
Object-Oriented Software for Quadratic
Programming

E. MICHAEL GERTZ and STEPHEN J. WRIGHT
University of Wisconsin-Madison

The object-oriented software package OOQP for solving convex quadratic programming problems
(QP) is described. The primal-dual interior point algorithms supplied by OOQP are implemented
in a way that is largely independent of the problem structure. Users may exploit problem structure
by supplying linear algebra, problem data, and variable classes that are customized to their par-
ticular applications. The OOQP distribution contains default implementations that solve several
important QP problem types, including general sparse and dense QPs, bound-constrained QPs, and
QPs arising from support vector machines and Huber regression. The implementations supplied
with the OOQP distribution are based on such well known linear algebra packages as MA27/57,
LAPACK, and PETSc. OOQP demonstrates the usefulness of object-oriented design in optimiza-
tion software development, and establishes standards that can be followed in the design of software
packages for other classes of optimization problems. A number of the classes in OOQP may also be
reusable directly in other codes.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques;
G.1.6 [Numerical Analysis]: Optimization—quadratic programming methods; G.4 [Mathemati-
cal Software]: algorithm design and analysis

General Terms: Algorithms; Design

Additional Key Words and Phrases: Quadratic Programming, Object-Oriented Software, Interior-
Point Methods

1. INTRODUCTION

Convex quadratic programming problems (QPs) are optimization problems in
which the objective function is a convex quadratic and the constraints are linear.

This research was supported by the Mathematical, Information, and Computational Sciences Di-
vision subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of
Energy, under Contract W-31-109-Eng-38; and by the National Science Foundation Grants CDA-
9726385 and ACI-0082065.
Authors’ address: E. M. Gertz, Computer Sciences Department, University of Wisconsin-Madison,
1210 West Dayton Street, Madison, WI 53706 and Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL 60439; email: gertz@mcs.anl.gov; S. J. Wright, Computer
Sciences Department, University of Wisconsin-Madison, 1210 West Dayton Street, Madison, WI
53706; email: swright@cs.wisc.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 0098-3500/03/0300-0058 $5.00

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003, Pages 58–81.

Object-Oriented Software for Quadratic Programming • 59

They have the general form

min
x

1
2

xT Qx + cT x s.t. Ax = b, Cx ≥ d , (1)

where Q is a symmetric positive semidefinite n× n matrix, x ∈ IRn is a vector
of unknowns, A and C are (possibly null) matrices, and b and d are vectors
of appropriate dimensions. The constraints Ax = b are referred to as equality
constraints while Cx ≥ d are known as inequality constraints.

QPs arise directly in such applications as least-squares regression with
bounds or linear constraints, robust data fitting, Markowitz portfolio optimiza-
tion, data mining, support vector machines, and tribology. They also arise as
subproblems in optimization algorithms for nonlinear programming (in se-
quential quadratic programming algorithms and augmented Lagrangian algo-
rithms) and in stochastic optimization (regularized decomposition algorithms).
The data objects that define these applications exhibit a vast range of proper-
ties and structures, and it is desirable—often essential—to exploit the struc-
ture when solving the problem computationally. The wide variety of structures
makes it difficult to provide a single piece of software that functions efficiently
on any given QP application. In this article, we describe the next-best thing:
an object-oriented software package called OOQP that includes the following
features:

—Interior-point algorithms that are implemented in a structure-independent
way, permitting reuse of the optimization-related sections of OOQP across
the whole application space.

—Isolation of structure-dependent operations and storage schemes into classes
that can be customized by the user to fit particular applications.

—A linear algebra layer that can be used to assemble solvers for specific prob-
lem structures.

—Implementations of solvers for general large, sparse QPs and several other
generic problem types.

—Implementations of solvers for several special problem types, including
Huber regression and support vector machines, to demonstrate customiza-
tion of the package to specific applications.

—A variety of interfaces to the bundled implementations that allow problem
definition and data entry via ASCII files, MPS format, the AMPL modeling
language, and MATLAB.

The larger goal of OOQP is to demonstrate the usefulness of object-oriented
design principles in the context of optimization software. Although this de-
sign methodology has become one of the central concepts in modern software
development, it has rarely been used in the design of optimization codes. Such
codes have tended to be stand-alone packages, useful for solving problems posed
in one of the standard formulations (linear programming, nonlinear program-
ming, semidefinite programming), but not readily adaptable to classes of prob-
lems with special structure. Moreover, these software packages usually include
their own tightly integrated linear algebra code, and are difficult to modify for
anyone but their original authors. Since many new and interesting applications

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

60 • E. M. Gertz and S. J. Wright

of optimization involve structured problems, whose structure must be exploited
in order to solve the problems efficiently, we believe that new codes should be
easily customizable to particular problem structures. We believe too that opti-
mization codes should be able to take advantage of new developments in linear
algebra software, in particular, software for sparse systems and for parallel
environments, without requiring substantial rewriting of the code. Further, we
believe that other researchers should be able to experiment with variations of
the software (trying different algorithmic heuristics, different linear algebra
routines, different problem structures, different data structures) by modifying
a relatively small, easily identifiable piece of the code. By addressing the partic-
ular case of an interior-point algorithm for QP, we attempt to show in this paper
that an object-oriented approach may be the right way to achieve these goals.

In the remainder of this introduction, we first outline the basic design ratio-
nale of OOQP, then discuss related efforts in object-oriented numerical codes,
particularly codes related to optimization.

1.1 OOQP Design Rationale

The algorithms implemented in OOQP are of the primal-dual interior-point
type. These methods are well suited for structured problems, mainly because
the linear systems that must be solved to compute the step at each iteration
retain the same dimension and structure throughout the computation. When
this linear system is sparse, it may not be necessary to perform storage alloca-
tion and ordering for a direct factorization anew at each iteration, but possibly
just once at the initial solve. The coding effort involved in setting up and solving
the linear system efficiently is typically much less than for the rival active-set
approach, in which the matrix to be factored grows and shrinks as the compu-
tation progresses.

Interior-point algorithms are well suited to object-oriented implementation
because the best heuristics, devices, and parameter settings used in these algo-
rithms are largely independent of the underlying problem structure. Mehrotra’s
heuristics (see Mehrotra [1992]) for choosing the centering parameter, step
length, and corrector terms give significant improvements over standard path-
following algorithms regardless of whether we are solving a linear program or
a sparse structured QP. Gondzio’s multiple correctors [Gondzio 1996] also yield
improvements across a wide range of problem types. Object-oriented design al-
lows the classes that implement the interior-point algorithms to be written in a
way that is independent of the problem structure. Users who wish to implement
a customized version of OOQP for their problem type need not concern them-
selves with the interior-point sections of the code at all, but rather can focus on
constructing classes to store data and variables and to perform the various lin-
ear algebra operations required by the interior-point algorithm. The code that
implements the core of the algorithm, including all its sophisticated heuristics,
can be reused across the entire space of problem structures and applications.

Codes that simply target general QP formulations (of the form (1), for in-
stance) may not be able to solve all QPs efficiently, even if they exploit spar-
sity in the objective Hessian and constraint matrices. A dramatic example of

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

Object-Oriented Software for Quadratic Programming • 61

a situation in which a generic solver would perform poorly is described by
Ferris and Munson [2003] who solve a QP arising from support-vector machine
computations in which the Hessian has the form

Q = D + V V T , (2)

where D is a diagonal matrix with positive diagonal elements and V is a dense
n×m matrix, where n À m. This Q is completely dense, and a generic dense
implementation would solve an n× n dense matrix at each interior-point iter-
ation to find the step. Such an approach is doomed to failure when n is large
(of the order of 106, for example). OOQP includes an implementation specifi-
cally tailored to his problem structure, in which we store V rather than Q and
use specialized factorization routines based on judicious block elimination to
perform the linear algebra efficiently. A similar approach is described by Ferris
and Munson [2003].

