
The Software Life Cycle Support Environment
(SLCSE)

A Computer Based Framework for Developing Software Systems

Tom Strelich

General Research Corporation
5383 Hollister Avenue

P.O. Box 6770
Santa Barbara, CA 93111

IAbstract
The Software Life Cycle Support Environment

(SLCSE) is a VAX/VMS-based software development
environment framework which presents a common and
consistent user interface accessing a comprehensive set of
software development tools supporting the full spectrum of
DOD-STD-2 167A software life cycle activities from
Requirements Analysis to Maintenance. These tools utilize
a Project Database which maintains information relevant
not only to the software under development (e.g.,
requirements allocation, software interfaces, etc.), but also
information relating to the project as a whole (e.g.,
schedules, milestones, Quality Assurance, Configuration
Management, etc.). The Project Database supports the
DOD-STD-2167A life cycle model and associated Data Item
Descriptions (DIDs). SLCSE’s framework approach
supports the integration of new tools into the environment
and permits the SLCSE to evolve over time and adapt to
advances in software engineering technology.

Software development environments (SDEs) have been
categorized into a taxonomy1 consisting of four types:

. w-centered environmenG provide integrated
tools supporting a specific language (e.g., Rational2
for Ada)

. ucture-criented environments support direct
manipulation of program structures in a language-
independent manner and different views of program
structures at different levels of abstraction (e.g., the
Gandalf3 Environment)

. Toolkit environments consist of a collection of
smaller tools which may or may not share
information with one another (e.g., Unix
Programmer’s Work Bench4)

. Method support specific software -
development methodologies via computer-aided
software engineering tools (e.g., Exceleratofl)

Permission to copy without fee all or pan of this material is granted provided

that the copies are not made or distributed for direct commercial advantage.

the ACM copyright notice and the title of the publication and its date appear.

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise. or to republish, requires a fee and/

or specific permission.

@I988 ACM 0-89791-290-X/88/001 l/O035 $1.50

The SLCSE* constitutes a fifth type of environment,
an e-framework that can create a variety of
environments, each tailored to the needs of a particular
software development project. Through its framework, the
SLCSE supports many of the capabilities provided by the
four previously described environment types:

SLCSE as a Lanw-centered Environment. While
not a Language-centered environment?, the SLCSE satisfies
both language-specific and lifecycle-specific environment
requirements through its Ada, JOVIAL J73, FORTRAN,
and COBOL tools and its DOD-STD-2167A documentation
support.

SICSE as a Structure-oriented Environment. The
SLCSE provides language-independent access to a
comprehensive data mode1 supporting the DOD-STD-
2167A lifecycle and Data Item Descriptions at various
levels of abstraction.

SLCSE as a Tool kit E - nvironmenl. The SLCSE
provides an extensive set of tools supporting the complete
spectrum of software life cycle activities and provides the
mechanisms allowing these tools to communicate and share
data with one another (i.e., a repository mechanism).

SI,CSE = a Method - bed En vironment. The SLCSE
supports definition and application of software development
methodologies to a particular project.

The environment framework is a new concept that, at
the time of this writing, is found only in the SLCSE,
Macintosh Hypercard., and Atherton Technology’s Software
BackPlane=.

The following sections describe the SLCSE operational
concept, its main features, and a technical description.

* This work was performed under Rome Air Development
Center Contract F30602-86-0206
t Au important SLCSE requirement is to support other DOD
approved programming languages, not just Ada.

35
Recommended by: Donald J. Reifer

http://crossmark.crossref.org/dialog/?doi=10.1145%2F64140.65007&domain=pdf&date_stamp=1988-11-03

3 SLCSE Ooer&onal Concent
Figure 1 illustrates the SLCSE operational concept.

The following paragraphs describe this figure and discuss its
implications.

Multiple User Roles:
Acquisition Manager
Project Administrator
Project Manager
Project Leader
System Analyst
SW Analyst
Programmer
SW Test Engineer
SW Integrator
V&V Personnel
QA Representative
CM Personnel
PDSS Personnel
Training Personnel
MCCS Personnel
SUJSE Installation

Personnel
Secretarial Personnel

Figure 1. Sl

SLCSE

:SE Operational Concept.

