1.

Proof. (1) is proved by an easy induction; the proof of (2) is the same as in
Lemma 4.7.

To prove (3), we have to check conditions (i), (iii)–(vi) and (viii). The first one,

i.e., Rfa ∪ R
f
a = W f ×W f , is proved as in Lemma 4.7.

(iii): if [u]Rfa [v] and a ≤ b then [u]Rfb [v]. Let [u]Rfa [v] and a < b for some b ∈ M .
Suppose u ∈ (A≤bt)S. By the definition of Θ, A≤at ∈ Θ. Thus, since a < b,

u ∈ (A≤at)S. Then [u]Rfa [v] implies v ∈ tS, and [u]Rfb [v] follows.

(iv): if [u]Rfa [v] and a ≥ b then [u]Rf
b
[v]. The proof is similar to that of (iii).

(v): [u]Rf0 [v] iff [u] = [v] holds by the definition of Rf0 .
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(vi): if [u]Rfa [v] and [v]Rfb [w], then [u]Rfa+b[w], for (a + b) ∈ M . Suppose u ∈

(A≤a+bt)S. Then A≤aA≤bt ∈ Θ and u ∈ (A≤aA≤bt)S. So v ∈ (A≤bt)S, whence
w ∈ tS.

(viii): if [u]Rfa [v] and [u]Rf
a+b

[w] then [v]Rf
b
[w], for (a + b) ∈ M . Let v ∈ (A>bt)S

and A>bt ∈ Θ. Then we have ¬A≤a¬A>bt ∈ Θ and u ∈ (¬A≤a¬A>bt)S, for other-
wise (since Θ is closed under subterms) u ∈ (A≤a¬A>bt)S together with [u]Rfa [v]
would imply v ∈ (¬A>bt)S, which is a contradiction. Suppose that uRa+bx for

some point x ∈ W . Since u ∈ (¬A≤a¬A>bt)S, there is a point y ∈ W such that
uRay and y ∈ (A>bt)S. As S satisfies (viii), it follows that yRbx, and so x ∈ tS.
Hence u ∈ (A>(a+b)t)S, which implies w ∈ tS.

Step 4. We are now again facing the problem that Sf may not satisfy condition
(ii) which is required for the construction of the model B∗. To avoid this prob-
lematic case—the situation where for some points [u], [v] in W f and a ∈ M both

[u]Rfa [v] and [u]Rfa [v] hold—we modify the copying technique in the following way.
The problematic points form the set

D(W f ) = {v ∈ W f : ∃a ∈M∃u ∈W f (uRfav & uRfav)}.

Let

W ∗ = {〈v, i〉 : v ∈ D(W f ), i ∈ {0, 1, 2}} ∪ {〈u, 0〉 : u ∈ W f −D(W f )}.

So for each v ∈ D(W f ) we have now three copies 〈v, 0〉, 〈v, 1〉 and 〈v, 2〉. Define an
assignment b∗ in W ∗ by taking

b
∗(c) =

〈

b
f (c), 0

〉

,

b
∗(X) = {〈u, i〉 ∈W ∗ : u ∈ b

f (X)}.

Finally, we define accessibility relations R∗
a and R∗

a as follows:

—If a > 0, then 〈u, i〉R∗
a 〈v, j〉 iff either

—uRfav and ¬uRfav, or
—uRfav and j = 0, or
—〈u, i〉 = 〈v, j〉 (then also uRfav).

—If a = 0, then 〈u, i〉R∗
a 〈v, j〉 iff 〈u, i〉 = 〈v, j〉.

—R∗
a is defined as the complement of R∗

a, i.e.,

〈u, i〉R∗
a 〈v, j〉 iff ¬ 〈u, i〉R∗

a 〈v, j〉 .

Lemma 5.4. The relational model S∗ = 〈W ∗, (R∗
a)a∈M , (R

∗
a)a∈M , b

∗〉 satisfies
conditions (i)–(vi) of M -standard models.

Proof. That S∗ satisfies (i), (ii), and (v) follows immediately from the defini-
tions of R∗

a and R∗
a. Let us check the remaining conditions.

