@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Computer Assisted Manipulation of Algebraic Process Specifications
J.F. Groote, B. Lisser
Software Engineering (SEN)

SEN-R0117 May 31, 2001

Report SEN-R0117
ISSN 1386-369X

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Computer Assisted Manipulation of Algebraic Process Specifications

Jan Friso Groote and Bert Lisser
J.F.Groote@tue.nl, Bert.Lisser@cwi.nl

cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

Specifications of system behaviour tend to become large. Analysis of such specifications requires automated
tools. Most attention hitherto has been invested in fully automatic tools. We however believe that in many
cases human intervention is required and we therefore propose a number of computer tools to transform
process specifications. The concrete manipulation tools that we describe can eliminate constants, redundant
sum variables and parameters, and allow to split variables ranging over complex datatypes. These tools can
transform specifications with large finite state spaces to variants with state spaces being a fraction of their
original size, and transform specifications with infinite state spaces to those with finite state spaces.

2000 Mathematics Subject Classification: 68M14, 68Q60, 68Q85

Keywords and Phrases: Automated Reasoning, Distributed systems, Linear Process Equations, Model Checking,
Verification

Note: Research carried out in SEN2, with financial support of the " Systems Validation Center”.

1. Introduction

Tools and techniques for the analysis of system behaviour become increasingly powerful. Currently,
we can regularly, automatically and thus efficiently answer questions about systems with a restricted
state space, and we can also occasionally obtain insight in the behaviour of more substantial systems.
But the results in this last category, often require ingenuity, insight in the problem domain, and often
the ad hoc design or adaption of tools.

We believe that this is typical for the study of more complex systems. In the first place, fully
automatic analysis tools are generally not able to perform the analysis of complex systems fully on
their own. This explains why human ingenuity is required in the process. In the second place, it is
out of the question that these systems be analysed by hand only. The size of such descriptions may
literally stretch to up to thousands of pages. This is why automation is needed.

We think that it is not desired that for each complex system to be analysed in the future, new
transformation programs must be designed, or old analysis programs must be adapted. It is better to
provide a set of manipulation tools that can be used to preprocess and transform a given system such
that it fits a standard analysis tool.

Note that such a situation is not very uncommon in the field of mathematical analysis. Typical
mathematical analysis tools such as Mathematica and Maple do not attempt to solve a formula on
their own, but they operate under strict supervision of a user, who, when sufficiently skilled in the
use of such a tool, can lead the system to an answer.

In this paper we describe a number of transformation tools that we have developed. We show how
in certain cases we can manipulate descriptions of distributed systems to reduce their state spaces
from infinite to finite, or to a fraction of their original size.

We work in the setting of process algebra with data uCRL [10], or more precisely in the setting of
linear process equations. The language uCRL is a straightforward process algebra, based on ACP [2],

2. Preliminaries 2

which means that it comprises operators such as +, -, ||, 71 and dy extended with equational abstract
datatypes. In order to combine data with processes the then_if_else operator _<_>_ and the choice
over a possibly infinite datatype >, ,, have been added, and parametric process variables and actions
are allowed. This language is rather compact, but sufficiently complete to describe virtually any
distributed system. When investigating systems described in pCRL our current standard approach
is to transform these processes to linear process equations (LPEs). In essence this is a vector of
data parameters and a list of condition, action and effect triples that describes when an action may
happen, and what its effect is on the vector of data parameters. An LPE is a special instance of a
uCRL process. In [11, 15] it is described how a large class of uCRL processes can be transformed
automatically to LPE format in such a way that the resulting LPE is strongly bisimilar to the original.
Our transformation tools work strictly on LPEs.
There are four tools that we describe here:

Elimination of constant process parameters (Subsection 4.1). A parameter of an LPE can be
replaced by a constant value, if that parameter remains constant throughout any run of the
process.

Elimination of sum variables (Subsection 4.3). It happens that the choice over infinite datatypes
is restricted in the condition to a single concrete value. In that case it is more efficient to replace
the sum variable by this single value.

Elimination of dead process parameters (Subsection 4.2). A parameter of an LPE can be re-
moved, if that parameter does not influence the behaviour of a process (has neither directly or
nor indirectly influence on actions and conditions). We call such a parameter a dead parameter.
Whereas the first two reduction techniques only simplify the description of an LPE, this one also
allows substantial reduction of the state space underlying an LPE. Actually, if the dead process
parameter ranges over an infinite domain, the state space can be changed from infinite to finite
by this operation.

Elimination of structured variables (Subsection 4.5). It is not always possible to apply the oper-
ations mentioned above to single variables, but we can apply them to parts of the data structures
that these variables range over. For this to take place, we must partition such data structures
into its constituents.

The reduction methods have been implemented in the pCRL toolset [17]. We explain all the reduc-
tion techniques and show that they are sound in the sense that they maintain strong bisimulation.
Furthermore, in some cases we show the strength of the algorithm, by providing a theorem to which
extent the transformation can be considered complete. We show how the tools interact restricting the
sequences in which they need to be applied and we show the effect of the tools on a number of rather
diverse communication protocols.

