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Part l - A Case for Stack-Oriented Instruction Sets. 

Recently Myers presented a case against the use of stack-oriented 
instruction sets (and register-oriented instruction sets), favouring 
instead the two address store-to-store instruction format [i]. He 
argued that most assignment statements in most real programs involve zero 
or one arithmetic (or logical) operator, and therefore that 'textbook' 
examples of long expressions used to demonstrate the superiority of 
stack-oriented instruction sets are 'irrelevant'. 

The view is open to several objections but here I valse only two 
of them. First, Myers~ comparison included only one, not particularly 
favourable, version of stack instruction sets. Another version, in which 
the stack is combined with an accumulator, is superior to both the 
register and stack instruction sets considered by Myers. The accumulator/ 
stack technique uses a single accumulator as an implicit operand for all 
arithmetic (and logical) operations. The second operand is either 
supplied explicitly with the instruction (e.g. as a literal constant or 
a memory address), or may be related implicitly to the stack top. With 
an explicit memory address operand instructions behave as on a normal 
single accumulator machine, so that LOAD A causes the value at the 
address A to be loaded into the accumulator, ADD A causes the value 
at the address A to be added into the accumulator, etc. This 
accumulator-oriented technique handles well expressions which do not 
require the saving of intermediate results. Stacks, on the other hand, 
are most useful exactly when such results have to be saved, and to handle 
these situations the accumulator can be coupled to a hardware-assisted 
stack. To achieve this each (appropriate) instruction code can be 
considered as having a special 'top-of-stack' (TOS) bit, which, when set, 
indicates a short instruction in which the normal memory operand is 
replaced by the value currently at the top of the stack; the result is 
left in the accumulator and the TOS operand is popped. Thus ADD(TOS) 
causes the value at the stack top to be added into the accumulator, and 
at the same time to be popped from the stack. When used in this way the 
accumulator acts as an additional stack cell on top of the actual top-of- 
stack, and to complete this mode of use we need a 'push and load' 
operator (which acts like a conventional push by pushing the accumulator 
value onto the actual stack top and then reloading it from the operand 
supplied) and a 'store and pop' operator (which acts like a conventional 
pop by storing the accumulator into the supplied address and reloading 
it from the stack top, which is popped). Apparently ambiguous function 
codes corresponding to PUSH&LOAD (TOS), STORE&POP (TOS), LOAD (TOS) and 
STORE (TOS) need not be wasted, since they can easily be microcoded to 
perform special stack top operations corresponding on traditional stack 
machines to functions such as: exchange top two stack locations, erase 
stack top, duplicate stack top, etc. (but in this case regarding the 

accumulator as the stack top). 

Tables i to 3 reproduce MyersJscomparisons of the 'typical' 
assignment statement encodings, with a fourth column added for the 
accumulator/stack instruction set. (Following Myers, function codes are 

8 bits long, register addresses 4 bits and memory addresses 20 bits). 
Since it is arguable whether an extra bit should be added to the function 
code length of the accumulator/stack method to allow for special TOS 
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addressing, the bracketed figures of that column indicate the effect of 
this. On all Myers's criteria (instruction fetches, code compactness, 
and number of elements to be decoded) the accumulator/stack method performs 
as well as, and mostly improves upon, the normal stack and register 
methods. Comparison with the store-to-store method shows that the latter 
is superior in instruction fetches, and for the first two examples in the 
number of elements to be decoded. Regarding code compactness, the store- 
to-store method is slightly better for A:=B, and slightly worse for 
A:=B+C, but significantly better for the special (but admittedly frequent) 
case A:=A+B. 

The store-to-store instruction format used by Myers, like the other 
techniques, assumes fixed length operands, but since he claims for this 
method some advantage of variable length operands, it is interesting to 
see the effect of adding a length field of say 8 bits to each store-to- 
store instruction, as is shown by the bracketed figures in the store-to- 
store column of the tables. Whilst this admittedly makes the instruction 
set more powerful than the others, in code compactness and element counts 
it more or less brings the accumulator/stack onto a par with the store-to- 
store format, with A:=B about equal, A:=A+B worse by 28 bits and 2 
elements, and A:=B+C better by the same margin. 

