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Abstract--Identifying anomalies rapidly and accurately is critical to the 
efficient operation of large computer networks. Accurately characterizing 
important classes of anomalies greatly facilitates their identification; how- 
ever, the subtleties and complexities of anomalous traffic can easily con- 
found this process. In this paper we report results of signal analysis of four 
classes of network traffic anomalies: outages, flash crowds, attacks and 
measurement failures. Data for this study consists of IP flow and SNMP 
measurements collected over a six month period at the border router of a 
large university. Our results show that wavelet filters are quite effective at 
exposing the details of both ambient and anomalous traffic. Specifically, 
we show that a pseudo-spline filter tuned at specific aggregation levels will 
expose distinct characteristics of each class of anomaly. We show that an 
effective way of exposing anomalies is via the detection of a sharp increase 
in the local variance of the filtered data. We evaluate traffic anomaly sig- 
nals at different points within a network based on topological distance from 
the anomaly source or destination. We show that anomalies can be exposed 
effectively even when aggregated with a large amount of additional traffic. 
We also compare the difference between the same traffic anomaly signals 
as seen in SNMP and IP flow data, and show that the more coarse-grained 
SNMP data can also be used to expose anomalies effectively. 

I. INTRODUCTION 

Traffic anomalies such as failures and attacks are common- 
place in today's computer networks. Identifying, diagnosing and 
treating anomalies in a timely fashion is a fundamental part of 
day to day network operations. Without this kind of capability, 
networks are not able operate efficiently or reliably. Accurate 
identification and diagnosis of anomalies first depends on robust 
and timely data, and second on establishedmethods for isolating 
anomalous signals within that data. 

Network operators principally use data from two sources to 
isolate and identify traffic anomalies. The first is data available 
from Simple Network Management Protocol (SNMP) queries to 
network nodes. This Management Information Base (MIB) data 
is quite broad, and mainly consists of counts of activity (such as 
number of  packets transmitted) on a node. The second type of 
data available is from IP flow monitors. This data includes pro- 
tocol level information about specific end-to-end packet flows 
which make it more specific than SNMP data. The combination 
of these types of data provides a reasonably solid measurement 
foundation for anomaly identification. 

Unfortunately, current best practices for identifying and di- 
agnosing traffic anomalies are almost all ad hoc. These con- 
sist mainly of visualizing traffic from different perspectives and 

P. Barford and A. Ron are members of the Computer Sciences Department at 
the University of Wisconsin, Madison. E-mail: pb,amos@cs.wisc.edu. J. Kline 
is a member of the Mathematics Department at the University of Wisconsin, 
Madison. E-mail: kline@math.wisc.edu. D. Plonka is a member of the Divi- 
sion of Information Technology at University of Wisconsin, Madison. E-mail: 
plonka@ doit.wisc.edu 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted wi thout fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
IMW'02, Nov. 6-8, 2002, Marseille, France 
Copyright 2002 ACM ISBN 1-58113-603-X/02/0011 ...$5.00 

identifying anomalies from prior experience. While a variety 
of tools have been developed to automatically generate alerts to 
failures, it has generally been difficult to automate the anomaly 
identification process. An important step in improving the capa- 
bility of identifying anomalies is to isolate and characterize their 
important features. 

A road map for characterizing broad aspects of network traffic 
was outlined in [ 1]. In this paper, we restrict our focus to one as- 
pect of that work and report results of a detailed signal analysis 
of network traffic anomalies. Our analysis considers the time- 
frequency characteristics of  IP flow and SNMP data collected at 
the border router of the University of Wisconsin-Madison over 
a 6 month period. Included with these data is a catalog of 109 
distinct traffic anomalies identified by the campus network en- 
gineering group during the data collection period. This combi- 
nation of data enabled us to focus our efforts on how to employ 
filtering techniques to most effectively expose local frequency 
details of anomalies. 

To facilitate this work, we developed the Integrated Measure- 
ment Analysis Platform for Internet Traffic (IMAPIT). IMAPIT 
contains a data management system which supports and inte- 
grates IP flow, SNMP and anomaly identification data. IMAPIT 
also includes a robust signal analysis utility which enables the 
network traffic data to be decomposed into its frequency com- 
ponents using a number of wavelet and framelet systems. More 
details of IMAPIT are given in Sections IV and V. 

Initially, we analyzed a variety of traffic signals by applying 
general wavelet filters to the data. Wavelets provide a power- 
ful means for isolating characteristics of signals via a combined 
time-frequency representation 1. We tested the wavelet analy- 
sis by applying many different wavelet systems to traffic signals 
to determine how to best expose the characteristics of anoma- 
lies recorded therein. We accepted the constraint that our flow 
and SNMP data was collected at five minute intervals, thereby 
precluding analysis on finer timescales. Nevertheless, we were 
able to select a wavelet system and develop algorithms that ef- 
fectively expose the underlying features of both ambient and 
anomalous traffic. 

Not surprisingly, our analysis shows clear daily and weekly 
traffic cycles. It is important to be able to expose these com- 
ponents so that anomalous traffic can be effectively isolated. 
Our analysis then focused on anomalies by separating them 
into two groups based on their observed duration. The first 
group consisted of flash crowd events which were the only 
long-lived events in our data set - these typically span up to a 
week. Flash crowd anomalies are effectively exposed using the 
low frequency representation in our system. The second group 
of anomalies are those that were short-lived and consisted of  
network failures, attacks, and other events. These short-lived 

1 Standard Fourier analysis only enables localization by frequency. 
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anomalies are more difficult to expose in data due to their sim- 
ilarity to normal bursty network behavior. We found that these 
signals could be effectively exposed by combining data from 
the mid and high frequency levels. Our investigation of which 
combinations of  data best expose anomalies included compar- 
ing Si.V/VlP to IP flow data, breaking down flow data by packet, 
byte and flow metrics, and measuring variations in the packets' 
average size. 

One important test that we developed for exposing short-lived 
event,; was based in computing the normalized local variance 
of the mid and high frequency components of the signal. The 
intuition for this approach is that the "local deviation" in the 
high frequency representation exposes the beginning and end 
of  short-lived events and the local variability in the mid fre- 
quency filters expose their duration. Large values of these local 
variances indicates a sharp unpredictable change in the volume 
of the measured quantity. Our Deviation Scoring method de- 
scribed in Section IV is a first step at attempting to automate 
anomaly detection (which is now typically done by visual in- 
spection of  time-series network traffic plots) through the use 
of multi-resolution techniques. Employing this method on our 
data over a number of weeks actually exposed a number of  true 
anomalies (verified post-mortem by network engineers) that had 
not been cataloged previously. 