Currently, we are working on a next generation of these tools. The reasoning engine we use is an
extremely fast rewriting engine built according to the ideas in [1]. We found that with an adequate
theorem prover [14] , we can on the one hand increase the power of the current tools, and on the other
hand build additional tools, for instance those based on confluence reduction [5] [12] of which first
prototypes are very promising.

2. Preliminaries

The Micro Common Representation Language [10], pCRL, has been defined to describe interacting
processes that rely on data. This language includes a formalism for algebraic specification of abstract
data types (data part) and the Algebra of Communicating Processes with abstraction, ACP [6] [2]
(process part). An algebraic specification consists of a signature which contains the definitions of

2. Preliminaries 3

abstract data types, constructors, and operators, and a set of equations. In subsections 2.1 and 2.2
we describe the data part. In the subsequent subsections we describe linear process equations and
bisimulation.

2.1 Algebraic specifications of abstract data types

In this subsection we describe the basic aspects of abstract data types in a standard way, see e.g. [16].
We make a distinction between ‘ordinary’ functions, which we call mappings, and constructors, with
the requirement that all terms of a sort that contains constructors can be written using constructors
only.

Throughout the text we assume the existence of an infinite set V' of variable declarations of the
form x: S, where S is some sort.

Definition 2.1. A signature is a triple ¥ = (S, F, M) where
e S is a set of sorts. We assume that Bool is an existing sort, i.e. Bool € §;

e Fis aset of constructors, i.e. functions of the form f: Sy x---xS,, — Sand S;,S € S. Moreover,
we presuppose the existence of the constructors t,f :— Bool in F; t stands for “true” and f for
“false”.

e M is a set of mappings, i.e. functions of the form f: S; x---xS,, = S and S;,S € S. The sets
F, M and V are pairwise disjoint.

We call S € § a X-constructor sort iff there is a function symbol f: S; x--- xS, — Sin F. A X-term
is a term defined over the signature ¥ in the standard way.

We use substitutions mapping variables to terms with the same sort. We typically use either the letter
p, or [x:=t| for substitutions.

Definition 2.2. An abstract data type is a tuple A = (X,) where
o ¥ =(S,F, M) is a signature;

e & is a set of equations (generally used as rewrite rules), i.e. expressions of the form ¢t = u with
both ¢t and u X-terms of some sort S € S.

We specify data types using the syntax of yCRL [10]. The function symbols that follow the keyword
func are constructors. The function symbols that follow map are mappings. Here follows an example
of an algebraic specification of the datatype Bool.

Example 2.3. The data type associated with the sort Bool consists of the constants t (true) and f
(false). Mappings — and A are specified.

sort Bool

func t,f:— Bool

map —:Bool — Bool, A : Bool x Bool — Bool
var b: Bool

rew —t=f -f=ttAb=bfAb=f

2.2 Interpretation of abstract data types

We interpret an abstract data type using model class semantics, of which we describe only the main
ingredients here (see [8] for a detailed account).

2. Preliminaries 4

Let A = (X,€) be an abstract data type with ¥ = (§,F, M) a signature. For each S € S
there is a non empty domain Dg and a valuation o that maps variables of sort S to elements of
Ds. M = {Dg|S € S} is a model of A iff for every sort S of the abstract data type there is some
interpretation [-]? that maps each term of sort S to an element of Dg, coincides with o on the variables,
and respects the equations £. An interpretation [-]7 respects the equations & iff the following applies:
if t =u € & then [t]7 = [u]°.

If S is a constructor sort, then each element of Dg must be equal to a term consisting of constructors
only, possibly applied to elements of non constructor domains. We say two terms are equal, notation
t = u when for every model of A and interpretation function ¢ and w are interpreted as the same
element in the domain. We can reason about equality using standard equational logic enhanced with
induction principles for constructors.

For the sort Bool with elements t and f we assume that Dpeor is a domain with exactly two elements
representing t and f. We also assume that for each sort S there is a mapping =: S x S — Bool that
represents equality between terms of sort S. Le., t=u =t iff t = u.

2.3 Linear Process Equations

We specify processes in uCRL, which is ACP [6] [2], comprising in essence actions and the operators
+, 4 |l, 91, 71, 0, extended with abstract data types. Furthermore, actions and processes can be
parameterised with data, and there are two new operators, namely >, ,, the sum over possibly
infinite data types, and _<2>_ which is the then-if-else operator. Despite the fact that yCRL is a
straightforward language, we want an even more straightforward form to facilitate analysis. This
basic form is called a linear process equation (LPE) and it consists essentially of a state vector of
typed variables and a list of condition-action-effect triples. The LPE basic format is particularly
powerful, because it allows parallel processes to be combined without the state space explosion effect
that occurs in automata. There are effective algorithms to transform process specifications to LPEs
[11]. Recently specifications with 250 parallel components and over thousand pages of description
have been transformed to LPE format [4].