It seems on the evidence so far that although the accumulator/stack 
technique improves upon the stack and register techniques it is slightly 
inferior to the store-to-store technique (unless we make a somewhat 
doubtful use of length fields). But this brings me to the second 
objection, namely, that the evidence adduced by Myers is heavily biased 
in favour of the store-to-store technique. There is, for example, another 
extremely common operation performed in many programs, the interchange in 
the values of two variables (A:=:B). Unfortunately, widely used high 
level languages do not support an appropriate construct*, and so instead 
it gets coded as (TEMP:=A;A:=B;B:=TEMP) which produces for each inter- 
change three zero operator assignments (and consequently falsely boosts 
statistics for simple assignments). Table 4 has been added to provide an 
encoding of an interchange, which shows that the accumulator/stack method 
performs better than all the other methods, especially the store-to-store 
method (except in instruction fetches). It also seems unreasonable to 
exclude from the comparisons at least one straightforward expression 
requiring an operand to be saved in a temporary location, because such 
expressions do undoubtedly appear occasionally in many programs, and 
frequently in some. Table 5 has therefore been added to illustrate 
A:=(B+C)*(C-D), and once again the accumulator ~tack technique comes out 
ahead by a considerable margin, with the store-to-store technique 
trailing a poor fourth. We conclude that the accumulator/stack method of 
evaluating expressions is consistently better than the stack and register 
methods for all expressions analysed. It produces more compact code than 
the store-to-store method for A:=B+C, A:=:B and A:=(B+C)*(D-E), marginally 
less compact code for A:=B (except where this is a hidden interchange) and 
substantially less compact code for A:=A+B. It offers the further 
advantages that temporary storage is conveniently organised for any size 
and nesting of expressions, and that if combined with a procedural stack 
it can easily and naturally handle the evaluation of functions contained 
in expressions. In modern microcoded computer architectures, where 

*This is a deficiency in language designs which should not affect 
comparisons of architectures (unless we are only concerned with building 
COBOL, FORTRAN, ALGOL or PL/i machines in the future). 
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orthogonal instruction formats no longer provide significant advantages, 
it would seem feasible to provide a mixed instruction set which is based 
primarily on the accumulator/stack technique but which provides a more 
compact encoding of operations such as A:=A+B and A:=B (probably as 
store-to-store instructions*). 

Part 2 - A Practical Example of the Accumulator/Stack (comparedwith a 
Pure Stack) 

The most prominent current example of an accumulator/stack 
architecture is that found in the ICL2900 Series [2]. Rather curiously, 
this system only partly implements the previously described architecture, 
the main omission being the absence of a 'store and pop' operator; also, 
a stack top operand is not optimally encoded, but takes the short-form 
addressing field also used for accessing operands relative to the 
current local name base of the stack. On the other hand, the ICL2900 
Series takes advantage of the technique by loosely coupling an index 
register and a descriptor register to the stack top in a manner 
analogous to the accumulator, the effect of which - if carefully used - 
is that the system appears to have separate stacks for computing values, 
indices and addresses. 

In an earlier contribution Doran has implied that the ICL2900 
computational technique is inferior to the pure stack technique of the 
B6700 [3]. Leaving aside certain unproven and highly dubious implications 
in that paper**,we find that the B6700 and ICL2900 instruction sequenceS 
for generating the five previously illustrated assignment statements are 
identical with those shown in cols. 1 and 4 respectively of Tabl~sl to 5 
(except that the MULT (TOS) operator is implemented on the ICL2900 as a 
normal MULT operator with TOS operand and STORE&POP is replaced by a 
simple STORE). Hence in terms of instruction fetches and number of 
elements to be decoded the ICL2900 is always superior to the B6700. The 
question of code compactness is complicated by the actual encoding of 
function codes and of address, which are quite different in the two 
machines. However, if we assume that all operands are reasonably 
accessible on the stack then each ICL2900 instruction will be encoded in 
2 bytes (16 bits) and each B6700 instruction requiring an explicit 
operand will also require 2 bytes (16 bits) whilst B6700 instructions 
with implicit operands require 1 byte (8 bits)***. Under these assumptions 

* Notice also that the most efficient encoding of an interchange is also 
likely to be a store-to-store SWAP A,B. 

