
Transformational Derivation of Programs

Using the Focus system*

Uday S. Reddy
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

Net address: reddy@a.cs.uiuc.edu

September 2, 1988

1 Introduction

Trunsfomationul del.ivation, formal derivation of programs using the paradigm of program
transformation, has been known for several years [3, 20, 341. But, its practical use in program
development is still elusive. Hand derivation of any significant program is fraught with long
sequences of low-level formal manipulations which are tedious and error-prone. The pravticality
of the program derivation method thus depends on automated support for such manipulations.
We are constructing a program derivation support system called Focus, designed along the
following guiding principles:

0 The system must be interactive. It should let the user make the program design decisions
and handle the formal details.

0 The interaction with the system must be at a sufficiently high-level.

0 The system must be flezible. It should not impose an overly restrictive discipline on the
user regarding how programs should be derived.

0 The automation of the formal details must be in such a way that the behavior of the
system can be easily predicted and understood.

0 The seuwh spaces involved in the automated transformation operations must be reason-
ably s m a l l , so that the system does not produce a large number of choices as a result of
any operation.

‘This paper is to appear in the Proceeding of Third Symposium on Software Development Environments,
ACM, 1988.
This research was supported in part by NASA grant NAG1-613.

/’(j--

(NASA -CB- 1 8 48 7 5)
DERIVATION OF PBOGRAHS U S I N G THE FOCUS
SYSTEH (I l l i n o i s Univ.) 2 2 p CSCL 698

T R A NS FORH AT I O N AL N 89- 24802

Unclas
G3/61 0199000

0 The system must be able to construct derivation histories, summary descriptions of pro-
gram derivations, which can be used by the programmer for understanding program
designs.

0 The system must also be able to construct defivation scripts, detailed records of derivation
activity, which the system can use to automatically rederive a program for an altered
specification.

In this paper, we discuss

1. the i n t e p t i o n of validation and program derivation activities in the Focus system,

2. its tree-based user interface,

3 . the control of search spaces in program derivation, and

4. the structure and organization of program derivation records.

Each of these issues is introduced below.

Validation and derivation

Validation is the activity of verifying if a specification (or an implementation) meets the in-
tended behavior of the system. It requires, f i s t of all, that the specification language be
“executable” so that we can run test cases. A more effective method of validation is symbolic
ezecution of specifications which allows the observation of all possible situations, rather than
a few test cases [4, 51.

The symbolic execution method in Focus is based on logic programming principles [6,19,26].
Logic programming, through the use of unification [33], can effectively solve for the values of
variables which make specific execution paths possible. We show that this is useful not only
in validation, but in program derivation as well. During derivation, we have to consider the
behavior of specifications in all possible situations, and construct efficient procedures in each
case.

Yet another method of validation is verification (proof) of properties of programs. This too
is an activity closely related to derivation. In fact, we need to routinely prove properties of
program components and use them in optimizing programs. Thus, validation, verification and
program derivation activities can be - indeed, need to be - integrated into a single system.

Tree editor interface

Conventionally, tree-based editors have been associated with syntax trees (see, for exam-
ple, [36]). But, trees arise in other contexts as well. Program executions are trees with the
hierarchy determined by procedure calls. Symbolic executions have another kind of tree struc-
ture: each subtree denotes an assumption on the symbolic values. Program derivations have
a tree structure too. In deriving a program component, we derive its internal components as
subtrees.

A flexible and programmable tree editor called Treemacs has been developed at University
of Illinois to be applicable in such Merent contexts [16, 171. As the name suggests, the tree

2

editor has been built as an extension of the Emacs editor and inherits its programmability and
the ability to interact with the operating system environment. Focus system uses this editor
as its user interface, so that the user can structure program derivations as trees and develop
them as he sees fit. This interface also allows us to integrate all the tools required in program
development, such as compilers and debugging tools.

Search spaces in program derivation

One of the big stumbling blocks for the use of formal derivation tools in large problems is the
search space. An examination of the transformation methodology of Burstall and Darlington [3]
shows that, at each stage of the transformation, there are choices involved in what transforma-
tion operation to use, what part of the program (expression) to operate on, and what program
or property rule to use for the operation. Unlike in other areas of problem solving, program
derivation is often open-ended, i.e., there is no clear a priori goal. Various possibilities have
to be tried and examined. The open-endedness means that there are usually no criteria that
the system can employ to eliminate alternatives. But, if the user is swamped with a large
number of alternatives to choose from, the utility of the automated tools is greatly diminished.
The conventional solutions to this problem have been to force the derivation activity to be
goal-directed or to give the user more control [9, 13, 401. Though effective in cutting down
the search space, these approaches increases the burden on the user. We show here that a few
simple notions of efficiency can be used to direct the activity of the system so that the search
space can be greatly reduced; in fact, unique results can be produced in many cases.

Recording derivation activity

The possibility of recording derivation activity and using it for automatic rederivation from
modified specifications is the most exciting benefit of formal program derivation methods [l, 401.
However, the entire derivation record of a prior derivation does not usually work for a modified
specification. There are bound to be components that are affected by a modification. Thus, it
is necessary to isolate the components for which the rederivation bl.eales. It may be seen that
structuring derivations as long sequences of transformations is not going to fit the bill. The
organization of derivations as trees (as discussed earlier) was motivated in part by the desire
to achieve such isolation.

In systems based on explicit user control of derivations [9, 13, 401, the derivation activity
can be recorded by merely storing the commands issued by the user. But, in a more automated
system like Focus, the system has to keep track of its own activity and represent all the
dependencies between the derivations of components. We discuss how the dependencies are
represented in the Focus system and used for propagation of changes.