While the majority of  our work focused on identifying 
anomalies in aggregate traffic at the campus border router, the 
source and destination address in the IP flow data allows us to 
isolate anomalies at different points in the network (by prun- 
ing away traffic from various subnets). As you move closer 
to the source of an anomaly, the event typically becomes more 
pronounced in the data and thus easier to expose. However, if 
the event takes place at a point in the network where there is 
lower aggregation of traffic then there is typically more variabil- 
ity in the ambient traffic and, as a result, the task of isolating 
the anomaly signal becomes more difficult. We show that our 
methods work well whether the measurement point is close to 
or dist~mt from the point of  the anomaly. 

This paper is organized as follows. In Section III we describe 
the data sets we use in this work. We also describe current best 
practices employed by network operators for general anomaly 
detection. In Section IV we describe our signal analysis meth- 
ods and the IMAPIT framework. In Section V we present the 
results of  our analysis and discuss their implications. We evalu- 
ate the performance of  our anomaly detection method in Section 
VI, and then summarize, conclude and discuss future work in 
Section VII. 

II. RELATED WORK 

General properties of  network packet traffic have been stud- 
ies intensely for many years - standard references include [2], 
[3], [4], [5]. Many different analysis techniques have been em- 
ployed in these and other studies including wavelets in [6]. The 
majority of these traffic analysis studies have been focused on 
the typical, packet level and end-to-end behavior (a notable ex- 
ception being [7]). Our focus is mainly at the flow level and 
on identifying frequency characteristics of anomalous network 
traffic. 

There have been many prior studies of  network fault detection 

methods. Example include [8], [9], [10]. Feather et al. use sta- 
tistical deviations from normal traffic behavior to identify faults 
[ I 1] while a method of  identifying faults by applying thresholds 
in time series models of network traffic is developed in [12]. 
These studies focus on accurate detection of deviations from 
normal behavior. Our work is focused on identifying anoma- 
lies by removing first from the signal its predictable, ambient 
part, and only then employing statistical methods. Wavelet are 
used for the former task. 

Detection of black-hat activity including denial-of-service 
(DOS) attacks and port scan attacks has also been treated widely. 
Methods for detecting intrusions include clustering [13], neural 
networks [14] and Markov models [15]. Moore et al. show 
that flow data can be effective for identifying DoS attacks [16]. 
A number of  intrusion detection tools have been developed in 
recent years in response to the rise in black-hat activity. An ex- 
ample is Bro [ 17] which provides an extensible environment for 
identifying intrusion and attack activity. Our work complements 
this work by providing another means for identifying a variety 
of  anomalous behaviors including attacks. 

We identify flash crowds as an important anomaly category. 
The events of  September 11, 2001 and the inability of most on- 
line news services to deal with the offered demand is the most 
extreme example of this kind of  behavior. While infrastructure 
such as content delivery networks (CDNs) have been developed 
to mitigate the impact of flash crowds, almost no studies of  their 
characteristics exist. A recent study on flash crowds is by Jung 
et al. in [18]. That work considers flash crowds (and DoS at- 
tacks) from the perspective of  Web servers logs whereas ours 
is focused on network traffic. Finally, cooperative pushback is 
proposed in [19] as a means for detection and control of events 
such as flash crowds. 

III .  DATA 

A. The Measurement Data 

Our analysis is based on two types of  network traffic data 
types: SNMP data and IP flow data. The source of  both was 
a Juniper M10 router which handled all traffic that crossed the 
University o f  Wisconsin-Madison campus network's border as 
it was exchanged with the outside world. The campus network 
consists primarily of  four IPv4 class B networks or roughly 
256,000 IP addresses of which fewer than half are utilized. The 
campus has IP connectivity to the commodity Internet and to re- 
search networks via about 15 discrete wide-area transit and peer- 
ing links all of  which terminate into the aforementioned router. 

The SNMP data was gathered by MRTG [20] at a five minute 
sampling interval which is commonly used by network opera- 
tors. The SNMP data consists of  the High Capacity interface 
statistics defined by RFC2863 [21] which were polled using 
SNMP version 2c. This analysis used the byte and packet coun- 
ters for each direction of each wide-area link, specifically these 
64-bit counters: ifHCInOctets, ifHCOutOctets, ifHCInUcastP- 
kts, and ifHCOutUcastPkts. 

The flow data was gathered using flow-tools [22] and was 
post-processed using FlowScan [23]. The Juniper M10 router 
was running JUNOS 5.0R1.4, and later JUNOS 5.2R1.4, and 
was configured to perform "cflowd" flow export with a packet 
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sampling rate of 96. This caused 1 of 96 forwarded packets to 
be sampled, and subsequently assembled into flow records simi- 
lar to those defined by Cisco's NetFlow [24] version 5 with sim- 
ilar packet-sampling-interval and 1 minute flow active-timeout. 
The packet and byte counts computed from those flow records 
were then multiplied by the sampling rate to approximate the 
actual byte and packet rates. We have not attempted to formally 
determine the accuracy of packet-sampling-based flow measure- 
ments as compared with the SNMP measurements. However, it 
is common to use such measurements in network operations. 

Both the SNMP and flow data were post-processed to pro- 
duce rate values and stored using the RRDTOOL [20] time- 
series database. The archives were configured to retain values at 
five minute granularity from September 25, 2001 through April 
4, 2002. Internet service providers which bill customers based 
upon 95th percentile peak interface usage have a similar reten- 
tion policy for SNMP data. However, most other network oper- 
ators retain the five-minute granularity data for only about two 
days (50 hours for MRTG, by default), after which that data is 
coalesced into averages over a increasingly longer time inter- 
vals; typically 30 minute, 2 hour, and 24 hour averages. For the 
campus, with approximately 600 IP subnets, this set of data re- 
suited in a database of approximately 4GB in size. The collected 
flow records were retained to validate the results of  the analysis. 
They were collected at five minute intervals resulting in about 
60,000 compressed files of approximately 100GB in total com- 
bined size. 

Though uncommon, our analysis also considered the average 
IP packet size, as computed from corresponding byte and packet 
rates. Because many applications have typical packet sizes, of- 
ten bimodal with respect to requests and responses or data and 
acknowledgments, analysis of this metric occasionally exposes 
application usage even when only SNMP-based byte and packet 
interface rate statistics are available. 

