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ABSTRACT
Accurate estimation of wirelength and congestion is one of
the fundamental issues in VLSI physical design. Current
probabilistic estimation methods fail to produce accurate
results since they ignore congestion-related detouring and
effects of the number of vias and bends. In this work, we
propose a practical stochastic routing probability distribu-
tion model which includes the effects of blockage and the
number of bends. The new model is tested by comparing
the estimated routing probability distribution with the ac-
tual routing results of a commercial detailed router. An
iterative congestion map construction algorithm based on
the new probabilistic model is proposed for accurate wire-
length and congestion map estimation. The results show
that our proposed methods can improve the total wirelength
estimation accuracy (i.e., reduce estimation error) by 90%
on average with respect to the traditional RSMT wirelength
estimate. Our methods also produce more accurate conges-
tion maps than the previous congestion estimation method
of [5] without significant runtime overhead.

Categories and Subject Descriptors
B.7.2 [Hardware]: INTEGRATED CIRCUITS—Design Aids;
J.6 [Computer Applications]: COMPUTER-AIDED EN-
GINEERING

General Terms
Algorithms, Performance, Design.

1. Introduction and Motivation
In modern VLSI placement and routing tools, congestion

is an important objective beyond wirelength, timing, and
power. Routing congestion is a function of routing demand
and routing supply, and measures the extent to which rout-
ing is feasible in each region, in the sense of taking no more
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resources than are available. It is generally believed that
the total wirelength, which represents the routing demand,
is closely related to congestion. Therefore, these two is-
sues are addressed simultanously in many estimation ap-
proaches. The traditional wirelength estimation approach
equates “wirelength estimation” with “estimation of the rec-
tilinear Steiner minimal tree (RSMT) cost” [6].1

We distinguish two types of congestion estimations asso-
ciated with placement. Stochastic model based estimations
consider all possible paths by which a net can be routed.
Every path is assigned a probability based on various as-
sumptions. A routing probability distribution obtained by
“smearing” across bounding boxes of minimum spanning
tree (MST) edges is presented in [3]. Kusnadi et al. [2]
propose a wire density map which distributes routing prob-
ability using Pascal’s triangle: each grid is assigned a routing
probability that is the sum of probabilities of its neighbor-
ing grids, a consequence of assuming that each route has
the same probability of occurrence. The authors of [2] also
assume that L-shapes are preferred for via minimization.
However, no calibration with any actual router is given. Lou
et al. [5] adopt a similar approach to estimate the routing
probability. In their method, the chip is divided into rectan-
gular regions; the probability of one region is proportional
to the number of possible paths that pass through the re-
gion, and the effect of blockage is considered by adjusting
the relevant bounding boxes. Recently, Brenner et al. [10]
have incorporated Lou’s estimation algorithm into a placer
to detect routing criticalities and reduce congestion.

Empirical estimators use layout parameters to estimate
wirelength and routability. In RISA [4], the routing demand
is calculated by multiplying the net bounding box by a pin-
count dependent net weight. The net weights are produced
according to a wiring distribution map. Wang et al. [1] ob-
serve that (i) wirelength minimization is equal to minimiza-
tion of average/total congestion, and (ii) wirelength mini-
mization followed by congestion adjustment is better than
simultaneous wirelength and congestion optimization. Yang
et al. [9] argue that Rent’s rule can be applied to estimate
congestion since wirelength is a measure of routing demand.
They estimate the Rent parameter through a rough min-cut
based placement.

1A side note: In this study, we focus on congestion-related
wirelength estimation instead of traditional RSMT wire-
length calculation. An accurate RSMT wirelength for each
net is calculated (as in many previous approaches) and in-
cluded in the inputs of our estimator.
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Motivation
Most previous probabilistic methods are based on imprac-
tical assumptions. For example, they usually ignore the ef-
fects of vias and assume that all the paths without detouring
have the same probability. They also assume that the rout-
ing demands for all line segments within the bounding box
are the same. Of course, such simplifications do not reflect
the reality of what routers try to optimize. For example, if
we equate signal delay with cost, then the cost of a via is
significant in actual routing, e.g., one via is approximately
equal to 15 routing tracks in copper or 50 routing tracks
in aluminum interconnect technology [8]. Therefore, paths
with few bends (typically one to four bends) dominate the
actual routing results.

As VLSI circuits are growing in both size and complexity,
the actual routing of many nets tends to go outside the net
bounding box due to congestion. Such detoured paths will
cause additional congestion problems since they increase the
routing demand. Therefore, in addition to the RSMT wire-
length, the detoured wirelength needs to be considered in
order to make an accurate estimation. Previous methods
either ignore detoured nets or otherwise fail to solve this
problem. It is therefore difficult for such methods to achieve
accurate estimations.