2 Specifications in Focus

The language used in the Focus system for writing specifications (as well as programs) is a
combination of functional programming and logic programming languages [25,27]. All program
derivations are carried out within this language and the derived programs are then translated

3

into conventional programming languages (such as Lisp, C, and Ada). So, in the spirit of
Larch [15], we call it the Focus shared Zunguuge. It provides higher-order functions, logical
variables, quantifiers and abstract data types. The primitive data structures are recursive data
structures, arrays and collections (often called "sets"). We are also investigating the use of
imperative features like assignments, input/output and device control operations [30]. The
focus of this paper being on the methodology rather than the language, we limit ourselves to
a fist-order functional subset.

use
type char
function alpha : char + boo1

/* check if a character is alphanumeric */
definitions

type list(t) = Nil + t.list(t)
type word = list(char)

function scan : list(char) -+ list(word)
scan(Ni1) + Nil
scan(char.s) -+ fword(char.s).scan(rword(char.s))

function fword : list(char) + word

fword(Ni1) -+ Nil
alpha(c) :: fword(c.s) -+ c.fword(s)
fword(' '.s) + Nil

function rword : list(char) -+ list(char)

rword(Ni1) -+ Nil
alpha(c) :: rword(c.s) + rword(s)
rword(' '.s) + skip(s)

function skip : iist(char) + list(char)
/* skip spaces */

skip(Ni1) -+ Nil
alpha(c) :: skip(c.s) -+ c.s
skip(' 's) -+ skip(s)

/* the first word */

/* remainder of the first word */

properties none

Figure 1: Specification of scan

Figure 1 shows an example specification of a simple ZezicuZ scanner in this subset (taken
from Feather [8, 121 with some modifications). The input to the scanner is a list of characters.
Each character is either an alphanumeric character, (for which alpha(c) is true), or a space. The

4

.

output of the scanner should be the list of words in the input, where a word is a consecutive
sequence of alphanumeric characters separated by spaces.

A few aspects of the specification are to be noted. All the rules in the specification are
Tewrite rules, i.e., oriented equations. There are two parts in the specification: definitions and
properties. The definition part defines the main function being specified together with other
auxiliary functions used. The properties part may specify any simple properties that these
functions satisfy. Other than defined functions, the specification also involves constructors
(such as Nil and ’.’) used to build data structures. The fomal parameters of functions, i.e.,
terms ti in the left hand sides of definition rules f (t 1 , . . . , tn) + e, can only be constructor terms.
(They cannot have defined functions). Definition rules of this form are called constructor-
based [23] and are similar to those used in functional languages like Standard ML [22] and
Miranda [38]. Methods for translating them to conventional code may be found in [24].

Rewrite rules can be conditional rules, such as the second definition rule of fword. The
precondition to the left of :: has to be satisfied before such a rule can be used for rewrit-
ing. Constructor-based formal parameters and preconditions are important for making the
simplification process completely automatic [31].

The definition rules specified using the + connective are called simplificution rules. That
means that, whenever an instance of the left hand side of a rule is encountered it can be
replaced by the corresponding instance of its right hand side, and we consider the expression
to be “simplified” as a result. Another connective that can be used in definition rules is +
(long arrow), and rules using it are called ezpansion rules. Expansion rules have the same.
logical meaning as simplification rules, but specify different kind of control information, vie.,
that applying an expansion rule makes the program longer or more complex. For example, a
Lisp style definition of scan:

scan(s) + if s = Nil then Nil
else fword(s).scan(rword(s))

should be classified as an expansion rule. Applying it to an expression does not necessarily
produce a “simplification”.

We briefly summarize other aspects of the Focus specification language. More detailed
discussion appears elsewhere [27, 30, 311. Logic progmmming features are provided through a
number of quantifiers. As the Focus shared language is an expression-oriented language, this
is considerably different from Prolog. The simplest quantifier is of the form T H E (z : p) which
denotes the unique 2 satisfying the condition p. An abstract logical specification of scan(s)
may say something like “the list of words wl such that appending the words of wl, separated
by arbitrary number of spaces, gives 5”. This can be expressed in Focus as:

scan(s) + THE(wl : wordJist(w1) and
append-wit hspaces(wl ,s))

Other quantifiers used in Focus are

5

S O M E @ : p)e
ANY(E : p)e
@ :PI
SET(E : p)e
E X I S T (5 : p)
ALA@ : p)q

for some 5 such that p , the value of e
for any E such that p , the value of e
the set of z such that p
the set of values of e for all Z such that p
there exist f such that p
for all 5 such that p , q holds

The execution of all such expressions is performed using the symbolic evaluation techniques
discussed in section 3.2.

The properties part of the specification can supply any properties of the functions to be
used in program derivation. All such properties are possibly conditional rewrite rules of them
form c :: l + T , without any restriction on the form of left hand sides 1. Such a rule means
that whenever c holds, l can be replaced by T , and performance is improved as a result of the
replacement. So, these rules may be thought of as “domain knowledge” or “transformation
rules”. In the example, we have not provided any properties as part of the specification.
However, property rules also come from two other sources:

1. they may be proved on the fly, using the techniques of section 3.3, or

2. they may be derived from specifications of internal program components designed during
program derivation (section 4.1).

3 Validation of Specifications
As mentioned at the outset, program validation, verification and derivation activities are closely
integrated in the Focus system. This is so because they all share the same basic program
manipulation operations. We fist discuss these operations from program validation point of
view, .and reconsider them for program derivation in section 4.

3.1 Simplification
“Execution” in the context of functional languages merely means evaluating an expression using
function definition rules. Simplification is a minor generalization of evaluation, which operates
on expressions with not only constant inputs, but also with symbolic inputs (variables).

Simplification of an expression is the operation of repeatedly rewriting any instance of the
left hand side of a simplification rule by the corresponding right hand side, until no more
simplification is possible. For example, given the specification of Fig. 1, the expression

scan(’a’.’b’.’ ‘.‘c’.Nil)

can be simplified to

(‘a’,’b’,Nil).(’c’.Nil).Nii

Using a more readable square bracket notation to denote lists [. . .I, the simplification is

scan([’a’, ‘b’, ’ ’, ’c’]) + [[‘a’, ‘b’], [’c’]]

6

Simplification also allows us to use variables in the inputs to functions. In that case, it performs
as much computation as possible without the knowledge of the values of the variables. For
example

scan('a'.'b'.' '.x) --f ['a', 'b'].scan(skip(x))

The expression scan(skip(x)) denotes the computation that remains to be performed when the
value of x is determined.

