
ON THE USE OF STACKS IN THE EVALUATION OF EXPRESSIONS

J. L. Keedy (Department of Computer Science, Monash Universi ty,
Clayton, Victor ia, 3168, Austral ia)

Part l - A Case for Stack-Oriented Instruction Sets.

Recently Myers presented a case against the use of stack-oriented
instruction sets (and register-oriented instruction sets), favouring
instead the two address store-to-store instruction format [i]. He
argued that most assignment statements in most real programs involve zero
or one arithmetic (or logical) operator, and therefore that 'textbook'
examples of long expressions used to demonstrate the superiority of
stack-oriented instruction sets are 'irrelevant'.

The view is open to several objections but here I valse only two
of them. First, Myers~ comparison included only one, not particularly
favourable, version of stack instruction sets. Another version, in which
the stack is combined with an accumulator, is superior to both the
register and stack instruction sets considered by Myers. The accumulator/
stack technique uses a single accumulator as an implicit operand for all
arithmetic (and logical) operations. The second operand is either
supplied explicitly with the instruction (e.g. as a literal constant or
a memory address), or may be related implicitly to the stack top. With
an explicit memory address operand instructions behave as on a normal
single accumulator machine, so that LOAD A causes the value at the
address A to be loaded into the accumulator, ADD A causes the value
at the address A to be added into the accumulator, etc. This
accumulator-oriented technique handles well expressions which do not
require the saving of intermediate results. Stacks, on the other hand,
are most useful exactly when such results have to be saved, and to handle
these situations the accumulator can be coupled to a hardware-assisted
stack. To achieve this each (appropriate) instruction code can be
considered as having a special 'top-of-stack' (TOS) bit, which, when set,
indicates a short instruction in which the normal memory operand is
replaced by the value currently at the top of the stack; the result is
left in the accumulator and the TOS operand is popped. Thus ADD(TOS)
causes the value at the stack top to be added into the accumulator, and
at the same time to be popped from the stack. When used in this way the
accumulator acts as an additional stack cell on top of the actual top-of-
stack, and to complete this mode of use we need a 'push and load'
operator (which acts like a conventional push by pushing the accumulator
value onto the actual stack top and then reloading it from the operand
supplied) and a 'store and pop' operator (which acts like a conventional
pop by storing the accumulator into the supplied address and reloading
it from the stack top, which is popped). Apparently ambiguous function
codes corresponding to PUSH&LOAD (TOS), STORE&POP (TOS), LOAD (TOS) and
STORE (TOS) need not be wasted, since they can easily be microcoded to
perform special stack top operations corresponding on traditional stack
machines to functions such as: exchange top two stack locations, erase
stack top, duplicate stack top, etc. (but in this case regarding the

accumulator as the stack top).

Tables i to 3 reproduce MyersJscomparisons of the 'typical'
assignment statement encodings, with a fourth column added for the
accumulator/stack instruction set. (Following Myers, function codes are

8 bits long, register addresses 4 bits and memory addresses 20 bits).
Since it is arguable whether an extra bit should be added to the function
code length of the accumulator/stack method to allow for special TOS

22

http://crossmark.crossref.org/dialog/?doi=10.1145%2F641815.641818&domain=pdf&date_stamp=1978-02-01

addressing, the bracketed figures of that column indicate the effect of
this. On all Myers's criteria (instruction fetches, code compactness,
and number of elements to be decoded) the accumulator/stack method performs
as well as, and mostly improves upon, the normal stack and register
methods. Comparison with the store-to-store method shows that the latter
is superior in instruction fetches, and for the first two examples in the
number of elements to be decoded. Regarding code compactness, the store-
to-store method is slightly better for A:=B, and slightly worse for
A:=B+C, but significantly better for the special (but admittedly frequent)
case A:=A+B.