In this work, we try to combine the probabilistic and em-
pirical approaches to yield a probabilistic model that is in-
formed by practical considerations. (1) We take into ac-
count the impact of the number of bends in a routing path
on the probability of that path’s occurrence. (2) To obtain a
more accurate estimation of congestion and total wirelength,
we also propose an iterative construction of the congestion
map by fully considering the interaction between neighbor-
ing nets. Our goal is a simple, abstract scheme that is faster
than a router but produces a good routing prediction. (3) To
achieve desired accuracy in wirelength estimation, we take
the detouring of nets into account so that the predicted con-
gestion map can better fit actual routing results.

The rest of this paper is organized as follows. In Section
2, we set up a new routing probability distribution model
based on the analysis of the routing probability distribution
for paths with one to four bends. This model is validated
by experimental results reported in Section 2.3. In Sec-
tion 3, we propose the Congestion Factor based iterative
pseudo-constructive estimation method which uses the pro-
posed model to estimate congestion. Experimental results in
Section 3.3 show the effectiveness of the proposed method.
Finally, Section 4 gives conclusions and future work.

2. New Routing Probability Distribution Model

2.1 Theoretical Analysis of Routing Probabil-
ity Distribution Model

Intuitively, the number of bends b in a path is closely re-
lated to the number of vias, which increase practical “rout-
ing cost”. We obtain the bend distributions after detailed
routing for five industry testcases, whose characteristics are
given in Table 2. As shown in Table 3, the paths with small
numbers of bends have greater probabilities of occurrence
than the paths with large numbers of bends. The distribu-
tion of bends is approximately Log-Normal. An empirical

Notation Description
N The number of nets in the netlist.
T The set of all nets in the netlist.

Xmax, Ymin Core layout area dimensions.
xmax, ymin Bounding box dimensions for a net t ∈ T .

(x, y) The point whose coordinate is (x, y).
x, y The line segment from (x, y) to (x + 1, y).
b b is the number of bends in a path.
pb The probability of b-bend paths.

pd,b The probability of b-bend detoured paths.
BB(t) The bounding box of net t.

η A parameter used for the bend distribution.

Dt
b(x, y) Wire density for x, y due to b-bend paths.

w The multi-bend factor.
V p

k , V r
k Predicted value and observation at x = k.

Nr Number of divided rectangular regions
ri(i = 1...Nr) in the layout.

l Detoured wirelength.
n × m Dimension of bounding box of a net.

S A set of line segments.
C(x, y) The congestion of the line segment x, y.

C′(x, y, t) The sum of wire density of all nets except for
the net t on the line segment x, y.

α The value used to predict whether
a net will detour or not.

NPH(n, m, b) The number of H-paths (or V -paths)with b
NPV (n, m, b) bends for an n × m BB(t).
NP (n, m, b) NPH(n, m, b) + NPV (n, m, b)

NP (n, m, b : l) The number of b-bend paths which pass the
line x = l for an n × m BB(t).

Table 1: Notations used in this paper.

formula for the probability of b-bend paths is:

pb = −0.05 +
1.33√
2πηb

e
− ln2( b

2.2 )
2η2 (1)

where η is a layout-dependent (and likely tool-dependent)
parameter. The η values of the five testcases are 0.6, 0.36,
0.56, 0.53, and 0.62 respectively. We set η = 0.6 for all ex-
periments below, and assume that paths without detouring
and with the same number of bends have the same routing
probability.

Testcase # nets # cells # pins # layers
A 44124 42758 113275 4
B 23521 21964 57524 4
C 7659 7016 19631 4
D 102715 96517 264310 4
E 25367 24343 60191 4

Table 2: Basic statistics of five industry testcases.

We can now develop our new practical model to be used
in wirelength and congestion estimators. For a net t whose
bounding box BB(t) is an n × m region, set the left bot-
tom corner of BB(t) at (0, 0) and the right upper corner at
(n, m). The following definition applies to any unit-length
horizontal (or vertical) segment in the grid induced by this
coordinate system.

Definition 1. The wire density function Dt(x, y) is the
probability that the line segment x, y ∈ BB(t) will be routed
(i.e., occupied) by the routing path.

To simplify the model, we make the following assumptions.
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Testcase
Number of Bends

1 2 3 4 5 6
A 0.24 0.36 0.19 0.11 0.05 0.03
B 0.08 0.67 0.11 0.05 0.02 0.02
C 0.23 0.42 0.11 0.05 0.03 0.02
D 0.13 0.37 0.28 0.10 0.04 0.02
E 0.17 0.34 0.20 0.12 0.06 0.04

Table 3: Bend distributions of point-to-point con-
nections in five detail-routed industry testcases.

