

Stack Inspection: Theory and Variants

CÉDRIC FOURNET and ANDREW D. GORDON Microsoft Research

Stack inspection is a security mechanism implemented in runtimes such as the JVM and the CLR to accommodate components with diverse levels of trust. Although stack inspection enables the fine-grained expression of access control policies, it has rather a complex and subtle semantics. We present a formal semantics and an equational theory to explain how stack inspection affects program behavior and code optimisations. We discuss the security properties enforced by stack inspection, and also consider variants with stronger, simpler properties.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory; D.3.3 [Programming Languages]: Language Constructs and Features; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages; F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs; K.6.5 [Management of Computer and Information Systems]: Security and Protection

General Terms: Languages, Security, Theory

Additional Key Words and Phrases: Access control, contextual equivalence, equational reasoning, operational semantics, stack inspection

1. SECURITY BY STACK INSPECTION?

Stack inspection is a software-based access control mechanism. Its purpose is to allow components with diverse origins to share the same runtime and access its resources in a controlled manner, according to their respective levels of trust. It is a key security mechanism in typed runtime environments such as the JVM [Lindholm and Yellin 1997; Gong 1999] and the CLR [Box 2002; LaMacchia et al. 2002] that support distributed computation based on mobile code. It enables the fine-grained expression of access control policies, and hence is more liberal and flexible than a strict sandboxing mechanism. It has received much attention in the literature [Jensen et al. 1999; Erlingsson and Schneider

A shortened version of this article appeared in the *Proceedings of the 29th ACM Symposium on Principles of Programming Languages* (Portland, Ore., Jan.), ACM, New York, 2002, pp. 307–318. A technical report version of this article includes additional proofs, and is available at http://research.microsoft.com/scripts/pubs/view.asp?TR_ID=MSR-TR-2001-103.

Authors' address: Microsoft Research, 7 J J Thomson Avenue, Cambridge CB3 0FB, United Kingdom; email: adg@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2003 ACM 0164-0925/03/0500-0360 \$5.00

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003, Pages 360-399.

2000; Karjoth 2000; Skalka and Smith 2000; Wallach et al. 2000; Pottier et al. 2001; Bartoletti et al. 2001; Besson et al. 2001]. Now, stack inspection is often marketed as a feature that:

- (1) allows security-conscious developers, such as the authors of trusted libraries, to express their security requirements easily and precisely, and
- (2) can safely be ignored by everyone else.

We began this work with the realization that these two claims are problematic and need careful qualification:

- (1) The first problem is that stack inspection, as its name suggests, is usually thought of in specific, low level terms. It seems to be remarkably hard to give a general account of what actually is guaranteed by stack inspection. Hence, it can be difficult to assess whether it is correctly implementing a higher level security policy. Besides, certain higher-order features, such as threads and method delegation, need careful treatment.
- (2) The second problem is that stack inspection profoundly affects the semantics of all programs. In particular, it invalidates a wide variety of program transformations, such as inlining and tail call optimisations.

We address these two problems in the setting of a λ -calculus model [Skalka and Smith 2000; Pottier et al. 2001] of stack inspection. We formally state some of the guarantees given by stack inspection and suggest variations of stack inspection with stronger, simpler properties. We develop an equational theory of stack inspection that helps to highlight its subtle effects and also justifies certain transformations.

Having outlined our motivations, we next review the ideas of stack inspection. Then we elaborate on the difficulties it raises. We close this introductory section by describing our contributions in more detail.

1.1 An Outline of Stack Inspection

The situation addressed by stack inspection mechanisms is as follows: Applications are collections of components, possibly compiled from different languages, that share the same runtime. Components have a variety of origins, more or less trusted. Some mechanism—such as scoping or typing rules—prevents direct access from untrusted components to resources protected by trusted components. Still, untrusted code may call trusted code, and the other way round.

We express access to different kinds of protected resources in terms of permissions, such as "may perform screen I/O" or "may perform file I/O." A configurable policy determines the access rights available to each component given evidence of its origin, that is, where it came from and who wrote it. The access rights are simply a set of allowed permissions. Here, we abstract from the details of policy and evidence, and simply refer to this set of permissions itself as the *principal* that owns the code.

For example, a *System* principal might consist of all permissions, whereas an *Applet* principal might consist of a very limited set of rights, including "may perform screen I/O," but not including "may perform file I/O."

During compilation and loading, but before execution, each function or method body securely receives an annotation (here called a *frame*) specifying the principal owning it.

During execution, when trusted code is about to access some protected resource, it invokes the stack inspection primitive (here called *test*) to determine whether the appropriate permission is present. A first requirement is that its immediate caller be statically annotated with the permission. In fact, the basic algorithm is to inspect the whole call stack to ensure that indirect callers as well as the immediate caller are all statically annotated with the permission. The purpose of inspecting the whole stack is to prevent the possibility that untrusted code lacking the permission could somehow cause an indirect call to a trusted function that itself accesses the resource—an instance of the Confused Deputy attack [Hardy 1988; Wallach et al. 2000]. Abstractly, this basic algorithm computes a compound principal whose access rights are the intersection of the access rights of all the principals on the stack, and then checks whether this compound principal has the appropriate permission.

The full algorithm allows trusted code to invoke a primitive (here called *grant*) to override the inspection of its callers for some permissions and hence to assert responsibility for use of those permissions in every context.

For example, suppose some *System*-owned function implementing screen I/O needs to write into a log-file, for performance debugging purposes, and hence needs the "may perform file I/O" permission. If this function is called by an *Applet*-owned function, access to the log-file is denied because *Applet* does not have the "may perform file I/O" permission. The function would override inspection of its callers for the "may perform file I/O" permission so that the file write is allowed even if its caller is *Applet*-owned.

1.2 Limitations of Stack Inspection

The point of stack inspection is to allow a component to protect its resources in spite of interactions with other components of diverse origin. The permissions authorized by stack inspection (the *test* primitive) are determined by a clever algorithm, outlined above, that scans control stacks on demand. The authorization decision depends solely on the current series of nested calls. Therefore, it does not depend on other kinds of interaction between software components. Such interactions include, for instance, the use of results returned by untrusted code, mutable state, inheritance, side effects, concurrency, and dynamic loading. These interactions are commonplace, and their impact on security must be addressed independently. In the formalism of this article, the problem appears when trusted and untrusted code exchange functions as values.

As a result, a careful analysis of any code that explicitly manipulates permissions may not in fact yield any strong guarantee (although it may reveal security problems). This significantly restricts the scope of stack inspection, in isolation. On the other hand, stricter mechanisms, based for instance on systematic flow analyses, yield stronger guarantees, but may be harder and more costly to implement and to use.

1.3 Living in Harmony with Stack Inspection

Assuming the target platform features stack inspection, the programmer faces two conflicting problems. Some untrusted component may take advantage of the programmer's code to breach security—this is potentially quite bad, but it is hard to characterize. A more immediate concern is that some permission may be missing in the middle of a computation involving this code (even if the code statically has those permissions); typically, an unexpected security exception is raised—this complies with the policy, but remains undesirable.

In addition, the compiler writer must deal with a specific problem: stack inspection makes the control stack observable; hence, the actual runtime stack must agree with the stack as it appears to the source program. This correctness issue hinders any program transformation that changes the structure of the stack. (A prerequisite to using stack inspection is to make the control stack apparent in the source language. This may be troublesome in declarative languages like, for instance, Haskell or Mercury.)

There are two further problems. Programmers and compiler writers may be concerned about the runtime costs incurred by stack inspection and by other operations on permissions. Besides, they have little control of the security policy that will be applied to their code, and must program without knowing exactly which static permissions their code will receive.