The store-to-store instruction format used by Myers, like the other
techniques, assumes fixed length operands, but since he claims for this
method some advantage of variable length operands, it is interesting to
see the effect of adding a length field of say 8 bits to each store-to-
store instruction, as is shown by the bracketed figures in the store-to-
store column of the tables. Whilst this admittedly makes the instruction
set more powerful than the others, in code compactness and element counts
it more or less brings the accumulator/stack onto a par with the store-to-
store format, with A:=B about equal, A:=A+B worse by 28 bits and 2
elements, and A:=B+C better by the same margin.

It seems on the evidence so far that although the accumulator/stack
technique improves upon the stack and register techniques it is slightly
inferior to the store-to-store technique (unless we make a somewhat
doubtful use of length fields). But this brings me to the second
objection, namely, that the evidence adduced by Myers is heavily biased
in favour of the store-to-store technique. There is, for example, another
extremely common operation performed in many programs, the interchange in
the values of two variables (A:=:B). Unfortunately, widely used high
level languages do not support an appropriate construct*, and so instead
it gets coded as (TEMP:=A;A:=B;B:=TEMP) which produces for each inter-
change three zero operator assignments (and consequently falsely boosts
statistics for simple assignments). Table 4 has been added to provide an
encoding of an interchange, which shows that the accumulator/stack method
performs better than all the other methods, especially the store-to-store
method (except in instruction fetches). It also seems unreasonable to
exclude from the comparisons at least one straightforward expression
requiring an operand to be saved in a temporary location, because such
expressions do undoubtedly appear occasionally in many programs, and
frequently in some. Table 5 has therefore been added to illustrate
A:=(B+C)*(C-D), and once again the accumulator ~tack technique comes out
ahead by a considerable margin, with the store-to-store technique
trailing a poor fourth. We conclude that the accumulator/stack method of
evaluating expressions is consistently better than the stack and register
methods for all expressions analysed. It produces more compact code than
the store-to-store method for A:=B+C, A:=:B and A:=(B+C)*(D-E), marginally
less compact code for A:=B (except where this is a hidden interchange) and
substantially less compact code for A:=A+B. It offers the further
advantages that temporary storage is conveniently organised for any size
and nesting of expressions, and that if combined with a procedural stack
it can easily and naturally handle the evaluation of functions contained
in expressions. In modern microcoded computer architectures, where

*This is a deficiency in language designs which should not affect
comparisons of architectures (unless we are only concerned with building
COBOL, FORTRAN, ALGOL or PL/i machines in the future).

23

orthogonal instruction formats no longer provide significant advantages,
it would seem feasible to provide a mixed instruction set which is based
primarily on the accumulator/stack technique but which provides a more
compact encoding of operations such as A:=A+B and A:=B (probably as
store-to-store instructions*).

Part 2 - A Practical Example of the Accumulator/Stack (comparedwith a
Pure Stack)

The most prominent current example of an accumulator/stack
architecture is that found in the ICL2900 Series [2]. Rather curiously,
this system only partly implements the previously described architecture,
the main omission being the absence of a 'store and pop' operator; also,
a stack top operand is not optimally encoded, but takes the short-form
addressing field also used for accessing operands relative to the
current local name base of the stack. On the other hand, the ICL2900
Series takes advantage of the technique by loosely coupling an index
register and a descriptor register to the stack top in a manner
analogous to the accumulator, the effect of which - if carefully used -
is that the system appears to have separate stacks for computing values,
indices and addresses.

In an earlier contribution Doran has implied that the ICL2900
computational technique is inferior to the pure stack technique of the
B6700 [3]. Leaving aside certain unproven and highly dubious implications
in that paper**,we find that the B6700 and ICL2900 instruction sequenceS
for generating the five previously illustrated assignment statements are
identical with those shown in cols. 1 and 4 respectively of Tabl~sl to 5
(except that the MULT (TOS) operator is implemented on the ICL2900 as a
normal MULT operator with TOS operand and STORE&POP is replaced by a
simple STORE). Hence in terms of instruction fetches and number of
elements to be decoded the ICL2900 is always superior to the B6700. The
question of code compactness is complicated by the actual encoding of
function codes and of address, which are quite different in the two
machines. However, if we assume that all operands are reasonably
accessible on the stack then each ICL2900 instruction will be encoded in
2 bytes (16 bits) and each B6700 instruction requiring an explicit
operand will also require 2 bytes (16 bits) whilst B6700 instructions
with implicit operands require 1 byte (8 bits)***. Under these assumptions

* Notice also that the most efficient encoding of an interchange is also
likely to be a store-to-store SWAP A,B.