As well as being useful for people who want to develop efficient solvers for
structured problems, the OOQP distribution contains shrink-wrapped solvers
for general QPs and for certain structured problems. We provide an implemen-
tation for solving sparse general QPs that can be invoked by procedure calls
from C or C++ code; as an executable with an input file that defines the problem
in MPS format extended appropriately for quadratic programming (Maros and
Mészáros [1999]); or via invocations from the higher-level languages AMPL and
MATLAB. The distribution also includes an implementation of a solver for QPs
arising from support vector machines and from Huber regression. Both these
implementations accept input either from an ASCII file or through a MATLAB
interface.

The code is also useful for optimization specialists who wish to perform
algorithm development, experimenting with variants of the heuristics in the
interior-point algorithm, different choices of search direction and step length,
and so on. Such researchers can work with the C++ class that implements
the algorithm, without concerning themselves with the details associated with
specific problem types and applications.

In addition, encapsulation of the linear algebra operations allows users of the
code to incorporate alternative linear algebra packages as they become avail-
able. In OOQP’s implementation of the solver for sparse general QPs, the MA27
code from the HSL Library [Duff and Reid 1982; HSL 2000] for sparse symmet-
ric indefinite systems is used as the engine for solving the linear systems that
arise at each interior-point iteration. We have implemented solvers based on
other codes, including Oblio [Dobrian and Pothen 2000], HSL’s MA57, and Su-
perLU [Demmel et al. 1999]. These solvers differ from the distributed version
only in the methods and classes specific to the linear algebra. The classes that
define the interior-point algorithm, calculate the residuals, define the data,
store and operate on the variables, and read the problem data from an input
file are unaffected by the use of different linear solvers.

We chose to write OOQP in the C++ programming language. The object-
oriented features of this language make it possible to express the design of the
code in a natural way. Moreover, C++ is a well-known language for which stable,
efficient compilers are available on a wide range of hardware platforms.

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

62 • E. M. Gertz and S. J. Wright

1.2 Related Work

Several other groups have been working on object-oriented numerical software
in a variety of contexts in optimization, linear algebra, and differential equa-
tions. We mention some of these efforts here.

The Hilbert Class Library (HCL) (Gockenbach and Symes [1999]) is a collec-
tion of C++ classes representing vectors, linear and nonlinear operators, and
functions, together with a collection of methods for optimization and linear
algebra that are implemented in terms of these abstract classes. Particular
characteristics of HCL include an ability to handle large data sets and linear
operators that are not defined explicitly in terms of matrices. The philosophy of
OOQP is similar to that of HCL, though our more specific focus on structured
quadratic programs distinguishes our effort.

The rSQP++ package (Bartlett [1996]) is a C++ package that currently imple-
ments reduced-space SQP methods for nonlinear programming. Basic compo-
nents of the algorithm are abstracted, such as computation of the null space and
the quasi-Newton update. In structuring the package, particular attention is
paid to the linear algebra layer and interfaces to it. The COOOL package (Deng
et al. [1994]) is another collection of C++ classes and includes implementations
of a wide variety of algorithms and algorithm components.

The code OOPS, decribed by Gondzio and Sarkissian [2002], is an object-
oriented C code for linear programming. The design goals of OOPS and OOQP
appear to be quite different. OOPS uses an object-oriented design to create a
system for modeling and solving block structured problems. The code provides
classes for representing the coefficient matrix of the linear program and the op-
erations performed with that matrix in the interior-point method. This matrix
is assembled via the (possibly recursive) use of block classes applied to a set of
elementary matrix classes representing sparse, dense, and network matrices.
Linear algebra software for manipulating and factorizing the sparse and dense
matrix blocks was written by the authors of OOPS and apparently forms an
integral part of the code.

OOQP’s design, in contrast, does not focus on the solution of block-structured
problems. OOQP uses object-oriented principles comprehensively, applying
them to the code that defines the algorithm, the problem formulation, and the
lower-level linear algebra, as well as to the code that forms and solves the linear
systems. Unlike OOPS, OOQP makes no assumptions about how the problem
data is stored, making it possible to represent data and variables in a form
that is specific to a particular class of problems or to a particular linear al-
gebra package. (This feature of OOQP allowed us to incorporate it in the TAO
package mentioned below by adopting TAO’s data structures, rather than copy-
ing between local data structure and those required by TAO.) Through its use
of a linear algebra layer, OOQP can make use of a variety of linear algebra
packages to perform sparse and dense matrix operations; it is not tied to a par-
ticular set of matrix manipulation and factorization routines. Finally, we note
that it would be possible to incorporate the innovations of OOPS into OOQP, by
defining OOPS’ matrix classes as part of a problem formulation layer for linear
programming problems with block-structured coefficient matrices.

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

Object-Oriented Software for Quadratic Programming • 63

The PETSc project (Balay et al. [2001]) focuses on the development of software
components for large-scale linear algebra, allowing data-structure-independent
implementation of solvers for partial differential equations and nonlinear equa-
tions, on serial and parallel architectures. Although PETSc is implemented
chiefly in C, its follows object-oriented design principles. PETSc solvers and de-
sign conventions are used in the TAO package (Benson et al. [2001]) which cur-
rently implements solvers for large-scale unconstrained and bound-constrained
optimization problems on parallel platforms. An object-oriented direct solver for
sparse linear algebra problems is discussed by Dobrian et al. [2000]; we have
used their Oblio package [Dobrian and Pothen 2000] in implementations of
OOQP for solving general sparse QPs.

Object-oriented efforts in numerical software outside the field of optimiza-
tion include that of Chow and Heroux [1998], who focus on preconditioning of
iterative solvers for linear systems. They describe a C++ package for that al-
lows implementation of block preconditioners in a way that is independent of
the storage scheme for the submatrix blocks. The Diffpack code of Bruaset and
Langtangen [1997] is a C++ object-oriented implementation of iterative solvers
for sparse linear systems.

1.3 Outline of This Article

Section 2 of this article describes the primal-dual interior-point algorithms that
are the basis of OOQP. The layered structure of the code and its major classes
are outlined in Section 3, where we also illustrate each class by discussing its
implementation for the particular formulation (1). Section 3.6 outlines the lin-
ear algebra layer of OOQP, showing how abstractions of the important linear
algebra objects and operations can be used in the higher layers of the pack-
age, while existing software packages can be used to implement these objects
and operations. Other significant classes in OOQP are discussed in Section 4.
Section 5 further illustrates the usefulness of the object-oriented approach by
describing three QPs with highly specialized structure and outlining how each
is implemented efficiently in the OOQP framework. In Section 6, we outline the
contents of the OOQP distribution file.

Further information on OOQP can be found in the OOQP User Guide [Gertz
and Wright 2001], which is included in the distribution and can also be obtained
from the OOQP website, www.cs.wisc.edu/∼swright/ooqp.

2. PRIMAL-DUAL INTERIOR-POINT ALGORITHMS

In this section, we describe briefly the interior-point algorithms implemented
in OOQP. For concreteness, we focus our discussion on the formulation (1).