1.4 Contributions of the Article

We discuss stack inspection in the precise and abstract setting of λ_{sec} [Pottier et al. 2001], a call-by-value λ -calculus [Plotkin 1975] with notions of permissions, principals, and stack inspection. Previous studies of λ_{sec} focus on type systems for checking information about permissions. Here, we use the untyped λ_{sec} -calculus as a minimal formalism for investigating the runtime behavior of stack inspection.

- —We present the first equational theory for a calculus of stack inspection. We prove soundness of a primitive set of equations with respect to Morris-style contextual equivalence (Theorem 1), and completeness with respect to the reduction semantics (Theorem 2).
- —To obtain a co-inductive proof technique to justify our equational theory, we recast Abramsky's applicative bisimilarity for the λ_{sec} -calculus. We show that bisimilarity is a congruence by Howe's method (Theorem 3). Hence, we prove that bisimilarity in fact equals contextual equivalence (Theorem 4), admitting bisimulation-style proofs of program equivalence.
- —Applications of the equational theory include justification of compiler transformations, such as elimination of redundant frames and tests, and programming techniques, such as performing security tests eagerly to speed up stack inspection. Moreover, we use the equational theory to discuss the effect of stack inspection on inlining and tail call optimisations.
- —We explain how stack inspection can be understood as a form of data dependency analysis and, relying in part on our equational theory, discuss somewhat limited properties guaranteed by stack inspection (Theorems 5

and 6). We describe how stack inspection only partly fulfils its intent with respect to the higher-order features of $\lambda_{\rm sec}$. (Similar limitations arise in practice with side-effects, exception handling, and method delegates). We give precise rules for how stack inspection could be amended to overcome these limitations, and formalize guarantees provided by the amended semantics (Theorems 7 and 8).

Although the technical contributions of this paper are phrased in terms of a formalism, the formalism is not an end in itself: the development is inspired by a study of stack inspection in the CLR, in relation to the compilation of functional languages. It also suggests potential improvements and validates optimisations performed by its JIT compiler.

1.5 Contents

In Section 2, we recall (a variant of) λ_{sec} and give its operational semantics, as a security-indexed reduction semantics. In Section 3, we illustrate stack inspection and its limitations in a series of examples. In Section 4, we define contextual equivalence in the presence of stack inspection, we present our equational theory, and we use applicative bisimilarity to prove the soundness of the theory with respect to contextual equivalence. In Section 5, we study simple program transformations. In Section 6, we discuss the security guarantees provided by stack inspection, and compare it to simpler, stricter mechanisms that keep track of dependencies during evaluation. In Section 7, we discuss related works and conclude.

Two appendixes present alternative operational semantics for our variant of λ_{sec} . Appendix A presents a semantics in terms of explicit stack inspection, and shows it is equivalent to the small-step reduction semantics of Section 2. Appendix B presents a security-indexed big-step evaluation semantics, which provides a complementary viewpoint useful in proofs; it is also equivalent to the semantics of Section 2.

We omit most of the proofs of the results in Section 4. Detailed proofs are available in a companion technical report [Fournet and Gordon 2001]. A shortened version of this work appears as a conference paper [Fournet and Gordon 2002].

2. A CALCULUS OF STACK INSPECTION

We describe the syntax and informal semantics of a version of the λ_{sec} -calculus [Pottier et al. 2001], present an operational semantics, and explain how we use λ_{sec} to model loading components of diverse origins.

2.1 Syntax and Informal Semantics

We assume there is a set \mathcal{P} of atomic *permissions*. Let a *principal* be a subset of \mathcal{P} .

PERMISSIONS AND PRINCIPALS

$p,q \in \mathcal{P}$	permission	1
$R,S,T,D\subseteq\mathcal{P}$	principal: a set of permissions	

This presentation is a little more abstract than the original λ_{sec} , where a principal is a name, and a function maps each principal to its set of permissions. For our purposes, we may as well eliminate this indirection.

Expressions include variables, functions, and applications, as usual, plus constructs for stack inspection. A framed expression R[e] is the expression e framed with the principal e; the principal represents permissions conferred on the code e given its origin. We have e0 and e1 test expressions as discussed in the introduction. Finally, e1 is an exception, used, for example, to indicate a security failure.

EXPRESSIONS

ZIII IIIIOOTOTIO	
e, f ::=	expression
\boldsymbol{x}	variable
$\lambda x.e$	function
e f	application
R[e]	framed expression
grant R in e	permission grant
test R then e else f	permission test
fail	abnormal termination
,	***************************************

Abstractly, the behavior of an expression depends on two sets of permissions: the *static permissions*, S, and the *dynamic permissions*, D, with $D \subseteq S$. The static permissions are the principal in the nearest enclosing frame, an upper bound on the permissions available to the expression. The dynamic permissions are those effectively available at runtime; they represent what can be retrieved by a stack inspection. We consider a top-level expression to be fully trusted, so take the static and dynamic permission sets to be $\mathcal P$ initially.

The expression R[e] behaves as e, but with static permissions set to R, and dynamic permissions intersected with R. The expression $\operatorname{grant} R$ in e behaves as e, but with the dynamic permissions extended with all the static permissions that also appear in R. The expression $\operatorname{test} R$ then e else f behaves as e if all permissions in R are dynamic permissions, but otherwise behaves as f. The other expressions do not inspect or modify the permission sets. They behave as in a standard call-by-value λ -calculus with a single uncatchable exception fail and left-to-right evaluation order.

We follow some standard syntactic conventions. In a function $\lambda x.e$, the variable x is bound, with scope e. We write fv(e) for the set of variables occurring free in e, and write $e\{x\leftarrow e'\}$ for the outcome of a capture-avoiding substitution of the expression e' for each free occurrence of the variable x in e. An expression e is closed when $fv(e) = \varnothing$. We identify expressions up to capture-avoiding renamings of bound variables, that is, $\lambda x.e = \lambda x'.(e\{x\leftarrow x'\})$ if $x' \notin fv(e)$.

We introduce notions of *values* and *outcomes*. A value is a function or a variable; values represent the formal and actual arguments passed to a function. An outcome is a value or the exception *fail*; outcomes are fully reduced expressions.

VALUES AND OUTCOMES

$u, v := x \mid \lambda x.e$	value
$o ::= v \mid fail$	outcome

The first four of the following abbreviations are fairly standard. The fifth defines an arbitrary value ok to indicate normal termination in our examples. The last, $check\ p$ for e, represents a common idiom, a primitive in earlier formulations of $\lambda_{\rm sec}$ [Pottier et al. 2001; Skalka and Smith 2000]: test whether a single permission p is effectively available; if so, run e; otherwise, raise a security exception.

ABBREVIATIONS

```
\lambda x_1 \cdots x_n.e \stackrel{\triangle}{=} \lambda x_1 \dots \lambda x_n.e
let \ x = e_1 \ in \ e_2 \stackrel{\triangle}{=} (\lambda x.e_2) \ e_1
\lambda ..e \stackrel{\triangle}{=} \lambda x.e \quad \text{for any } x \not\in fv(e)
e_1; e_2 \stackrel{\triangle}{=} let \ ..e = e_1 \ in \ e_2
ok \stackrel{\triangle}{=} \lambda x.x
check \ p \ for \ e \stackrel{\triangle}{=} test \ \{p\} \ then \ e \ else \ fail
```

We adopt the standard syntactic conventions that applications associate to the left, and the scope of a bound variable extends as far to the right as possible.