We want an LPE to be a pCRL process itself, explaining the process algebraic formulation of the
condition-action-effect rules below:

Definition 2.4. Let ¥ = (S,F, M) be the signature defined in the data part. A linear process
equation (LPE) over ¥ is an expression of the form:

X(dy:Dy,... ,dn:Dp) :Z Z Z ai(fi) X(g%,...,g5) <civ 6
i€l ef:B] e B

where [is a finite index set, and for each i € I:

o di,...,dp,e€],... e, are pairwise different variables;

e Dy,...,D,, Ei ... ,Eﬁb €S;

e fiis a ¥-term in which variables dy,... ,d, and ef,... ,e;. may occur;

i

o for 1 <j<n, g§ is a X-term of sort D; in which variables d1, ... ,d, and €, ... , €y, NAY OCCur;

)

e ¢; is a Y-term of sort Bool in which variables di, ... ,d, and e},... , €y, TNAY OCCUr.

Sometimes we provide an initial state s, ... , s, for an LPE. It is convenient to use the vector notation
§for s1,...,s,. Consequently, we speak about the initial vector. The process X(3) represents the
behaviour of X from initial state s. In yCRL a process definition, and hence an LPE, is preceded
with the keyword proc and an initial state with the keyword init. See e.g. the example in Section
4.4.

3. The uCRL Toolset 5

2.4 Bisimulation

All the reduction methods that we present preserve strong bisimulation. Therefore, we define the
notion of strong bisimulation on LPEs directly.

Definition 2.5. Let A = (X,€) be a datatype. Let

X(dy:D,... ,dn:Dp) :Z Z Z ai(fi) X(g%,...,g5) <civ 6

i€l ei:B] el :Ej

mi

and

Y(d'lzD'l,...,d;L,:D;L,)zz Z Z a(fHY(d,...,q%) aci>6
€l By et B,

n’;

be LPEs. Assume M is a model for A. Let Dy,... ,D,, D/,... D/, E{,... E} forallic I and
E'},... ,E, forall i € I’ be the domains belonging to D1,...,Dy, Di,... ,D.,, Ei,... E} for
alli € I and E'Y,... |E'}, foralli € I'. We write d for elements from Dy x --- x D,, and the jth

element of d is written as d;. Similarly, we write d’ for elements from D} x --- x D/, e’ for elements

from Ef x --- x Ef_ and € for elements from E} x --- x Elil’,»/' Below o is a valuation mapping
variable d; to d; and variable 63' to value eé, and o’ is a valuation that maps variable d;- to d}- and

variable e’? to value e’?. A relation R C (Dy X --- x Dy,) x (D] x --- x D/ ,) is called a bisimulation

relation w.r.t. A and M iff for all d and d’ such that dRd’

e if for all i € I and e’ such that [c;]?, there is some i’ € I’ and e’ such that 17, ai = d,

IIfi]]a = [[fi/’]]a/ and [[917 oo agfv,]]aR[[g/i PR ag/;,’]]a :

e Vice versa.

We say that two terms X(t1,...,t,) and Y (#],...,t,) are strongly bisimilar w.r.t. A, notation
X(t1,... ,tn)=2Y (t),...,t),), iff for all models M of A and valuations o there exists a bisimulation

relation R w.r.t. A and M such that [t1,...,t,]7R[t},... ¢,/]°.

3. The uCRL Toolset

The pCRL toolset is a collection of tools manipulating data and process descriptions written in pCRL.
The toolset contains four groups of tools (see [17] for a detailed overview of all tools).

Linearizing tools. This group contains one tool, called mcrl.The tool mcrl transforms pCRL process
definitions to linear process equations (LPEs). See [11, 15] for linearisation algorithms and [17]
for a detailed description of mcrl. All the other tools of the toolset work on LPEs. Thus, before
doing any analysis, mcrl must be invoked with a uCRL specification as input.

State space explorators. This group contains two tools. The instantiator which generates from
an LPE a concrete transition system and the simulator, msim, which can single-step a process.
The instantiator is highly optimized by using a very fast compiling rewriter. The output of the
instantiator can be read, manipulated and, visualized by the CADP (Caesar/Aldebaran) toolset
[7].

Reduction tools. This group contains four reduction tools (each of them reads an LPE and writes an
LPE). These reduction tools are constelm, constant elimination, parelm, parameter elimination,
sumelm, sum elimination, and structelm, structure elimination. These reduction tools are the
implementations of the reduction methods described in this paper.

4. Reduction Methods 6

Rewrite tools. This group contains the tool rewr, rewrite, which normalizes the LPE, with respect
to the rewrite rules a given abstract data type. If a condition belonging to a summand is equal
to false then that summand will be removed.

4. Reduction Methods

4.1 Elimination of Constant Process Parameters

Some data parameters are constant throughout any run of the process. These parameters can be
eliminated. All occurrences of these parameters throughout the LPE are replaced by their initial
value. This does not reduce the state space of a process, but it may considerably shorten the time to
generate a state space from a linear process operator, and can make other reduction tools much more
effective.