1. For 2-pin nets, we only specify the model for the nets
whose two pins are located at the left bottom and right
top corners of the bounding box. The model for the
other configuration can be obtained by applying the
transformation y → m − y.

2. In the model, only the horizontal line segments are con-
sidered since the model for the vertical line segments
can be similarly derived.

3. n > 1 and m > 1 since the wire density function for
n ≤ 1 or m ≤ 1 is trivial.

4. Only the model for 2-pin nets is given. (3-pin (or
multi-pin) nets can be decomposed into 2-pin nets.)

5. For the wire density model within BB(t), only the
paths without detouring are considered. (Detouring is
considered in Section 3.)

6. There are no routing blockages within BB(t). (The
effect of blockages will be considered in Section 2.2.)

In our model, the routing probability of x, y is a function
of x, y, n, and m. The following results define our model.
Proofs are given in the Appendix.

Theorem 1. The wire density in BB(t) for 2-pin nets
due to one-bend paths is:

Dt
1(x, y) =

{
p1
2

y = 0, m
0 0 < y < m

(2)

Theorem 2. The wire density in BB(t) for 2-pin nets
due to two-bend paths is:

Dt
2(x, y) =




p2
n−x−1
n+m−2

y = 0

p2
x−1

n+m−2
y = m

p2
n+m−2

0 < y < m
(3)

Theorem 3. The wire density in BB(t) for 2-pin nets
due to three-bend paths is:

Dt
3(x, y) =




p3
2

n−x−1
n−1

y = 0
p3
2

x−1
n−1

y = m
p3

2(m−1)
0 < y < m

(4)

Theorem 4. The wire density in BB(t) for 2-pin nets
due to four-bend paths is:

Dt
4(x, y) =




p4
n−x−1

n−1
n−x−2
n+m−4

y = 0

p4
x−1
n−1

x−2
n+m−4

y = m

2p4
(n−x−1)(m+x−y−2)+(x−1)(y−1)

(m−1)(n−1)(n+m−4)
0 < y < m

(5)

For paths with more than four bends, we approximately
consider them as four-bend paths:

Dt
4+(x, y) =

p
′
4

p4
Dt

4(x, y) p
′
4 = 1 − p1 − p2 − p3

As shown in Figure 1, each path with more than four bends

 

x=a 

y=q 

Figure 1: Example of transforming a four-bend path
to a six-bend path.

can be obtained from a four-bend path by moving some
line segments from the line y = 0 or y = m into BB(t).
It is obvious that the line segments near x = a are more
likely to move and that they can not move beyond the line
y = q. Therefore, the effect of the moving is to increase
the wire densities of the line segments near the point (n

2
, 0)

and (n
2
, m). The decrease of wire density is negligible at

the two edges y = 0 and y = m where the wire density due
to paths with more than four bends is relatively low. We
propose the empirical formula in Equation (6) for the wire
density of paths with four or more bends, where W (x, y) =
w(x(n − x) − w(n − y)) and w is a multi-bend factor.

Dt
w+(x,y)=




p
′
4

n−x−1
n−1

n−x−2
n+m−4

y=0

p
′
4

x−1
n−1

x−2
n+m−4

y=m

p
′
4

(n−x−1)(m+x−y−2)+(x−1)(y−1)+W (x,y)
(m−1)(n−1)(n+m−4)/2 0<y<m

(6)
Finally, Dt(x, y) can be obtained by:
Dt(x, y) = Dt

1(x, y) + Dt
2(x, y) + Dt

3(x, y) + Dt
w+(x, y)

2.2 Blockage Effect Model
The wire density map will change with blockages. Suppose

among the points in the blockage whose y coordinates are
the smallest, (x0, y0) is the rightmost point. We denote the
line segment from (x0, 0) to (x0, y0) as L1. Let S be the set
of line segments xi, yj which satisfy (xi, yj) ∈ L1. The wire
density function for the line segments on the left side of L1
is as given by Theorem 5, and the wire density function on
the right side of L1 can be similarly obtained.

Theorem 5. Under the assumption that the probabilities
for the line segments in S are proportional to their original
probabilities without the blockage,

Dt(x, y) =
∑

xi,yj∈S


 Do(xi, yj)∑

xi,yj∈S

Do(xi, yj)
Dt′(x, y)


 (7)

where Do(xi, yj) is the original wire density of the vertical

line segment xi, yj without the blockage, and Dt′(x, y) is the
wire density of the line segment x, y for the pseudo-net t′

whose two pins are located at (0, 0) and (xi, yj). (BB(t′) is
the region B shown in Figure 2(a))

Proof. Since all the possible routing paths of t must pass
exactly one line segment in S, the sum of the new probabil-
ities of the line segments in S should be 1. Therefore, the
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wire density for the line segment xi, yj is
Do(xi,yj)∑

xi,yj∈S
Do(xi,yj)

.