2.1 Optimality Conditions

The optimality conditions for (1) are that there exist Lagrange multiplier vec-
tors y and z and a slack vector s such that the following relations hold:

Qx − AT y − CT z = −c, (3a)
Ax = b, (3b)

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

64 • E. M. Gertz and S. J. Wright

Cx − s = d , (3c)
z ≥ 0 ⊥ s ≥ 0. (3d)

The last row indicates that we require z and s to be complementary nonnegative
variables, that is, we require zT s = 0 in addition to z ≥ 0, s ≥ 0. We assume
that A and C have mA and mC rows, respectively, so that y ∈ IRmA and z ∈ IRmC .

Primal—dual interior-point algorithms generate iterates (x, y , z, s) that are
strictly feasible with respect to the inequality constraints, that is, (z, s) > 0.
The complementarity measure µ defined by

µ = zT s/mC (4)

is important in measuring the progress of the algorithm, since it measures
violation of the complementarity condition zT s = 0. In general, each iterate will
also be infeasible with respect to the equality constraints (3a), (3b), and (3c), so
our optimality measure also takes into account violation of these constraints.

2.2 Mehrotra Predictor-Corrector Algorithm

We implement two algorithms: Mehrotra’s [1992] predictor-corrector method
and Gondzio’s [1996] higher-order corrector method. (See also Wright [1997,
Chap. 10] for a detailed discussion of both methods.) These algorithms have
proved to be the most effective methods for linear programming problems and
in our experience are just as effective for QP. Mehrotra’s algorithm is outlined
below.

Algorithm MPC (Mehrotra Predictor-Corrector)
Given starting point (x, y , z, s) with (z, s) > 0, parameter τ ∈ [2, 4];
repeat

Set µ = zT s/mC;
Solve for (1xaff,1yaff,1zaff,1saff): Q −AT −CT 0

A 0 0 0
C 0 0 −I
0 0 S Z


 1xaff

1yaff

1zaff

1saff

 = −
 rQ

rA
rC

Z Se

 , (5)

where

S = diag(s1, s2, . . . , smC), (6a)
Z = diag(z1, z2, . . . , zmC), (6b)

rQ = Qx + c − AT y − CT z, (6c)
rA = Ax − b, (6d)
rC = Cx − s− d . (6e)

Compute

αaff = arg max
α∈(0,1]

{(z, s)+ α(1zaff,1saff) ≥ 0};

Set µaff = (z + αaff1zaff)T (s+ αaff1saff)/mC;
Set σ = (µaff/µ)τ ;

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

Object-Oriented Software for Quadratic Programming • 65

Solve for (1x,1y ,1z,1s): Q −AT −CT 0
A 0 0 0
C 0 0 −I
0 0 S Z


 1x
1y
1z
1s

 = −
 rQ

rA
rC

Z Se − σµe +1Z aff1Saffe

 , (7)

where 1Z aff and 1Saff are defined in an obvious way;
Compute

αmax = arg max
α∈(0,1]

{(s, z)+ α(1s,1z) ≥ 0};

Choose α ∈ (0, αmax) according to Mehrotra’s heuristic;
Set

(x, y , z, s)← (x, y , z, s)+ α(1x,1y ,1z,1s);

until convergence or infeasibility test satisfied.

The direction obtained from (7) can be viewed as an approximate second-
order step toward a point (x+, y+, z+, s+) at which the conditions (3a), (3b), and
(3c) are satisfied and, in addition, the pairwise products z+i s+i are all equal to
σµ. The heuristic for σ yields a value in the range (0, 1), so the step usually
produces a reduction in the average value of the pairwise products from their
current average of µ.

Gondzio’s [1996] approach follows the Mehrotra algorithm in its computation
of directions from (5) and (7). It may then go on to enhance the search direction
further by solving additional systems similar to (7), with variations in the last
mC components of the right-hand side. Successive corrections are performed so
long as (i) the length of the step αmax that can be taken along the corrected direc-
tion is increased appreciably; and (ii) the pairwise products sizi whose values
are either much larger than or much smaller than the average are brought into
closer correspondence with the average. The maximum number of corrections
is dictated by the ratio of the time taken to factor the coefficient matrix in (7)
to the time taken to solve the system using these factors for a given right-hand
side. When the cost of the solve is small relative to the cost of factorization, we
allow more correctors to be calculated, up to a limit of 5.

The algorithm uses the steplength heuristic described in Mehrotra [1992,
Sect. 6], modified slightly to ensure that the same step lengths are used for
both primal and dual variables.

2.3 Convergence Conditions

We use convergence criteria similar to those of PCx [Czyzyk et al. 1999]. To
specify these, we use (xk , yk , zk , sk) to denote the primal—dual variables at
iteration k, and µk

def= (zk)T sk/mC to denote the corresponding value of µ. Let
rk

Q , rk
A, and rk

C be the values of the residuals at iteration k, and let gapk be the
duality gap at iteration k, which is defined by

gapk
def= (xk)T Qxk − bT yk + cT xk − d T zk . (8)

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

66 • E. M. Gertz and S. J. Wright

(It can be shown that gapk = mCµk when (xk , yk , zk , sk) is feasible with respect
to the conditions (3a), (3b), (3c), and (3d).) We define the quantity φk as

φk
def= ‖

(
rk

Q , rk
A, rk

C

)‖∞ + gapk

‖(Q , A, C, c, b, d)‖∞ ,

where the denominator is simply the element of largest magnitude in all the
data quantities that define the problem (1). Note that φk = 0 if and only if
(xk , yk , zk , sk) is optimal.

Given parameters tolµ and tolr (both of which have default value 10−8), we
declare successful termination when

µk ≤ tolµ, ‖(rk
Q , rk

A, rk
C

)‖∞ ≤ tolr‖(Q , A, C, c, b, d)‖∞. (9)

We declare the problem to be probably infeasible if

φk > 10−8 and φk ≥ 104 min
0≤i≤k

φi. (10)

We terminate with status “unknown” if the algorithm appears to be making
slow progress, that is,

k ≥ 30 and min
0≤i≤k

φi ≥ 1
2

min
1≤i≤k−30

φi, (11)

or if the ratio of infeasibility to the value of µ appears to be blowing up, that is,

‖(rk
Q , rk

A, rk
C

)‖∞ > tolr‖(Q , A, C, c, b, d)‖∞ (12a)

and ‖(rk
Q , rk

A, rk
C

)‖∞/µk ≥ 108‖(r0
Q , r0

A, r0
C

)‖∞/µ0. (12b)

We also terminate when the number of iterations exceeds a specified maximum.

2.4 Major Arithmetic Operations

We can now identify the key arithmetic operations to be performed at each itera-
tion of the interior-point algorithm. Computation of the residuals rQ , rA, and rC
from the formulas (6c), (6d), and (6e) is performed once per iteration. Solution of
the systems such as (5) and (7), which have the same coefficient matrix but dif-
ferent right-hand sides, is performed between two and six times per iteration.
Inner products are needed in the computation of µ and µaff. Component-wise
vector operations are needed to determine αmax, and “saxpy” operations are
needed to take the step. The implementation of all these operations depends
heavily on the storage scheme used for the problem data and variables, on the
specific structure of the problem data, and on the choice of algorithm for solving
the linear systems. The interior-point algorithm does not need to know about
these details, however, so it can be implemented in a way that is independent
of these considerations. This observation is the basis of our design of OOQP.