In parallel with the collection of  the measurement data, a jour- 
nal of known anomalies and network events was maintained. 
The log entries in this joumal noted the event's date and time, 
and a one-line characterization of the anomaly. Furthermore, a 
simple nomenclature was used to label events as one of these 
types: 

• Network: A network failure event or temporary misconfig- 
uration resulting in a problem or outage. For instance: router 
software spontaneously stopped advertising one of the campus 
class B networks to campus BGP peers. 
• Attack: Typically a Denial-of-Service event, usually flood- 
based. For instance: an outbound flood of 40-byte TCP packets 
from a campus host that has had its security compromised and 
is being remotely controlled by a malicious party. 
• Flash: A flash crowd [18] event. For instance: the increase in 
outbound traffic from a campus £ t p  mirror server following a 
release of  RedHat Linux. 
• Measurement: An anomaly that we determined not to be 
due to network infrastructure problems nor abusive network us- 
age. For example: a campus host participating in TCP bulk 
data transfer with a host at another campus as part of  a research 
project. Problems with the data collection infrastructure itself 
were also categorized as "Measurement" anomalies. These in- 
clude loss of  flow data due to router overload or unreliable UDP 

T A B L E  I 

TYPES AND COUNTS OF NETWORK ANOMALY EVENTS IN THE TRAFFIC 

DATABASE USED IN THIS STUDY. 

 non y y0e IJ Count I 
Network 41 

Attack 46 
Flash Crowd 4 
Measurement 18 

Total 109 

NetFlow transport to the collector. 
In this way, a total of 168 events were identified and a subset 

researched and tagged by the engineers operating the campus 
network. Table I shows the distribution of types among the 109 
tagged events. All flash crowd events occuring during the mea- 
surement period were selected along with a sampling of anoma- 
lies in the other three categories based on those that had the most 
detailed description in the operator's journal. While the journal 
did not record every traffic anomaly during the measurement pe- 
riod, it acted as a unique road map for exploring the raw traffic 
measurement data, and provided a basis for determining if the 
anomalies could detected or characterized automatically. 

B. Best Current Practice 

Experienced network operators often employ effective, but ad 
hoc, methods of problem determination and anomaly detection. 
These techniques rely heavily on an operator's experience and 
persistent personal attention. 

Modern network management systems (NMS) software pro- 
vides two common tools for handling SNMP data. The first, and 
ostensibly most-used, is a graphing tool capable of continuously 
collecting and plotting values from the MIBs. It is not uncom- 
mon for a network operators to fill their workstations' screens 
with plots of traffic as it passes through various network ele- 
ments. 

The second is an alarm tool, which periodically performs 
tests on collected values and notifies operators accordingly. 
Such tools are based on locally authored rules, perhaps aug- 
mented by heuristics provided by the NMS vendor. These rules 
are often rudimentary conditional threshold tests such as, "if 
(router.interfacel.utilization > 50%) then notify". The result- 
ing expert knowledge expressed in these rules is not necessarily 
portable to any other network environment. 

Tools for handling flow data are less mature. Freely-available 
tools such as those employed in our work, have achieved a cer- 
tain level of popularity among operators of enterprise and large 
networks. These tools leverage existing SNMP experience by 
converting detailed flow-export records into familiar time-series 
data. Tabular data, compiled by either commercial and freely- 
available tools, is occasionally used as well. 

The major deficiency of these tools is the amount of  expert 
local knowledge and time required to setup and use them perva- 
sively. For instance, we collected about 6,000 unique time-series 
metrics from just a single network element, namely our campus 
border router. This amount of data prohibits visual inspection 
of graphs containing plots of all but a small subset of those met- 
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tics. 

IV. METHODS 

A. Vckvelet Analysis 

A typical input of  our analysis platform is a string of  Internet 
traffic: measurements. One of the basic principles of our method- 
ology is the treatment of  the measurement string as a generic 
signal, ignoring, at least to a large degree, the semantics of sig- 
nal (such as the content of  the packet header), the instrumenta- 
tion used (e.g. SNMP vs. FlowScan), the quantity which is being 
measured (packet count, byte count, incoming traffic, outgoing 
traffic:), or the actual subnet which is targeted. We do pay careful 
attention to time aggregation of  the measurement (one measure- 
ment for each five minutes) in order to capture daily and weekly 
patterns or inconsistencies. An approach like the above is impor- 
tant since we would like to build a platform which is portable, 
and that can be automated. Any analysis tool that depends heav- 
ily on the nature of a particular local subnet will almost surely 
not be portable to other locations in the due to the heterogeneity 
of  Internet traffic. 

The basic tool we employ is wavelet analysis. The wavelet 
tool organizes the data into strata, a hierarchy of component 
"signals", each of  which maintains time as its independent vari- 
able. The lower strata contain very sparse filtered information 
that can be thought of as sophisticated aggregations of the orig- 
inal data. We refer to that part of the representation as the 
low-frequency representation. In our algorithm, we derive one 
such :representation, i.e. a single dataset that extracts the gen- 
eral slow-varying trends of  the original signal. In contrast, the 
very high strata in the hierarchy capture fine-grained details of 
the data, such as spontaneous variations. These are referred to 
as the high-frequency strata. 

Let: us review with a bit more detail the so-called "wavelet 
processing". This processing is actually made of two comple- 
mentary steps: the first is analysis~decomposition and the other 
is its .inverse, the reconstruction~synthesis process. 

Analysis: The goal of the analysis process is to extract from 
the original signal the aforementioned hierarchy of  derived sig- 
nals. This is done as an iterative process. The input for each 
iteration is a signal x of  length N.  The output is a collection 
of  two or more derived signals, each of  which is of length N/2. 
Each output signal is obtained by convolving x with an specially 
desiguedfiher F and then decimating every other coefficient of 
that convolution product. We denote by F(x)  the output sig- 
nal so obtained. One of  the special filters, denoted herein as L, 
has a smoothing/averaging effect, and its corresponding optput 
L(x) is the low-frequency output. The other filters, H1,.  • •, Hr 
(r _> 1) are best thought of  as "discrete differentiation", and a 
typical output Hi (x) should capture only the "fine-grained de- 
tails", i.e. of the high-frequency content of the signal x. The 
iterations proceed with the further decomposition of  L(x)', cre- 
ating the (shorter) signals L2(x), H 1 L ( X ) , . . . ,  HrL(x).  Con- 
tinuing in this manner, we obtain a family of-output signals of  
the form HiLJ- l (x) .  The index j counts the number of low- 
pass filtering iterations applied to obtain the output signal: the 
larger the value of  j ,  the lower the derived signal is in our hierar- 
chy. Indeed, we refer to HiL j -  1 (x) as belonging to the j th fre- 

quency level, and consider a higher value of j to corresponding 
to a lower frequency. If  our original signal z consists of  mea- 
surements taken at five minute intervals, then the derived signal 
HiL j-1 (x) consists of data values that are 2 j × 5 minutes apart 
one from the other. Thus, as j grows, the corresponding output 
signal becomes shorter and records a smoother part of the sig- 
nal. The values of  the derived signals HiL j -  1 (x) (i = 1 , . . . ,  r, 
j > 1) are known as the wavelet coefficients. 