For any line segment x, y in the region B, the probability of
a path which passes both x, y and xi, yj is equal to the wire
density of xi, yj multiplied by the probability of x, y being
passed in the pseudo net t′. Then Dt(x, y) is obtained by
adding the probabilities of passing both x, y and xi, yj over
all xi, yj ∈ S.

This updating rule can be easily extended to multiple
blockages. For example, in Figure 2(b), we can update the
wire density function according to the lines L1, L2, and L3
in sequence.

 

A 

B 

(a) 
L3 L2 L1 

(b) 
L1 (xi, yj) 

Figure 2: Examples of wire density function change
due to blockages (opaque regions in figures).

2.3 Testing the Model
To verify the models, we have written a simple code to

collect data from routed designs and compare it with the
predicted results. The input LEF/DEF files include:

1. core layout area dimensions( Xmax, Xmin, Ymax, Ymin);

2. pin locations (xmax, xmin, ymax, ymin); and

3. segment information.

The code normalizes the bounding boxes of all nets to a
20 × 20 mesh. Every unit-length grid segment in the big
mesh in the horizontal or vertical routing direction serves
as a bin, hence there are 20 × 20 × 2 bins. Multi-pin nets
are decomposed to 2-point connections. When a unit grid is
passed by a routed path, we increase the count of that bin by
one. We run a C++ code based on the open-source UCLA
PD Tools release available on the web [11], and collect data
from five industry testcases routed by a commercial router,
Cadence WarpRoute v1.0.22. We collect the observations
in the 20 bins at y = 0, 2, ..., 20 in the horizontal layer of
the normalized mesh. Then we polynomial-fit the observa-
tions with linear or order-2 polynomials to obtain “actual
functions”. The predicted functions are obtained by set-
ting n = m = 20, w = 8, and y = 0, 2, ..., 20 in our model
for N = 7500 nets. The predicted and actual functions for
testcase A are listed in Table 4. The predicted values are
compared with observations and the values estimated by the
model in Lou et al. [5]. As shown in Figure 3, the new model
fits the actual observations much better. The goodness-of-
fit of the proposed model is also tested by the statistical

criterion, R2 ≡ 1 −
20∑

i=0
(V

p
i −V r

i )2

20∑
i=0

(V
p
i −V r)2

, where V p
i are the values

predicted by our model, V r
i are the actual observations, and

V r is the mean of all the observations [12]. R2 values shown
in Table 4 are all quite close to 1.

y Actual Function Predicted function R2

0 3146 − 108x 3000 − 105x 0.933
2 205 + 13x − x2 113 + 16.4x − 0.9x2 0.901
4 115 + 22x − 1.2x2 86 + 16.8x − 0.9x2 0.926
6 144 + 18x − 1.2x2 66 + 17.2x − 0.9x2 0.875
8 48 + 16x − 0.9x2 52 + 17.6x − 0.9x2 0.941
10 17 + 14x − 0.7x2 45 + 18x − 0.9x2 0.881
12 33 + 16x − 0.8x2 44 + 18.4x − 0.9x2 0.902
14 73 + 24x − x2 50 + 18.8x − 0.9x2 0.897
16 41 + 20x − 0.74x2 62 + 19.2x − 0.9x2 0.911
18 85 + 26.5x − 0.9x2 80 + 19.6x − 0.9x2 0.951
20 734 + 102x 900 + 105x 0.944

Table 4: Comparison of actual functions versus
predicted functions inside the bounding box when
w = 8, N = 7500 for testcase A.

3. Pseudo-Constructive Wirelength and Con-
gestion Estimation

A fast way to estimate detouring is to assume that all
nets t ∈ T have the same wire density distribution outside
BB(t). Intuitively, Dt(x, y) will be small when x, y is far
from BB(t). We propose the following empirical formula for
the wire density function outside the bounding box, where
x0, y0 is the nearest line segment in BB(t).

Dt(x, y) =
Dt(x0, y0)

Manhattan Distance((x, y), (x0, y0))
(8)

Obviously, this estimation is very crude. In order to accu-
rately estimate the effects of detoured paths (that is, the
paths whose length are greater than RSMT wirelenth), we
need to answer two questions: (1) Which nets will detour?
(2) What will be the detoured wirelength? In Section 3.1,
we investigate the relationship between congestion and de-
toured wirelength in order to solve the first problem. Then,
in Section 3.2, we propose a pseudo-constructive estimation
algorithm to estimate the detoured wirelength.