4.1.1 Algorithm to Detect Constant Parameters

1. Mark all process parameters.

2. Define a substitution p that replaces all marked process parameters with its initial value, and
that leaves other variables unchanged.

3. If a process parameter d; with initial value v exists such that g§. p=v does not rewrite to true,
where g§ is a process argument that occurs in a summand ¢ with condition ¢;, and ¢;p does not
rewrite to false, then d; must be unmarked and this algorithm must be continued at step 2.

4. Repeat step 2-3 until no additional process parameter becomes unmarked.

5. Remove all marked process parameters from the LPE. Substitute the initial value for all occur-
rences of marked process parameters in conditions and action arguments.

In the sequel we call this algorithm constelm.

Example 4.1. Let D be a data sort, and r and s be actions.

proc X(a:D,b:D,c:D,d:D) = r(b) X(b,a,d, c)<ac=0>0+
s(c) X(1,b,0,¢c+ d)
proc Y(a:D,b:D) = r(b) Y (b,a) + s(0) Y(1,b)

Consteln finds that X (0,0,0,0)<=Y(0,0).

Note that the complexity of the algorithm is O(mN) with m the number of process parameters, and
N the size of the input LPE, assuming that rewriting takes constant time.

Theorem 4.2. Consider the LPEs as in Definition 2.5, with respective initial states and 3. Assume
that the LPE for Y with initial state ¢ has been obtained from the LPE for X with initial state & by

applying constelm. Then X (&)<Y (%)

4.2 Elimination of Dead Process Parameters

Some process parameters and sum variables do not influence the behaviour of a system, as they do
not occur directly or indirectly in conditions and actions. By removing these parameters, the state
space of an LPE can be reduced considerably.

4. Reduction Methods 7

4.2.1 Algorithm to Mark Parameters as Influential Parameters.

We mark parameters if they can have an influence on the behaviour of the LPE. The remaining
parameters can be removed. Here follows the algorithm, which we call parelm.

1. Mark the process parameters which occur in the conditions and in the action arguments of the
LPE. These are not removed, as they clearly have influence on the behaviour of the process.

2. If a process parameter d; is marked then mark also all process parameters occurring in g;» for
all i € I, as these parameters can indirectly influence the process behaviour. Repeat this step
until no more parameters are marked.

3. Remove all unmarked parameters from the process.

4. Remove for each summand all those sum variables which do neither occur in the condition, nor
in the arguments of the action, nor in the arguments of the new state.

Example 4.3. Assume X and Y are defined by:

proc X(a:D,b:D,c:D) =sX(a,c,b)+ > r(c) X(d,b,c)
d:D

proc Y (b:D,¢:D) =sY(c,b)+r(c)Y(b,c)

As parameter a has no influence on the behaviour of process X, parelm finds for all a, b and ¢ that
X(a,b,c)=Y (b,).

Theorem 4.4. Consider the LPEs as in Definition 2.5, with respective initial states and 3. Assume
that the LPE for Y with initial state ¢ has been obtained from the LPE for X with initial state & by

applying parelm. Then X (Z)<=Y (%)

4.3 Elimination of Sum Variables

There are cases in which a condition forces a sum variable to be equal to one particular data term.
A transformation step towards simpler LPEs can be made by eliminating these sum variables and
replacing their occurrences by that value. We call this transformation sum elimination, or sumelm.

A condition and a sum variable of a summand determine a set of values. Each value of is a candidate
to be substituted in all occurrences of that sum variable in that summand.

4.3.1 Computing the set of candidates.

The function Candidates(x,c), in which z is a sum variable and ¢ a condition, computes a set of
candidates for replacement of sum variable z. The function is defined by induction.

ifr=vAz&w then {w}
ifr=wAz¢gv then {v}
B, otherwise

Candidates(z, v=w)

Candidates(z, (c1 A c2)) = Candidates(z,c1) U Candidates(x, cz2)
Candidates(z, (c1 V c2)) = Candidates(z,c1) N Candidates(x, cz2)
Candidates(z, c) = (), otherwise

where x stands for variables, v and w stand for data terms and ¢, ¢; and ¢ stand for conditions. The
expression z € v stands for x occurs in v. Note that in order to calculate the intersection of two sets,
it must be determined that values are distinct, which requires the use of = and rewriting.

4. Reduction Methods 8

4.3.2 Substitution and Elimination.

Forallie I, j€1...n;, at which the set Candidates(e?, ¢i) is not empty (choose a value v from this
set), or the sort of eé» contains exactly one element (call that element v):

1. Substitute v in all occurrences of e§- in the ith summand of the LPE, and
2. Eliminate eé» from the list of sum variables of the ith summand.
Example 4.5. Consider
proc X(d:Bool) = > a(b).X(b)<wb=f>6

b:Bool

proc Y (d:Bool) = a(f).Y (f)<f=f>d
Sumelm yields X (d)=Y (d). Rewriting the condition in Y makes it equal to t (true).