3. LAYERED DESIGN OF OOQP AND MAJOR CLASSES

OOQP derives much of its flexibility from a layered design in which each layer
is built from abstract operations defined by the layer below it. Those who wish
to create a specialized solver for a certain type of QP may customize one of the

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

Object-Oriented Software for Quadratic Programming • 67

three layers. In this section, we outline the layer structure and describe briefly
the major classes within these layers.

The top layer is the QP solver layer, which consists of the interior-point
algorithms and heuristics for solving QPs. The OOQP distribution contains two
implementations of the Solver class in this layer, one for Mehrotra’s predictor-
corrector algorithm and one for Gondzio’s variant.

Immediately below the solver layer is the problem formulation layer, which
defines classes with behavior of immediate interest to interior-point QP solvers.
Included are classes with methods to store and manipulate the problem data
(Q , A, C, c, b, d), the current iterate (x, y , z, s), and the residuals (rQ , rA, rC), as
well as classes with methods for solving linear systems such as (5) and (7). The
major classes in this layer—Data, Variables, Residuals, and LinearSystem—
are discussed below. We indicate briefly how these classes would be imple-
mented for the particular case of the formulation (1) in which Q , A, and C
are dense matrices. (This formulation appears in the OOQP distribution in the
directory src/QpExample.)

The lowest layer of OOQP is the linear algebra layer. This layer contains
code for manipulating linear algebra objects, such as vectors and matrices, that
provides behavior useful across a variety of QP formulations.

3.1 Solver Class

The Solver class contains methods for monitoring and checking the conver-
gence status of the algorithm, methods to determine the step length along a
given direction, methods to define the starting point, and the solve method
that implements the interior-point algorithm. The solve method for the two
derived classes MehrotraSolver and GondzioSolver implements the algorithms
described in Section 2 and stores the various parameters used by these algo-
rithms. For instance, the parameter τ in Algorithm MPC is fixed to a default
value in the constructor routines for MehrotraSolver, along with a tolerance
parameter to be used in termination tests, a parameter indicating maximum
number of iterations allowed, and so on. Even though some fairly sophisticated
heuristics are included directly in the solve code (such as Gondzio’s rules for ad-
ditional corrector steps), the code implementing solve contains fewer than 150
lines of C++ in both cases. Key operations—residual computations, saxpy oper-
ations, linear system solves—are implemented by calls to abstract classes in the
problem formulation layer, making our implementation structure independent.

Apart from solve, the other important methods in Solver include the
following.

—start: Implements a default starting-point heuristic. While interior-point
theory places fairly loose restrictions on the choice of starting point, the
choice of heuristic can significantly affect the robustness and efficiency of
the algorithm. The heuristic implemented in the OOQP distribution is de-
scribed further in Section 3.7.

—finalStepLength: Implements a version of Mehrotra’s starting point heuris-
tic [Mehrotra 1992, Sect. 6], modified to ensure identical steps in the primal
and dual variables.

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

68 • E. M. Gertz and S. J. Wright

—doStatus: Tests for termination. Unless the user supplies a specific termi-
nation routine, this method calls another method defaultStatus, which per-
forms the tests (9), (10), (11), and (12) and returns a code indicating the
current convergence status.

3.2 Data Class

The Data class stores the data defining the problem and provides methods for
performing the operations with this data required by the interior-point algo-
rithms. These operations include assembling the linear systems (5) and (7),
performing matrix-vector operations with the data, calculating norms of the
data, reading input into the data structure from various sources, generating
random problem instances, and printing the data.

Since both the data structures and the methods implemented in Data depend
so strongly on the structure of the problem, the parent class is almost empty.
Our derived class of Data for the formulation (1) defines the vectors c, b, and
d and the matrices A, C, and Q to be objects of the appropriate type from the
linear algebra layer. The dimensions of the problem (n, mA, and mC) would be
stored as integer variables.

Following (5) and (7), the general form of the linear system to be solved at
each iteration is 

Q −AT −CT 0
A 0 0 0
C 0 0 −I
0 0 S Z



1x
1y
1z
1s

 = −


rQ
rA
rC
rz,s

 , (13)

for some choice of rz,s. Since the diagonal elements of Z and S are strictly
positive, we can do a step of block elimination to obtain the following equivalent
system:  Q AT CT

A 0 0
C 0 −Z−1S

 1x
−1y
−1z

 =
 −rQ

−rA

−rC − Z−1rz,s

 , (14a)

1s = Z−1(−rz,s − S1z). (14b)

Because of its symmetric indefinite form and the fact that formation of Z−1S
is trivial, the system (14a) is convenient to solve in general. (Further reduction
is possible for QPs with special structures, as we discuss in Section 5.) Storage
for the matrix in (14a) is allocated in the LinearSystem class, but the methods
for placing Q , A, and C into this data structure are implemented in the Data
class.

3.3 Variables Class

The methods in the Variables class are defined as pure virtual functions be-
cause they strongly depend on the structure of the variables and the problem.
They are essential in the implementation of the algorithms. The derived
Variables class for the formulation (1) contains int objects that store the

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

Object-Oriented Software for Quadratic Programming • 69

problem dimensions n, mA, and mC and vector objects from the linear alge-
bra layer that store x, y , z, and s.

Methods in the Variables class include a method for calculating the comple-
mentarity gap µ (in the case of (1), this is defined by µ = zT s/mC); a method
for adding a scalar multiple of a given search direction to the current set of
variables; a method for calculating the largest multiple of a given search direc-
tion that can be added before violating the nonnegativity constraints; a method
for printing the variables in some format appropriate to their structure; and
methods for calculating various norms of the variables.

3.4 Residuals Class

The Residuals class calculates and stores the quantities that appear on the
right-hand side of the linear systems such as (5) and (7) that arise at each
interior-point iteration. These residuals can be partitioned into two categories:
the components arising from the linear equations in the KKT conditions, and the
components arising from the complementarity conditions. For the formulation
(1) and linear system (13), the components rQ , rA, and rC from (6) belong to the
former class, while rz,s belongs to the latter.

The main methods in the Residuals class are a method for calculating the
“linear equations” residuals; a method for calculating the current duality gap
(which for the formulation (1) is defined by (8)); a method for calculating the
residual norm; methods for zeroing the residual vectors; and methods for cal-
culating and manipulating the “complementarity” residuals as required by the
interior-point algorithm.

3.5 LinearSystem Class

The major operation at each iteration, computationally speaking, is the solu-
tion of a number of linear systems to obtain the predictor and corrector steps.
For the formulation (1), these systems have the form (13). At each iteration of
the interior-point method, such systems need to be solved two to six times, for
different choices of the right-hand side components but the same coefficient ma-
trix. Accordingly, it makes sense to separate logically the operations of factoring
this matrix and solving for a specific right-hand side.

We use the term “factor” in a general sense, to indicate the part of the so-
lution process that is independent of the right-hand side. The factor method
could involve certain block-elimination operations on the coefficient matrix,
together with an LU , LDLT , or Cholesky factorization of a reduced system.
Alternatively, when an iterative solver is used, the factor operation could in-
volve computation of a preconditioner. The factor method may need to store
data, such as a permutation matrix, triangular factors of a reduced system, or
preconditioner information, for use in subsequent solve operations. We use the
term “solve” to indicate that part of the solution process that takes a specific
right-hand side and produces a result. Usually, the results of the “factor” method
are used to facilitate or speed the solve process. Depending on the algorithm
we employ, the solve method could involve triangular back-and-forward

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

70 • E. M. Gertz and S. J. Wright

substitutions, matrix-vector multiplications, applications of a preconditioner,
or permutation of vector components.