3.1 The Relationship Between Congestion and
Detoured Wirelength

Figure 4 compares the actual detouring map with the ac-
tual congestion map of testcase A after detailed routing.
The actual detailed routing results are generated by the Ca-
dence WarpRoute v1.0.22 router. In the maps, the layout
is divided into Nr = 200 × 200 equally sized rectangular
regions ri (i = 1..Nr). In the actual congestion map, the
value of a region is the total length of all routed tracks in
the region while in the detouring map, we only count the
tracks routed by detoured nets. Regions with darker colors
are more congested.

As shown in Figure 4, the detoured paths occur roughly
around congested regions. Therefore, we propose to use a
congestion-related variable to indicate whether a net will
detour.

Definition 2. The estimated congestion of the line seg-
ment x, y in the layout is C(x, y) ≡ ∑

t∈T

Dt(x, y), where T is

the set of all nets in the netlist.

Definition 3. C′(x, y, t) ≡ C(x, y)−Dt(x, y) represents
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Figure 3: For the line y = 0, fitted actual function
and values predicted by the new model, compared
with the estimation by Lou’s model and observations
of the 20 bins.

the sum of wire density of all nets in the netlist except for
the net t on the line segment x, y.

Definition 4.

Congestion Factor(t) ≡
∑

x,y∈BB(t)
C′(x,y,t)Dt(x,y)

∑
x,y∈BB(t)

Dt(x,y)

(a)        (b)

Figure 4: Actual congestion map (a) and actual de-
touring map (b) for testcase A.

Congestion Factor(t) is a “weighted mean” of C′(x, y, t).
The “weight” for every line segment x, y is Dt(x, y), which
can be viewed as the contribution of the line segment to
the net. A large value of Dt(x, y) means that the line seg-
ment x, y has a great probablity to be used in the route and
that the congestion context of x, y has great impact on the
net’s routability. Table 5 shows the relationship between
Congestion Factor and detoured wirelength for testcase A,
where the unit of detoured length is 1 micron. The results
suggest that Congestion Factor is reasonably well corre-
lated with whether a net will detour.2

2Ongoing work is evaluating other correlations, e.g., to rel-
ative rather than absolute detoured wirelength.

Detour Wirelength # nets Avg. Congestion Factor
0 27627 0.36195

[0, 10] 2575 0.930869
[10, 20] 52 1.95588
[20, 30] 22 1.29852
[30, 40] 11 0.780612
[40, 50] 14 1.13645
[50, 60] 4 1.17296
[60, 300] 19 1.65263

Table 5: Relationship between Congestion Factor
and detoured wirelength.

3.2 Congestion Factor Based Wirelength Es-
timation Algorithm

The basic idea of our “pseudo-constructive” estimation
method is that if BB(t) is very congested, for example,
Congestion Factor(t) > α, there will be detouring. Here,
α is some given value which, based on the experimental re-
sults in Table 5, we set as α = 0.6 for our experiments.
The role of detouring is actually to expand BB(t) in order
to include some less congested regions. According to our
proposed algorithm, when BB(t) expands, the wire den-
sity inside the original bounding box will drop and the wire
density of the added regions will increase. As a result,
Congestion Factor(t) will be reduced. This process will
end when Congestion Factor drops below α for all nets.
The four directions in which BB(t) can expand are: x >
n, x < 0, y < 0, and y > m. The paths which are extended
in two directions can be viewed as being extended in one di-
rection twice. Therefore, we only need to consider the case
that the path is extended in one direction. For the paths
extended in one direction, we can create an 1-to-1 mapping
between the paths with detoured length 2l and the paths in
an (n + 2l) × m grid which must pass the line x = n + l,
as shown in Figure 5. Theorem 6 expresses how the wire

 

This line must be passed. 

Figure 5: Mapping between the paths with the de-
toured length 2l and the paths in an (n+2l)×m grid
with the line x = n + l must be passed.

density function varies with the detoured length 2l, where
pd,b represents the probability of all b-bend detoured paths.
The proof is given in the Appendix.

Theorem 6. Under the assumption that all paths with
more than four bends can be approximately considered as
four-bend paths, the wire density function Dt(x, y, l) for the
detoured paths which expand only in the direction x > n,
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Congestion Factor Based Estimation Algorithm
Input:

Placed netlist with fixed pin location
Core layout area dimensions

Output:
Total wirelength
Congestion map stored in a two-dimensional array

Algorithm:
For each net in the layout

For each line segment
calculate wire density and update its congestion

For each net t in the layout
{ calculate Congestion Factor(t)

put t into a heap wherein the top element
always has maximum Congestion Factor()

}
While (the maximum of Congestion Factor() > α)
{ expand BB(t) by 1 grid in the least congested direction

recalculate the Congestion Factor()
put the net back into the heap and update related congestion

}

Figure 6: Proposed Congestion Factor algorithm.