Theorem 4.6. Consider the LPEs as in Definition 2.5. Assume that the LPE for Y has been
obtained from the LPE for X by applying sumelm. Then, for state vector Z it holds that X (&)<Y (Z).

4.4 An application of the reduction tools to an example

To demonstrate the cooperation of the three reduction algorithms, we take a slightly more substantial
example. The patterns which are found in this example occur often in bigger specifications after
linearization.

sort Bool, Bit,D

func t,f: — Bool, di,ds :(— D, 0,1: — Bit

map - :Bool — Bool, V: Bool x Bool — Bool
=:D x D — Bool, =:Bit x Bit — Bool

var b:Bool

rew —t=f ~f=t,tvb=t, fvb=>

var d:D
rew di=dy =f,do=dy =f,d=d=1t
var b: Bit

rew 0=1=f1=0=fb=b=t

proc X (d:D,bBit)=3" 7 X(do, b) ad=daVb=05 6+ 3 7 X(d, bo) aby=05
do:D bo:Bit
init X(ds,0)

e Algorithm parelm does not change the LPE, because the process parameters d and b occur in
one of the conditions.

e Algorithm constelm does not change the LPE, because the sum variables dy or by occur in both
process argument vectors.

e Algorithm sumelm changes the LPE. It substitutes 0 in each occurrence of sum variable by and
removes that sum variable. The equation becomes

proc X(d:D,b:Bit) = Y 7 X(dp,b) ad=daVb=0r> 4§ + 7 X(d,0) <0=0> ¢
doZD
init X(d1,0)

e Algorithm parelm still cannot change the modified LPE.

e Algorithm constelm changes the LPE. It substitutes 0 in each occurrence of b and removes that
parameter. The equation becomes

4. Reduction Methods 9

proc X(d:D)= Y. 7X(do) 9d=dz V 0=0> 5 + 7 X (d) <0=0 §
do:D
init X (dy)

e After rewriting the equation becomes

proc X(d:D)= > 7X(do)<t>d+7X(d) at> 0
do:D
init X (dy)

e Algorithm parelm changes the LPE. Process parameter d does not occur in the condition.
Process parameter d will be removed. Sum variable dy does not occur in the equation. Sum
variable dy will be removed.

proc X()=7X()<at>d+7X() <t
init X()

The state space is reduced from two states to one state, a reduction of 50 per cent.

4.5 Elimination of Structured Variables

There are possible reductions of an LPE which are not detected by the previously mentioned reduction
methods because the required properties of the variables are hidden within complex data terms. We
describe here an expansion method, which replaces terms with a constructor function as head symbols
by the name of the constructor and its arguments. In this way variables occuring in subterms are
better exposed and more amenable to be eliminated by one of the other tools. For instance, a list
expression in(v,l) is split into the value in, and terms v and [, and a list expression nil is replaced
by the value nil. Consequently, a variable of sort List is replaced by three variables. The first one to
indicate whether the head symbol of the term represented by the variable starts with in or nil and
two to represents the two arguments in case the term starts with in. We call this expansion method
structelm, short for structure elimination.

4.5.1 Unfolding a Structured Sort S.

1. Detect how many constructors generate S. Assume that S is generated by k constructors
fi:D%><~'><D;n"'—>S,With1§i§k.

2. Add a new enumerated sort U, with k constant constructors, c1,... ,cs, to the abstract data
type. The elements of Uy represent each a different constructor of sort S.

3. Add a function C: Uy x S x --- x S — S to the abstract data type with arity £ + 1. Add the
following rewrite rules to the abstract data type.

rew C(¢,x1,...,Tiy... ,Tp) =X;
Cle,z...,x)==x

These functions C' are called case functions. Note that strictly spoken the last rewrite rule is
not necessary, but it sometimes turns out to be useful.

4. Add projection functions det: S — Uj and w{: S — Dg with 1 < j <m; and 1 < i < k to the
abstract data type. Add the following rewrite rules to the abstract data type.

rew det(fi(d},... d,... d")=c
o (fild), A = d?

4. Reduction Methods 10

The mapping det gives the encoding for the head constructor of a term. The mapping W{
gives the jth subterm of a term with head constructor represented by c¢;. Note that for the

functions det to exist, it must hold that for all 1 <4 < j < k and all d},... ,dj"",d}, ... ,d;n’
it is the case fi(d},... ,d"") # f; (djl, . ,d;-nj). For the functions 7T{ to exist it must hold that

for all d*,... d7, e, d7t, ... d™ with d7 # €/, it is the case that fi(d',... d7,... d™) #
fi(dl,... ,ej7... ’dm,;).

5. Add the following rewrite rules for all constructors and maps f: Dy x ... x D, — S (except for
the just added case function C, but including det and 7)) of the abstract data type:

rew f(xlv"'7C(eay17"'aym)7"'xn):
C(evf(xlv"' YY1, .- axn)a"' 7f(x17"' yYms - - axn))

Note that the case function C in the right hand side can be ill-typed. Then a correctly typed
case function with the rewrite rules of step 3 and this step must be added. The rewrite rules
added here are actually derivable from the rewrite rules in step 3 using the fact that Uy contains
exactly k elements. These rules are however essential to clean up an LPE after structelm has
been applied to it, which is needed for the other tools to proceed.