The User. The SLCSE operational concept starts with
the user and recognizes the fact that, for any software
development project,a user sits down at a terminal with a
job to do. The activities associated with a job, or task,
(e.g., requirements definition, software design,
programming, etc.) define the user’s &. A user’s role can
change over the duration of a project (e.g., changing from a
Designer to a Programmer role as Critical Design Review
is completed and the Implementation phase begins). In
some instances, a user may also play two or more roles
simultaneously (e.g., a Project Leader that also performs
Requirements Analysis). The user roles supported by the
SLCSE are shown in Figure 1 and are derived from the
STARS Operational Concept Document* .The user
accesses software tools (applicable to their role) through the
window-based interactive user interface which provides

* STARS - Software Emzineerinn Environment (SEE)
Concept Docmt COCDL Proposed Version

001.0. STARS Joint Program Office. October 2. 1985.

common and consistent operation for all users in all roles
(i.e., screen layout, keywords, keypad bindings, etc. are
consistent from tool to tool and role to role).

The software tools associated with a given role Tools.
are accessed through the user interface. As shown in Figure
1, these tools are grouped into 9 broad categories based on
the activities they support:

l General Support Tools address activities that span all
roles such as text editing, document formatting and
printing, electronic mail, etc.

l Project Management Tools support project planning,
tracking, and reporting

l Requirements Definition Tools support system and
software requirements definition, modification,
display reporting and consistency checking

l Design Tools support allocation of requirements to
design objects (i.e., CSCI, CSCs, and CSUs) and
the description of interfaces, data, and processing
algorithms

l Prototyping Tools support the rapid construction of
Interactive User Interfaces (e.g., window and menu
prototype generators) which can be used not only to
evaluate the look and feel of a developing software
system, but also to serve as the actual User Interface
in the final software product

l Coding Tools support creation and modification of
the compilable source code implementing the
software design (e.g., language sensitive editors,
compilers, linkers, and debuggers) Certain aspects of
SPR processing/tracking are under the domain of
Project management and Configuration Management.

l Testing/V&V/QA Tools support test case definition,
organization, and evaluation (e.g., program execution
coverage analysis and reporting tools); Verification
and Validation (V&V) tools support static analysis
of software, collection and evaluation of software
quality assurance (QA) metrics, programming
standards, consistency, traceability, change impact
analysis, and Software Problem Reports (SPRs)
processing/tracking*.

l Configuration Management Tools support definition,
modification, control, and analysis of a software
configuration

. Environment Management Tools support SLCSE
environment definition, modification, tailoring (e.g.,
defining users, roles, tools, etc.), and performance
evaluation for a specific site.

*Certain aspects of SPR processing/tracking are under the
domain of Project management and Configuration
Management.

36

D&&a& The SLCSE provides an Entity/Relationship
(ER) database (DB) which models the DOD-STD-2167A
Life Cycle. It serves as both a repository for system
software and project information and as a medium for inter-
tool information exchange. Through its organization and
access mechanisms the SLCSE DB presents the user with
clear and consistent views of the activities and products
associated with (but not limited to) the DOD-STD-2167A
Life Cycle. The SLCSE database supports the automated
generation of DOD-STD-2167A documents and makes
software-specific and project-specific information available
to tools within the SLCSE environment (e.g., software
metric information for quality metric tools, schedule
information for project management tools, etc.).

4 SLCSE Fee-
tale User Roles. The SLCSE allows users to

assume one or more roles over the lifetime of a project.
Upon assuming a role, a user is given access to a set of
role-specific tools (i.e., tools applicable to the activities
associated with the role). For example, the Project
Management Tools associated with Project Management
activities would include Spreadsheet Tools for establishing
and tracking the project budget, Scheduling Tools for
analyzing schedules, milestones, critical paths, etc., and
general purpose tools for word-processing etc.