All definition rules supplied in a specification are expected to satisfy the confluence property:
no matter what order the subexpressions of an expression are simplified, the result is unique [18,
231. This essentially means that all functions are well-defined. In addition, simplification rules
should also satisfy the strong termination property: given any expression, symbolic or constant,
simplification of the expression in any possible order should finitely terminate. Intuitively, this
means that simplification rules should always map more complex expressions to less complex
expressions. (Expansion rules, on the other hand, need not satisfy this property. This is the
main technical distinction between simplification and expansion rules). These two properties
allow the Focus system to simplify all expressions it encounters to their normal forms, with the
guarantee that the normal forms exist and are finitely reachable.

3.2 Symbolic execution

The specification of scan in Fig. 1 contains a potential bug (inherited from Feather [12]). If
the very f i s t character in the input is a space, the scanner outputs an empty word as the first
word in the output. For example,

scan([' ', 'a', 'b']) + [[I, ['a', 'b']]

Whether this was the intent of the original specification is questionable. If it is indeed a bug,
coming up with a test case that detects it during validation would be somewhat hard. Symbolic
execution, which automatically enumerates all possible execution paths, would easily produce
such a test case and uncover the problem.

To observe the symbolic execution of a function, we s t a r t with an expression applying
the function to variables (symbolic values). For example, to observe scan, we may choose
scan(x). Such an expression cannot be simplified unless the variables are given values. The
ezpunsion operation finds instantiations for variables which allow the expression to be simplified
at least one step. For example, scan(x) is simplifiable if it is an instance of either scan(Ni1) or
scan(char.s)-the left hand sides of the two definition rules of scan. So, x must be either Nil
or chars. These conditions on the variable x and the results of execution in each case are
displayed by the Focus system as a tree. Figure 2 shows the results of this expansion as well
as two successive expansions on cases 2 and 2.2. The case 2.2.1 shows the test case where x is
a list with a single space and the output is a singleton list with an empty word Nil.Nil, i.e., [[I],
rather than the empty list Nil. This shows up the problem mentioned above.

In the normal mode of Focus usage, expansion is user-controlled. This is necessary because
successive expansion, in general, does not terminate. Through the interactive tree editor in-
terface, the user issues an expand command, and Focus immediately produces children nodes

7

observe scan(x)
cases from scan(x)
1.
2.

if x = Nil then Nil
if x = chars then fword(char.s).scan(rword(char.s))
cases from fword(char.s)

2.1.
2.2.

if x = c.s and alpha(c) then (c.fword(s)).scan(rword(s))
if x = ' '.s then Nil.scan(skip(s))
cases from skip(s)

2.2.1.
2.2.2.
2.2.3. if x = ' '.c.s and alpha(c) then Nil.(c.fword(s),.scan(rword(s))

if x = ' '.Nil then Nil.Nil
if x = ' '.' '.s then Nil.scan(skip(s))

Figure 2: Symbolic execution of scan(x)

with various cases. It is also possible to generate successive expansions up to a specific depth
and examine all the generated test cases.

The reader familiar with logic programming would notice that expansion bears a close
resemblance to the execution of logic programs. In fact, the formal technique used in this op-
eration is called narrowing and has been used to develop logic programming languages based
on functions [11, 14, 25, 271. To expand an expression, f ist a subexpression is chosen. The
entire expression must be strict in the chosen subexpression, i.e., the value of the latter must
be necessary to compute the value of the whole expression. (Sometimes, it is necessary to
consider several subexpressions, but we are ignoring the technicalities in favor of simplicity).
Secondly, the chosen subexpression must be a function application whose arguments are suffi-
ciently evaluated (but not necessarily instantiated). For example, in case 2 of Fig. 2, we find
two subexpressions that meet these conditions: fword(chars) and rword(chars). The bigger
subexpression scan(rword(chars)) does not meet the second condition above, since scan cannot
be applied without first evaluating rword(char.r). When there are several subexpressions which
can be expanded, any one of them can be chosen. Focus always chooses the leftmost one by de-
fault, but the user can override it. The expanded subexpression in each expansion is displayed
in Fig. 2 following the keyword cases.

Once a subexpression is chosen for expansion, the definition rules of the function involved
in the subexpression determine the various evaluation paths for it. For each definition rule, we
compute the most geneml instance of the subexpression rewritable using the rule, using the
unification algorithm [33]. For the subexpression fword(char.s) of case 2, we find there is no
instance rewritable using the first rule of fword. The remaining two rules give the cases 2.1 and
2.2, instantiating char to c and ' ' respectively (with the condition alpha(c) in the former case).
When conditional rules are involved, the preconditions are added to the corresponding path
condition. Note that, for each case, Focus simplifies the resulting expression as far as possible.

Rewriting using ezpansion Tules is also a special case of the expansion operation. For
example, if scan were defined by the expansion rule (l), the first expansion of Figure 2 would
have involved such rewriting.

8

When logic programming features are used, in terms of the quantifiers mentioned in sec-
tion 2, the normal execution of specifications incorporates symbolic execution. The instantia-
tions of the quantified variables are obtained by the expansion operation. For instance, if scan
were specified by the logical specification (2), then the value of wl would be determined by
expanding wordJist(wl), append-withspaces(wl,s), or both.

3.3 Verification of Properties

Even though symbolic execution automates conventional exhaustive testing methods, it still
involves examining a combinatorially explosive set of test cases. A more feasible method is
to automatically verify the specification for certain properties. When an abstract logical ax-
iomatization of the problem is available, such as (2) for scan, we can verify if the specification
satisfies such axiomatization.

prove wordJist(scan(x)) + True
simplifies to:
ALL(w : member(w, scan(x))) word(w) -, True

cases from scan(x)
1. casex = Nil

ALL(w : member(w, Nil)) word(w) + True
proved

ALL(w : member(w, fword(char.s).scan(rword(char.s)))) word(w) + True
simplifies to:
word(fword(char.s)) and (ALL(w : member(w, scan(rword(char.s)))) word(w)) + True
rewrites to:
word(fword(char.s)) + True

cases from fword(char.s)

2. casex = chars

2.1.