We describe possible implementations of factor for the formulation (1). One
possibility is to apply a symmetric indefinite factorization routine directly to
the formulation (14a). The solve would use the resulting factors and the per-
mutation matrices to solve (14a) and then substitute into (14b) to recover 1s.
Another possible approach is to perform another step of block elimination and
obtain a further reduction to the form[

Q + CT ZS−1C AT

A 0

] [
1x
−1y

]
=
[−rQ − CT S−1(ZrC + rz,s)

−rA

]
. (15)

Again, factor could apply a symmetric indefinite factorization procedure to
the coefficient matrix in this system. This variant is less appealing than the
approach based on (14a), however, since the latter approach allows the fac-
torization routine to compute its own pivot sequence, while in (15) we have
partially imposed a pivot ordering on the system by performing the block elimi-
nation. However, if the problem (1) contained no equality constraints (that is, A
and b null), the approach (15) might make sense, as it would allow a symmetric
positive definite factorization routine to be applied to the matrix Q+CT ZS−1C.

An alternative approach would be to apply an iterative method such as
QMR [Freund 1993; Freund and Nachtigal 1991] or GMRES [Walker 1989]
(see also Kelley [1995]) to the system (14a). Under this scenario, the role of
the factor routine is limited to choosing a preconditioner. Since some elements
of the diagonal matrix Z−1S approach zero while others approach ∞, a diag-
onal scaling that ameliorates this effect should be part of the preconditioning
strategy.

The arguments of factor include instances of Variables and Data, which
suffice to define the matrix fully. The information generated by factor is stored
in the LinearSystem class, to be used subsequently by the solve method. The
solve method accepts as input a Data object, a Variables object containing
the current iterate, and a Residuals object containing the right-hand side of the
linear system to be solved. It uses the information generated by factor to solve
the linear system and returns an instance of Variables that contains the solu-
tion. Both factor and solve are pure virtual functions; their implementation
is left to the derived class, since they depend strongly on the problem structure.

3.6 Linear Algebra Classes

In the preceding section, we discussed the structure-independent algorithmic
classes of the QP solver layer and the structure-dependent problem-specific
classes of the problem formulation layer. None of these classes, however,
supplies the behavior that allows the user to perform the linear algebra op-
erations needed to solve an optimization problem. These classes are supplied
by the linear algebra layer. The problem formulations supplied with OOQP are
written entirely in terms of abstract operation of this layer.

The same basic requirements for linear algebra operations and data struc-
tures recur in many different problem formulations. Regardless of the origin of

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

Object-Oriented Software for Quadratic Programming • 71

the QP, the Variable, Data, and LinearSystem classes need to perform saxpy, dot
product, and norm calculations. Furthermore, many sparse problems need to
store and operate on matrices in a Harwell-Boeing format. If we chose to reim-
plement these linear algebra operations and operations and data structures
inside each of the problem-dependent classes wherever they were needed, we
would have faced an explosion in the size and complexity of our code.

Our approach to the linear algebra classes is to identify the basic operations
that are used repeatedly in our problem-dependent implementations and pro-
vide these as methods. As far as possible, we use existing packages such as
BLAS, LAPACK, MA27, and PETSc to supply the behavior needed to imple-
ment these methods. We are not striving to provide a complete linear algebra
package, merely one that is useful in implementing interior-point algorithms.
For this reason, we do not implement many BLAS operations, whereas certain
operations common to interior-point algorithms, but rare elsewhere, are given
equal status with the BLAS-type routines.

The primary abstract classes in the linear algebra layer are OoqpVector,
GenMatrix, and SymMatrix, which represent mathematical vectors, matrices,
and symmetric matrices, respectively. The DoubleLinearSolver class, which
represents linear equation solvers, is also part of this layer. Because most of
the methods of these classes represent mathematical operations and are named
according to the nature of the operation, the interested reader can learn about
the range of implemented methods by referring to the source code. We have
provided concrete implementations of the linear algebra layer that perform
operations on a single processor, using both dense and sparse representations
of matrices, and an implementation that uses PETSc to represent vectors and
matrices as objects on a distributed system.

3.7 Use of Classes and Layers in OOQP: An Illustration

We now give a specific example of how the three layers in OOQP interact with
each other. The start method of the Solver class implements a heuristic to
determine the starting point. Since this particular heuristic has proven to be
effective regardless of the specific problem structure, it is part of the QP solver
layer—the top layer. The code used to implement this method is as follows.

void Solver::start(Variables * iterate, Data * prob,
Residuals * resid, Variables * step)

{
double sdatanorm = sqrt(prob->datanorm()); /* 1 */
double a = sdatanorm, b = sdatanorm; /* 2 */

iterate->interiorPoint(a, b); /* 3 */
resid->calcresids(prob, iterate); /* 4 */
resid->set_r3_xz_alpha(iterate, 0.0); /* 5 */

sys->factor(prob, iterate); /* 6 */
sys->solve(prob, iterate, resid, step); /* 7 */
step->negate(); /* 8 */

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

72 • E. M. Gertz and S. J. Wright

iterate->saxpy(step, 1.0); /* 9 */
double shift = 1.e3 + 2*iterate->violation(); /* 10 */
iterate->shiftBoundVariables(shift, shift); /* 11 */

}

We describe each line in this code by referring to the way in which it would be
implemented for the particular formulation (1). We emphasize, however, that
the matrices Q , A, and C specific to this formulation appear nowhere in the
code for the start method. Rather, they are represented by the prob variable
of the Data class. Likewise, this code does not refer to the residuals rQ , rA, and
rC but rather has a variable resids that represents the residuals with some
unspecified structure.

Lines 1 and 2 set the scalar variables a and b to be the square root of the
norm of the data. The norm of the data is computed by invoking the datanorm
method on prob. For formulation (3) the data norm is defined to be magnitude
of the largest element in the matrices Q , A, and C and the vectors c, b, and d .

In line 3, we invoke the interiorPoint method in iterate to fix an initial
point that satisfies the nonnegativity constraints strictly. For formulation (1),
this method sets x and y to zero, all the components of z to a, and all the
components of s to b.

The call to calcresids in line 4 calculates the value of the residuals of the
primal-dual system, through formulas similar to (6c)–(6e). Line 5 sets the com-
plementarity part of the residuals to their affine scaling value, and lines 6–8
solve the affine scaling system, which for (1) has the form (5).

We next invoke the saxpy method on iterate to take the full affine scaling
step, in other words to compute

(x, y , z, s)← (x, y , z, s)+ (1xaff,1yaff,1zaff,1saff).

This step is likely to result in an iterate that is infeasible. The violation
method in line 10 calculates the amount by which the variables violate their
bounds; for (1) the formula is maxi=1,2,...,mC max(−zi,−si, 0). We calculate a shift
large enough to make the iterate feasible, and apply this shift by invoking the
shiftBoundVariables method, for formulation (1) setting z ← z + shift and
s← s+ shift.