For some smaller projects, selected users may be
authorized (by the Project Manager) to play several roles
simultaneouslyt. Changing roles results in changing
toolsets, i.e., when a user assumes a new role, a new set of
role-specific tools replace the previous toolset. By
providing these toolset associations, the SLCSE ensures
that users explicitly change roles (i.e., hats) before
performing another role’s activities. This has several
important implications:

l It requires users to recognize the distinctions between
software development phases and activities (i.e.,
programming vs design vs management, etc.)

l It requires users to acknowledge their current role and
its associated activities

. It establishes a work context, or frame of reference,
for the role and its activities, and the tools available
to perform those activities

l It discourages the ad hoc, undisciplined use of tools
and the violation of role/activity boundaries

tGeneraHly. smaller projects find single users assuming
multiple roles over the duration of an effort (e.g., manager-
analyzer, programmer-integrator, etc) in contrast to larger
projects which generally find users assuming a single role
throughout the development effort (e.g. manager, designer,
programmer, etc.).

l It supports the application of a more structured,
disciplined approach to the software development
project, with the tools and their order of use defining
the development methodology

These role-specific toolsets are tailorable and can be
modified (by project management) to accommodate the
needs of different software development projects. For
example, tools can be deleted from a toolset, moved to
another role’s toolset, and new tools integrated in order to
support a given project’s development methodology.

Multiple Environments, Since many (if not most)
software projects are developed on computer networks, the
SLCSE supports definition of project environments over a
network of computing resources (or a network subset).

Large Project Utilizing Entire Computer Network T

c 4

Figure 2. Support for Multiple Environments.

As suggested by the example scenarios shown in
Figure 2, a Small Project has been defined for a network
subset consisting of a single VAXStation (such a project
environment would be suited to a development effort
requiring from 2 to 8 team members), a moderate project
has been defined for a network subset consisting of two
VAX 11/780’s and an 1 l/750, and a Large Project has been
defined utilizing the entire network. It is important to note
that all three Project Environments shown in the example
scenario (Small, Moderate, and Large) can exist
simultaneously on the network.

MultiDle Lanm. SLCSE is a multi-language
environment. It supports several commonly used DOD
approved programming languages: Ada , JOVIAL J73 ,
FORTRAN, and COBOL.

The Ada and JOVIAL 173 (and in some instances
FORTRAN) languages arc commonly used for embedded
Mission Critical Computer System (MCCS) applications.

17

Additional languages can be incorporated into the SLCSE
by integration of the appropriate compiler, linker,
Language-Sensitive Editor (when available), and supporting
lifecycle tools (e.g., language-based PDLs, object-oriented
design tools, graphic design tools etc.).

Common User Interface, SLCSE provides an
interactive user interface supporting windowing capabilities
on DEC VTlOO-type terminals as shown in Figures 3 for a
user in a “Programmer” role (indicated in the upper right
hand comer of the screen). Since VTlOOs don’t support
“mouse” input, the Keypad is used to provide equivalent
screen navigation and selection capabilities as shown in
Figure 4. Screen layout and navigation, keyword syntax
and semantics, keypad bindings, etc. are consistent from
tool to tool (with certain limitations) and role to role. In
this way the SLCSE user interface provides common and
consistent operation regardless of the user’s role or the
current tool in use. The SLCSE user interface permits both
Menu and Keyword operation supporting novices (menu
mode) to experts (keyword mode) and multi-level online
help facilities.

Current-Object Project-Name Current Role -

Objects Tools Settings Help Done

Dbject 1 Tool 1 Command Mode
Object 2 Tool 2 Role
Dbject 3 Tool 3 Modify Views

. Use Object

. . Display Prompt

. Auto purge
Object i Tool j Purge Limit

Message Interval

Brief Help Window

Prompt Window

Figure 3. SLCSE User Interface

Knowledge-Based Methodologv SUDDOK SLCSE
establishes a preliminary framework for application of
Knowledge-Based (KB) techniques to the software
development process. The SLCSE allows project managers
to define sets of rules describing the methods and procedures
to be applied to the development effort (e.g., document
consistency rules, etc.). Facts about user activities (i.e.,
tool operation, database access, etc.) are monitored during
SLCSE operation and are applied to these rule sets, and
when a rule is violated, the user is informed. Knowledge-
Based methodology support provides incremental control
over user activities (i.e., allowing a user to invoke a tool or
exercise some other SLCSE capability only after first
verifying that the methodology is being followed). SLCSE
provides the basic framework for this capability, with only
a preliminary rule base defined, however, in the future this
rule base is expected to grow in size and complexity as

heuristics about the software development process are
formalized.