6. Replace the declaration of each process parameter of sort S by the declarations belonging to the
unfolded process parameter: proc X(...,d:S,...) becomes:

. 1.1 mi.ym 1.1 mi . Tym
proc X(...,e:Uy,di:Di,. .. d" D™ dy:D, ... d: D™, ...

7. Replace the declaration of each sum variable of sort S by the declarations of the sum variables

belonging the unfolded sum variable. Y~ becomes Y. > --- DORERE .
d:S e:Ug d:D} d"-:D}" d}:DY 4'k:D]'*

8. Replace each occurrence of a structured parameter or sum variable d of sort S in the LPE by

Cle, fi(di,...,di), ..., fuldy, d2)).

9. Translate a process argument g§ of sort S to its unfolded version. Concretely, X (..., g;'., o)
becomes

X (..., det(gh), 71 (g5), - 7" (g5), 73 (), mp ™ (gh), - o)

Theorem 4.7. Consider the LPEs as in Definition 2.5, with respective initial states and 3. Assume
that the LPE for Y with initial state ¢ has been obtained from the LPE for X with initial state &
by applying structelm to a constructor sort S. Assume also that all functions det exist (see Section
4.5.1 item 4). Then X (Z)<=Y (7).

4.6 The example revisited

The example in section 4.4 is slightly changed to show the effect of structelm. The difference is
that sort D and sort Bit are encapsulated in a new sort Frame. The modified example is strongly
bisimilar to the original one. We extend the previous example with the following data type.

sort Frame

func frame: D x Bit — Frame, void: — Frame

map data: Frame — D, bit: Frame — Bit

var d:D,b:Bit

rew data(frame(d,b)) = d, bit(frame(d, b)) = b
data(void) = dy, bit(void) =0

5. Cooperation and influence of reductions 11

We replace the previous process equation with

proc X (f:Frame)
= > 7 X(frame(do, bit(f))) < data(f)=ds Vv bit(f)=01§
do:D
+ > 7 X(frame(data(f),bo)) <bp=01¢
bo:Bit
init X (frame(d,,0)).
constelm and parelm do not change the LPE. Before constelm and parelm will do the job, the
process parameter f of sort Frame must be unfolded. We have already an enumerated sort of size
2, namely Bool, which we can use instead of Us. In addition to the projections bit and data which
already exist, a map Frame — Bool must also be defined which determines which function symbol
is the header of a term of sort Frame, void or frame. We call this map det. Before expanding the
LPE the following maps and rewrite rules must be added.

map (' : Bool x Frame x Frame — Frame
C : Bool x Bit x Bit — Bit
C:BoolxDxD —D
det : Frame — Bool

var f1, fo:Frame

rew C(taflva):flvC(faflva):fQ

var d:D, b:Bit

rew det(void) = t, det(frame(d,b)) = f

Besides the distributive rules, these rewrite rules are sufficient for this example. The expanded LPE
becomes
proc X(e:Bool, d:D, b:Bit)
= > 7X(
do:D
det(frame(dy, bit(C (e, void, frame(d, b))))),
data(frame(dy, bit(C (e, void, frame(d, b))))),
bit(frame(do, bit(C (e, void, frame(d, b))))))
Adata(C(e, void, frame(d, b)))=ds V bit(
+ > 7X(
bo:Bit
det(frame(data(C' (e, void, frame(d, b))
data(frame(data(C(e, void, frame(d,
bit(frame(data(C (e, void, frame(d, b)
<Abp=01 &
init X (f,d;,0).
After rewriting we get
proc X(e:Bool,d:D, b:Bit)
= Z T X(t, do,C(e 0,b)) <«C(e,d1,d)=d2 vV C(e,0,b)=01 ¢

+ Z 7 X(t,C(e,dy1,d),bg) <bo=0> 6
bo:Bit
init X(f,dy,0).

C(e,void, frame(d, b)))=01 §

By applying constelm we find that e = f. The process then reduces to the process in example 4.4.

5. Cooperation and influence of reductions

The different tools interact. In particular it might be that tool A does not lead to a reduction, but
application of tool B may make application of tool A fruitful again. We identified the cases where

12

6. Experimental results

this is the case and put these in Table 1. Horizontally, the tools can be found that do not lead to a

|| structelm | sumelm | parelm | constelm ||

structelm X Yes Yes Yes

sumelm No X Yes Yes
parelm No No X No
constelm No Yes Yes X

Table 1: Dependence of tools

reduction, but may become effective after applying one of the tools put vertically. So, for instance, the
table indicates that if structelm is applied when sumelm does not yield any reduction, then applying
sumelm after structelm might yield additional reductions. We put X’s on the diagonal, because these
positions have no meaning.

Note that iteratively applying the same tool is only useful for structelm. But if there are no
recursive types, then only a finite number of applications of structelm can take place.