All the operations used in the start method are part of the abstract problem
formulation layer. They refer to operations in the problem formulation layer,
avoiding altogether references to the specific problem structure. The problem
formulation layer is in turn built upon the abstract operations in the linear
algebra layer. Take, for example, the implementation of the negate method for
the formulation (1), which is defined as follows:

void QpExampleVars::negate()
{

x->negate(); y->negate();
z->negate(); s->negate();

}

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

Object-Oriented Software for Quadratic Programming • 73

This method specifically references the fact that the variables have an x, y , z
and s component. On the other hand, it makes no reference to how these vari-
ables are stored on a computer. They may be all in the core memory of a single
processor or distributed across many processors. Managing such low-level de-
tails is the responsibility of the linear algebra layer. The problem formulation
layer need only invoke abstract operations from this layer, in this case the
negate method of the OoqpVector class.

4. OTHER CLASSES

In this section, we describe some useful classes, also provided with OOQP, that
don’t fit into the framework described in the preceding section.

4.1 Status and Monitor Classes

OOQP is designed to operate both in a stand-alone context and as part of a
larger code. Since different termination criteria and different amounts of in-
termediate output are appropriate to different contexts, we have designed the
code to be flexible in these matters. An abstract Monitor class is designed to
monitor the algorithm’s progress, and an abstract Status class tests the status
of the algorithm after each iteration, checking whether the termination criteria
are satisfied.

The two implementations of the Solver class in OOQP each provide their own
defaultMonitor and defaultStatus methods. Users who wish to modify the
default functionality can simply create a subclass of the Solver class that over-
rides these default implementations. However, since OOQP delegates responsi-
bility for these functions to Monitor and Status classes, an alternative mecha-
nism is available. Users can create subclasses of Monitor and Status, redefining
the doIt method in these classes to carry out the functionality they need.

4.2 MpsReader Class

The MPS format has been widely used since the 1950s to define linear pro-
gramming problems. It is an ASCII file format that allows naming of the vari-
ables, constraints, objectives, and right-hand sides in a linear program, and
assignment of numerical values that define the data objects. Extensions of the
format to allow definition of quadratic programs have been proposed by various
authors, most notably Maros and Mészáros [1999]. The key extension is the ad-
dition of a section to the MPS file that defines elements of the Hessian. Though
primitive by the standards of modeling languages, MPS remains a popular
format for defining linear programming problems, and many test problems are
specified in this format.

OOQP includes an MpsReader class that reads MPS files. The main input
method in the MpsReader class is readQpGen, which reads a file in the extended
MPS format described in Maros and Mészáros [1999] into the data structures
of the class QpGenData, a derived class of Data for general sparse quadratic
programs. The names assigned to primal and dual variables in the MPS input
file are stored for later use in the output method printSolution.

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

74 • E. M. Gertz and S. J. Wright

5. IMPLEMENTING DERIVED CLASSES FOR STRUCTURED QPS

In this section, we illustrate the use of the OOQP framework in implementing
efficient solvers for some highly structured quadratic programming applica-
tions. We give a brief description of how some of the derived classes for Data,
Variables, Residuals, and LinearSystem are implemented in a way that re-
spects the structure of these problem types.

5.1 Huber Regression

Given a matrix A ∈ IR`×n and a vector b ∈ IR`, we seek the vector x ∈ IRn that
minimizes the objective function∑̀

i=1

ρ((Ax − b)i), (16)

where

ρ(t) =
{ 1

2 t2, |t| ≤ τ,
τ |t| − 1

2τ
2, |t| > τ,

where τ is a positive parameter. The function behaves like a least-squares loss
function for small values of the residuals and like the more robust `1 function
for larger residuals, so its minimizer is less sensitive to “outliers” in the data
than is the least-squares function. By setting the derivative of (16) to zero,
we can formulate this problem as a mixed monotone linear complementarity
problem by introducing variables w, λ1, λ2, γ 1, γ 2 ∈ IR` and writing

w − Ax + b+ λ2 − λ1 = 0, (17a)
AT w = 0, (17b)
γ 1 = w + τe, (17c)
γ 2 = −w + τe, (17d)

γ 1 ≥ 0 ⊥ λ1 ≥ 0, (17e)
γ 2 ≥ 0 ⊥ λ2 ≥ 0. (17f)

Mangasarian and Musicant [2000, formula (9)] show that the conditions (17)
are the optimality conditions of the following quadratic program:

min
1
2

wT w + τeT (λ1 + λ2),
(18a)

subject to w − Ax + b+ λ2 − λ1 = 0, λ1 ≥ 0, λ2 ≥ 0.

Li and Swetits [1998] derive an alternative quadratic program that yields the
optimality conditions (17), namely,

min
1
2

wT w + bT w, subject to − AT w = 0, −τe ≤ w ≤ τe. (19)

Both forms and their relationship are discussed by Wright [2001]. Obviously,
both have a highly specific structure: The Hessian is simply the identity matrix,
the constraint matrix in (18) is sparse and structured, and the bounds in (19)
can all be defined by a scalar τ .

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

Object-Oriented Software for Quadratic Programming • 75

OOQP contains an implementation of a solver for this problem in the direc-
tory src/Huber. The HuberData class, derived from Data, contains the dimen-
sions of the matrix A and storage for τ as well as A and b. (The structures for
both A and b are dense, since these quantities are expected to be dense in most
applications.) The HuberData class also contains a method textInput that reads
the contents of A and b from a file in a simple format. For benchmarking pur-
poses, it also contains a method datarandom for defining a problem of specified
dimensions with random data.

The HuberVars structure, which derives from Variables, contains vectors of
doubles to store w, z, λ1, λ2, γ 1 and γ 2. The methods for HuberVars are defined
in a way appropriate to the data structures; for example, µ is calculated as

[(λ1)Tγ 1 + (λ2)Tγ 2]
(2`)

.

In the Residual class HuberResiduals, four vectors are defined to hold the
residuals corresponding to the first four equations in (17), while two more vec-
tors hold residuals corresponding to the complementarity conditions λ1

i γ
1
i = 0,

i = 1, 2, . . . , ` and λ2
i γ

2
i = 0, i = 1, 2, . . . , `, respectively.

The linear systems to be solved at each iteration of the primal-dual algorithm
applied to this problem have the following general form:

I −A −I I 0 0
AT 0 0 0 0 0
−I 0 0 0 I 0
I 0 0 0 0 I
0 0 01 0 31 0
0 0 0 02 0 32





1w
1x
1λ1

1λ2

1γ 1

1γ 2

 =


rw
rx
rλ1
rλ2
rγ1
rγ2

 .

By performing block elimination, we can reduce to a much smaller system of
the form

AT (I + (01)−131 + (02)−132)−1 A1x = r̄x . (20)

(Note that the matrix I + (01)−131 + (02)−132 is diagonal and therefore easy
to form and invert.) The factor method in the derived class HuberLinsys forms
the coefficient matrix in (20) and performs a Cholesky factorization, storing
the triangular factor L. The solve method performs the corresponding block
eliminations on the right-hand side vector to obtain r̄x in (20), solves this system
to obtain 1x, and then recovers the other components of the solution. The cost
of each factor is O(n2` + n3), while the cost of each solve is O(n`). Since n is
typically small, both operations are economical.