and whose detoured length is 2l, is:




pd,2 +
pd,3

2
+ 2n+4l−2x−4

2n+4l+m−6
p
′
d,4 y=0 x∈[0,n+l]

pd,2 +
pd,3

2
+ 4n+4l−2x−2

2n+4l+m−6
p
′
d,4 y=m x∈[n,n+l]

pd,3
2(m−1)

+ 2m+2x−2y−4
(m−1)(2n+4l+m−6)

p
′
d,4 0<y<m x∈[0,n]

pd,3
(m−1)

+ 2m+4x−2n−8
(m−1)(2n+4l+m−6)

p
′
d,4 0<y<m x∈[n,n+l]

(9)
where

pd,2 =
p2

n+2l+m−2

p2
n+2l+m−2+

p3
n+2l−1+

p
′
4(2n+4l+m−6)

(n+2l−1)(n+2l+m−4)

pd,3 =
p3

n+2l−1

p2
n+2l+m−2+

p3
n+2l−1+

p
′
4(2n+4l+m−6)

(n+2l−1)(n+2l+m−4)

p
′
d,4 = 1 − pd,2 − pd,3

The wire density functions for the detoured paths which
extend in the other three directions can be analogously de-
rived. Our proposed Congestion Factor Based Wirelength
and Congestion Estimation Algorithm is given in Figure 6.

Time Complexity
When the detoured wirelength is increased from 2(l − 1) to
2l, we only need to calculate Dt(n + l, y, l) for 0 ≤ y ≤ m
and recalculate the coefficients. Therefore, the time to cal-
culate the Congestion Factor is at most O(m). The time
complexity of the Congestion Factor based estimation algo-
rithm is at most O(M(E+M)N); where M is the maximum
half-perimeter among all nets, E is the maximum detoured
length and N is the number of nets. In practice, M and E
are each bounded by a constant. For typical testcases, we
find that only about 10% of the nets need to expand and
only 3% need more than 3 expansions. The time efficiency
of the Congestion Factor based algorithm is confirmed by
the results in Table 7.

3.3 Pseudo-Constructive Wirelength Estima-
tion Experiments

We implemented the proposed algorithms as a C++ code
and ran them over several testcases on an Intel Xeon 2.4GHz
CPU. The code reads LEF/DEF files which include the
netlist and placed pin locations. The outputs include the
congestion map and the total wirelength for each algorithm.

Wirelength estimation results in Table 6 suggest that the
Congestion Factor based algorithm can greatly improve es-
timation quality.

(a)           (b)

Figure 7: Estimated Congestion Maps from Equa-
tion (8) (a) and from the Congestion Factor based
algorithm (b) for testcase A.

Testcase RSMT Actual
Congestion Factor based

Est. WL Improve CPU
A 4.249 4.389 4.381 94% 15.69
B 3.214 3.317 3.307 78% 7.64
C 5.345 5.507 5.517 97% 3.37
D 2.190 2.372 2.368 93% 23.51
E 6.673 6.821 6.808 89% 7.91

Table 6: Quality of Congestion Factor based wire-
length estimation:

Improve = 1 − |Actual Wirelength−Estimated Wirelength|
|Actual Wirelength−RSMT Wirelength| .

To output the predicted congestion map, the layout is di-
vided into Nr = 200× 200 equally sized rectangular regions
ri (i = 1...Nr) and

∑
x,y∈ri

C(x, y) is the estimated conges-

tion in the region ri. The congestion maps generated by the
empirical formula, Equation (8), and the Congestion Factor
based algorithm are shown in Figure 7. We also quantita-
tively compare the regional congestion estimates using the
following metrics reported in [7].

• Mean of regional errors: µ ≡
Nr∑
i=1




∑
x,y∈ri

C(x,y)

∑
x,y∈ri

δ(x,y)




Nr
, where

δ(x, y) =

{
1 if routed
0 if not routed

and
∑

x,y∈ri

δ(x, y) is the

actual congestion value

• Standard deviation of the errors:

σ ≡

√√√√√ Nr∑
i=1




∑
x,y∈ri

C(x,y)

∑
x,y∈ri

δ(x,y) −1




2

Nr−1
and

• Runtime.

The ideal values for µ and σ are 1 and 0 respectively. In
Table 7, “Lou” is the algorithm proposed in Lou et al. [5];
“EF” is the empirical formula of Equation (8); and “CF”
is the Congestion Factor based algorithm. The results con-
firm that our methods can greatly improve the congestion
estimation accuracy.
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Test Lou New model+EF New model+CF
case µ σ CPU µ σ CPU µ σ CPU
A 0.903 1.227 15.24 0.951 1.134 6.89 0.963 0.689 15.69
B 0.878 1.352 7.56 1.037 0.621 3.12 1.031 0.566 7.64
C 0.911 1.124 4.67 0.962 0.721 1.36 0.991 0.707 3.37
D 0.923 0.946 22.65 0.981 0.545 9.27 0.987 0.323 23.51
E 1.235 1.672 8.13 1.102 1.024 3.28 1.057 0.813 7.91

Table 7: Evaluate estimation quality by actual
router.