For example, let us consider the case j = 6. At that level, the 
derived signal H iL  6 (x) contains aggregated data values that are 
26 x 5 = 320 minutes apart. At that aggregation level (if done 
correctly) we should not anticipate seeing subtle variations that 
evolve along, say, two or three hour duration; we will see, at 
best, a very blurry time-stamp of such variations. On the other 
hand, the coefficients at that level might capture well the varia- 
tions between day and night traffic. 

The synthesis iterations perform the inverse of  the anal- 
ysis: at each step the input signals for the iteration are 
LJ(x), H 1 L J - i ( x ) , . . . ,  HrLJ-I (x) ,  and the output is the sig- 
nal L j -1  (x). This is exactly the inverse of  the jth iteration of 
the analysis algorithm. By employing that step sufficiently many 
times, one recaptures the original signal. 

One possible way of  using the wavelet process is in 
"detection-only" mode. In this mode, one examines the vari- 
ous derived signals of  the decomposition, and tries to infer from 
them information about the original signal. 

Wavelet-based algorithms are usually more sophisticated and 
attempt to assemble a new signal from the various pieces in the 
decomposition. This is done by altering some of  the values of  
some of the derived signals of the decomposition step and then 
applying reconstruction. The general idea is to suppress all the 
values that carry information that we would like to ignore. For 
example, if we wish only to view the fine-grained spontaneous 
changes in the data, we will apply a threshold to the entries in 
all the low-frequency levels, i.e. replace them by zeros. 

The above description falls short of  resulting in a well-defined 
algorithm. For example, suppose that we would like to suppress 
the day/night variation in the traffic. We mentioned before that 
such variations appear in frequency level 6 (and definitely in 
lower levels as well). But, perhaps that are also recorded in 
the derived signal at level 5? It turns out that there is no sim- 
ple answer here. The wavelet tranform we describe here is one 
of many possible wavelet systems, each of  which might pro- 
vide a unique decomposition of  the data. Unfortunately, choos- 
ing among the subtle details of  each wavelet transform often 
requires an expert understanding of  the performance of those 
wavelet decompositions. Their ultimate success depends on se- 
lecting a wavelet transform that suits the given application. 

lime frequency-localization: approximation orders and van- 
ishing moments. In a highly qualitative description, the selection 
of the wavelet transform should be based on a careful balance 
between it's time localization characteristics, and its frequency 
localization characteristics. 

Time localization is a relatively simple notion that is primar- 
ily measured by the length of  the filters that are employed in the 
transform. Long filters lead to excessive blurring in the time do- 
main. For example, the use of long filters denies us the ability to 
easily distinguish between a very strong short-duration change 
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in traffic volume, as opposed to a milder change of longer du- 
ration. Since, for anomaly detection, the ability to answer ac- 
curately the question "when?" is critical, we chose a wavelet 
system for very short filters. 

Frequency localization. In our context, there are two charac- 
teristics of the wavelet system that may be regarded as belonging 
to this class. 

One way to measure frequency localization is by measunng 
the number of vanishing moments that the analysis filters Hi  
possess. We say that the filter Hi  has k vanishing moments if 
H(0)  = H ' (0 )  . . . . .  _ff/(k-1)(0) = 0 where H is the Fourier 
series of H.  In every wavelet system, every filter Hi has at least 
one vanishing moment. Filters with a low number (usually one 
or two) of  vanishing moments may lead to the appearance of 
large wavelet coefficients at times when no significant event is 
occurring thus resulting in an increasing in the number of false 
positive alerts. In order to create a wavelet transform with high 
number of vanishing moments, one needs to select longer filters. 

Another closely related way to measure frequency localiza- 
tion is via the approximation order of the system. We forgo 
explaining the details of  this notion and mention only that the 
decision to measure frequency localization either via vanishing 
moments or by approximation order depends primarily on the 
objective and the nature of algorithm that is employed. 

The last issue in this context is the artifact freeness of the 
transform. For many wavelet systems, the reconstructed (mod- 
ified) signal shows "features" that have nothing to do with 
the original signal, and are artifacts of the of the filters used. 
Wavelet filters that are reasonably short and do not create 
such undesired artifacts are quite rare; thus, our need for good 
time localization together with our insistence on an artifact-free 
wavelet system narrowed the search for the "optimal" system in 
a substantial way. 

The wavelet system we employ: We use a bi-frame version 
of a system known as PS(4,1)Type II (cf. [25]). This is a 
framelet system, i.e. a redundant wavelet system (which es- 
sentially means that r,  the number of high-pass filters, is larger 
than 1; a simple count shows that, if r > 1, the total number of 
wavelet coefficients exceeds the length of  the original signal). In 
our work, the redundancy itself is not considered a virtue. How- 
ever, the redundancy provides us with added flexibility: it allows 
us to construct relatively short filters with very good frequency 
localization. 

In our chosen system, there is one low-pass filter L and three 
high-pass filters H1, H2, Ha. The analysis filters are all 7-tap 
(i.e. each have 7 non-zero coefficients), while the synthesis fil- 
ters are all 5-tap. The vanishing moments of the high-pass anal- 
ysis filters are 2, 3, 4, respectively, while the approximation or- 
der of  the system is 42. The "artifact freeness" of our system is 
guaranteed since our low-pass filters deviate only mildly from 
spline-filters (that perform pure multiple averages, and are the 
ideal artifact-free low-pass filters). 