** For example, on issues related to this paper Doran implies (i) that the 
B6700 tagging mechanism is a greater boon to compiler writers than the 
ICL2900 accumulator size register (which he fails to mention); (ii) that 
the encoding of ICL2900 functions requires more bits than the B6700 (in 
fact the ICL2900 uses 7 bits, the B6700, 8 bits - though the situation 
is rather more complicated than this suggests); and (iii) that the two 
B6700 top-of-stack registers provide an advantage in reducing stack/ 
memory references (whereas the equivalent ICL2900 systems provide a 256- 
word fast slave memory for the stack). 

*** For the B6700 this gives access to variables at displacements upto 
between 512 words and 8 K from the display registers, depending on the 
current lexical level; for the ICL2900 it gives access to variables up 
to a displacement of 128 words from the local name base, and the stack top. 
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the length of a B6700 assignment sequence (ignoring indexing operations 
and the possibility of function calls) is: 

(2a + f + 3) bytes ( i )  B6700 

where 

and 

a = the number of operands in the expression, 

f = the number of arithmetic (or logical) operators in 
the expression. 

(The three extra bytes are required to bring the address of the left hand 
side to the stack top (2 bytes) and to store the result into that 
address (i byte)). The equivalent length of an ICL2900 assignment 
sequence is: 

(2a + 2i + 2) bytes (2) ICL2900 

where a = the number of operands in the expression, 

and i = the number of intermediate results which are not 
immediately reused (i.e. the number of 'stack and load' 
instructions). 

(The two extra bytes are to store the result into the variable on the 
left hand side of the assignment). 

Subtracting (2) from (I) we find that a B6700 sequence is longer 
than its ICL2900 equivalent by a difference d, where 

d = f - 2i + 1 (3) 

In those cases where intermediate results (if any) can always be 
immediately reused, this reduces to 

d = f + i (4) 

so that in this case a B6700 sequence is always at least one byte (where 
f = 0, i.e. A:=B) longer than its ICL2900 counterpart, and if f is 
large then the difference can be substantial. Where there are 
intermediate results which have to be saved, each such result implies an 
operator to generate it, and an operator to use it later; furthermore 
the fact that it cannot be immediately reused implies that at least one 
more operator must be present in the expression, hence 

f ~ 2i + 1 (5) 

Substituting (5) into (3) we find that where an expression contains 
intermediate results which are not immediately reused, the B6700 will 
always require 

d .> 2i + i - 2i + i 

i.e. d .> 2 (6) 

at least 2 bytes more than the ICL2900. 

Hence under the addressing assumptions stated previously, a B6700 
assignment statement will be encoded in at least one byte more than the 
ICL2900 (for the simple assignment case A:=B), and will usually be 
longer by between 2 bytes and (f+l) bytes, depending on the number of 
'push and load' operators required on the ICL2900. It must be emphasized, 
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however, that for the vast majority of cases the difference will be 
minimal. Attempts to make a more general comparison, using the 
multiplicity of addressing modes available on the two systems, are bound 
to fail. Examples can be brought forward to favour either system. For 
example, in a highly block-structured program the B6700 encoding might 
turn out to be more compact because the ICL2900 can only support two 
lexical levels with ease, whereas the B6700 can support 30. On the other 
hand the ICL2900 would probably improve even more on the B6700 if 
operands are embedded in an array because its index and description 

registers can be coupled to the stack. 