Syntactic conventions

```
e_1 e_2 e_3 is read (e_1 e_2) e_3

\lambda x. e_1 e_2 is read \lambda x. (e_1 e_2)

let x = e_1 in e_2 e_3 is read let x = e_1 in (e_2 e_3)
```

2.2 Operational Semantics

We formalize the behavior of expressions as a small-step reduction relation, indexed by the security context: the relation $e \to_D^S e'$ means that, in a context with static permissions S and dynamic permissions D, the expression e may evolve to e'. We allow $e \to_D^S e'$ only when $D \subseteq S$.

REDUCTION RELATION

$$e o_D^S e'$$
 security-indexed reduction $(D \subseteq S)$

SECURITY-INDEXED REDUCTION RULES

$$\begin{array}{cccc} \text{(Ctx Rator)} & \text{(Ctx Rand)} \\ \underline{e_1 \rightarrow_D^S e_1'} & \underline{e_2 \rightarrow_D^S e_2'} \\ \overline{e_1 e_2 \rightarrow_D^S e_1' e_2} & v_1 \underline{e_2 \rightarrow_D^S v_1 e_2'} \\ \text{(Red Appl)} & \text{(Fail Rator)} & \text{(Fail Rand)} \\ (\lambda x.e) \, v \rightarrow_D^S e\{x \leftarrow v\} & \textit{fail } e \rightarrow_D^S \textit{fail} & v \textit{fail} \rightarrow_D^S \textit{fail} \\ \end{array}$$

 $ACM\ Transactions\ on\ Programming\ Languages\ and\ Systems,\ Vol.\ 25,\ No.\ 3,\ May\ 2003.$

$$\begin{array}{ccc} (\operatorname{Ctx} \operatorname{Frame}) & (\operatorname{Ctx} \operatorname{Grant}) \\ \underline{e \to_{D \cap R}^R e'} & \underline{e \to_{D \cup (R \cap S)}^S e'} \\ \overline{R[e] \to_D^S R[e']} & \overline{grant} \ R \ in \ e \to_D^S grant \ R \ in \ e' \\ \end{array}$$
 (Red Frame) (Red Grant) (Red Test)
$$R[o] \to_D^S o \quad grant \ R \ in \ o \to_D^S o \quad test \ R \ then \ e_{\operatorname{true}} \ else \ e_{\operatorname{false}} \to_D^S e_{R \subseteq D} \\ \end{array}$$

Rules (Ctx Rator), (Ctx Rand), and (Red Appl) implement call-by-value function evaluation; as usual, we do not reduce within function bodies. Rules (Fail Rator) and (Fail Rand) propagate exceptions through applications. The context rules (Ctx Frame) and (Ctx Grant) specify how a frame and a grant, respectively, manipulate permission sets, as described above. Rules (Red Frame) and (Red Grant) discard a frame and a grant, respectively, once its body has reduced to an outcome—this reflects the deletion of the actual stack frame for that body. Finally, (Red Test) specifies how a test inspects the dynamic permission set.

As usual, contexts $\mathcal C$ are expressions with a placeholder (\cdot) and evaluation contexts $\mathcal E$ are the contexts derived from the (Ctx-) rules:

$$\mathcal{E}(\cdot) := (\cdot) + \mathcal{E}(\cdot)e + v \mathcal{E}(\cdot) + R[\mathcal{E}(\cdot)] + grant R in \mathcal{E}(\cdot)$$

The top-level reduction relation, $e \to e'$, describes the single-step evolution of a fully trusted expression e (which may of course contain partially trusted subexpressions). It is defined from the security-indexed relation by setting the static and dynamic permissions to be the full set, \mathcal{P} . The top-level evaluation relation, $e \Downarrow o$, computes the outcome o of evaluating an expression e.

Our semantic rules (in particular, (Ctx Frame) and (Ctx Grant)) specify how to update the dynamic permission set upon change of security context. This strategy is known as the security-passing style [Wallach et al. 2000] or the eager semantics [Gong 1999; Banerjee and Naumann 2001]. The alternative strategy—the lazy semantics used by most implementations—is to compute the dynamic permissions indirectly by inspecting the stack. We show in Appendix A that our eager semantics corresponds exactly to a lazy semantics given by Pottier et al. [2001]. The eager semantics is more convenient for the theory of this article. Still, the lazy semantics appears to lead to more efficient implementations [Gong 1999; Wallach et al. 2000; LaMacchia et al. 2002].

TOP-LEVEL REDUCTION AND EVALUATION

$e ightarrow e'\stackrel{\scriptscriptstyle \Delta}{=} e ightarrow ^{\scriptscriptstyle {\cal P}}_{\scriptscriptstyle {\cal D}}e'$	top-level reduction
$e \Downarrow o \stackrel{\scriptscriptstyle \Delta}{=} e \rightarrow^* o$	top-level evaluation

2.3 Framing

The syntax of λ_{sec} enables framed subexpressions anywhere in an expression. In practice, framed subexpressions would appear only as the result of applying

a security policy, for example, when code is first loaded. (Without a similar restriction, untrusted code could grant itself any right.)

We can describe the application of a uniform security policy as a function from the frameless fragment of $\lambda_{\rm sec}$ to the full calculus, that inserts the same, given frame under every abstraction: $R[\![\lambda x.e]\!] = \lambda x.R[R[\![e]\!]]$ and $R[\![\cdot]\!]$ commutes with all other constructs.

Framing an expression with principal R

```
\begin{array}{l} R[\![x]\!] \stackrel{\triangle}{=} x \\ R[\![\lambda x.e]\!] \stackrel{\triangle}{=} \lambda x. R[\![R[\![e]\!]\!] \\ R[\![e_1 e_2]\!] \stackrel{\triangle}{=} R[\![e_1]\!] R[\![e_2]\!] \\ R[\![grant \ S \ in \ e]\!] \stackrel{\triangle}{=} grant \ S \ in \ R[\![e]\!] \\ R[\![test \ S \ then \ e_1 \ else \ e_2]\!] \stackrel{\triangle}{=} test \ S \ then \ R[\![e_1]\!] \ else \ R[\![e_2]\!] \\ R[\![fail]\!] \stackrel{\triangle}{=} fail \end{array}
```

By construction, every abstraction in the image of the translation is of the form $\lambda x.R[e]$ for some R, and this property is preserved by the substitution for free variables of values in the image of the translation. It is also preserved by reduction. Similarly, if every grant in the image of the translation is framed, then this property is preserved by reduction. These structural properties are often useful as we try to perform program transformations.

In our calculus, we consider initial runtime configurations of the form

$$e R_1 \llbracket v_1 \rrbracket \cdots R_n \llbracket v_n \rrbracket$$

where e accounts for the runtime, linker, and low-level resources, while v_1, \ldots, v_n are miscellaneous additional components, with respective static permissions R_1, \ldots, R_n attributed by the secure loader.

3. PROGRAMMING EXAMPLES

Our series of examples models interaction between I/O library functions and applets. The intent is to prevent applets from accessing the content of arbitrary files. We consider permissions $\mathcal{P} = \{screenIO, fileIO\}$ and the principals:

- — $Applet \stackrel{\scriptscriptstyle \Delta}{=} \{screenIO\}$, a mostly untrusted principal
- $-System \triangleq \{screenIO, fileIO\}, a fully trusted principal$

3.1 Direct Access

First, consider an I/O library function that protects read access to the file system by requiring the *fileIO* permission. We assume some encoding for strings, and let *primRF* be a primitive for returning the contents of a file as a string.

$$readFile \stackrel{\triangle}{=} \lambda n.System[check fileIO for primRF n].$$

For instance, we have:

$$Applet[readFile "secrets"] \downarrow fail$$
 (1)

$$System[readFile "version"] \Downarrow "Build 2601".$$
 (2)

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

In this setting, the applet code (here, *readFile* "secrets") may refer to *readFile* but not to *primRF*, and must be framed with principal *Applet*. Such expressions can be obtained by framing and linking; for instance, the expression in (1) is obtained from the initial configuration below, with the following reductions:

```
(λsa.as)
System[[λn.check fileIO for primRF n]]
Applet[[λreadFile.readFile "secrets"]]
```

- $= \ (\lambda sa.\,a\,s)\,readFile\,\lambda readFile\,Applet[readFile\,"secrets"]$
- \rightarrow 3 Applet[readFile "secrets"]
- → Applet[System[check fileIO for primRF "secrets"]]
- = Applet[System[test {fileIO} then (primRF "secrets") else fail]]
- \rightarrow Applet[System[fail]] \rightarrow ² fail.