2.2.

caae char = c and alpha(c)
alpha(c) :: word(c.fword(s)) + True
case char = ' '
word(Ni1) + True

cases from word(Nil)
2.2.1. Nil # Nil and ALL(c : member(c, Nil)) alpha(c) + True

failed

Figure 3: Attempt at verification of scan

In Figure 3, we show an attempt at verification of the property:

wordJist(scan(x)) = True

with the auxiliary definitions

9

wordJist(w1) + ALL(w : member(w,wl)) word(w)
word(w) + w # Nil and ALL(c : member(c,w)) alpha(c)
member(a, Nil) + Nil
mcmber(a, b.x) + a = b or mcmber(a,x)

Except for the additional documentation we have added to display the intermediate results, the
case analysis in the verification is remarkably similar to that in symbolic execution (Figure 2) .
The verification fails in case 2.2.1, where the first character of the input is assumed to be a
space.

Program verification differs from plain symbolic execution in one crucial respect: it involves
induction. In Figure 3, induction is used in case 2. Note that, after simplification, the left hand
side has two conjuncts and the second conjunct

ALL(w : member(w, scan(rword(char.s)))) word(w)

is an instance of the left hand side of the original property. The rewriting operation rewrites it
to True by using the property as in inductive hypothesis. After performing an expansion using
simplification rules, it is always valid to use the inductive hypothesis in the cases [28].

If this verification had succeeded, we would have proved the rewrite rule in the root node
as an inductive theorem (together with a number of lemmas such as word(fword(s)) + True).
Such properties are added to the rule base, and may be used for proving other properties or for
optimization during program derivation. Important performance savings during derivation are
almost always obtained by using properties of functions. For example, consider the property
rule

last(reverse(a.x)) + a

in the domain of lists. Rewriting an expression using it eliminates an O (n) computation. Given
the definitions of last and reverse, we caa prove the property using induction, just as in Figure 3,
and then use it for optimization in derivations. Verification is thus an integral part of program
derivation.

4 Program Derivation
Since the specifications we use are executable, program derivation can be viewed as optimizing
the execution behavior of specifications. This requires that we first recognize opportunities for
performance savings and then Tealize the savings in new procedures. This most often results
in postulating a new program component by a specification of the form

f(5) = e (3)

where f is the new function, 5 is a set of formal parameters and e is an expression that serves
as the specification of f. The notion of “specification” here is that of a program component,
and should be distinguished from the specification of the whole program. We call the design of
such a new component a focus, f(5) its focus label and e its focus specification. The derivation
of the program for f can be viewed in two different, but equivalent, ways. One view is that we

10

want to construct a definition for f that meets the specification f (E) = e. This is often called
the constructive upproach and is exemplified by the work of [7, 211. The second view is that we
are merely transforming the expression e to a more efficient form and using f(Z) as the label
for the efficient form. This view underlies the so-called tnznsfomutional upprouch [2, 34, 401.
See [32] for a discussion of the two approaches. In our framework, the approach is one, but it
can be viewed in two ways.

4.1 Rewrite rules from specifications

Suppose that we eventually produce an efiicient procedure for f starting from a focus equation
such as (3). The equation (3) then becomes a property of the newly defined function f. It
contains important information that can be used for optimization of the rest of the program.
The Focus system orients it as a property rule:

e + f(E) (4)

The orientation of the rule backwards may seem counter-intuitive, but is easily justified. The
fact that we have derived a procedure for f signifies that the focus expression e is deemed
inefficient, and the savings available in the procedure can be obtained by replacing any encoun-
tered instance of e by a cull to f. Thus, the rule is oriented along the direction of improved
efficiency. We call property rules arising in this fashion introduction rules, as they serve to
introduce applications of newly designed functions.

The use of an introduction rule need not be limited to the rest of the program. It can
be used in the derivation of the procedure for f itself. It is more than likely that during the
derivation of the procedure, we encounter another instance of e, which can then be replaced
by a Tecursive call to f . By structuring the derivation process suitably, we can ensure that the
recursion does not introduce nontermination. Using an introduction rule in the function’s own
derivation may be seen similar to using a property as an inductive hypothesis in its own proof.

Let us illustrate these concepts by deriving a minor optimization of the scanner specification
in Fig. 1. An immediate opportunity for savings is the duplication of list traversal by fword
and rword. W e can postulate the following focus to eliminate the duplication:

scanword(s) = fword(s).scan(rword(s))

(Notice that this is a minor generalization of the expression in the second definition rule of
scan). In a large program, such opportunities for savings may not be immediately apparent.
Observation of the symbolic execution of programs can be useful for suggesting the opportuni-
ties.

Once a focus is postulated, the process of program derivation is remarkably similar to that
of symbolic execution. We perform one or more expansion operations on the focus, instantiating
the variables for the various evaluation paths, and simplify the resultant expressions in each
case. Figure 4 shows the result of one expansion on the scanword focus, together with the
automatic simplification of the cases.

11

focus scanword(s) = fword(s).scan(rword(s))
introduction rule: fword(s).scan(rword(s)) + scanword(s)

cases from fword(s)
scanword(Nil) = Nil.scan(rword(Nil))
simplifies to:
scanword(Nil) = Nil.Nil
alpha(c) :: scanword(c.s) = (c.fword(s)).scan(rword(c.s))
simplifies to:
alpha(c) :: scanword(c.s) = (c.fword(s)).scan(nruord(s))
scanword(' '.s) = Nil.scan(rword(' '.s))
simplifies to:
scanword(' '.s) = Nil.scan(skip(s))

1.

2.

3.

Figure 4: Expansion of scanword focus

4.2 Rewriting

The main difference between observation of symbolic executions and program derivations is the
use of property rules for rewriting or tmnsfomzation. Recall that property rules are rewrite
rules that yield guaranteed performance savings. They are either supplied as part of the initial
specification, proved on the fly, or derived by back-orienting focus specifications as introduction
rules. For example, when the scanword focus of Figure 4 is expanded, its specification is back-
oriented to an introduction rule. Rewriting using such rules is a sophisticated operation and
involves complex matching procedures.