** For example, on issues related to this paper Doran implies (i) that the
B6700 tagging mechanism is a greater boon to compiler writers than the
ICL2900 accumulator size register (which he fails to mention); (ii) that
the encoding of ICL2900 functions requires more bits than the B6700 (in
fact the ICL2900 uses 7 bits, the B6700, 8 bits - though the situation
is rather more complicated than this suggests); and (iii) that the two
B6700 top-of-stack registers provide an advantage in reducing stack/
memory references (whereas the equivalent ICL2900 systems provide a 256-
word fast slave memory for the stack).

*** For the B6700 this gives access to variables at displacements upto
between 512 words and 8 K from the display registers, depending on the
current lexical level; for the ICL2900 it gives access to variables up
to a displacement of 128 words from the local name base, and the stack top.

24

the length of a B6700 assignment sequence (ignoring indexing operations
and the possibility of function calls) is:

(2a + f + 3) bytes (i) B6700

where

and

a = the number of operands in the expression,

f = the number of arithmetic (or logical) operators in
the expression.

(The three extra bytes are required to bring the address of the left hand
side to the stack top (2 bytes) and to store the result into that
address (i byte)). The equivalent length of an ICL2900 assignment
sequence is:

(2a + 2i + 2) bytes (2) ICL2900

where a = the number of operands in the expression,

and i = the number of intermediate results which are not
immediately reused (i.e. the number of 'stack and load'
instructions).

(The two extra bytes are to store the result into the variable on the
left hand side of the assignment).

Subtracting (2) from (I) we find that a B6700 sequence is longer
than its ICL2900 equivalent by a difference d, where

d = f - 2i + 1 (3)

In those cases where intermediate results (if any) can always be
immediately reused, this reduces to

d = f + i (4)

so that in this case a B6700 sequence is always at least one byte (where
f = 0, i.e. A:=B) longer than its ICL2900 counterpart, and if f is
large then the difference can be substantial. Where there are
intermediate results which have to be saved, each such result implies an
operator to generate it, and an operator to use it later; furthermore
the fact that it cannot be immediately reused implies that at least one
more operator must be present in the expression, hence

f ~ 2i + 1 (5)

Substituting (5) into (3) we find that where an expression contains
intermediate results which are not immediately reused, the B6700 will
always require

d .> 2i + i - 2i + i

i.e. d .> 2 (6)

at least 2 bytes more than the ICL2900.

Hence under the addressing assumptions stated previously, a B6700
assignment statement will be encoded in at least one byte more than the
ICL2900 (for the simple assignment case A:=B), and will usually be
longer by between 2 bytes and (f+l) bytes, depending on the number of
'push and load' operators required on the ICL2900. It must be emphasized,

25

however, that for the vast majority of cases the difference will be
minimal. Attempts to make a more general comparison, using the
multiplicity of addressing modes available on the two systems, are bound
to fail. Examples can be brought forward to favour either system. For
example, in a highly block-structured program the B6700 encoding might
turn out to be more compact because the ICL2900 can only support two
lexical levels with ease, whereas the B6700 can support 30. On the other
hand the ICL2900 would probably improve even more on the B6700 if
operands are embedded in an array because its index and description

registers can be coupled to the stack.

Conclusion. In Part i it was shown that the accumulator/stack
computational technique is usually superior to normal stack or general
register techniques, and, given a reasonable basis of comparison, that
it compares favourably with the store-to-store technique except in the
special case of A:=A+B, which can be overcome by providing a special
instruction format to optimLse this type of expression. In Part 2 we
considered a particular example of an accumulator/stack machine, and
found that despite its only partial implementation of the concept, and
despite implications to the contrary, it performed better than a pure

stack machine.