5.2 Support Vector Machines

The following problem that arises in machine learning (Vapnik [1999, Chap. 5]):
Given a set of points xi ∈ IRn, i = 1, 2, . . . , `, where each point is tagged with a
label yi that is either +1 or −1, we seek a hyperplane such that all points with
label yi = +1 lie on one side of the hyperplane while all points labeled with −1
lie on the other side. That is, we would like the following properties to hold for

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

76 • E. M. Gertz and S. J. Wright

some w ∈ IRn and β ∈ IR:

yi = +1⇔ wT xi − β > 0; yi = −1⇔ wT xi − β < 0,

or, equivalently, yi(wT xi − β) > 0, i = 1, 2, . . . , `. By scaling w and β appropri-
ately, we see that if such a hyperplane exists, we have without loss of generality
that

yi(wT xi − β) ≥ 1, i = 1, 2, . . . , `. (21)

If such a plane exists, the data is said to be separable. For nonseparable data, one
may still wish to identify the hyperplane that minimizes the misclassification
in some sense; we would like to have not too many points lying on the wrong
side of the hyperplane. One formulation of this problem is as follows [Vapnik
1999, p. 137]:

min
1
2

wT w + CeT ξ, subject to (22a)

yi(wT xi − β) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , `. (22b)

The unknowns are the hyperplane variables (w, β) and the vector ξ ∈ IR` that
measures violation of the condition (21). The positive parameter C weighs our
desire to minimize the classification violations against a desire to keep ‖w‖ of
reasonable size. In a typical problem, the dimension n of the space in which
each xi lies is not very large (10–100, say), while the number of points ` can
be quite large (103–107). Hence, the problem (22) can be a very large, highly
structured quadratic program.

Denoting

Y = [yixi]`i=1 , b = [yi]`i=1 ,

we can rewrite (22) as follows:

min
w,β,ξ

1
2

wT w + CeT ξ subject to Y w + ξ − βb ≥ e, ξ ≥ 0. (23)

By writing the optimality conditions for this system and applying the usual
derivation of the primal—dual equations, we arrive at the following general
form for the linear system to be solved at each interior-point iteration.

I −Y T

Y I −I 0 −b
−I −I
bT

S V
T 4




1w
1v
1ξ

1s
1t
1β

 =


rw
rβ
rC
rb

rSV
rT4

 .

By performing successive block eliminations in the usual style, we arrive at a
reduced system in the variables1w and1β alone, with the following coefficient
matrix: [

I + Y T DY −Y T Db
−bT DY bT Db

]
, where D = (V−1S + T−14)−1.

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

Object-Oriented Software for Quadratic Programming • 77

This matrix has dimension n + 1 and requires O(n2`) operations to form. It
takes O(n3 + n`) operations to solve the reduced system and to recover the
eliminated components.

The OOQP distribution contains an implementation of an SVM solver in
directory src/Svm. The SvmData class, a subclass of Data, stores the dimensions
hyperplanedim (n) and nobservations (`), the objects Y and b stored as a dense
matrix [Y | b], the object b stored as a vector, and the penalty constant C. It
also contains methods to multiply given vectors by [Y | b] and its transpose, a
method to read input from an ASCII file in a simple format, a method to form
the inner product of a given vector with b, and methods to generate random
data and to print the data objects. The subclass SvmVars of Variables consists
of dense vectors containing w, β, ξ , v, s, and t, together with a method to print
the solution, a method to print just the interesting part of the solution (w and
β), and the pure virtual methods required by the parent Variables class. The
subclasses SvmResiduals (of Residuals) and SvmLinsys (of LinearSystem) are
defined in such as way as to facilitate the approach described in the previous
paragraph for solving the linear systems.

5.3 Convex Quadratic Programming with Bound Constraints

Consider the following convex QP in which the only constraints are upper and
lower bounds on selected variables:

minx
1
2

xT Qx + cT x subject to (24a)

xi ≥ li, i ∈ L, xi ≤ ui, i ∈ U , (24b)

where L and U are subsets of {1, 2, . . . , n}. We define the following row subma-
trices of I , corresponding to the constraint index sets L and U :

EL =
[
eT

i

]
i∈L , EU =

[
eT

i

]
i∈U ,

where ei is the vector whose only nonzero element is a “1” in position i. Intro-
ducing slack variables si, i ∈ L for the lower bounds and ti, i ∈ U for the upper
bounds, and Lagrange multipliers vi and zi for the lower and upper bounds,
respectively, we obtain the following optimality conditions:

Qx − ET
L v+ ET

U z = −c,
ELx − s = l ,
EUx + t = u,

s ≥ 0 ⊥ v ≥ 0,
t ≥ 0 ⊥ z ≥ 0,

where l = [li]i∈L, v = [vi]i∈L, and so on. By writing the general form of the
primal-dual linear system and performing the now familiar block elimina-
tion process, we arrive at a reduced system in the step 1w whose coefficient
matrix is

Q̄ def= Q + ET
L S−1 VEL + ET

U T−1 ZEU . (25)

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

78 • E. M. Gertz and S. J. Wright

The second and third terms are diagonal matrices with nonzero elements oc-
curring at diagonal locations corresponding to L (for the second term) and U
(for the third term).

The matrix (25) is symmetric and positive semidefinite. One possibility there-
fore is to solve it with a sparse Cholesky factorization code, modified to allow
for small pivots. A second possibility is to apply an iterative method, most suit-
ably a preconditioned conjugate gradient approach. Some of the diagonals in
the second and third terms of (25) approach∞ as the algorithm approaches the
solution, and the preconditioner should at a minimum improve the condition-
ing of the system solved. Specifically, defining a diagonal preconditioner D as
follows:

Dii
def= max

((
ET
L S−1 VEL + ET

U T−1 ZEU
)

ii, 1
)
,

and applying the preconditioner symmetrically to obtain

D−1/2 Q̄ D−1/2, (26)

we would obtain a matrix that approaches a symmetric permutation of the
following: [

Q̂ 0
0 I

]
,

where Q̂ is the reduced Hessian (the submatrix of Q corresponding to the
components of x that are away from their bounds at the solution). An additional
level of preconditioning (for example, incomplete Cholesky) could be applied to
the matrix in (26) to further enhance the convergence properties of conjugate
gradient.

The OOQP distribution contains an implementation of a solver for (24) for
a dense Hessian. The QpBoundData subclass of Data stores Q as a SymMatrix
object, and c, l , and u as SimpleVector objects containing n elements—the
bound vectors store even their zero elements. Two other SimpleVector ob-
jects index lower and index upper of length n represent the information in
L and U ; they contain nonzero elements in locations corresponding to the el-
ements of L and U , respectively. Note that the class QpBoundData itself does
not mandate a dense storage scheme; only when an instance of this class is
created by the method QpBoundDense::makeData() is the storage scheme for
Q actually defined to be dense. (We could implement an alternative method
QpBoundSparse::makeData() that uses the same definition of QpBoundData but
uses a sparse storage scheme for Q instead.)

The QpBoundData class also contains a datarandom() method to generate
a random problem with specified dimension. The QpBoundVars subclass of
Variables stores x, s, t, v, and z as OoqpVector objects of size n and uses the
index lower and index upper vectors from the QpBoundData class to indicate
which elements of s, t, v, and z are of real interest. QpBoundResiduals is a
subclass of Residuals that implements the pure virtual methods in a straight-
forward way, while the QpBoundLinsys subclass of LinearSystem sets up the
matrix (25) as a dense symmetric matrix and uses the LAPACK implementa-
tion of Cholesky factorization to solve it.

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

Object-Oriented Software for Quadratic Programming • 79

We have also implemented a solver for a sparse version of (24) that uses
iterative methods from the PETSc library to solve the main linear system
at each iteration. The PETSc version uses the same problem formulation
classes as the dense version: QpBoundData, QpBoundResiduals, QpBoundVars, and
QpBoundLinsys. It uses, however, a completely different linear algebra layer (see
Section 3).