The analysis platform. We derive from a given signal x (that 

20ur initial assumption was that the Intemet traffic is not smooth, and there 
might not be enough gain in using a system of approximation order 4 (had we 
switched to a system with approximation order 2, we could have used shorter 
filters). However, comparisons between the performance of the PS(4,1) Type II 
to the system RS4 (whose filters are all 5-tap, but whose approximation order is 
only 2), yielded a signifi cant difference in performance. 

represents five-minute average measurements) three output sig- 
nals, as follows. The description here fits a signal that has been 
measured for two months. Slightly different rules were em- 
ployed for shorter duration signals (e.g. a signal measured for a 
week). 
• The L(ow frequency)-part of the signal, obtained by synthe- 
sizing all the low-frequency wavelet coefficients from levels 9 
and up. The L-part of the signal should capture patterns and 
anomalies of very long duration: several days and up. The sig- 
nal here is very sparse (its number of data elements is approxi- 
mately 0.4% of those in the original signal), and captures weekly 
patterns in the data quite well. For many different types of In- 
ternet data, the L-part of the signal reveals a very high degree 
of regularity and consistency in the traffic, hence can reliably 
capture anomalies of long duration (albeit it may blur various 
characteristics of the abnormal behavior of the traffic.) 
• The M(id frequency)-part of the signal, obtained by synthesiz- 
ing the wavelets coefficients from frequency levels 6, 7, 8. The 
signal here has zero-mean, and is supposed to capture mainly 
the daily variations in the data. Its data elements number about 
3% of  those in the original signal. 
• The H(igh frequency)-part of the signal is obtained by thresh- 
olding the wavelet coefficients in the first 5 frequency levels, i.e. 
setting to zero all coefficients whose absolute value falls below a 
chosen threshold (and setting to zero all the coefficients in level 
6 and up). The need for thresholding stems from the fact that 
most of  the data in the H-part consists of  small short-term varia- 
tions, variations that we think of as "noise" and do not aid us in 
our anomaly detection objective. 

We close this section with two technical comments: while the 
theory of thresholding redundant representations is still in rudi- 
mentary form, it is evident to us that we should vary the thresh- 
olding level according to the number of vanishing moments in 
the filter (decreasing the threshold for the filter with high van- 
ishing moments.) We have not yet implemented this technique. 
Finally, due to its high approximation order, our system cannot 
capture accurately sharp discontinuities in the data. 

Detection of anomalies.  While it is unlikely that a single 
method for detecting anomalies will be ever found 3, we have 
taken a first step at developing an automated method for identi- 
fying irregularities in the measured data. Our algorithm, which 
we call a deviation score, has the following ingredients: 

1. Normalize the H- and M-parts to have variance one. Com- 
pute the local variability of the (normalized) H- and M-parts 
by computing the variance of the data falling within a moving 
window of specified size. The length of  this moving window 
should depend on the duration of the anomalies that we wish to 
captured. If  we denote the duration of the anomaly by to and the 
time length of the window for the local deviation by t 1, we need, 
in the ideal situation, to have q :=  to/t1 ~ 1. If  the quotient q is 
too small, the anomaly may be blurred and lost. If  the quotient 
is too large, we may be overwhelmed by "anomalies" that are 
of very little interest to the network operators. Our current ex- 
periment focuses on anomalies of duration 1-4 hours, and uses 
a moving 3-hour local deviation window. Shorter anomalies of 

3After all, there is not a single deft nition of '~nomaly". Should we consider 
any change in the measured data to be an anomaly or only those that correspond 
to an identifi able change in network state? 
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sufficient intensity are also detected. 
2. Co:mbine the local variability of the H-part and M-part of the 
signal using a weighted sum. The result is the V(ariable)-part of 
the signal. 
3. Apply thresholding to the V-signal. By measuring the peak 
height and peak width of the V-signal, one is able to begin to 
identiI3, anomalies, their duration, and their relative intensity. 
We provide further details of our application of this technique in 
Section V. 

While this approach to identifying anomalies that occur over 
periods of  hours appears to be promising, it is only the first step 
in a process of automated anomaly detection based on the use of 
wavelet coefficients. Our choice of  using scale dependent win- 
dowing to calculate deviation score is motivated by simplicity. 
This approach enabled us to easily quantify the significance of 
local events by using the reconstructed signal's local variability. 
In the future, we may find that direct use of  combinations of 
wavelet and approximation coefficients (or other components) 
will be sufficient for accurate automated anomaly detection. To 
that end, as future work, we plan to investigate which compo- 
nents provide the best descrimination and to employ machine 
learning tools and techniques to develop more robust automated 
anomaly detectors. This approach will enable us to evaluate 
quantitatively which combinations of wavelet (or other) features 
provide the best detection capability. 

B. The IMAPIT Analysis Environment 

The IMAPIT environment we developed for this study has 
two significant components: a data archive and a signal analysis 
platform. The data archive uses RRDTOOL (mentioned in Sec- 
tion IE) which provides a flexible database and front-end for our 
IP flow and SNMP data. The analysis platform is a framelet sig- 
nal analysis and visualization system that enables a wide range 
of  wavelet systems to be applied to signals. 

Signal manipulation and data preparation in IMAPIT analysis 
was performed using a modified version of the freely-available 
LastWave software package [26]. In addition to wavelet decom- 
position, we implemented our deviation score method for expos- 
ing signal anomalies. Both flow and SNMP time-series data can 
be used as input to compute the deviation score of a signal. 

Calculating the deviation score has four parameters: an M- 
window size, an H-window size, and the weights assigned to the 
M- anti H-parts. We used only a single constant set of parameter 
values to produce the results in Section V. However, one can 
tune IMAPIT's sensitivity to instantaneous events by modifying 
the moving window size used in constructing the local deviation; 
a smaller window is more sensitive. The weights used on the M- 
and H-.parts allow one to emphasize events of  longer or shorter 
duration. 

In our analysis, we found most anomalies in our journal had 
deviation scores of  2.0 or higher. We consider scores of  2.0 or 
higher as "high-confidence", and those with scores below 1.25 
as "low-confidence". Where deviation scores are plotted in fig- 
ures in Section V, we show the score as a grey band clipped 
between 1.25 and 2.0 on the vertical axis, as labeled on the right 
side. An evaluation of deviation scoring as a means for anomaly 
detection can be found in Section VI. 

V. RESULTS 

We decompose each signal under analysis into three distinct 
signals (low/mid/high). As a point of reference, if the signal 

• under analysis is 1 week long (the period used to evaluate short- 
lived anomalies), the H-part is frequency levels 1,2,3; the M- 
part is frequency levels 4,5; the L-part is the remainder. If the 
signal is 8 weeks long (the period used to evaluate long-lived 
anomalies), the M-part is frequency levels 6,7,8; and the L-part 
is the remainder. 
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Fig. 1. Aggregate byte traffic from IP fbw data for a typical week plus 
high/mid/low decomposition. 
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Fig. 2. Aggregate SNMP byte traffic for the same week as Figure I plus 
high/mid/low decomposition. 