PF2 PF3 PF4

Help % P

Forward u

Previous

L_
Enter

Return

GOLD - used in combination with other keys for alternate
command request (e.g., Gold PF2 = Keypad).

BACKWARD - set direction to Backward for Section Key.
BOTTOM - go to the last option in the window.
FORWARD - set direction to Forward for Section Key.
HELP - brief help on the item highlighted by the cursor.
HOME - go to the command button line.
KEYPAD - view SLCSE keypad.
LEFT WINDOW - move to the window on the left.
OUTPUT - view output of tool invocation.
PREVIOUS - go back to previous window.
REPAINT - repaint the screen.
RETURN - enter data/select option.
RIGHT WINDOW - move to the window on the right
SCREEN - write screen image to a file.
SECTION - move cursor one window section in the direction

specified by the Forward or Backward key.
SET-UP - defme default options for an object, tool, or
procedure.
TAB KEY - same function as Previous key.
TOGGLE - toggle enumeration set.
TOP - go to the first option in the window.

Figure 4. SLCSE Keypad

38

Figure 5. Design Subschema, Vertical Relationships View.

Project Da-. The SLCSE DB serves as both an
information repository and as a medium for inter-tool
information exchange. The database supports the DOD-
STD-2167A System Software Life Cycle model* and its
associated documentation standards. It is implemented as an
Entity-Relationship model and is logically partitioned into
9 subschemas:

l The Contract Subschema
l The System Requirements Subschema
l The Software Requirements Subschema
l The Design Subschema
l The Test Subschema
l The Project Management Subschema
. The Configuration Management Subschema
l The Product Evaluation Subschema
l The Environment Subschema

A portion of the Design Subschema is illustrated in
Figure 5 and shows a subset of the relationships existing
between Design subschema entities. The figure represents
only a small fraction of the complete SLCSE database
which consists of approximately 200 entity types and 300
relationships. Subschema entities, relationships, and

* But not to the exclusion of other life cycle models.

39

attributes are accessible to tools within the SLCSE
Toolset. These integrated tools are used both to populate
the database and to process the information it contains: for
example, the Design Tool* is used to populate the Design
Subschema shown in Figure 5, and the Document
Generator is used to process the data contained in the
Design Subschema and produce the Software Design
Document.

End-user acceptance of any software tool or
environment is dependent on timely response to user
interactions -- if the environment is slow, it won’t be used
regardless of its functionality. For maximum performance,
the SLCSE Database is constructed on top of a commercial
relational database: SMARTSTAR/IDM is a hardware
implementation of a commercial relational database using
the Britton-Lee IDM-500 Database Machine as the
underlying database engine. SMARTSTAR/RDB is a look-
alike product that provides a software implementation using
DEC RDB as its underlying database engine. The SLCSE
database can use either of these underlying implementations
depending on the needs of a particular project and the
availability of the database hardware.

* Both the Design Tool and Document Generator are
described in the next section.

Extensibilitv, The SLCSE provides an extensible
software development environment framework. This
extensibility is achieved through:

l Customization of the User Interface -- The SLCSE
User Interface can be tailored for individual users by
resizing windows, changing menu item order, or
mlefining the terminal keypad.

l Customization of the Database -- The SLCSE
Database, which supports the DOD-STD-2167A life
cycle model as a default, can be extended through the
modification of existing subschemas and through the
definition of additional database subschemas (i.e.,
entities and relationships) to support project-specific
life cycle models, methodologies, documentation
standards, and tools.

l Integration of existing and new software tools -- The
SLCSE Toolset can be extended to include existing
off-the-shelf tools (such as compilers, simulators,
etc.), tool upgrades (i.e., new versions of existing
integrated tools), and new tools (e.g., A& tools,
Software Quality Metric tools, etc.).

5 Technical Description
The following sections provide technical overviews,

address tool integration issues, and discuss future directions
for each of the three major SLCSE subsystems: The User
Interface, Database, and Toolset.