4. Conclusions and Future Work
We have developed new, accurate wirelength and conges-

tion estimation methods appropriate throughout a top-down
placement process. Our methods can give accurate total
wirelength estimation with linear runtime complexity. Our
contributions include: (i) developing a new practical wire
density model that takes effects of bends and blockages into
account; and (ii) avoiding the pitfalls of producing “one-
shot” congestion maps, and instead developing iterative con-
gestion map constructions to accurately predict detouring.

We have validated our new methods on several industry
testcases. The results show that our methods improve the
wirelength estimation accuracy - in the sense of reducing es-
timation error - by 90% on average with respect to the tra-
ditional RSMT wirelength estimate. We also produce more
accurate congestion maps, while using roughly the same run-
time, in comparison to the algorithm reported in [5]. Our
ongoing research focuses on including our new estimator into
a placer in order to reduce routing congestion.
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APPENDIX

A. Proofs of Theorems
Based on the assumption that paths with the same num-

ber of bends have the same routing probability, the wire
density of the line segment x, y due to b-bend paths is:
# b−bend Paths passing through x,y

Total # b−bend Paths
pb. Therefore, the follow-

ing proofs are all based on counting the number of possible
b-bend paths which pass through x, y.

 

(a) (b) 

(c) (d) 

Figure 8: Paths with one (a), two (b), three (c) and
four (d) bends.

We divide all the paths into two categories. If the bottom
pin belongs to the horizontal line segment of the path, the
path is called an H-path; otherwise, the path is called a V -
path. In Figure 8, all H-paths are marked with bold lines
while V -paths are marked with dashed lines.

There are n − 1 vertical lines: x = 1, x = 2,..., x = n − 1
and m − 1 horizontal lines: y = 1, y = 2..., y = m − 1 inside
the n × m grid. It is obvious that if an H-path passes i
vertical lines and j horizontal lines, then j ≤ i ≤ j + 1.
LEMMA 1. The number of all possible H-paths (or V -
paths) which pass i vertical lines and j horizontal lines is:(

n − 1
i

) (
m − 1
j

)

Proof. The number of ways to choose i different inte-
gers from the set {1...n − 1} and choose j different integers

from the set {1...m−1} is

(
n − 1
i

) (
m − 1
j

)
, where the

values of i, j satisfy the conditions of Lemma 2. For every
H-path which passes i vertical lines and j horizontal lines,
the x coordinates for all vertical lines are i different integers
from the set {1...n−1} and the y coordinates for all horizon-
tal lines are j different integers from the set {1...m−1}. On
the other hand, for i different integers from the set {1...n−1}
and j different integers from the set {1...m − 1}, if the val-
ues of i, j satisfy j ≤ i ≤ j + 1, we can order them to
form two ascending sequences: x1...xi and y1...yj . Then
the H-path is uniquely defined : (0, 0) → (x1, 0), (x1, 0) →
(x1, y1)..., (n, yj) → (n, m) (if i = j) or (xi, m) → (n, m) (if
i = j + 1). Therefore, there is a 1-to-1 mapping between
these two sets. The proof for V -paths is similar.
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LEMMA 2. The number of b-bend paths which pass through
the horizontal line segment x, y is:

b∑
b1=0

NP (x, y, b1)NPH(n − x, m − y, b − b1)

Proof. For b-bend paths, the number of bends in the
bottom grid defined by (0, 0) and (x, y), b1, can be 0 . . . b.
The number of paths which have b1 bends in the bottom grid
is equal to the number of b1-bend paths from the point (0, 0)
to the point (x, y) multiplied by the number of (b−b1)-bend
H-paths from the point (x, y) to the point (n, m).

Proof of Theorem 1:

Proof. As shown in Figure 8 (a), the line segments on
y = 0 and y = m are passed by exactly one path and the
line segments inside BB(t) are not passed.

Proof of Theorem 2:

Proof. For two-bend paths, each H-path passes 1 verti-
cal line inside BB(t); each V -path passes 1 horizontal line.
According to Lemma 1, there are (n − 1) + (m − 1) two-
bend paths. The line segments inside BB(t) are passed by
exactly one V -path. The number of H-paths which pass the
line segment x, 0 is n−x− 1 according to Lemma 2. There-
fore, the wire density of x, 0 is n−x−1

n+m−2
p2. The wire density

function on the line y = m can be derived similarly.