The first four steps substitute values for s, a, readfile, and n. The fifth step selects the second branch of rule (Red Test), with S = System and D = Applet obtained by two applications of rule (Ctx Frame). The last two (Red Frame) steps propagate the failure to top level.

One may check that no (frameless, closed) applet code substituted for the function $\lambda readFile.readFile$ "secrets" can cause any file to be read. We state a more general result in Section 6.

3.2 Indirect Access

Consider now a *System*-routine that calls another *System*-routine. We assume that *primDS* is the primitive that displays a string and returns *ok*.

$$displayString \triangleq \lambda s.System[check\ screenIO\ for\ primDS\ s] \ displayFile \triangleq \lambda n.System[displayString\ (readFile\ n)].$$

For example:

$$Applet[displayString "hi"] \downarrow ok$$
 (3)

$$Applet[displayFile "secrets"] \downarrow fail$$
 (4)

$$System[displayFile "version"] \ \downarrow \ ok. \tag{5}$$

If stack inspection did not compound principals, the call in example (4) would succeed.

3.3 Overriding Policy

Sometimes, it is acceptable for trusted code to make exceptions to a standard policy. For instance, we may wish to allow any code read access to a file containing the operating system version.

 $readVersion \stackrel{\triangle}{=} \lambda$...System[grant {fileIO} in readFile "version"].

For example:

$$Applet[readVersion \ ok] \Downarrow "Build 2601".$$
 (6)

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

The above are examples of calls from less-trusted to more-trusted code. A symmetric situation is where more-trusted code calls less-trusted, such as when trusted libraries call methods such as *ToString* or *Equals* on untrusted objects. Attempts by such methods to exploit the greater privileges of their callers are also thwarted by stack inspection.

3.4 Untrusted Results

The following example describes some trusted code depending on data supplied by untrusted code. We have a System-function foolishDisplayFile that calls a function parameter h to compute a filename s, and then calls displayFile s to display it.

$$foolishDisplayFile \stackrel{\triangle}{=} \lambda h.System[displayFile(hok)].$$

Now, since the call to h completes before the call to displayFile begins, the principal associated with h has disappeared from the stack before the access tests in displayFile occur. So the following call, which allows an untrusted function to determine which file is displayed, succeeds.

$$foolishDisplayFile\ (\lambda_Applet["secrets"]) \ \downarrow \ ok.$$
 (7)

This example illustrates that stack inspection does not track data dependencies. Stack inspection does prevent the function parameter from making privileged calls while it is running, but it does not prevent it influencing computation, perhaps against policy, once it has terminated and returned a result.

3.5 Higher Order

Our last example is more involved. Trusted code (main) calls an applet; the applet calls trusted code (fileHandler) to build a System-closure for its choice of parameters ("secrets" and leak) and returns that closure; later, a trusted call triggers the closure:

 $main \triangleq Svstem \llbracket \lambda h.(h \ ok \ ok) \rrbracket$

$$fileHandler \triangleq System[[\lambda s c .. c (readFile s)]]$$

$$leak \triangleq Applet[[\lambda s. displayString s]]$$

$$main (\lambda .. Applet[fileHandler "secrets" leak]) \downarrow ok.$$
(8)

Since the security context used to create the closure is discarded as the expression Applet[fileHandler" secrets" leak] returns, the closure gets access to "secrets." In more detail, we have the following, where ok_S is short for System[ok]

The first four steps substitute values for h, \Box , s, and c; the next three steps discard the frames after evaluating the closure; then, we have two reductions with all System permissions followed by the reductions in the applet code.

In this situation, it is quite hard to modify the code so that a suitably framed closure is returned. A safe approach may be to request the permissions that will be used within the closure before returning the closure. However, this requires specific knowledge of those permissions. Instead of *fileHandler*, one may write, for instance:

```
safeFileHandler \triangleq \lambda s.test \{fileIO\}
then \ System \llbracket \lambda c \ \_.c \ (readFile \ s) \rrbracket
else \ System \llbracket \lambda c \ \_.fail \rrbracket.
```

Another, more uniform approach is to provide a general mechanism to capture the current dynamic permissions (D) and restore them as the closure is triggered. In the JVM and in the CLR, such a mechanism is used internally for special cases of closures, for instance to start a new thread. As the corresponding closure is created, the stack is scanned to compute D, then D is used to build the first frame of the new stack. This design issue is discussed by Gong [1999, Sect. 3.11].

The example above may seem a little contrived, but in fact is very common in an object-oriented setting: whenever a call returns an object from untrusted code, further calls to its methods will be performed using virtual calls, and there is no simple, uniform way to test whether that object encapsulates low-trust parameters (or even code).

4. EQUATIONAL REASONING

In order to validate program transformations, such as those performed by an optimizing compiler, we must show that they actually preserve the intended program semantics. We rely on Morris-style contextual equivalence [Morris 1968]. Since it is preserved by all contexts, local transformations based on contextual equivalence may be used anywhere in a program.

CONTEXTUAL EQUIVALENCE

```
Let e \Downarrow if and only if there is an outcome o with e \Downarrow o.
Let e \simeq e' if and only if, for all contexts \mathcal{C}, if both \mathcal{C}(e) and \mathcal{C}(e') are closed, then \mathcal{C}(e) \Downarrow \iff \mathcal{C}(e') \Downarrow.
```

Contextual equivalence is strictly more discriminating than in the call-by-value λ -calculus (CBV), even for pure λ -terms. For instance, the terms

```
\lambda x.let z = x ok in \lambda..z
and \lambda x.let z = x ok in \lambda..(x ok)
```

are equivalent in CBV but can be separated in λ_{sec} using the context

$$\varnothing[(\cdot)(\lambda_{-}test \mathcal{P} then \Omega else ok)]ok,$$

where Ω is an expression that diverges. This suggests that usual optimizations may break, and motivates our study of contextual equivalence.

To see why these two expressions are not contextually equivalent, we calculate as follows. Let $v = \lambda$ _.test \mathcal{P} then Ω else ok. Placing the first expression in context, we obtain:

$$\varnothing[(\lambda x.let \ z = x \ ok \ in \ \lambda_{-}.z) \ v] \ ok$$

$$\to \varnothing[let \ z = v \ ok \ in \ \lambda_{-}.z] \ ok$$

$$\to \varnothing[let \ z = (test \ \mathcal{P} \ then \ \Omega \ else \ ok) \ in \ \lambda_{-}.z] \ ok$$

$$\to \varnothing[let \ z = ok \ in \ \lambda_{-}.z] \ ok$$

$$\to \varnothing[\lambda_{-}.ok] \ ok \ \to (\lambda_{-}.ok) \ ok \ \to ok.$$

In contrast, placing the second expression in context, we obtain:

$$\varnothing[(\lambda x.let \ z = x \ ok \ in \ \lambda..(x \ ok)) \ v] \ ok$$

$$\to \varnothing[let \ z = v \ ok \ in \ \lambda..(v \ ok)] \ ok$$

$$\to \varnothing[let \ z = (test \ \mathcal{P} \ then \ \Omega \ else \ ok) \ in \ \lambda..(v \ ok)] \ ok$$

$$\to \varnothing[let \ z = ok \ in \ \lambda..(v \ ok)] \ ok$$

$$\to \varnothing[\lambda..v \ ok] \ ok \ \to (\lambda..v \ ok) \ ok \ \to^2 \ test \ \mathcal{P} \ then \ \Omega \ else \ ok \ \to \Omega.$$

4.1 Equational Properties of λ_{sec}

We present a new equational theory for λ_{sec} that is sound for contextual equivalence and complete with respect to the reduction semantics. We first state the theory and briefly comment on its equations.