5.1 User Interface
Technical Overview. The interactive user interface is

implemented using two GRC-developed products:

l Winnie, a window-management package providing
window definition and display capabilities for
character-oriented terminals (i.e., VTlOOs and
compatibles)

l MOO (Menu Operations Organizer) which provides
window control capabilities (i.e., it provides the
mechanisms and utilities for defining the menu
structure and subsequent run-time traversal of the
menu structure based on user inputs)

A primary design objective of the User Interface was to
provide window-oriented capabilities without creating
special hardware requirements. While bit-mapped displays
with mice would have been desirable, not everyone has
them, and, at the time the SLCSE was being designed, bit-
mapped workstations had not proliferated to the extent they
are today. The decision to use Winnie and MOO to provide
the window-oriented user interface on character-oriented
terminals has three advantages:

l It provides a full-blown window-oriented user
interface including pull-down menus, pop-up menus,
horizontal and vertical scrolling, window tiling and

overlapping, window repositioning and resizing,
item selection and toggling, etc.

It allows the customer (the Air Force) to exploit the
windoworiented user interface with existing terminal
hardware

It provides an open evolutionary path to the eventual
use of bit-mapped displays since both Winnie and
MOO are accessed via Ada packages whose low-level
character-oriented screen manipulation mechanisms
are hidden from the calling programs and can be
modified to use low-level bit-mapped display screen
manipulation mechanisms (e.g., X-Windows)

Tool Intecration Issues. In order for the SLCSE to
provide a consistent user interface, there must be visual and
operational consistency between the SLCSE and the
integrated tools that it provides. The Macintosh is an
excellent example of a consistent environment/tool
interface, where both the operating system and applications
have visual and operational consistency (i.e., the user
interacts with the operating system the same way they
interact with the application programs).

In designing the SLCSE, it was important to provide
mechanisms supporting construction of new tools that are
Conformant with the SLCSE User Interface (i.e., screen
format, menu bar position, navigation, selection, etc.). It
was equally important to allow existing tools (i.e.,
Commercial-Off-The-Shelf and Government Furnished
Equipment) with their own user interfaces to be integrated
into the SLCSE. These two competing design
requirements were reconciled as follows:

For New Tools -- Winnie and MOO are available to
tool developers for the construction of user
interfaces. In this way, new tool user interfaces can
be implemented using the same interactive screen
management utilities used for the SLCSE User
Interface, thus supporting visual and operational
consistency between the SLCSE and its tools.

For Existing Tools -- A Setup Window capability is
provided with the SLCSE which allows tool
integrators to define tool invocation windows
containing tool execution parameters (e.g., input/
output files, runtime qualifiers, command options,
flags, etc.). These tools can then be invoked (as
batch jobs) from their Setup Windows. However,
Setup Windows provide only a partial solution since
some existing tools are inherently interactive (e.g.,
EDT) and there is simply no way to hide their w
conformant User Interfaces

Developmental Software tools (i.e., software tools
developed under the SLCSE project) are, by definition,
Conformant. Non-developmental Software tools (i.e.,
COTS and GFE software) are generally Non-conformant

40

since they provide their own user interfaces. However,
when a tool’s functionality can be fully exercised through
its Setup Windows (in effect hiding the tool’s user interface
from the user) then it can still be considered Conformant.

Future Directions. Winnie and MOO are currently
being modified to support bit-mapped displays. This work
is being performed in conjunction with a rehosting of
SLCSE to SUN and Apollo systems.

5.2 Database
‘&hnical Overview. In addition to the performance

issue, two additional reasons drove the design decision to
construct the SLCSE database on top of SMARTSTAR:

l A commercial relational database management
system would automatically provide many features
required by the SLCSE database such as transaction
processing and archiving

l Using SQL (Structured Query Language) as the
underlying query language for the SLCSE database
would make the SLCSE database portable to any
host that supported A& and SQL

Recognizing that the database subschemas will change
over time (in response to project-specific needs, revision of
DOD-STD-2167A, integration of new tools with unique
data representation requirements, etc.), a Schema Definition
Language (SDL) was defined. SDL is used to describe the
ER model of the SLCSE Project Database. SDL is an Ada-
like language which allows subschemas, entity types,
relationships, and attributes to be defined. It also supports
predefined and user-defined attribute types. The SDL
Compiler translates formally specified subschemas into
Structured Query Language (SQL) statements, which are, in
turn processed by SMARTSTAR.