In the first place, rewrite rules, unlike definition rules, do not satisfy the confluence property.
So, different orders of rewriting and different choices of rewrite rules may produce different
results. This is the main form of nondetemzinism present in the Focus derivation procedures.
To deviate this nondeterminism, Focus first simplifies expressions to their unique normal forms
(using only the simplification rules) before doing any rewriting by property d e s . Secondly,
during the default operation, Focus uses the outemzost strategy for rewriting, i.e., it searches
for instances of rewritable patterns outside in. The rationale is that, since rewriting is meant
for optimizing, the larger the subexpression rewritten, the better is the optimization. This can
be overridden by the user, but we found that the outermost strategy works admirably almost
always.

A second complexity involved with rewriting is that the patterns on the left hand sides of
rewrite rules are arbitrary expressions, not just constructor-based patterns. So, pure pattern
matching is not adequate. The recursion rule of scanword above shows an important special
case of this. Its left hand side is a data structure made of the "." constructor. So, the rule
is applicable not only to an instance of the complete data structure, but also to instances of
its individual components. Suppose we have two selector functions, head and tail, to access the
components of a dotted pair. Then the introduction rule of scanword implicitly gives rise to
the following derived rules:

12

fword(s) + head(scanword(s))
scan(rword(s)) -+ tail(scanword(s))

(5)

In the absence of such selector functions, we express the derived rules using the where con-
struct:

fword(s) + x l where ~ 1 . ~ 2 = scanword(s)
scan(rword(s)) -+ x2 where ~ 1 . ~ 2 = scanword(s)

where x l and x2 are arbitrary new variables. A number of derived rules are used to handle
conditionals and logical quantifiers. For example, a rule of the form THE(z : p) --+ T yields
a derived rule p + (z = 7) . The details of the Focus rewriting operation in the context of
conditionals and quantifiers will be given in a future paper.

Given the derived rules (5) for introduction of scanword, the focus in case 2 of Fig. 4 is
automatically rewritten to

alpha(c) :: scanword(c.s) =
(c.xl).x2 where ~ 1 . ~ 2 = scanword(s)

This is the only rewriting possible in the entire expansion shown in Fig. 4. Note that the two
calls to fword and rword have been eliminated in favor of a single recursive call to scanword.

Once the program for scanword is derived, we need to use it to optimize the original spec-
ification. This can be done by focusing on the function scan (when we focus on an already
defined function, the focus expressions are obtained directly from the definition). Focus imme-
diately rewrites the second definition equation of scan using the introduction rule of scanword
to produce:

focus scan
cases
1. scan(Ni1) = Nil
2. scan(char.s) = fword(char.s).scan(rword(char.s))

TewTites to: scan(char.s) = scanword(char.s)

4.3 Search spaces

Let us now make explicit the division of work between the user and the Focus system. The
user chooses focus expressions and creates focuses for them. Whenever a focus expression needs
to be optimized, he issues an expand command. The system chooses the subexpression to be
expanded, h d s instantiations, creates cases, and for each case, simplifies and rewrites the
focus expressions as far as possible. The nondeterminism involved in this process is, firstly, in
choosing the subexpression to be expanded, and, secondly, in the multiple results which may
be produced as a result of rewriting.

For expansion, the criteria that we have given for choosing expandable subexpressions
eliminate a number of useless alternatives. Of the remaining alternatives, often the choice does
not matter. As the reader may verify, the derivation of scanword would have produced identical
results even if the other subexpression rword(char.s) was chosen for expansion. However, there
are also several situations where the different choices for expansion lead to different programs.

13

Sometimes it is necessary to try the different alternatives and pick one. The user intervention
is necessary in such situations.

Nondeterminism arises in rewriting much less often. It seems that the process of program
derivation itself somehow prevents too much nondeterminism from creeping in. In most cases
where we have encountered nondeterminism in rewriting, it was caused by the property rules
supplied by the user rather than the introduction rules generated during derivation. Whenever
rewriting yields multiple results, the system displays all of them and requires the user to pick
one. We do not use backtracking. It may be noted that in the example given above, rewriting
produced unique results.

Burstall and Darlington [3] use an operation called folding, which rewrites by using definition
rules &zck?wuds. This operation causes much larger search spaces. For example, using the
specification of Fig. 1, the constant Nil can be folded in five different ways. Our method of
back-orienting focus specifications as introduction rules was a solution to the search space
problem of folding. This allows us to restrict such backward rewriting to cases which improve
efficiency. Similar approaches may be found in [lo, 34, 35, 371. Unfortunately, the program
derivation procedure without folding is not logically complete [29]. So, occasionally, it is also
necessary to use folding and attend to its large search space.

5 Structure of Program Derivations

5.1 Documenting Derivations

A program development system must organize the derivations of programs into a suitable struc-
ture so that the programmer can easily comprehend them. To this end, we find that there are
two kinds of documentations required of program derivations. The first kind of documentation
is to serve the same purpose as a program listing in the conventional software life cycle. It should
be usable by program designers and maintainers to understand the program implementation
and its structure. However, in contrast to conventional listings, this kind of documentation
provides the history and the mtionde of the implementation as well. Note, first of all, that the
specification is the best readable account of the system. As the program derivation proceeds
the components of the system are increasingly specialized in the context of their use [34]. Thus,
the components of the final implementation cannot be understood in isolation. They have to
be understood in relation to the more abstract components to be found in the specification. In
practice, the system undergoes several changes in structure and abstraction in going from the
most abstract specification to the most efficient implementation. The components to be found
at each stage should then be understood in relation to the components of the earlier stages.
A documentation of these relationships and the products of various stages of derivation is a
derivution history.