Let $e \equiv e'$ be the smallest relation on expressions to satisfy the congruence equations and primitive equations listed below.

JUDGMENT

 $e \equiv e'$ equational theory of $\lambda_{\rm sec}$

CONGRUENCE EQUATIONS

```
(Eq Symm) e' \equiv e \Longrightarrow e \equiv e'

(Eq Trans) e \equiv e', e' \equiv e'' \Longrightarrow e \equiv e''

(Eq x) x \equiv x

(Eq Fun) e \equiv e' \Longrightarrow \lambda x.e \equiv \lambda x.e'

(Eq Appl) e_1 \equiv e'_1, e_2 \equiv e'_2 \Longrightarrow e_1 e_2 \equiv e'_1 e'_2

(Eq Frame) e \equiv e' \Longrightarrow R[e] \equiv R[e']

(Eq Grant) e \equiv e' \Longrightarrow grant R \ in \ e \equiv grant R \ in \ e'

(Eq Test) e_1 \equiv e'_1, e_2 \equiv e'_2 \Longrightarrow test R \ then \ e_1 \ else \ e_2 \equiv test R \ then \ e'_1 \ else \ e'_2

(Eq Fail) fail \equiv fail
```

PRIMITIVE EQUATIONS

```
(Fun Beta) (\lambda x.e) v \equiv e\{x \leftarrow v\}
(Fun Eta) x \notin fv(v) \Longrightarrow \lambda x.v \ x \equiv v
(Let Eta) let x = e in x \equiv e
(Let Let) x_1 \notin fv(e_3) \Longrightarrow
  let x_1 = e_1 in (let x_2 = e_2 in e_3) \equiv let x_2 = (let x_1 = e_1 in e_2) in e_3
(Frame o) R[o] \equiv o
(Frame Frame Appl)
   R_1[R_2[e_1 e_2]] \equiv R_1[R_2[(R_1[R_2[e_1]])(R_1[R_2[e_2]])]]
(Frame Let) R[let \ x = e_1 \ in \ e_2] \equiv let \ x = R[e_1] \ in \ R[e_2]
(Frame Frame) R_1 \supseteq R_2 \Longrightarrow R_1[R_2[e]] \equiv R_2[e]
(Frame Frame Frame)
   R_1[R_2[R_3[e]]] \equiv (R_1 \cap R_2)[R_3[e]]
(Frame Frame Grant)
   R_1[R_2[grant \ R_3 \ in \ e]] \equiv (R_1 \cup R_3)[R_2[grant \ R_3 \ in \ e]]
(Frame Grant)
   R_1[grant \ R_2 \ in \ e] \equiv R_1[grant \ R_1 \cap R_2 \ in \ e]
(Frame Grant Frame) R_1 \supseteq R_2 \Longrightarrow
   R_1[grant \ R_2 \ in \ R_3[e]] \equiv R_1[R_3[grant \ R_2 \ in \ e]]
(Frame Grant Test) R_1 \supseteq R_2 \supseteq R_3 \Longrightarrow
   R_1[grant \ R_2 \ in \ test \ R_3 \ then \ e_1 \ else \ e_2] \equiv R_1[grant \ R_2 \ in \ e_1]
(Frame Test Then) R_1 \supseteq R_2 \Longrightarrow
   R_1[test \ R_2 \ then \ e_1 \ else \ e_2] \equiv test \ R_2 \ then \ R_1[e_1] \ else \ R_1[e_2]
(Frame Test Else) \neg (R_1 \supseteq R_2) \Longrightarrow
   R_1[test \ R_2 \ then \ e_1 \ else \ e_2] \equiv R_1[e_2]
(Grant \emptyset) grant \emptyset in e \equiv e
(Grant o) grant R in o \equiv o
(Grant Appl) grant R in (e_1 e_2) \equiv grant R in ((grant R in e_1) grant R in e_2)
(Grant Let) grant R in (let x = e_1 in e_2) \equiv
      let x = (grant R in e_1) in (grant R in e_2)
(Grant Grant)
   grant R_1 in grant R_2 in e \equiv grant R_1 \cup R_2 in e
(Grant Frame) grant R_1 in R_2[e] \equiv grant R_1 \cap R_2 in R_2[e]
(Grant Frame Grant)
   grant R_2 in R_1[grant R_2 in e] \equiv R_1[grant R_2 in e]
(Test \varnothing) test \varnothing then e_1 else e_2 \equiv e_1
(Test Refl) test R then e else e \equiv e
(Test \cup) test R_1 \cup R_2 then e_1 else e_2 \equiv
      test R_1 then (test R_2 then e_1 else e_2) else e_2
(Test Grant) test R then e_1 else e_2 \equiv
      test R then (grant R in e_1) else e_2
(Eq Fail Rator) fail e \equiv fail
(Eq Fail Rand) v fail \equiv fail
```

DERIVED EQUATIONS

```
 \begin{array}{l} (\text{Eq Refl}) \ e \equiv e \\ (\text{Let Beta}) \ let \ x = v \ in \ e \equiv e \{x \leftarrow v\} \\ \\ (\text{Frame Dup}) \ R[R[e]] \equiv R[e] \\ (\text{Frame Appl}) \ R[e_1 \, e_2] \equiv R[R[e_1] \, R[e_2]] \\ (\text{Frame Frame} \ \cap) \ R_1[R_2[e]] \equiv (R_1 \cap R_2)[R_2[e]] \\ (\text{Frame Grant} \ \cap) \ R_1[grant \ R_2 \ in \ e] \equiv R_1[grant \ R_1 \cap R_2 \ in \ R_1[e]] \\ (\text{Frame Grant} \ \cap \varnothing) \ R_1 \cap R_2 = \varnothing \Longrightarrow R_1[grant \ R_2 \ in \ e] \equiv R_1[e] \\ (\text{Frame Grant Frame} \ \cap) \ R_1[grant \ R_2 \ in \ R_3[e]] \equiv R_1[R_3[grant \ R_1 \cap R_2 \ in \ e]] \\ (\text{Frame Frame Test Else}) \ \neg (R_1 \supseteq R_3) \Longrightarrow \\ R_1[R_2[test \ R_3 \ then \ e_1 \ else \ e_2]] \equiv R_1[R_2[e_2]] \\ \end{array}
```

Proposition 1. The equations in the preceding table are derivable within the equational theory.