A. Characteristics of  Ambient Traffic 

It is essential to establish a baseline for traffic free of anoma- 
lies as a means for calibrating our results. Many studies de- 
scribe the essential features of  network traffic (e.g. [4]) includ- 
ing the standard daily and weekly cycles. Figure 1 shows the 
byte counts of inbound traffic to campus from the commodity 
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Internet Service Provider during a typical week. The figure also 
shows the wavelet decomposition of the signal into high, mid, 
and low-band components corresponding to the H-, M-, and L- 
parts discussed in Section IV. The regular daily component of 
the signal is very clear in the low band 4 . 

In Figure 2, we show the byte traffic for the same week at 
the same level of  aggregation as measured by SNMP. In this 
case traffic was measured by utilizing high-capacity SNMP in- 
terface octet counters rather than by selecting the specific BGP 
Autonomous System number from the exported flow records. 
The decompositions in Figures 1 and 2 are nearly indistinguish- 
able. The primary difference is slightly more high-frequency 
"jitter" in the flow-export-based signal s . 

B. Characteristics of  Flash Crowds 

The first step in our analysis of anomalies is to focus on flash 
crowd events. Our choice of investigating flash crowds first is 
due to their long lived features which should be exposed by the 
mid and low-band filters. This suggests that analysis of either 
SNMP or flow-based data is suitable, however we focus on flow- 
based data. Figure 3 shows the decomposition of eight weeks 
of outbound traffic from one of the campus' class-B networks 
which contains a popular ftp mirror server for Linux releases. 
During these weeks, two releases of popular Linux distributions 
occurred, resulting in heavy use of the campus mirror server. In 
this and subsequent figures, grey boxes were added by hand to 
focus the reader's attention on the particular anomaly (the posi- 
tion of each box was determined by simple visual inspection). 
Attention should again focus on the low-band signal. The low- 
band signal highlights each event clearly as well as the long- 
lived aspect of the second event. 

Another way to consider the effects of flash crowds is from 
the perspective of their impact on the typical sizes of packets. 
The intuition here is that large data/software releases should re- 
sult in an increase in average packet size for outbound HTTP 
traffic and therefore packet size may be an effective means for 
exposing flash crowds. Figure 4 shows eight weeks of outbound 
HTTP traffic and highlights another flash crowd anomaly from 
our data set. This anomaly was the result of network packet 
traces being made available on a campus web server. Curiously, 
for unrelated reasons, the server for this data set had its kernel 
customized to use a TCP Maximum Segment Size of 512. Both 
the mid-band and low-band signals in this figure show that the 
outbound HTTP packets from this server were, in fact, able to 
redefine the campus' average HTTP packet size. It is also inter- 
esting to note that the packet size signal becomes more stable 
(the signal has fewer artifacts) during this flash crowd event. 
This is particularly visible in the mid-band. Since flash crowds 
typically involve a single application, it seems likely that that 
application's packet size "profile" temporarily dominates. 

4We could easily expose the weekly component of the signal using higher 
aggregation fi lters, however weekly behavior is not important for the groups of 
anomalies we consider in this study. 

5We will employ formal methods to quantify the difference between SNMP 
and fbw signals and their decompositions in future work. 
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Fig. 3. Baseline signal of byte traffi c for a one week on either side of a flash 
crowd anomaly caused by a software release plus high/mid/low decomposi- 
tion. 

Campus H ~ r P ,  Outbound, 2001-SEP-30 through 2001-NOV-25 
1500 . . . . . . . . . . . . . . . . . . . . . .  , , ,  , , , , , ,  , . . . . . . . . . . . . . . . . .  

• 
500 - -  outbound H'YrP average packet size signal 

0 l l i  ] . . . . .  I I i I i i i l I l I . . . .  I . . . . . .  I . . . . . .  I . . . . . .  I . . . . . .  I . . . . . .  I 

3001- ' I  . . . . . .  I . . . . . .  I ' ' ' ' ' ' I ' ' ' ' ' ' I ' ' ' ' ' ' I  . . . . . .  I . . . . . .  I . . . . . .  I 

7 .+  ' 1(30 

-1 
-200 ~ - -  outound HTTP average packet size, m i d - b a n ~  
. 3 ~ P '  . . . . . . . . . . . . . .  J . . . . . .  I . . . . . .  F . . . . . .  I . . . . . .  I . . . . . .  l l l l l l l  I 

ISOOL  I . . . . . .  I ' ' ' ' ' ' 1 ' ' ' ' ' ' 1  . . . . . .  I . . . . . .  I . . . . . .  I . . . . . .  I . . . . .  +1 

looo5oo t ~ ' ~  - ~ / ~ - " ~ ~  1 
H - -  outbound H T r P  average packet size, low-baad~ -~ 

e l ' , ,  . . . . . .  , ~ , , , , i , , , , * , , , , , , , , ,  . . . . . .  I . . . . . .  I . . . . . .  I . . . . . .  I . .  I 
Oct-01 Oct-08 O¢t+15 Oct-22 Oct+29 Nov-05 Nov-12 Nov-19 Nov-26 

Fig. 4. Baseline signal of average HTTP packet sizes (bytes) for four weeks on 
either side of a flash crowd anomaly plus mid/low decomposition. 

C. Characteristics of  Short-term Anomalies 

Short-term anomalies comprise attacks, network outages, and 
measurement anomalies. The coarse-grained (5 minute inter- 
vals) nature of our measurements complicates discrimination 
between these categories of anomalies, thus we consider them 
as a group. We evaluated 105 short-term anomalies using dif- 
ferent combinations of data to determine how best expose their 
features (we present analysis of several examples of short-term 
anomalies to highlight their general features). In contrast to flash 
crowds, short-term anomaly features should be best exposed by 
mid-band and high-band filters which isolate short-timescale as- 
pects of signals. 

Figure 5 shows a decomposition of TCP flow counts which 
exposes two inbound denial-of-service (DOS) attacks that oc- 
curred during the same one week period. These two attacks 
were floods of 40-byte TCP SYN packets destined for the same 
campus host. Because the flood packets had dynamic source ad- 
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dresses and TCP port numbers, the flood was reported as many 
"degenerate" flows, having only one packet per flow. As pre- 
dicted, the decomposition easily isolates the anomaly signal in 
the high and mid bands. By separating these signals from the 
longer time-scale behavior, we have new signals which may be 
amenable to detection by thresholding. 