(iii) Suppose 〈u, i〉R∗
a 〈v, j〉 and a < b, for b ∈ M . If 〈u, i〉 = 〈v, j〉, then

〈u, i〉R∗
b 〈v, j〉 follows immediately from the definition. So assume 〈u, i〉 6= 〈v, j〉.

By definition we have uRfav, and since Sf satisfies (iii), uRfb v holds as well. If

¬uRf
b
v, then clearly 〈u, i〉R∗

b 〈v, j〉. So suppose uRf
b
v. Since S

f satisfies (iv), we

then have uRfav, whence j = 0 and so 〈u, i〉R∗
b 〈v, j〉.
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(iv) Suppose 〈u, i〉R∗
a 〈v, j〉 and a > b, for b ∈ M . Assume ¬ 〈u, i〉R∗

b
〈v, j〉.

By (i), we have 〈u, i〉R∗
b 〈v, j〉, whence by (iv), 〈u, i〉R∗

a 〈v, j〉. Now (ii) implies
¬ 〈u, i〉R∗

a 〈v, j〉, which is a contradiction. Hence 〈u, i〉R∗
b
〈v, j〉.

(vi) Suppose 〈u, i〉R∗
a 〈v, j〉 and 〈v, j〉R∗

b 〈w, k〉, for a, b, a + b ∈ M . We have
to show that 〈u, i〉R∗

a+b 〈w, k〉. First, if 〈u, i〉 = 〈v, j〉 or 〈v, j〉 = 〈w, k〉, then
〈u, i〉R∗

a+b 〈w, k〉 follows immediately from (iii), since a, b ≤ a+b. So we may assume

that 〈u, i〉 6= 〈v, j〉 and 〈v, j〉 6= 〈w, k〉. Then by definition, uRfav and vRfbw, whence

uRfa+bw, because Sf satisfies (vi). If ¬uRf
a+b

w, then 〈u, i〉R∗
a+b 〈w, k〉 follows from

the definition. So assume uRf
a+b

w holds in Sf as well. From uRfav and (viii) we

obtain vRf
b
w, and so k = 0. But then again, 〈u, i〉R∗

a+b 〈w, k〉 follows from the
definition.

Lemma 5.5. For all 〈u, i〉 ∈ W ∗, i ∈ {0, 1, 2} and all t ∈ Θ, we have

〈u, i〉 ∈ tS
∗

iff u ∈ tS
f

.

Proof. The proof is by induction on t. The basis of induction follows from
the definition and the case of Booleans is trivial. The cases of t = (A≤as) and
t = (A>as) are consequences of the following claims.

Claim 1: If uRfav and 〈u, i〉 ∈ W ∗, then there is j such that 〈u, i〉R∗
a 〈v, j〉.

Indeed, if a > 0, we put j = 0, and 〈u, i〉R∗
a 〈v, j〉 follows from the definition. If

a = 0, then u = v; so we can take i = j.

Claim 2: If 〈u, i〉R∗
a 〈v, j〉, then uRfav. This follows immediately from the defini-

tion of R∗
a.

Claim 3: If uRfav and 〈u, i〉 ∈ W ∗, then there exists j such that 〈u, i〉R∗
a 〈v, j〉.

Fix some uRfav and 〈u, i〉 ∈ W ∗. Suppose first that a = 0. If ¬uRf0v we then have

u 6= v, since Rf0 satisfies (v), and so we can choose j = 0. If uRf0v then v has
been copied, so we can choose j = i + 1(mod 2) and 〈u, i〉 6= 〈v, j〉, from which
〈u, i〉R∗

a 〈v, j〉.
Suppose now that a > 0. Consider two cases.
Case 1: uRfav. Then v has been copied, i.e., W ∗ contains 〈v, 0〉, 〈v, 1〉 and 〈v, 2〉.

Then put j 6= 0, i which is always possible, because we have three copies of v.
But then all three defining properties of 〈u, i〉R∗

a 〈v, j〉 are violated, which means
〈u, i〉R∗

a 〈v, j〉.
Case 2: ¬uRfav. Then u 6= v. So we can put j = 0, and again all three defining

properties are violated.