PROOF. Here are derivations of some representative equations. The technical report version of this article includes proofs of all the equations.

```
—(Frame Dup) This is an instance of (Frame Frame) with R=R_1=R_2.

—(Frame Appl)
R[e_1e_2] \equiv R[R[e_1e_2]] \text{ by (Frame Dup)}
\equiv R[R[(R[R[e_1]]) (R[R[e_2]])]] \text{ by (Frame Frame Appl)}
\equiv R[R[e_1] R[e_2]] \text{ by (Frame Dup)}.

—(Frame Frame \cap)
R_1[R_2[e]] \equiv R_1[R_2[R_2[e]]] \text{ by (Frame Dup)}
\equiv (R_1 \cap R_2)[R_2[e]] \text{ by (Frame Frame Frame)}.

—(Frame Grant \cap)
R_1[grant R_2 \text{ in } e] \equiv R_1[grant R_1 \cap R_2 \text{ in } e] \text{ by (Frame Dup)}
\equiv R_1[R_1[grant R_1 \cap R_2 \text{ in } e]] \text{ by (Frame Dup)}
\equiv R_1[grant R_1 \cap R_2 \text{ in } R_1[e]]
\text{by (Frame Grant Frame), since } R_1 \supseteq R_1 \cap R_2. \square
```

The $\lambda_{\rm sec}$ -calculus extends Plotkin's [1975] call-by-value λ_v ; accordingly, we retain β_v and η_v equations, here named (Fun Beta) and (Fun Eta). As in Plotkin's calculus, the following more general laws are unsound: $(\lambda x.e) \, e' \equiv e\{x \leftarrow e'\}$ and $x \notin fv(e) \Longrightarrow \lambda x.e \, x \equiv e$. We also have the standard monad laws for let from Moggi's [1989] computational λ -calculus here named (Let Beta), (Let Eta), and (Let Let).

Specific rules manipulate nested security constructors. In $R_1[R_2[e]]$, the effect of a grant in e is determined by R_2 but not by R_1 . Therefore, the equation $R_1[R_2[e]] \equiv (R_1 \cap R_2)[e]$ is not sound in general. Still, (Frame Frame) coalesces two frames into one when the outer principal dominates the inner, and (Frame Frame) unconditionally coalesces three frames into two. Rules (Frame Let) and (Grant Let) are limited forms of the more general equations

 $R[e_1 e_2] \equiv R[e_1] R[e_2]$ and $grant \ R \ in \ (e_1 e_2) \equiv (grant \ R \ in \ e_1) \ (grant \ R \ in \ e_2)$, which are not sound. Rule (Frame Frame Appl) pushes doubly nested frames into applications.

When the enclosing permission modifiers are available, the outcome of a grant may be determined, independently of the enclosing context. We obtain partial commutativity laws (Frame Grant), (Grant Frame), (Frame Grant Frame), (Grant Frame Grant). Similarly, the outcome of a test may be determined. Regarding (Frame Test Else), if the principal R_1 cannot access the resource R_2 , testing for that resource must fail. On the other hand, $R_1 \supseteq R_2$ does not imply $R_1[test\ R_2\ then\ e_1\ else\ e_2] \equiv R_1[e_1]$, because the calling context may not have been granted R_2 . A corollary of (Frame Grant) and (Grant \varnothing) is the rule $R_1 \cap R_2 = \varnothing \Longrightarrow R_1[grant\ R_2\ in\ e] \equiv R_1[e]$. If the principal R_1 cannot access the resources R_2 , it is futile for code framed by R_1 to try to grant R_2 .

Using bisimulation proof techniques discussed in the next section, we can show the equational theory to be sound with respect to contextual equivalence.

Theorem 1. If $e \equiv e'$, then $e \simeq e'$.

We cannot expect the converse, completeness with respect to contextual equivalence. The set of provable equations $e \equiv e'$ is recursively enumerable whereas the set of contextual equivalences $e \simeq e'$ is not.

Still, we do obtain a limited completeness result with respect to the security-indexed reduction semantics. To state the theorem, we introduce *security-setters*, $\mathcal{C}_D^S(\cdot)$, evaluation contexts that set the static and dynamic permissions within the context to S and D, respectively. More precisely, when running $\mathcal{C}_D^S(e)$ with arbitrary permission sets S' and D', the expression e runs with permission sets S and D.

Security-setters

$$\mathcal{C}_D^S(\cdot) \stackrel{\scriptscriptstyle \Delta}{=} D[grant \; D \; in \; S[\cdot]]$$

where $D \subseteq S$

Theorem 2. If
$$e \to_D^S e'$$
, then $C_D^S(e) \equiv C_D^S(e')$.

The proof shows there are sufficient equations to distribute information about the security context to where it is needed to justify reduction steps; indeed, the proof prompted the discovery of various equations. If we view the equational theory as a new axiomatic semantics of $\lambda_{\rm sec}$, the theorem shows that the reduction relation is a correct algorithm for computing certain equations.

COROLLARY 1. If $e \downarrow o$, then $\mathcal{P}[grant \mathcal{P} in e] \equiv o$.

PROOF. Assume $e \Downarrow o$, that is, $e \to_{\mathcal{P}}^{\mathcal{P}} {}^* o$. We apply Theorem 2 to each step and, by transitivity of \equiv , we obtain $\mathcal{C}_{\mathcal{P}}^{\mathcal{P}}(e) \equiv \mathcal{C}_{\mathcal{P}}^{\mathcal{P}}(o)$. Finally, $\mathcal{C}_{\mathcal{P}}^{\mathcal{P}}(o) \equiv o$ by rules (Grant o) and (Frame o). \square

4.1.1 Simplified Theory in λ_{sec} without Grants. In the subcalculus without grant expressions, the equations above remain sound (when applicable), and they can be simplified further. The single rule $R_1[R_2[e]] \equiv (R_1 \cap R_2)[e]$, which becomes sound in the absence of grants, subsumes (Frame Frame Appl), (Frame

Frame), and (Frame Frame). Besides, we do not need (Frame Frame Test Else) any more—we use (Frame Test Else) instead.

In combination, we can normalize expressions by pushing frames under all other constructors (except applications) until all frames appear in subterms of the form $R[x \ e]$.

4.2 Basic Applications

In addition to justifying contextual equivalences mentioned in Section 5, we can apply the theory as follows:

4.2.1 Framing versus Currying. As illustrated in Example (8), the framing translation of Section 2.3 yields multiple nested frames when applied to functions with multiple arguments. Using (Frame o), we can discard these duplicate frames:

$$R[[\lambda x y.e]] \stackrel{\triangle}{=} \lambda x.R[\lambda y.R[R[[e]]] \equiv \lambda x y.R[R[[e]]].$$

Hence, we can choose the latter form as a more efficient translation when dealing with multiple arguments (or more generally with functions that have multiple entry points).

4.2.2 Shortening Stack Inspections. In typical implementations of stack inspection, permissions are tested on demand, with a runtime cost that grows linearly with the depth of the stack. When the same permissions are frequently tested, it may be worth testing those permissions in advance, then granting them, so that all further tests succeed faster. Indeed, this is a recommended idiom for optimizing programs that perform frequent checks in the CLR [Microsoft 2001].

In the theory, we can use (Test Grant) to justify this kind of program transformations by deriving the equation:

$$e \equiv test \ R \ then (grant \ R \ in \ e) \ else \ e.$$

4.2.3 Normal Forms for Security-Modifiers. We say that an evaluation context is a security-modifier when it is built using one or more frames and any number of grants. Using the equational theory, we can systematically simplify such contexts. (We lift the relation \equiv pointwise from expressions to contexts seen as functions: $\mathcal{C} \equiv \mathcal{C}'$ when for all e we have $\mathcal{C}(e) \equiv \mathcal{C}'(e)$.) More generally, one can first apply distributive laws to push every modifier below other constructors, then simplify the resulting security modifiers, as summarized below.