Campus  TCP,  Inbound, 2002-FEB.O3 through 2002-FEB-10 
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Fig. 5. Baseline signal of packet lows for a one week period highlighting two 
short-lived DoS attack anomalies plus high/mid/low decomposition. 
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Fig. 6. Baseline signal of byte traffic from fbw data for a one week period show- 
ing three short-lived measurement anomalies plus high/mid/low decomposi- 
tion. 

Another type of short-term anomaly is shown in Figure 6. 
This figure shows a periodic sequence of three measurement 
anomalies observed over a three day period. This was found 
to be a host in the outside world performing nightly backups 
to a campus backup server. The large volume of traffic each 
day was due to misconfiguration of  the cl ient  backup software. 
As in the prior example, the decomposition easily isolates the 
anomaly signal in the high and mid bands while the low band 
is not affected by the anomaly. However if this anomaly had 
been intended behavior, accounting for it in high and mid bands 
would require additional filters in our analysis platform. 

D. A Discriminator for Short-term Anomalies 

One of the objectives of this work is to provide a basis for 
automating anomaly detection. It is important for any anomaly 
detection mechanism to minimize false positives and false neg- 
atives. Our analysis led to the development of the "devia- 
tion score" discrimination function for short-term anomalies de- 
scribed in Section IV. 

Figure 7 shows how deviation scores can be used to highlight 
a series of short-term anomalies. The figure shows inbound TCP 
packet rate during a week plus three anomalies that might other- 
wise be difficult to discern from the baseline signal. Two of the 
anomalies are DoS floods that are easily detected and exposed 
automatically by their deviation scores and are marked by the 
first and second grey bands. Note, the bands are actually score 
values as shown by the scale on the right of  the figure (the left- 
most score does not quite reach 2). The third band marks an 
measurement anomaly unrelated to the DoS attacks. 
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Fig. 7. Deviation analysis exposing two DoS attacks and one measurement 
anomaly in for a one week period in packet count data. 

In Figure 8, we present a deviation analysis during a week 
containing a network outage. This outage affected about one 
fourth of the campus' IPv4 address space, and therefore caused 
an overall decrease in traffic. For each traffic measurement met- 
ric (packets, bytes, flows), inbound or outbound, our deviation 
scoring identified and marked the anomaly. This suggests that 
it is feasible to use a "rules based" approach or weighted aver- 
age to determine the type or scope of the anomaly based on the 
accumulated impact of a set of  deviation scores. 

E. Exposing Anomalies in Aggregate Signals 

An important issue in detecting traffÉc anomalies is the rela- 
tionship between the strength of an anomaly's  signal in a set of  
aggregated traffic. This is most easily considered with respect 
to the point at which measurement data is collected in a net- 
work• Intuition would say that an anomaly measured close to its 
source should be very evident while the same anomaly would 
be less evident if its signal were aggregated with a large amount 
of other traffic. We investigate this issue by isolating a specific 
subnet in which a system is the victim of a DoS attack. 

Figure 9 shows the deviation analysis of two inbound DoS 
• . ~ . . 

floods wtthm the aggregate traffic of  the vlcUms 254 host subnet 
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and the aggregate traffic of the campus' four Class-B networks. 
The top set of graphs in this figure show that deviation scores 
easily highlight the extreme nature of DoS floods in inbound 
traffic within the subnet, and that they even highlight the much 
less evident outbound traffic anomaly. The bottom set of graphs 
show again that deviation scores highlight the same anomalies 
(as well as a number of  others). 

E Hid~len Anomalies 

Through the application of our methods, we were able to iden- 
tify a number of "hidden" anomalies in our data sets. These are 
anomalies that had not been previously identified by the cam- 
pus network engineers. The majority of these were DoS attacks 
most of  which could be identified by careful visual inspection. 

One hidden anomaly of interest is shown in Figure 10. This 
figure shows outbound traffic from one of  the campus' class- 
B networks during a four week period. The duration of this 
anomaly prevented its detection via deviation score. Decom- 
position enabled us to identify an anomaly that had previously 
gone unnoticed and was not easily seen visually. The anomaly 
is most visible following December 18th in the low-band graph 
where lxaffic remained uncharacteristically high across two sub- 
sequent days. Follow-up investigation using our repository of 
flow records showed this anomaly to have been due to of net- 
work abuse in which four campus hosts had their security com- 
promised and were being remotely operated as peer-to-peer file 
servers. 
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Fig. 10. Example of three-band analysis exposing a multi-day network abuse 
anomaly. 

VI. DEVIATION SCORE EVALUATION 

We evaluated the results of our deviation scoring method of 
anomaly detection in two ways. First, we selected a set of 
anomalies logged in the network operator journal as a baseline 
and evaluated deviation score detection capability. Secondly, we 
used the same baseline set of  anomalies to evaluate the effective- 
ness of an alternative detection technique based on Holt-Winters 
Forecasting [12] as a comparison to deviation scoring. We were 
limited in the extent to which we could evaluate either detection 
method since the baseline set of anomalies used in this analy- 
sis is unlikely to be complete. Therefore, we did not attempt to 
determine which method reported more false-positives. 

TABLE II 
C O M P A R I S O N  O F  A N O M A L Y  D E T E C T I O N  M E T H O D S .  

Total Candidate Candidates detected Candidates detected 
Anomalies Evaluated by Deviation Score by Holt-Winters 

39 II 38 37 
II 

In each case we were somewhat tolerant of discrepancies be- 
tween the anomaly timestamps in the journal 's  log entries and 
the times at which the automated methods reported anomalous 
network traffic. Specifically, we allowed a discrepancy of as 
much as 1.5 hours since both automated techniques sometimes 
shift the report significantly from the time of the event's on- 
set. The respective identification of anomalies from our evalu- 
ation set is summarized in Table II. As can be seen, both tech- 
niques performed well in that their false-negative reports for the 
39 anomalies in the candidate set were very low. 

A. Deviation Score vs. Logged Anomalies 

We selected 39 events from the network operator's log of 
anomalies. This subset of events were those for which a suitable 
amount of evidence had been gathered to label them as "high 
confidence" anomalies. This evidence gathering was a tedious 
effort often involving the examination of  individual flow records 
to identify the specific IP header values for the packets that com- 
prised the anomaly. 

Of those 39 anomalies selected as a baseline for evaluation, 
deviation score analysis detected 38 of them with a significantly 
confident score of 1.7 or higher. For the single anomaly which 
wasn' t  detected by our method, its deviation score was substan- 
tial but less than 1.7. Visual inspection of the plot of this signal 
showed that this was due to a more prominent anomaly which 
was detected earlier in the week, which suppressed the magni- 
tude of the undetected anomaly's score. This is a side-effect of  
the normalization within the context of  the week-long window 
we used in our analysis method. 