6. Experimental results

Bounded retransmission protocol

before reduction after reduction
1 | # states | # transitions time || # states | # transitions time
1 454 518 1.34s 454 518 1.45s
2 1856 2134 2.02s 834 954 1.65s
3 10550 12170 6.28s 1202 1378 1.89s
4 86968 100406 44.09s 2224 2558 2.49s
5 968538 1118498 8m27.13s 8642 9970 6.45s

Onebit sliding window protocol

before reduction after reduction
n | # states | # transitions time || # states | # transitions time
1 39577 229650 21.19s 39577 229650 20.42s
2 319912 1937388 3md44.29s 39577 229650 19.37s
3| 1208737 7484714 29mb56.95s 39577 229650 18.79s

Firewire link layer protocol

before reduction after reduction
n | # states | # transitions time || # states | # transitions time
1 95160 158017 17m15.58s 74271 123370 | 59m31.00s
2 371804 641565 | 1h9m15.30s 74271 145456 | 1hOm1.79s
3 872224 1548401 | 2h22m18.41s 74271 167542 | 59m56.56s

Table 2: The effect of the elimination tools on the size of state spaces

We applied our reduction techniques to a number of data transfer protocols that have been described
in uCRL. These are the bounded retransmission protocol [9], the one bit sliding window protocol [3]
and the Firewire link layer protocol [13]. These protocols are quite different in nature. For all protocols
we hid the delivery of data, in order to investigate the control structure. By applying the different

References 13

elimination algorithms we were able to remove most or even all occurrences of variables refering to
data reducing the state space substantially. If all variables refering to data are removed, results on
the control structure hold for any data domain, in particular for those of infinite size.

In the tables we list the sizes of the state spaces for different sizes of the data domain. For the
bounded retransmission protocol the length of the data packages and the number of data elements is
given by [and the number of retransmissions has been set to 3. For the two other protocols the number
of data elements is given by n. The one bit sliding window protocol is a unidirectional sliding window
protocol with buffer size 1 at both the sending and receiving sides. The Firewire link layer protocol
consists of a bus and two link processes. The results have been obtained on a SGI Powerchallenge
with R12000 processors on 300Mhz. The version of the toolset that has been used is 2.8.3.

6.0.1 Acknowledgments.

We thank Jaco van de Pol for his comments on this paper.

References

1. M.G.J. van den Brand, P. Klint, and P.A. Olivier. Compilation and Memory Management for
ASF+SDF. In: Proceedings in Compiler Construction (CC’99) (ed. S. Jahnichen), LNCS 1575,
198-213, Springer-Verlag, 1999.

2. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information and
Communication, 60(1/3):109-137,1984.

3. M.A. Bezem and J.F. Groote. A correctness proof of a one bit sliding window protocol in uCRL.
The Computer Journal, 37(4): 289-307, 1994.

4. S.C.C. Blom. Verification of the Euris railway control specification of Woerden-Harmelen. Work
in progress. Centrum voor Wiskunde en Informatica, Amsterdam, 2000

5. S.C.C. Blom. Partial 7-confluence for efficient state space generation. Technical report, CWI,
2001; to appear.

6. W.J. Fokkink. Introduction to Process Algebra, In Texts in Theoretical Computer Science, An
EATCS Series. Springer-Verlag, 2000.

7. H. Garavel. 0PEN/CAESAR: An Open Software Architecture for Verification, Simulation, and Test-
ing”. In G. Goos, J. Hartmanis, and J. van Leeuwen, Editors, Proceedings of TACAS’98, volume
1384 of Lecture Notes in Computer Science, Springer Verlag, pages 68-84, 1998. Available from
http://www.inrialpes.fr/vasy/Publications.

8. J.F. Groote. The syntax and semantics of timed pCRL. Report SEN-R9709. CWI, The Nether-
lands, 1997.

9. J.F. Groote and J.C. van de Pol. A bounded retransmission protocol for large data packets. A
case study in computer checked verification. In M. Wirsing and M. Nivat, Editors, Proceedings of
AMAST’96, Munich, volume 1101 of Lecture Notes in Computer Science, Springer Verlag, pages
536-550, 1996.

10. J.F. Groote and A. Ponse. The Syntax and Semantics of yCRL. In A. Ponse and C. Verhoef and
S.F.M. van Vlijmen,editors, Workshops in Computing, pages 26-62. Springer-Verlag, 1994.

11. J.F. Groote, A. Ponse and Y.S. Usenko. Linearization in parallel pCRL. Journal of Logic and
Algebraic Programming, 48(1-2):39-72, 2001.

12. J.F. Groote and M.P.A. Sellink. Confluence for Process Verification. In Theoretical Computer
Science B (Logic, semantics and theory of programming), 170(1-2):47-81, 1996.

References 14

13.

14.

15.
16.

17.

S.P. Luttik. Description and formal specification of the link layer of P1394. Technical Report SEN-
R9706, CWI, Amsterdam, 1997. ftp://ftp.cwi.nl/pub/CWIreports/SEN/SEN-RO706.ps.Z

J.C. van de Pol. A Prover for the uCRL Toolset with Applications — version 0.1. Technical report
SEN-R0106, CWI, Amsterdam, 2001.