Proposition 2. For every security-modifier C, there exist unique permission sets $D \subseteq A \subseteq R \subseteq S$ such that:

$$C \equiv grant \ A \ in \ R[S[grant \ D \ in (\cdot)]].$$

PROOF. Let \mathcal{C} be a security modifier. We obtain an equivalent security modifier of the form given in Proposition 2 by applying the following series of

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

rewritings:

(1) Introduce an empty grant between nested frames, on the outside, and on the inside (Grant \varnothing), then merge all nested grants (Grant Grant). For some $n \ge 1$, this yields a context of the form:

```
grant \ A' \ in \ S_1[grant \ D_1 \ in \ \cdots S_n[grant \ D_n \ in \ (\cdot)] \cdots].
```

- (2) For $i=1,\ldots,(n-1)$, apply (frame Grant Frame \cap) to S_i,D_i , and S_{i+1} . This yields a context of the form *grant* A' in $S_1[\cdots S_n[grant\ D'\ in\ (\cdot)]]$.
- (3) Apply (Frame Frame) n-2 times then (Frame Frame)—or (Frame Dup) once if n=1—to substitute $R'[S[(\cdot)]]$ for $S_1[\cdots S_n[(\cdot)]]$, for some permissions R' and S with $R'\subseteq S$.
- (4) Let $D \stackrel{\scriptscriptstyle \Delta}{=} D' \cap S$. We calculate:

```
C \equiv grant \ A' \ in \ R'[S[grant \ D' \ in \ (\cdot)]] as described above
```

$$\equiv grant \ A' \ in \ R'[S[grant \ D \ in \ (\cdot)]]$$
 by (Frame Grant)

$$\equiv$$
 grant A' in $(R' \cup D)[S[grant \ D \ in \ (\cdot)]]$ by (Frame Frame Grant)

$$\equiv grant \ A' \ in \ (R' \cup D)[grant \ D \ in \ S[(\cdot)]]$$
 by (Frame Grant Frame) since $R' \cup D \supseteq D$

$$\equiv$$
 grant A' in grant D in $(R' \cup D)[grant \ D \ in \ S[(\cdot)]]$ by (Grant Frame Grant)

$$\equiv grant \ A' \cup D \ in \ (R' \cup D)[grant \ D \ in \ S[(\cdot)]]$$

by (Grant Grant)

$$\equiv$$
 grant A'∪D in (R'∪D)[S[grant D in (·)]] by (Frame Grant Frame) since $R'∪D \supseteq D$

$$\equiv grant (A' \cup D) \cap (R' \cup D) in (R' \cup D) [S[grant \ D \ in \ (\cdot)]]$$
by (Grant Frame)

(5) Let $R \triangleq R' \cup D$ and $A \triangleq (A' \cup D) \cap R$. We already have $R \subseteq S$. We immediately obtain $A \subseteq R$. We also have $A = (A' \cup D) \cap (R' \cup D) = (A' \cap R') \cup D$, hence $D \subseteq A$.

Uniqueness follows from the soundness of the equational theory and a characterization of A, R, S, and D.

Let $t \triangleq test \ X \ then \ ok \ else \ \Omega$. For a given security-modifier \mathcal{E} , we let $P(\mathcal{E})$ be the largest set of permissions X such that $\mathcal{E}(t) \Downarrow$. Such a set exists, and is preserved by contextual equivalence for security-modifiers: $\mathcal{E} \simeq \mathcal{E}'$ implies, for all X, $\mathcal{E}(t) \Downarrow \iff \mathcal{E}'(t) \Downarrow$; choosing $X = P(\mathcal{E})$ and $X = P(\mathcal{E}')$, we obtain $P(\mathcal{E}) \supseteq P(\mathcal{E}')$ and $P(\mathcal{E}) \subseteq P(\mathcal{E}')$, and finally $P(\mathcal{E}) = P(\mathcal{E}')$.

For a given $C = grant \ A \ in \ R[S[grant \ D \ in \ (\cdot)]]$ with $D \subseteq A \subseteq R \subseteq S$, it suffices to establish that these permission sets can be computed using $P(\cdot)$:

$$\begin{split} D &= P(\varnothing[\mathcal{C}]) \\ A &= P(\varnothing[\mathcal{P}[\mathcal{C}]]) \\ R &= P(\mathcal{C}) \\ S &= P(\mathcal{C}(\operatorname{grant} \mathcal{P} \operatorname{in}(\cdot))). \end{split}$$

Then, for any $\mathcal{C}' = \operatorname{grant} A'$ in $R'[S'[\operatorname{grant} D'$ in $(\cdot)]]$ with $D' \subseteq A' \subseteq R' \subseteq S'$ and $\mathcal{C} \simeq \mathcal{C}'$, we have $\varnothing[\mathcal{C}] \simeq \varnothing[\mathcal{C}']$, $P(\varnothing[\mathcal{C}]) = P(\varnothing[\mathcal{C}'])$, and thus D = D'. Similarly, A = A', R = R', and S = S'.

We now establish the characterizations of D, A, R, S given above. For any given security-modifier \mathcal{E} , we have either $\mathcal{E}(t) \to \mathcal{E}(ok) \Downarrow ok$ or $\mathcal{E}(t) \to \mathcal{E}(\Omega) \to^*$ $\mathcal{E}(\Omega)$, according to the test in the first step. We make the dependence of $\mathcal{E}(t) \Downarrow$ upon X explicit by unfolding (Red Test) for the test and (Ctx Frame) or (Ctx Grant) for every security constructor that appears in \mathcal{E} . In the following, we let e and f range over expressions that are not outcomes. We use the equivalences:

$$C(e) \to_V^U C(e') \iff e \to_{D \cup (U \cap A) \cup (V \cap R)}^S e'$$
(9)

$$t \to_{V'}^{U'} ok \iff X \subseteq V'. \tag{10}$$

- —Let $\mathcal{E}=\varnothing[\mathcal{C}]$. We have $\varnothing[f]\to\varnothing[f']\Longleftrightarrow f\to_\varnothing^\varnothing f'$. For $f=\mathcal{C}(t)$ and $f'=\mathcal{C}(ok)$, we compose this equivalence with (9) for $U=V=\varnothing$ and (10) for V'=D and obtain $\mathcal{E}(t)\Downarrow\Longleftrightarrow X\subseteq D$; hence, $D=P(\mathcal{E})$.
- —Let $\mathcal{E}=\varnothing[\mathcal{P}[\mathcal{C}]]$. We have $\varnothing[\mathcal{P}[f]]\to\varnothing[\mathcal{P}[f']]\Longleftrightarrow f\to_\varnothing^\mathcal{P} f'$. We compose this equivalence with (9) for $U=\mathcal{P}$ and $V=\varnothing$, then (10) for V'=A, and obtain $\mathcal{E}(t)\Downarrow\Longleftrightarrow X\subseteq A$; hence, $A=P(\mathcal{E})$.
- —We compose (9) for $U = V = \mathcal{P}$ and (10) for V' = R and obtain $\mathcal{C}(t) \Downarrow \iff X \subseteq R$; hence, $R = P(\mathcal{C})$.
- —Let $\mathcal{E} = \mathcal{C}(\operatorname{grant} \mathcal{P} \ in \ (\cdot))$. We have $\operatorname{grant} \mathcal{P} \ in \ f \to_R^S \operatorname{grant} \mathcal{P} \ in \ f' \iff f \to_S^S f'$. We compose (9) for $U = V = \mathcal{P}$ with this equivalence, then (10) for V' = S, and obtain $\mathcal{E}(t) \Downarrow \iff X \subseteq S$; hence, $S = P(\mathcal{E})$. \square

Informally, D collects the dynamic permissions always present in (\cdot) , A collects the permissions present when statically available in the enclosing context, R collects the permissions present when dynamically available in the enclosing context, and S collects the permissions present when self-granted.