Conclusion. In Part i it was shown that the accumulator/stack 
computational technique is usually superior to normal stack or general 
register techniques, and, given a reasonable basis of comparison, that 
it compares favourably with the store-to-store technique except in the 
special case of A:=A+B, which can be overcome by providing a special 
instruction format to optimLse this type of expression. In Part 2 we 
considered a particular example of an accumulator/stack machine, and 
found that despite its only partial implementation of the concept, and 
despite implications to the contrary, it performed better than a pure 

stack machine. 

It is evident, however, that the manifest inferiority of the stack- 
type systems on such an important case as A:=A+B suggests that we have 
not yet found an ideal computational architecture for evaluating 
expressions. Equally, the interchange operation A:=:B shows up the 
inadequacy of most high level languages as a means of expressing 
satisfactory abstractions of common operators (another which comes to mind 
is the absence in high level languages of a construct which returns both 
a quotient and a remainder in integer division). These two areas might well 

provide fruitful objectives for future research. 
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Ins truc tions 

Size 

Elements 

Stack Register Store-to-Store T Accumulator/Stack ~ 

PUSHAD A LOAD Ri,B MOVE A,B *PUSH&LOAD B 

PUSH B STORE Ri,A *STORE&POP A 

STORE 

3 2 i 2 

64 64 48 (56) 56 (58) 

5 6 3(4) 4 

Table i. The Statement A:=B 

PUSHAD A 

PUSH A 

PUSH B 

ADD 

STORE 

Instructions 5 

Size i00 

Elements 8 

LOAD Ri,A 

ADD Ri,B 

STORE Ri,A 

ADD A,B 

3 i 

96 48 (56) 

9 3 (4) 

*PUSH&LOAD A 

ADD B 

*STORE&POP A 

3 

84 (87) 

6 

PUSHAD A 

PUSH B 

PUSH C 

ADD 

STORE 

Instructions 5 

Size i00 

Elements 8 

Table 2. The Statement A:=A+B 

LOAD Ri,B MOVE A,B 

ADD Ri,C ADD A,C 

STORE Ri,A 

3 2 

96 96 (112) 

9 6 (8) 

Table 3. The Statement A:=B+C 

*PUSH&LOAD B 

ADD C 

*STORE&POP A 

3 

84 (87) 

6 
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t 
Stack Register Store-to-Store Accumulator/Stack 

PUSHAD A 

PUSH B 

PUSHAD B 

PUSH A 

STORE 

STORE 

InstructionS 6 

Size 128 

Elements i0 

LOAD Ri,B 

LOAD R2,A 

STORE Ri,A 

STORE R2,B 

MOVE TEMP,A 

MOVE A, B 

MOVE B, TEMP 

4 3 

128 144 (168) 

12 9 ( 1 2 )  

*PUSH&LOAD A 

PUSH&LOAD B 

STORE&POP A 

*STORE&POP B 

4 

112 (116) 

8 

Table 4. The Statement A:=:B 

PUSHAD 

PUSH 

PUSH 

ADD 

PUSH 

PUSH 

SUBT 

MULT 

STORE 

A LOAD Ri,B MOVE A,B 

B ADD Ri,C ADD A,C 

C LOAD R2,D MOVE TEMP,D 

SUBT R2,E SUBT TEMP,E 

D MULT Ri,R2 MULT A,TEMP 

E STORE Ri,A 

Instructions 9 

Size 172 

Elements 14 

*PUSH&LOAD B 

ADD C 

PUSH&LOAD D 

SUBT E 

MULT (TOS) 

*STORE&POP A 

6 5 6 

176 240 (280) 148 (154) 

18 15 (20) 11 

Table 5. The Statement A:=(B+C)*(D-E) 

* PUSH&LOAD and STORE&POP operators marked with an asterisk can be reduced 
to (presumably faster) LOAD and STORE operations respectively if the 
previous accumulator value is not needed again. This optimisation is 
not usually available on a pure stack machine, and on the other hand extra 
instructions are required on the register machine to save the previous 

contents of registers. 

t Bracketed figures in the store-to-store column show the effect of adding 

an eight-bit length field to appropriate instructions. 
® Bracketed figures in the accumulator/stack column show the effect of 

treating the TOS bit as a ninth bit in the function code. 
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