The SLCSE Database has two distinct phases: 1)
creation, and 2) access. Figure 6 illustrates database
creation: SDL is processed by the SDL Compiler to
generate a set of SQL statements that (when interpreted by
SMARTSTAR) create the relational database tables
implementing the ER model of the SLCSE Database. The
SDL compiler also generates the Schema Definition File
(SDF), a runtime symbol table which is used by the ERIF
(described in the next section) to allow directly and
indirectly-coupled tools to reference database entities,
relationships, and attributes by name.

Figure 7 illustrates database access: Directly-coupled
tools access SLCSE database entities, relationships, and
attributes via the ERIF which interprets tool directives,
translates directives into SQL statements, forwards the SQL
to SMARTSTAR, and processes and returns the results to
the calling tool. Indirectly-coupled tools must utilize the
DCL Interface in order to access the database. The DCL
Interface processes intermediate files containing database

information in a standardized format which is translated into
appropriate ERIF operations

SDL specifications
describing the ER Model
of the SLCSE Database

SQL Statements
Describing Low-Level

Relational
Implementation

SMARTSTAR
Software Implementation of
Commercial Relational DB

SLCSE Database

Tuples

Figure 6. SLCSE Database Creation.

Tool Integration Issues. The SLCSE provides two
interfaces to its database one for new tools, and one for
existing tools:

l ERIF IEntitv-Relationshin Interface - a set of Ada
packages providing direct access to subschema
entities, relationships, and attributes from Ada
applications (i.e., tools). Tools using this interface
are termed, Directlvcoupled.

l DCL Interface - a set of database access utilities
callable from the DCL (Digital Command Language)
level. These utilities are stand-alone executable
images that, in tum, use the ERIF to manipulate the
database). Tools using this interface are termed,
JarectIYcouDl~.

41

Records, Files SQL

Tuples

ED IDM-500

-
Figure 7. SLCSE Database Adess

General
Support
roo1s

ER

PM Tools

Reqt’s
roo1s

Design
roo1s I Design Tool

ER
Queries Prototypin$

roo1s
Winnie

SDL Compiler
Convert-ER
Analyze-ER
SQueryfDesign/Forrr
Pigmy

Coding
roo1s

ISE
Ada Compiler/ACS
Jovial J73 Compile]
FORTRAN Compiler
COBOL Compiler
MACRO Assembler
Linker
Debugger

The advantage of providing both application-level and
DCL-level access to the database is that it allows the
SLCSE to integrate both new and existing tools into its
toolsetz new tools (Ada applications) accessing the database
directly at the application-level, and existing tools accessing
the database indirectly at the DCL-level from .COM files.

ATVS 1 Test Manager
Testing/
V&VI
QA Tools

J73AVS
RXVPSO
CAVS
AMS

PCR Pro&&or
Consistency Checker

Future Directions. Refinement of the database
subschemas, measurment and improvement of database
performance, and enhancing ERIF functionality are the
principle future directions for the database.

CMS/MMS
AUCIA

CM Tools

Environmen
Managemenl
r00is

SQL/SMARTsTAR sEM
Winnie L MOO SDL Compiler

Analyze-ER Perf. Eval. Tools

Convert-ER

5.3 Toolset
men Overview. The tools included in the SLCSE

are listed in Table 1. These tools provide a representative,
but by no means exhaustive, collection of capabilities
supporting the full spectrum of software life cycle
activities. Most of the tools were obtained as either
Commercial-Off-The-Shelf (COTS) or Government
Furnished Equipment (GFE). However, several new tools
were developed as part of the SLCSE project. These
directly-coupled tools were constructed to populate and
extensively utilize the SLCSE database. Selected (i.e.,
lesser known) tools are briefly described in the following
paragraphs.

Table 1. SLCSE Toolset

LpE is a general purpose text formatting tool.

DOCGEN generates formal documentation based on
the contents of the SLCSE Project Database. The tool
retrieves entity, relationship, and attribute information from
the SLCSE Project Database and produces DOD-STD-
2167A documents (e.g., SRS, SDD, SDP, etc.).