6. OOQP DISTRIBUTION

The OOQP distribution archive can be obtained from

http://www.cs.wisc.edu/∼swright/ooqp/
To install OOQP on a Unix system, follow the download procedure to obtain a
gzipped tar file, and unpack to obtain a directory OOQP. Refer to the file INSTALL
in this directory for information on setting up the environment required by
OOQP (for example, ensuring that a BLAS library is available and obtaining
the MA27 package from the HSL Archive) and building OOQP executables
for the various solvers. The README file contains basic information about the
contents of the distribution directory, the problems solved, and locations of the
documentation. In particular, by pointing a browser at the file doc/index.html,
one can obtain pointers to comprehensive documentation of various types.

By default, the configure-make process builds executables for the following
solvers:

—two solvers for general sparse QPs, using Mehrotra’s original algorithm and
Gondzio’s variant, respectively, and solving linear equations with MA27 in
both cases;

—two solvers for general dense QPs, using Mehrotra’s original algorithm and
Gondzio’s variant, respectively;

—a solver for the QP with bounds described in Section 5.3, with dense Hessian;
—a solver for Huber regression, described in Section 5.1;
—a solver for QPs arising from support vector machines, described in

Section 5.2.

Interfaces that make some of the functionality of these solvers available via
the AMPL modeling language and MATLAB are also included in the distribu-
tion but are not configured in the default build process. For AMPL, a solver for
general sparse QP is available; instructions for building this solver are included
in the INSTALL file. The OOQP distribution provides MATLAB functionality for
reading MPS input files, calling a solver for general sparse QP, and calling
solvers for SVM and Huber regression problems. Instructions for building the
MATLAB interface can be found in the file README Matlab.

ACKNOWLEDGMENTS

We thank Jeff Linderoth, who collaborated on this project during his time at
Argonne in 1998–2000, and Nate Brixius and Bjarni Halldorsson, who con-
tributed to the early stages of this project in the summer of 1999. We also thank

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

80 • E. M. Gertz and S. J. Wright

Iain Duff for his advice regarding the MA27 and MA57 codes, Alex Pothen for
supplying Oblio, and Hans Mittelmann for his efforts in benchmarking this and
many other optimization codes.

REFERENCES

BALAY, S., GROPP, W., CURFMAN MCINNES, L., AND SMITH, B. 2001. PETSc Users Manual. Mathemat-
ics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne,
Ill. 60439, Apr.

BARTLETT, R. 1996. An introduction to rSQP++: An object-oriented framework for reduced-space
successive quadratic programming. Report, Department of Chemical Engineering, Carnegie Mel-
lon University, Pittsburgh, Oct.

BENSON, S., CURFMAN MCINNES, L., AND MORÉ, J. J. 2001. TAO users manual. Technical Memoran-
dum ANL/MCS-TM-249, Argonne National Laboratory, Argonne, Ill. Mar.

BRUASET, A. M. AND LANGTANGEN, H. P. 1997. Object-oriented design of preconditioned iterative
methods in Diffpack. ACM Trans. Math. Softw. 23, 1, 50–80.

CHOW, E. AND HEROUX, M. A. 1998. An object-oriented framework for block preconditioning. ACM
Trans. Math. Softw. 24, 2, 159–183.

CZYZYK, J., MEHROTRA, S., WAGNER, M., AND WRIGHT, S. J. 1999. PCx: An interior-point code for
linear programming. Optimization Methods and Software 11/12, 397–430.

DEMMEL, J. W., GILBERT, J. R., AND LI, X. S. 1999. SuperLU User’s Guide. Available from www.

nersc.gov/xiaoye/SuperLU/.
DENG, H. L., GOUVEIA, W., AND SCALES, J. 1994. The CWP object-oriented optimization library.

Technical report, Center for Wave Phenomena, Colorado School of Mines, June.
DOBRIAN, F., KUMFERT, G., AND POTHEN, A. 2000. The design of sparse direct solvers using object-

oriented techniques. In Modern Tools in Scientific Computing A. M. Bruaset, H. P. Langtangen,
and E. Quak, Ed., Springer-Verlag, New York.

DOBRIAN, F. AND POTHEN, A. 2000. Oblio: A sparse direct solver library for serial and parallel
computations. Tech. Rep. Department of Computer Science, Old Dominion Univ.

DUFF, I. S. AND REID, J. K. 1982. MA27 – A set of Fortran subroutines for solving sparse symmetric
sets of linear equations. Tech. Rep. AERE R10533, AERE Harwell Laboratory, London, England.

FERRIS, M. C. AND MUNSON, T. S. 2003. Interior-point methods for massive support vector machines.
SIAM, J. Optim. 13, 783–804.

FREUND, R. 1993. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear
systems. SIAM J. Sci. Comput. 14, 470–482.

FREUND, R. AND NACHTIGAL, N. 1991. QMR: A quasi-minimal residual method for non-Hermitian
linear systems. Numer. Math. 60, 315–339.

GERTZ, E. M. AND WRIGHT, S. J. 2001. OOQP User Guide. Mathematics and Computer Science Di-
vision, Argonne National Laboratory, Argonne, Ill., September 2001. Available from http://www.

cs.wisc.edu/∼swright/OOQP/.
GOCKENBACH, M. AND SYMES, W. 1999. An overview of HCL1.0. ACM Trans. Math. Softw. 25, 191–

212.
GONDZIO, J. 1996. Multiple centrality corrections in a primal-dual method for linear program-

ming. Comput. Opt. Appl. 6, 137–156.
GONDZIO, J. AND SARKISSIAN, R. 2002. Parallel interior-point solver for structured linear pro-

grams. Tech. Rep. MS-2000-025, Department of Mathematics and Statistics, The University of
Edinburgh, Edinburgh, U.K., to appear in Math. Prog.

HSL: A collection of Fortran codes for large scale scientific computation, 2000. Full details in
http://www.numerical.rl.ac.uk/hsl.

KELLEY, C. T. 1995. Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied
Mathematics, No. 16. SIAM Publications, Philadelphia, Pa.

LI, W. AND SWETITS, J. J. 1998. The linear `1 estimator and the Huber M-estimator. SIAM J.
Optimiz. 8, 457–475.

MANGASARIAN, O. L. AND MUSICANT, D. R. 2000. Robust linear and support vector machines. IEEE
Trans. Patt. Analy. Mach. Int. 22, 9, 1–6.

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

Object-Oriented Software for Quadratic Programming • 81

MAROS, I. AND MÉSZÁROS, C. 1999. A repository of convex quadratic programming problems. Optim.
Meth. Softw. 11, and 12(Dec.) 671–681.

MEHROTRA, S. 1992. On the implementation of a primal-dual interior point method. SIAM J.
Optim. 2, 575–601.

VAPNIK, V. N. 1999. The Nature of Statistical Learning Theory. Statistics for Engineering and
Information Science, Ed. Springer-Verlag, New York.

WALKER, H. 1989. Implementation of the GMRES method using Householder transformations.
SIAM, J. Sci. Stat. Comput. 9, 815–825.

WRIGHT, S. J. 1997. Primal-Dual Interior-Point Methods. SIAM Philadelphia, Pa.
WRIGHT, S. J. 2001. On reduced convex QP formulations of monotone LCPs. Math. Prog. 90,

459–473.

Received October 2001; revised December 2002; accepted December 2002

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.