The second kind of documentation includes, in addition to the products of the stages of
the derivation and their relationships, all the details of the derivation activity itself. This ad-
ditional level of detail is not necessary to understand the program structure and rationale, but
necessary to make changes. Radical changes which necessitate discarding the whole deriva-
tion and implementation are rare. Instead, most changes require minor modifications to the
specifications and can be propagated to the implementations by following the prior derivation

14

activity. The documentation we call a derivation script serves this purpose.
The early efforts towards documentation of derivations (e.g. [12, 401) did not make this

distinction between derivation histories and derivation scripts. The methods given in 191 seem
to contain some elements at the level of what we call derivation histories, but they contain
low level operations as well (such as unfold and fold). Another feature of these approaches is
that they document derivations at a meta-level, in terms of operations on programs. We are
of the opinion that the high level documentation of derivations should mainly contain program
level idormation. In this context, we can draw an analogy with mathematical proofs. In
writing proofs, we manage to communicate the reasoning and rationale for proof steps without
mentioning the basic inference rules involved in them. We would like derivation histories to be
descriptions at the level of such proofs. (Derivation scripts are akin to descriptions at the level
of mechanically verifiable proofs). The notion of derivation trees is central to the high level
descriptions that we seek.

5.2 Derivation Trees

Let us show how the tree structure arises through a sample scenario. Suppose we are trying to
derive ~ s n efficient program for an expression e. We postulate a focus for it as

p (~) = e

Sometimes, the expression e can be transformed directly into a more efficient form by a case
analysis on its variables (like for scanword). But, more often, we have to focus on another
expression s for which an efficient program can be derived. This new expression s may be
merely a subexpression of e, or a collection of several subexpressions which have common
subcomputations, or even a generalization of e. The choice of the expression s is a crucial
design decision based on the programmer's insight into the nature of the computation. The
Focus system owes its name to the centrality of the focusing operation in its usage.

Having chosen to focus on the expression s, we have a hierarchy like

focus p (5) = e
focus q(g) = 9

The focus on s is subsidiury to that of e, because the development of s is an integral part of the
development of e. When the development of s is complete, we have an efficient procedure for it
in terms of q. We need then to realize these gains in the parent focus. This involves rewriting
e to some e' using the back-oriented introduction rule s ---t q(5).

The new expression e' may still need further development. We may have to choose another
internal focus expression s' and continue this process:

focu's p (z) = e
progrum : p (z) =

focus q(g) = s

focus q'(F) = s'
program : q(5) =

pmgmm : q ' (~) = . -

15

Now, we only need to note that each subsidiary focus may in turn have other subsidiary foci,
and it is clear that we have a tree structure. In fact, the tree structure of foci bears a close
resemblance to the block structure of programs. There is, of course, no unique way to organize
a derivation into a tree. The program designer is free to structure it as he/she sees fit. For
example, instead of making the focus of q' subsidiary to the original focus node of p, the designer
can open a new focus node for p with the specification e' and derive the procedure q' as a part
of that.

We found that this flexibility in how the derivation is organized into trees and in how
the trees themselves are developed, quite important. It is also necessary for the designer to
examine the high-level structure of a tree and ignore the internal details of various of subtrees.
The Treemacs editor, through which Focus is used, facilitates this. It provides functions to
selectively view parts of the tree, to walk around the tree and to create and delete nodes.
The functions of the Focus system such as opening and closing focus nodes and other program
manipulation operations discussed in the last section are also provided through this interface.

The derivation history, characterized earlier as the high-level documentation describing the
history and the rationale of the implementation, is now merely the focus tree with each focus
node displaying two pieces of information: its specification and the derived program. Figure 5
shows a sample derivationhistory for the implementation of scan. This organizes the foci of scan
and scanword (discussed in section 4) into a hierarchical structure, together with an additional
focus for scanskip. More importantly, it suppresses the internal case analysis information that
is generated during the derivation process.

5.3 Program Derivation State

Even though the organization of a program derivation is represented as a tree, the pTocess of
program derivation is a sequential process. Each derivation step takes an input program and
produces an output program. For example, if we view the derivation tree of Figure 5 as a
derivation step, its input program has the rule

scan(char .s) + fword(c ha r .s).scan(rword(c ha r .s))

whereas the output program has the rule

scan(char.s) --f scanword(char.s)

in its place. The input program does not have the procedures scanword and scanskip, but the
output program does. If we perform another program derivation step after that of Figure 5,
e.g., to make scan tail recursive, then the input to this step would be the output program of
Figure 5. Not only are programs transmitted between such derivation steps, but also all other
kinds of rules like property rules, introduction rules, and specifications (old programs). We call
the s u m total of all the rules so transmitted, a program derivation state.

In systems which only present a dynamic view of this program derivation process (e.g.
Popart [40] and KBEmacs [39]) there is only one program derivation state active at any time.
It is not possible to go back to an earlier state and examine the differences from the current
state, except by retracting derivation steps. This makes it hard for the user to keep track of
what has been accomplished and what is left to be done. In contrast, the derivation trees of

16

Focus scan(char.s) = fword(char.s).scan(rword(char.s))
derived program:
scan(char.s) -+ scanword(char.s)

Focus scanword(s) = fword(s).scan(rword(s))
derived progrum:
scanword(Nil) -+ Nil.Nil
alpha(c) :: scanword(c.s) +

scanword(’ ‘.s) + Nil.scanskip(s)
in tduct ion rules:
rword(s).scan(rword(s)) + scanword(s)

(c.xl).x2 where ~ 1 . ~ 2 = scanword(s)

Focus scanskip(s) = scan(skip(s))
derived progmm:
scanskip(Ni1) + Nil
alpha(c) :: scanskip(c.s) +

scanskip(’ ’.s) --f scanskip(s)
introduction rules:
scan(skip(s)) + scanskip(s)

(c.xl).x2 where ~ 1 . ~ 2 = scanword(s)

Figure 5: A derivation history of scan

Focus present a static view of the entire program derivation process. Different parts of the
tree refer to different derivation states. For this purpose, the nodes of a derivation tree may
be viewed as being organized in a sequential fashion, from top to bottom. If a node is opened
above the tree of Figure 5, its input state would be the state that existed prior to the derivation
of Figure 5. It is possible, for example, to prove a property in such a node, and then rederive
the tree of Figure 5 to take the new property into account. There is no need to retract or delete
the tree in order to make such a modification.