Proof of Theorem 3:

Proof. There are 2(n−1)(m−1) three-bend paths. For
the line segment x, 0 on the lower edge, NP (x, 0, 0) = 1
and NPH(n − x, y, 3) = (n − x − 1)(m − 1) when b1 = 0.
The line segment x, y in the middle of BB(t) is passed by
x − 1 H-paths and by n − x V -paths when b1 = 1 and 2,
respectively.

Proof of Theorem 4:

Proof. For four-bend paths, there are(
n − 1
2

) (
m − 1
1

)
H-paths and

(
n − 1
1

) (
m − 1
2

)

V -paths according to Lemma 3. Among them, there are(
n − x − 1
2

) (
m − 1
1

)
H-paths passing through the line

segment x, 0 with b1 = 0. For the line segment x, y in the
middle of BB(t), the values of NP (x, y, b1)NPH(n−x, m−
y, b − b1) are (n − x − 1)(m − y − 1), (x − 1)(n − x) and
(x − 1)(y − 1) when b1 = 1, 2 and 3 respectively.

LEMMA 3. There is a 1-to-1 mapping between the paths
with the detoured length 2l and the paths in an (n+2l)×m
grid which pass the line x = n + l.

Proof. As shown in Figure 5, we can perform the follow-
ing transformation: Suppose the highest point of the path
in the line x = n + l is (n + l, y0), then{

x, y → 2n + 2l − x, y if y > y0

x, y → x, y if y ≤ y0

This transformation is obviously 1-to-1.

LEMMA 4. NP (n, m, b : l) = NP (n, m, b)−NP (n−1, m, b)

Proof. All the paths in the grid either pass or do not
pass the line x = l. We can view those paths which do
not pass the line as being routed in an (n − 1) × m grid by
removing the line x = l from the grid.

Proof of Theorem 6:

 

(a) (b) 

(c) (d) 

n+l n+l 

n+l 
n+l 

Figure 9: Paths with two (a), three (b) and four (c, d)
bends which pass the line x = n + l.

Proof. We assume that the probabilities of b-bend de-
toured paths is proportional to their probabilities in the
(n + 2l) × m grid. The probability of two-bend paths in
the (n + 2l) × m grid which pass the line x = n + l is:
# of two−bend paths passing x=n+l

# of total two−bend paths
p2 = p2

n+2l+m−2
. Similarly,

we can get the probabilities of three-bend detoured paths
and four-bend detoured paths. The bends distribution for
detoured paths is:

pd,2 =
p2

n+2l+m−2

p2
n+2l+m−2+

p3
n+2l−1+

p
′
4(2n+4l+m−6)

(n+2l−1)(n+2l+m−4)

pd,3 =
p3

n+2l−1

p2
n+2l+m−2+

p3
n+2l−1+

p
′
4(2n+4l+m−6)

(n+2l−1)(n+2l+m−4)

p
′
d,4 = 1 − pd,2 − pd,3

The wire density function due to two-bend paths is:

Dt
2(x, y, l) =

{
pd,2 y = 0 x ∈ [0, n + l]
pd,2 y = m x ∈ [n + l, n + 2l]

There are 2(m − 1) three-bend paths as shown in Figure
9(b). The wire density function due to three-bend paths is:

Dt
3(x, y, l) =




pd,3
2

y = 0 x ∈ [0, n + l]
pd,3

2
y = m x ∈ [n + l, n + 2l]

pd,3
2(m−1)

0 < y < m x ∈ [0, n + 2l]

We distinguish three kinds of four-bend paths:

1. Paths with zero bends in the region x < n + l, such
as the path marked with bold lines in Figure 9(c); the
number of these is (m − 1)(l − 1)

2. Paths with one bend in the region x < n + l, such as
the path marked with dashed lines in Figure 9(c); the
number of these is (m − 1)(0.5m − 1)

3. Paths with two bends in the region x < n + l, such as
the path in Figure 9(d); the number of these is (m −
1)(n + l − 1)

The wire density function due to four-bend paths is:



2n+4l−2x−2
2n+4l+m−6

p
′
d,4 y = 0 x ∈ [0, n + l]

2x−2
2n+4l+m−6

p
′
d,4 y = m x ∈ [n + l, n + 2l]

2n+4l−2x+2y−4
(m−1)(2n+4l+m−6)

p
′
d,4 0 < y < m x ∈ [0, n + l]

2x+2m−2y−4
(m−1)(2n+4l+m−6)

p
′
d,4 0 < y < m x ∈ [n + l, n + 2l]

Theorem 6 can be obtained by adding the wire density of
2n + 2l − x, y to the wire density of x, y for all line segments
x, y which satisfy x ∈ [n, n + l].
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