It is evident, however, that the manifest inferiority of the stack-
type systems on such an important case as A:=A+B suggests that we have
not yet found an ideal computational architecture for evaluating
expressions. Equally, the interchange operation A:=:B shows up the
inadequacy of most high level languages as a means of expressing
satisfactory abstractions of common operators (another which comes to mind
is the absence in high level languages of a construct which returns both
a quotient and a remainder in integer division). These two areas might well

provide fruitful objectives for future research.

Acknowledgement

Thanks are due to Professor C.S. Wallace for reading two drafts of this
paper and especially for his helpful suggestions which have clarified

several points.

References

i. G.J. Myers "The Case Against Stack-Oriented Instruction Sets 't,
Computer Architecture News, Vol. 6, No. 3, August 1977.

2. J.L. Keedy 'VAn Outline of the ICL2900 Series System Architecture 'v ,
Australian Computer Journal, Vol. 9 , No. 2 , July 1977.

3. R.W. Doran "The ICL2900 Computer Architecture (compared with the
B6700/7700) '~, Computer Architecture News, Vol. 4, No. 3, Sept. 1975.

26

Ins truc tions

Size

Elements

Stack Register Store-to-Store T Accumulator/Stack ~

PUSHAD A LOAD Ri,B MOVE A,B *PUSH&LOAD B

PUSH B STORE Ri,A *STORE&POP A

STORE

3 2 i 2

64 64 48 (56) 56 (58)

5 6 3(4) 4

Table i. The Statement A:=B

PUSHAD A

PUSH A

PUSH B

ADD

STORE

Instructions 5

Size i00

Elements 8

LOAD Ri,A

ADD Ri,B

STORE Ri,A

ADD A,B

3 i

96 48 (56)

9 3 (4)

*PUSH&LOAD A

ADD B

*STORE&POP A

3

84 (87)

6

PUSHAD A

PUSH B

PUSH C

ADD

STORE

Instructions 5

Size i00

Elements 8

Table 2. The Statement A:=A+B

LOAD Ri,B MOVE A,B

ADD Ri,C ADD A,C

STORE Ri,A

3 2

96 96 (112)

9 6 (8)

Table 3. The Statement A:=B+C

*PUSH&LOAD B

ADD C

*STORE&POP A

3

84 (87)

6

27

t
Stack Register Store-to-Store Accumulator/Stack

PUSHAD A

PUSH B

PUSHAD B

PUSH A

STORE

STORE

InstructionS 6

Size 128

Elements i0

LOAD Ri,B

LOAD R2,A

STORE Ri,A

STORE R2,B

MOVE TEMP,A

MOVE A, B

MOVE B, TEMP

4 3

128 144 (168)

12 9 (1 2)

*PUSH&LOAD A

PUSH&LOAD B

STORE&POP A

*STORE&POP B

4

112 (116)

8

Table 4. The Statement A:=:B

PUSHAD

PUSH

PUSH

ADD

PUSH

PUSH

SUBT

MULT

STORE

A LOAD Ri,B MOVE A,B

B ADD Ri,C ADD A,C

C LOAD R2,D MOVE TEMP,D

SUBT R2,E SUBT TEMP,E

D MULT Ri,R2 MULT A,TEMP

E STORE Ri,A

Instructions 9

Size 172

Elements 14

*PUSH&LOAD B

ADD C

PUSH&LOAD D

SUBT E

MULT (TOS)

*STORE&POP A

6 5 6

176 240 (280) 148 (154)

18 15 (20) 11

Table 5. The Statement A:=(B+C)*(D-E)

* PUSH&LOAD and STORE&POP operators marked with an asterisk can be reduced
to (presumably faster) LOAD and STORE operations respectively if the
previous accumulator value is not needed again. This optimisation is
not usually available on a pure stack machine, and on the other hand extra
instructions are required on the register machine to save the previous

contents of registers.

t Bracketed figures in the store-to-store column show the effect of adding

an eight-bit length field to appropriate instructions.
® Bracketed figures in the accumulator/stack column show the effect of

treating the TOS bit as a ninth bit in the function code.

28