This static picture of the program derivation process is achieved by distributing the program
derivation state throughout the tree instead of maintaining a single global state. Each node
contributes some rules to the state. The rules visible to a node are the rules contributed by
the nodes which precede it in the textual top-to-bottom reading of the tree. These include the
node’s predecessor nodes (at the same level) and their descendants, its ancestor nodes and their
respective predecessors and descendants. The rules contributed by the node’s descendants are
also visible. But, there is some dynamic character to this. A node can contribute globd rules
which are visible to all other nodes according to the visibility rules, and local rules which are
only visible to its descendants.

The derivation process represented by a derivation tree is thus statically represented. How-
ever, the derivation process within a single node is dynamic. Notice (for example, in Figure 2)
that each focus node has a state, viz., the focus equation. This is called a focus state. It changes

17

pRECEDING PAGE BLANK NOT FILMED

dynamically as various derivation operations, like simplification and rewriting, are performed.
It is not possible to go back to an earlier state except by retracting such operations. It would be
possible to provide a static picture of the focus state as well, but we find this neither necessary
nor convenient.

5.4 Dependencies

In order to make modifications to program derivations (and hence to programs), it is necessary
to know how the modification of a node’s derivation affects the other nodes. In principle, all
the nodes that follow the modified node in top-to-bottom order are affected by the modifi-
cation. However, maintaining finer-grained information about dependencies eliminates many
candidates. First of all, if a modification only adds rules to a node’s global contribution, then
the derivations of the other nodes are still legal. However, performing replay on them may
produce slightly different results because of the additional rules. It is usually not worth the
trouble to keep an entire derivation tree “consistent” with respect to such weak modifications.
It is better to keep the tree in a semiconsistent state and “clean it up” at the end by performing
a replay. If, on the other hand, a modification deletes rules from a node’s global contribution
or replaces them by new ones, then the modification may make the derivations of other nodes
illegal. To identify the nodes which are thus affected, Focus keeps track of dependencies and
decertifies the nodes that become illegal due to a modification. Their derivations have to be
reperformed either by an automatic replay or by explicit user intervention.

There are three kinds of dependencies that exist between focus nodes. The first kind,
specification dependencyarises as follows: Referring to the sample tree (6), suppose that, during
the development of the program for q’, we encounter an instance of the specification s of q.
Such an instance may be replaced by an application of q using the back-oriented introduction
rule. The procedure for q’ may then have an application of q. The development of q’ now
depends on the specification of q. But, it does not depend on the procedure for q itself. The
internal derivation of q can be modified without affecting q’.

The second kind of dependency is pmgmm dependency or inheritance. Suppose the deriva-
tion of q’ encounters an application of q, and then unfolds the application to the body of the
procedure, either through simplification or expansion. The derivation of Q‘ now depends on the
program (procedure body) for q. If the derivation of q is changed, the derivation of q’ needs to
be changed as well.

The third kind, called subgoal dependency can be present only between the children of a
node and their parent. The specification expressions s and s’ are meant to be subexpressions
or generalizations of the parent’s specification e (in general, subgoals of e) . If the parent’s
specification is changed, s and s’ may not be its subgoals any more and they have to be
changed as well.

Subgoal dependencies are represented by the tree structure of the derivations. When the
specification of a focus node is changed, the designer needs to examine all its children foci
and rederive programs for them. The specification and program dependencies, on the other
hand, are marked by the Focus system during program development. This information is used
to propagate changes during program modification. The system attempts to automatically
propagate the changes to the nodes that are specification or program dependent on the modified

18

in the affected nodes,
on. If the resultshare

the option to modify the

scripts contain the details
g from its specification

the intermediate results
e matched against the

ically detected. The program
(unlike in [9, 12, 401). He/She

f the activity are automatically L

The inference procedures of the system are based on the integration of functional and logic
progrumming principles. This brings about a synthesis of paradigms that were heretofore
considered far apart, such a&ogic&&xecutable'f%pecifications an&onstructiv&d

A great emphasis has been placed, in the design of Focus, on achieving small seamh spaces
during program derivation. The program manipulation operations such as expansion, sim-
plification and rewriting were designed with this objective. The role of operations that are
expensive in search spaces, such as folding, has been reduced.

Program derivations are documented in Focus in a way that the high level descriptions of
derivations are expressed only using program level information. All the meta-level inform-
tion, together with dependencies between derivations of program components, is automatically
recorded by the system at a lower level of description for its own use in replay.

At the time of this writing, the implementation of the Focus system is at an advanced
stage. The first-order functional subset of the specification language, used for examples in this
paper, has been completely implemented. The logic programming part of the language has a
prototype implementation which we are experimenting with. The tree structure of derivations
has been formalized and is interfaced to the tree editor. A major unimplemented operation at
this time is the replay of derivation scripts. We need this crucially before we can experiment
with solving large programming problems using Focus.

An avenue for future research is to build heuristic and learning capabilities into the system.
At the low level, most program derivations contain optimizations that are very similar. We
are investigating the use of explanation-based learning and derivational analogy techniques, by
which the system can observe the user's derivation activity and generalize it into heuristics.

&%ransformatiodpproaches to program derivation.

19

References

[l] BALZER, R., CHEATHAM, E. J., AND GREEN, C. Software technology in the 1990’s:
Using a new paradigm. IEEE Computer 16 (Nov. 1983), 39-45.

[2] BALZER, R., GOLDMAN, N. M., AND WILE, D . S. On the transformationalapproach to
programming. In Proc. 2nd Intern. Conf. on Softw. Eng. (1976), IEEE, pp. 337-344.

[3] BURSTALL, R. M., AND DARLINGTON, J. A transformation system for developing recur-
sive programs. J . ACM 24, 1 (Jan. 1977), 44-67.

[4] CHEATHAM, T. E., HOLLOWAY, G. H., AND TOWNLEY, J. A. Symbolic evaluation and
the analysis of programs. IEEE %ns. Softw. Eng. SE-44 (July 1979), 402-417.

[5] CLARKE, L. A. A system to generate test data and symbolically execute programs. IEEE
Truns. Softw. Eng. SE-2 (Sep 1976), 215-222.