42

Modifv-ER allows authorized users to graphically view
the structure of the SLCSE ER Database, traverse the
Database, and modify the contents of the database (e.g.,
insert entities and relationships, enter and modify attribute
information, etc.) It supports population of SLCSE
database subschemas for which there are no available or
adequate tools.

&IicroPlanner/Plan Importer are companion tools
which allow project managers and planners to do their work
on a Macintosh (using it as a Project Management
Workstation) and upload the project plan information to the
host VAX for incorporation into the SLCSE Database.

The Requirements Tool populates the System-
Requirements and Software-Requirements Subschemas of
the SLCSE Project Database. Through the use of
interactive forms, the user can create and modify
Requirements entities and establish relationships allocating
requirements entities to software elements (i.e., CSCIs,
CSCs, etc.).

The Design Tool allows users to populate the Design
Subschema of the SLCSE Project Database. Through the
use of interactive forms, the user can create and modify
Design entities (including descriptions of interfaces, data,
and processing algorithms) and establish relationships
partitioning System elements into software elements,
nesting entities within entities, etc..

,&I& supports text-oriented descriptions of software
design utilizing a formal, Ada-like, specification language,
and generation of reports based on these specifications.
ADL is geared toward the development of Ada software.

The WINNIE Protom is an interactive tool
supporting rapid construction of window-oriented user
interfaces for VTloO-compatible terminals.

MOO supports definition of an interactive application’s
operational structure: it serves as a unifying mechanism
connecting the interactive windows (constructed via
WINNIE) with the user responses directing operation of the
interactive application.

Convert-ER/Analvze-ER are companion tools that
convert Schema Definition Language statements into
PROLOG and then analyze the PROLOG form of the
schemas to check for consistency. Convert-ER translates
SDL into PROLOG, and Analyze-ER processes this
PROLOG and checks for consistency within the schema
definitions (e.g., relationships have both domains and
~W).

SOUERY/SDESIGN/SFORh$ are companion tools are
provided with SMARTSTAR and support the prototyping

of relational database queries, relational table designs, and
relational database data entry/display forms.

Piyrnv is a general purpose graphics utility.

. .
(ATVS) Ada Test and Verrficatio Svste n m supports

static analysis (e.g., global symbol cross-reference,
compilation order, exception propagation, etc.) and dynamic
analysis (e.g., program coverage, timing, and tasking
characteristics) of Ada programs. JOVIAl, J73 Automated
Verification System (J73AVS) supports static and dynamic
analysis of JOVIAL J73 programs, RXVPSO provides
static and dynamic analysis of FORTRAN programs, and
the COBOL Automated Verification System (CAVS)
provides static and dynamic analysis of COBOL programs.

The Test Man- supports population of the Test
Subschema of the SLCSE Project Database. Through the
use of interactive forms, the user can create and modify Test
subschema entities (e.g., Test, Test-Result, Test-Case,
etc.) and establish relationships between entities.

The Automated Measurement Svstem (AMS) supports
the definition, collection, and reporting of software quality
metric information based on the RADC Software Quality
Framework. AMS allows users to interactively enter raw
data pertaining to software quality metric information.
AMS also analyzes Ada and FORTRAN source code to
generate software quality metric information.

>sor allows Th
users to create, process, and track Software Problem
Reports (SPRs) through the use of an interactive SPR
form. The tool populates the Cont&uration~Management
Subschema of the SLCSE Project Database (primarily the
Problem entity and its associated entities and relationships).

The Consistencv Checker performs consistency checks
on various SLCSE Project Database subschemas, and
produces reports identifying any inconsistencies.

The Baselinine Tool allows users to interactively
define configurations, include both entity types and entity
instances in configurations, define configuration baselines,
edit configuration entities, and generate reports describing
the contents of a configuration.

Automated J,ife Cvcle Impact Analysis (AI.ICIA)
allows users to interactively browse the SLCSE Project
Database, identify entities for a proposed change, and review
the estimated impact of the change on SLCSE Project
Database entities and relationships.