Claim 4: If 〈u, i〉R∗
a 〈v, j〉 then uRfav. There are again two cases.

Case 1: a > 0. Suppose ¬uRfav. Then, since the first defining property of uR∗
av

is violated, we have ¬uRfav, contrary to (i). Therefore uRfav.

Case 2: a = 0. Then 〈u, i〉 6= 〈v, j〉. If u 6= v, then ¬uRf0v and hence uRf
0
v as

required. If u = v and i 6= j, then u has been copied. So there are w ∈ W f and
b ∈ M such that wRfb u and wRf

b
u. Since the latter can be written as wRf

b+0
u,

condition (viii) yields uRf
0
u, as required.

Now, consider the induction step for t = (A≤as). Suppose 〈u, i〉 ∈ (A≤as)S
∗
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and pick some v such that uRfav. By Claim 1, there exists j ∈ {0, 1, 2} such that
〈u, i〉R∗

a 〈v, j〉. Then 〈v, j〉 ∈ sS
∗

and, by the induction hypotheses, it follows that

v ∈ sS
f

. Hence u ∈ (A≤as)S
f

. Conversely, if u ∈ (A≤as)S
f

and 〈v, j〉 is such

that 〈u, i〉R∗
a 〈v, j〉, then by Claim 2, uRfav and v ∈ sS

f

, and so by the induction
hypotheses, 〈v, j〉 ∈ sS

∗

, i.e., 〈u, i〉 ∈ (A≤as)S
∗

.
The case of t = (A>as) follows analogously from Claims 3 and 4.

Step 5. In the same way as in Theorem 4.10, we can now transform S∗ into a
finite distance space model, which is possibly non-symmetric, and prove that this
model satisfies Φ. This shows that MS

#[Q+] has the finite model property with
respect to Dtr.

To complete the proof, we can follow the lines of the proof of Theorem 4.11 and
establish both the decidability and complexity claims for MS

#-formulas in non-
symmetric distance spaces, thus proving Theorem 5.2. Of course, in the definition
of the satisfiability of constraint systems, we now omit the symmetry condition
xij = xji.

6. CONCLUSION

In this paper, we have started an investigation into the expressive power and com-
putational properties of the first-order language FM

2[M ] (with two individual vari-
ables) and the ‘modal’ language MS[M ] both interpreted in metric and ‘weaker’
distance spaces. We showed that these languages have the same expressive power
over the class M of all metric spaces (in fact, even over the class Dsym of symmetric
distance spaces). While both FM

2[Q+]-satisfiability and MS[Q+]-satisfiability are
decidable for the class of all (symmetric) distance spaces, even weaker languages
turn out to have an undecidable satisfiability problem for the class of metric spaces
and the class Dtr of distance spaces satisfying the triangular inequality. We also
discovered a natural fragment MS

][M ] of MS[M ] which has the finite model prop-
erty and is decidable (both for metric spaces and distance spaces with the triangular
inequality). If the parameter set M is of the form {1, . . . , q}, then in both cases
the satisfiability problem is in NExpTime.

The logics we considered in this paper have promising applications in knowledge
representation and reasoning by introducing a numerical, quantitative concept of
distance into the conventional qualitative KR&R (see the example in Section 1 and
[Kutz et al. 2002]). In this connection we would like to attract the readers’ attention
to the following interesting open problems:

(1) Compare the expressive power of FM
2[M ] and MS[M ] over D and Dtr.

(2) Is MS
][{1, . . . , q}]-satisfiability in metric spaces NExpTime-complete? What

is the computational complexity of MS
][{1, . . . , q}]-satisfiability in other classes

of distance spaces?

(3) Is the satisfiability of MS
][Q+]-formulas in metric spaces decidable in NExp-

Time? What about other classes of distance spaces?

(4) We have considered satisfiability in ‘abstract’ metric and distance spaces. How-
ever, from the application point of view, it would be more interesting to analyze
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the computational behavior of our logics in n-dimensional (especially, 2D) Eu-
clidean spaces?

(5) The presented decision procedure based on the finite model property does not
appear to be ‘practical.’ An important open problem is to develop tableau or
resolution based algorithms for MS

] or its sublanguages.
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