[6] COLMERAUER, A., KANOURI, H., PASERO, R., AND ROUSSEL, P. Un Systeme de Com-
munication Homme-machine en Fruncais. Research Report, Groupe Intelligence Artifi-
cielle, Universite Aix-Marseille II, 1973.

[7] CONSTABLE, R. Constructive mathematics and automatic program writers. In IFIP
(Ljublijana, Yugoslavia, Aug. 1971), pp. 229-233.

[8] DARLINGTON, J. Transforming specifications into efficient programs. In IFIP Working
Group 2.1 Conf. on Softw. Specifications (St. Pierre-de-Chatreuse, France., 1976).

[9] DARLINGTON, J. The structured description of algorithm derivations. In Algorithmic
Languages, J. W. de Bakker and J. C. van Vliet, Eds., North-Holland, 1981, pp. 221-250.

[lo] DERSHOWITZ, N. Synthesis by completion. In IJCAI (Los Angeles, 1985), pp. 208-214.
[ll] DERSHOWITZ, N., AND PLAISTED, D . A. Logic programming cum applicative program-

ming. In Symposium on Logic Progrumming (1985), IEEE.
[12] FEATHER, M. S. A System for Developing Progrums by Transformation. PhD thesis,

Univ. of Edinburgh, 1979.
[13] FEATHER, M. S. A system for assisting program transformation. ACM Truns. Program.

Lang. Syst. 4, 1 (1982), 1-20.
[14] GOGUEN, J. A. , AND MESEGUER, J. Equality, types, modules and generics for logic

programming. In Proc. 2nd Intern. Logic Prog. Conf., Uppsala (1984), pp. 115-125.
[15] GUTTAG, J. V., AND HOBNING, J. J. Report on the Larch shared language. Science of

Computer Progrumming 6, 2 (March 1986), 103-157.
[16] HAMMERSLAG, D . Zkemacs Manual. Tech. Rep. TJTUCDCS-R-88-1427, Univ. Illinois at

Urbana-Champaign, May 1988.
[17] HAMMERSLAG, D . H., KAMIN, S. N., AND CAMPBELL, R. H. Tree-oriented interactive

processing with an application to theorem-proving. In Second Conf. on Softw. Dev. Tools,
Techniques, and Alternatives (1985), IEEE Computer Society Press, pp. 199-206.

[18] HUET, G., AND OPPEN, D . C. Equations and rewrite d e s : a survey. In Formal Language
Theory: Perspectives and Open Problems, R. Book, Ed., Academic Press, New York, 1980,
pp. 349-405.

20

[19] KOWALSKI, R. A. Logic for Problem Solving. North-Holland, 1979.
[20] MANNA, Z., AND WALDINGER, R. Synthesis: Dreams j programs. IEEE Trans. Software

[21] MANNA, Z., AND WALDINGER, R. A deductive approach to program synthesis. ACM

[22] MILNER, R. A proposal for Standard ML. In ACM Symp. on LISP and Functional

[23] O'DONNELL, M . J. Equational Logic as a Programming Language. MIT Press, 1985.

[24] PEYTON-JONES, S. L. The Implementation of Functional Programming Languages.
Prentice-Hall International, 1987.

[25] REDDY, U. S. Narrowing as the operational semantics of functional languages. In Symp.
on Logic Program. (Boston, 1985), IEEE, pp. 138-151.

[26] REDDY, U. S . On the relationship between logic and functional languages. In Logic
Programming: Functions, Relations and Equations, D. DeGroot and G. Lindstrom, Eds.,
Prentice-Hall, 1986, pp. 3-36.

[27] REDDY, U. S . Functional logic languages, Part I. In Graph Reduction, Springer-Verlag,
1987, pp. 401-425. (Lecture Notes in Computer Science, Vol279).

[28] REDDY, U. S. Rewriting techniques for program synthesis and inductive theorem proving.
Preprint, Univ. Illinois at Urbana-Champaign, Nov. 1987.

[29] REDDY, U. S. Program transformation without folding. Preprint, Univ. Illinois at Urbana-
Champaign, Jan. 1988.

[30] REDDY, U. S. Applicative Techniques for Imperative Programs. Draft, Univ. Illinois at
Urbana-Champaign, July 1988.

[31] REDDY, U. S. Design principles for an interactive program derivation system. In Pmc.
AAAI-88 Workshop on Automating Software Design (1988), AAAI. (to appear).

[32] RICE, C., AND WATERS, R. C. Artificial Intelligence and Software Engineering. Morgan
Kaufmann, 1986.

[33] ROBINSON, J. A. A machine-oriented logic based on the resolution principle. J. ACM 12
(1965), 23-41.

[34] SCHERLIS, W. L. Program improvement by internal specialization. In ACM Symp. on
Princ. of Progrum. Lang. (1981), ACM, pp. 41-49.

[35] TAMAKI, H., AND SATO, T. Unfold/fold transformation of logic programs. In Intern.
Conf. on Logic PTognzm. (Uppsala, 1984), pp. 127-138.

[36] TEITELBAUM, T., AND REPS, T. The Cornell program synthesizer: A syntax-directed
programming environment. Commun. ACM 24, 9 (Sept 1981), 563-573.

[37] TURCHIN, V. F. The concept of a supercompiler. ACM Trans. Program. Lang. Syst. 8, 3

Engineering SE-5,4 (1979), 294-328.

Trans. Program. Lang. Syst. 2, 1 (Jan. 1980), 90-121.

Program. (1984), pp. 184-197.

(1986), 292-325.

21

[38] TURNER, D. Miranda: a non-strict functional language with polymorphic types. In
Conf. on Functional Program. Lung. and Comput. Architecture (1985), J. Jouannaud,
Ed., Springer-Verlag, pp. 1-16.

[39] WATERS, R. The programmer’s apprentice: A session with KBEmacs. IEEE Trans. Softzu.
Eng. SE-11,11 (Nov. 1985), 1296-1320.

[40] WILE, D. S. Program developments: Formal explanations of implementations. Comm.
ACM 26, 11 (1983), 902-911.

22