Y.S. Usenko. Linearization of pCRL processes. To appear. 2001.

M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, volume II, pages 677-788. Elsevier Science Publishers B.V., 1990.

A.G. Wouters Manual for the pCRL toolset (version 2.07). Technical report, CWI, 2001; to
appear. Available at http://www.cwi.nl/~mcrl

A. The uCRL Toolset runs the Example 15

A. The CRL Toolset runs the Example

We show how we applied to uCRL toolset to the running example.

sort D

func d1,d2: -> D

map eq:D#D -> Bool

rew eq(d1,d1)=T eq(d2,d2)=T eq(d1,d2)=F eq(d2,d1)=F

sort Bool

map and,or:Bool#Bool -> Bool
not:Bool -> Bool
eq:Bool#Bool->Bool

func T,F:-> Bool

var x:Bool

rew and(T,x)=x and(x,T)=x and(x,F)=F and(F,x)=F
or(T,x)=T or(x,T)=T or(x,F)=x or(F,x)=x
not (F)=T not(T)=F
eq(x,T)=x eq(T,x)=x eq(F,x)=not(x) eq(x,F)=not(x)

sort Bit

func 0,1:-> Bit

map eq:Bit#Bit -> Bool

rew eq(0,0)=T eq(1,1)=T eq(0,1)=F eq(1,0)=F

sort Frame

func frame:D#Bit -> Frame
void:->Frame

map data:Frame -> D
bit:Frame -> Bit

var d:D b:Bit

rew data(void)=dl data(frame(d,b)) =d
bit(void)=0 bit (frame(d,b))=b

proc X(f:Frame) = sum(d0:D,tau.X(frame(d0, bit(£)))
<lor(eq(data(f),d2), eq(bit(£f),0))|>delta)
+ sum(b0:Bit,tau.X(frame(data(f),b0))<leq(b0,0) |>delta)

init X(frame(d1,0))

Most uCRL commands [17] are filters which read from stdin and write to stdout, so they can be
used in a pipeline. The reduced LPE is written to the file output. Internally LPEs are input and
output in a compressed format, called the tbf format. The pretty printer, pp, is used to transform tbf
files to a readable form. Below the command is given that transforms the example, followed by its
output.

mcrl -stdout -regular -nocluster input|structelm -expand Frame|rewr -case| \
sumelm|constelm|parelm|pp > output

A. The uCRL Toolset runs the Example

Structelm: Generated casefunction: C2-Frame(Bool,Frame,Frame)
Structelm: Parameter f: "Frame" is expanded to 3 parameters
Structelm: Number of parameters of input LPE: 1

Structelm: Number of parameter(s) of output LPE:3

Rewr: structelm -case-completion has ended successfully
Rewr: NOW COMPILING

Rewr: gcc -04 -DNDEBUG -c REWRITERALT.c -o REWRITER.o

Rewr: COMPILING FINISHED

Rewr: gcc -shared REWRITER.o -o REWRITER.so

Rewr: REWRITER LOADED

Rewr: Read 2 summands

Rewr: Written 2 summands

Sumelm: NOW COMPILING

Sumelm: gcc -04 -DNDEBUG -c REWRITERALT.c -o REWRITER.o
Sumelm: COMPILING FINISHED

Sumelm: gcc -shared REWRITER.o -o REWRITER.so

Sumelm: REWRITER LOADED

Sumelm: Read 2 summands

Sumelm: Number of parameters of input LPE: 3

Sumelm: Summand 2: substituted for "b0" the term O

Sumelm: In this summand is (are) 1 variable(s) eliminated
Sumelm: Written 2 summands

Sumelm: Number of parameters of output LPE: 3

Constelm: NOW COMPILING

Constelm: gcc -04 -DNDEBUG -c REWRITERALT.c -o REWRITER.o
Constelm: COMPILING FINISHED

Constelm: gcc -shared REWRITER.o -o REWRITER.so

Constelm: REWRITER LOADED

Constelm: Read 2 summands

Constelm: Number of parameters of input LPE: 3

Constelm: Constant parameter "f_e" (pos 1, sort "Bool") = "F" is removed
Constelm: Constant parameter "f_1" (pos 3, sort "Bit") = "0" is removed
Constelm: Number of removed parameter(s):2

Constelm: Number of remaining parameter(s) of output LPE:1
Constelm: Written 2 summands

Constelm: Number of parameters of output LPE: 1

Parelm: Number of parameters of input LPE: 1

Parelm: Parameter "f_0" (sort "D") is removed

Parelm: In total 1 process parameter has been removed
Parelm: Variable "dO0" (sort "D") in the sum operator of summand 1 has been deleted
Parelm: Number of parameters of output LPE: O

The computed reduced LPE can be found in the file output and looks as follows.

proc X =

tau. X <|T|>delta+
tau. X <|T|>delta
init X

16