The SLCSE Environment Man- (SEm allows
authorized users to define, modify, and tailor an
environment for a particular software development project.
It supports definition and subsequent modification of a

43

site/company/organization environment: that is, the
computing facility providing resources common to all
software development projects using the environment (e.g.,
the computer network, tools, roles, and users). It supports
definition and subsequent modification of one or more
software development projects active within the larger
environment utilizing a subset of the environment’s
resources (i.e., the subset of computer nodes, tools, roles,
and users for a specific soBware development project).

. .
The Schema Defimtlon J.angug~ (SDL) Comp iler

translates SDL source code (a speciakd Ada-like language
for specifying subschemas and the entities, relationships,
and attributes that comprise them) into Structured Query
Language (SQL) statements which are interpreted by
SMARTSTAR (a commercial relational database
supporting SQL) to create a low-level relational
implementation of the ER SLCSE Project Database.

The Performance Evaluation Tools are used to measure
the performance characteristics of the SLCSE (e.g., system
load, database size, ERIF initialization, ERIF calls,
Command Executive speed, etc.). Based on this
information the SEM can be used to create an optimal
environment for a particular project or site. The
information can also be used to identify SLCSE
performance bottlenecks for future modification and
optimization.

Tool Selection Criteria. The SLCSE development
effort concentrated on the design and implementation of the
SLCSE itself, it was not a tool development effort.
Neither was it an exhaustive tool evaluation and selection
effort. As a result tool selection was based on several basic
crited

. Did the tool effectively support software lifecycle
activities such as project planning, requirements
definition, coding, testing, etc. (i.e. did it fall into
one of the nine tool categories

l Was the tool available at the customer (RADC) site
or was it otherwise obtainable as public domain
software, GFE, or COTS

l Could it be integrated with the SLCSE User Interface
and Database

With few exceptions, most of the Non-developmental
(i.e., COTS and GFE) Software tools included in the
Toolset do not make extensively use the SJXSE database.
As a consequence, in order to effectively evaluate the user
interface and database model, several tools had to be
developed from scratch as part of the SLCSE project.
These tools were developed to be Conformant (i.e.,
maintain visual and operational consistency with the
SLCSE User Interface) and Directly-coupled (i.e., access the
SLCSE database directly via the ERIF). These tools
(indicated in Table 1 and described in the preceding

paragraphs) were specifically developed to populate and
extensively utilize the various database subschemas.

Future Directions. The primary focus for the toolset is
the addition of new tools. However, more important, and
more technically challenging, is the comprehensive
integration of these tools with the Database. Simple
integration of a tool can be accomplished very quickly, but
comprehensive integration requires analysis of the database
subschemas, a working knowledge of the ERIF or DCL
interface, and the data requirements for the integrated tool.

7 -us and Conclusion
GRC and its subcontractors, Inter-metrics and Software

Productivity Solutions began development of the SLCSE
in August 1986 and will conduct final acceptance test in
November 1988. Currently GRC is finalizing Beta-testing
arrangements for the SLCSE at various Government and
Government contractor installations.

RADC plans to use the SLCSE as the unifying
foundation for the integration of advanced software
technologies: both for ongoing projects such as the Ada
Test and Verification System (ATVS) and the Quality
Evaluation System (QUES), and for proposed projects such
as the Requirements Workstation and the SLCSE Project
Management System. GRC plans to commercialize and
rehost the SLCSE on a variety of hardware architectures.

8 References

1. “Software Development Environments”, Susan A. Dart,
Robert J. Ellison, Peter H. FeiIer, and A. Nice Habermann,
Comnuter, November 1987

2. “Rational’s Experience Using Ada for Very Large
Systems,” J.E. Archer, Jr., and M.T. Devlin, Pmt. First
Int’l Conf. Ada Programmin? Lanw ADDkatiOnS foe

fithe NASA Snace Static& NASA, June, 1986

3. “Gandalf: Software Development Environments,” AN.
Habermann and D. Notkin, IEEE Trans. Software
Enrrineering, December 1986

4. “Unix Time-sharing System: The Programmer’s
Workbench,” T.A. Dolotta, R.C. Haight, and J.R. Mashey,
Interactive Prorrrammine Environments, McGraw-Hill,
New York, 1984

5. “Excelerator,” Index Technology Corp., m
muter-aided Software Eneineerinrr Svmposium,, Digital
Consulting Inc., Andover, Mass., June 1987

44