B. Holt-Winters Forecasting vs. Logged Anomalies 

To further evaluate the deviation score, we compared its 
anomaly detection results with the Holt-Winters Forecasting and 
reporting technique that has been implemented in the freely- 
available development source code of RRDTOOL version 1.1. 
Holt-Winters Forecasting is a algorithm that builds upon expo- 
nential smoothing which is described in [27]. The specific im- 
plementation of  Holt-Winters Forecasting is described in [12]. 

We selected this Holt-Winters method for comparison be- 
cause it is perhaps the most sophisticated technique that is be- 
ing used currently by network operators (although not yet by 
many!). The most common techniques in use employ simple 
site-specific rules-based thresholding. We summarily rejected 
those simple techniques because their rules and magic numbers 
for thresholding are often not portable beyond the local network 
and because of  their general inability to handle seasonal effects 
such as daily cycles in signal amplitude. Both deviation score 
and Holt-Winters analysis can be configured to take a seasonal 
period into consideration, and both are being proposed as possi- 
ble alternatives to analysis by visual inspection of  network traf- 
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tic signals. 
As with our deviation score method, the Holt-Winters method 

also has parameters, and we configured it as follows. When 
constructing the RRDTOOL databases, the "HWPREDICT" 
Round-Robin Archive (RRA) was configured with alpha = 0.1, 
beta = 0.0035, and a seasonal period of 288, which is a period 
of one day at five minute intervals. The implementation's de- 
fault failure-threshold of 7 and a window-length of  9 were used. 
This means that a minimum of 7 violations (observed values 
outside the confidence bounds) within a window of 9 values was 
considered a high-confidence "anomaly". Other HWPREDICT 
parameters had the default values specified by the implementa- 
tion's author. 

The Holt-Winters method detected 37 out of the 39 anomalies 
in our evaluation set. By visual inspection of the anomalous sig- 
nals plotted together with the deviation scores and Holt-Winters 
results (as shown in Figures 11 and 12), we have made the fol- 
lowing observations. Two logged anomalies were not reported 
confidently by the Holt-Winters method. However, careful in- 
spection of the Holt-Winters predictions for those anomalies 
showed that both would have been reported if only we had use a 
larger window size for the reporting phase. That is, the time at 
which Holt-Winters method reported the feature as anomalous 
lagged behind the original time at which the event was logged 
by the operator. 
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Fig. 11. Holt-Winters results corresponding to Figure 7 

C. Deviation Scores vs. Holt-Winters Forecasting 

We found the Holt-Winters method to be more sensitive to 
potential anomalies than our deviation score method. It re- 
ported many more "failure" (ostensibly anomalous) events (not 
included in our log) than did our method. These may have been 
false-positives. The reasons for these reports are perhaps two- 
fold. First, the Holt-Winters method's parameters determine its 
sensitivity, in part, and it may have been poorly configured given 
for our input data set. Secondly, the deviation score technique 
tends to "blur" signal features by widening them with respect to 
time, making it less likely for a single anomaly to be erroneously 
reported multiple times. Also, the Holt-Winters boolean report- 
ing sometimes oscillated between true and false within what ap- 
peared to be a single anomalous feature as determined by vi- 
sual inspection. That is, the Holt-Winters method sometimes 

reported what was ostensibly a single anomaly as more than 
one discrete event. However, this behavior could be mitigated 
by changing the parameter values, so this is not a necessarily a 
general criticism of the Holt-Winters approach. 

We also observed that our deviation score method more read- 
ily reported small amplitude features in the signal than did the 
Holt-Winters method. This is likely due to the Holt-Winters 
method requiring that the given feature's amplitude to travel out- 
side its "confidence band" of a particular width to be reported as 
an anomaly, whereas the deviation score method has no such 
fixed values with respect to signal amplitude. Instead the devi- 
ation score was based on normalized signal amplitudes within a 
window that spanned 2048 five-minute data points, or just over 
one week. Consequently, the deviation score values as currently 
configured are not necessarily applicable outside that week-long 
window. Rather, they are relative to the ambient or average 
traffic levels seen within that window. This means that some 
anomaly's deviation score might be lowered by the presence of 
a more prominent anomaly within the same week. This is the 
same effect that happens with visual inspection if the vertical 
axis (i.e. the signal's amplitude) is auto-scaled in a time-series 
plot. That is, a prominent anomaly will draw the observer's at- 
tention away from a lesser one. 

VII .  CONCLUSIONS AND FUTURE WORK 

In this paper we present a signal analysis of network traffic 
anomalies in IP flow and SNMP data collected at the University 
of Wisconsin's border router. Our data set spans 6 months and 
includes a catalog of over 100 anomalies which we organize into 
two distinct categories (short-lived events and long-lived events) 
for analysis. 

We developed the IMAPIT environment to facilitate our 
work. This environment combines a flexible database system 
and robust signal analysis capability. We applied a variety of 
time-frequency analysis techniques to the data to determine how 
best to isolate anomalies. We found a wavelet system that effec- 
tively isolates both short and long-lived traffic anomalies. In 
addition to this system, we developed the concept of a devia- 
tion score which considers signal variation in both the high and 
medium frequency bands. We found this score to be extremely 
effective at isolating anomalies and to be very amenable for use 
in the generation of threshold-based alerts. 

Evaluation of deviation scores as a means for automating 
anomaly detection shows it to be similarly effective to sophis- 
ticated time-series techniques such as Holt-Winters Forecast- 
ing. Both techniques have a small set of  tunable parameters, and 
can perform poorly if configured incorrectly or perform well if 
their parameters are configured appropriately. For the set of 39 
anomalies that we used for evaluation, both methods performed 
well in that their false-negative reports were negligible. 

These results indicate that traffic anomaly detection mech- 
anisms based on deviation score techniques may be effective, 
however further development is necessary. In the future, we 
plan to investigate machine learning methods to evaluate the im- 
pact of additional features in deviation scores. We also intend to 
investigate how well the deviation score method can be imple- 
mented to detect anomalies in real time. Furthermore we will 
study methods for classifying anomalies which would facilitate 
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Fig. 12. Holt-Winters results corresponding to Figure 8 

their diagnosis and treatment. Finally, we intend to pursue the 
idea of  coordinated anomaly detection at multiple measurement 
locations in the wide area. 
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