These contexts summarize the security content of arbitrary slices of the stack; they may be used to rearrange stacks at runtime. The security-setter contexts $\mathcal{C}_D^S(\cdot)$ used in Theorem 2 are a special case. The two forms are equivalent only when A=R=D, that is, when $\mathcal C$ does not depend on its environment. We have:

```
 \begin{split} \mathcal{C}_D^S(\cdot) &\triangleq D[grant\ D\ in\ S[\cdot]] \\ &\equiv grant\ D\ in\ D[grant\ D\ in\ S[\cdot]] \ \text{by (Grant\ Frame\ Grant)} \\ &\equiv grant\ D\ in\ D[S[grant\ D\ in\ \cdot]] \ \text{by (Frame\ Grant\ Frame)}. \end{split}
```

As another illustration for our normal form, consider a test for permissions in an arbitrary security modifier C, and let A, R, S, D be the permissions of its normal form. If $T \subseteq R$, we have:

```
\mathcal{C}(\textit{test } T \textit{ then } e_1 \textit{ else } e_2)
\equiv \textit{test } (R \setminus A) \cap T \textit{ then } \mathcal{C}(\textit{test } (A \setminus D) \cap T \textit{ then } e_1 \textit{ else } e_2) \textit{ else } \mathcal{C}(e_2).
```

The latter expression emphasizes the only dynamic parts of the test $(R \setminus A) \cap T$ and $(A \setminus D) \cap T$; the form can be simplified further when they are empty, for instance within a security-setter.

If $T \not\subset R$, the test fails independently of the context, and we have:

$$C(test\ T\ then\ e_1\ else\ e_2) \equiv C(e_2)$$

4.3 Proof Technique: Applicative Bisimilarity

As usual, the quantification over arbitrary contexts in the definition of contextual equivalence makes it cumbersome to apply the definition directly when proving equivalences. In this section, we present a secondary equivalence, a form of Abramsky's [1993] applicative bisimilarity, that avoids any quantification over contexts, and hence is easier to establish. We can show that bisimilarity is a congruence relation using Howe's [1996] method, and hence that it coincides with contextual equivalence. Therefore, we can use bisimulation arguments to establish contextual equivalences. We use this technique to prove Theorem 1.

Two closed expressions are applicatively bisimilar if, given any static and dynamic permissions, S and D, whenever one expression reduces to an outcome, so does the other, and moreover, the two outcomes match in the sense that either (1) both are failures, or (2) both are abstractions such that when they receive identical values they are themselves applicatively bisimilar.

We formally define applicative bisimilarity by the following fairly standard series of definitions. The novelty relative to previous versions of applicative bisimilarity is the quantification over static and dynamic permissions; without this quantification, we would lose congruence with respect to frames and grants. For several papers discussing applicative bisimilarity, and related techniques, see Gordon and Pitts [1998].

- —Let $e \Downarrow_D^S o$ if and only if both $D \subseteq S$ and $e(\rightarrow_D^S)^*o$.
- —An applicative simulation is a relation S on closed expressions such that $e_1 \mathcal{S} e_2$ implies:

 - (1) if $e_1 \Downarrow_D^S fail$, then $e_2 \Downarrow_D^S fail$; (2) if $e_1 \Downarrow_D^S \lambda x. f_1$, then there is $\lambda x. f_2$ such that $e_2 \Downarrow_D^S \lambda x. f_2$ and for every closed value v, $f_1\{x\leftarrow v\}$ \mathcal{S} $f_2\{x\leftarrow v\}$.
- —An applicative bisimulation is a relation S such that both S and S^{-1} are applicative simulations.
- —Let ground applicative bisimilarity, \sim , be the greatest applicative bisimulation, that is, the union of all applicative bisimulations.
- —Let (applicative) bisimilarity, \sim° , be such that $e \sim^{\circ} e'$ if and only if $e\sigma \sim e'\sigma$ for all substitutions σ such that $\sigma = \{x_1 \leftarrow v_1\} \cdots \{x_n \leftarrow v_n\}$ for some closed $v_1, \ldots, v_n \leftarrow v_n\}$ v_n where $\{x_1, ..., x_n\} = fv(e e')$.

We prove congruence by Howe's method. The idea is to construct an auxiliary relation, the congruence candidate, that clearly includes bisimilarity and is a congruence. By showing that the congruence candidate is a bisimulation, it follows that it is included in bisimilarity, and therefore the two are one. Hence, we obtain:

Theorem 3. Bisimilarity is a congruence.

The detailed proof, along with others omitted from this section, appears in the technical report [Fournet and Gordon 2001]. The details involve standard (though not trivial) arguments.

Given congruence, the identity of contextual equivalence and applicative bisimilarity follows easily. The interesting step in the proof is to show that contextual equivalence is an applicative bisimulation.

Theorem 4. Bisimilarity equals contextual equivalence.

Some (though not all) of the equations of Section 4.1 are justified by Theorem 4 in combination with the following simple proof principle. It is justified by a bisimulation argument. Using this proposition is considerably simpler than attempting direct proofs of contextual equivalence.

Proposition 3. For any expressions e_1 and e_2 , $e_1 \sim^{\circ} e_2$ if for all D and S such that $D \subseteq S$, and for all substitutions σ sending variables to closed values with $dom(\sigma) = fv(e_1 e_2)$ and for all o, we have $e_1\sigma \ \downarrow_D^S o \iff e_2\sigma \ \downarrow_D^S o$.

We can show that security-setting contexts $\mathcal{C}_D^S(\cdot)$ relate top-level and security-indexed evaluation in the sense that in general $\mathcal{C}_D^S(e) \Downarrow o \Longleftrightarrow e \Downarrow_D^S o$. Therefore, this proof principle can be read as a simple context lemma [Milner 1977] reducing proofs of contextual equivalence to the consideration of a limited set of contexts.

An alternative strategy for proving soundness of the equational theory would be to rely on a denotational semantics of λ_{sec} in (a variant of) the plain λ -calculus, such as the security passing transformation [Pottier et al. 2001], and use an equivalence in the target calculus. However, contextual equivalence after the translation is complicated and in general finer. For instance, the environment may provide a representation of the dynamic permissions that diverges when a test is performed.

5. PROGRAM TRANSFORMATIONS

We consider two categories of program transformations. One may try to optimize the use of permissions and stack inspections to reduce their runtime costs; such optimizations are studied in the literature, and illustrated in Section 4.1. Alternatively, one may try to carry over standard optimizations to a setting with stack inspection. The examples given below suggest that this requires some care, even for simple optimizations. As can be expected, it is important (and hard) to effectively combine both kinds of optimizations. We largely ignore this issue, and instead establish the correctness of individual transformations.

Runtime behavior is complicated by the application of a security policy. We may consider program transformations in different situations:

(1) Seen from the front-end compiler (usually in charge of performing global optimizations), optimizations operate before the framing translation, so their correctness must be assessed in every context after framing $R[[\cdot]]$, for every principal R. One may also consider cross-module optimizations such that R varies.

- (2) From the JIT compiler viewpoint, optimizations operate on expressions obtained by framing; this gives structural guarantees, such as the presence of a frame in every function.
- (3) For later optimizations, such as runtime optimizations, one can no longer assume all expressions are obtained by framing.

In case (1), we are considering equations before framing, so we have to lift contextual equivalence, assuming a single, uniform but unknown frame. Accordingly, we introduce *front-end equivalence*, $e \parallel \simeq \parallel e'$, defined as follows:

FRONT-END EQUIVALENCE

 $e \ \llbracket \simeq \rrbracket \ e' \ \text{if and only if for all} \ R, R \llbracket e \rrbracket \simeq R \llbracket e' \rrbracket.$

5.1 Function Inlining

Code inlining is a fundamental program transformation, used by most global program optimizations.

Informally, inlining is problematic when it merges several frames that may have different permissions at runtime. For instance, when the caller and the inlined code have different static permissions, the inlined code is run with its caller's permissions. This effectively rules out cross-module inlining prior to setting the security policy.

In the following, we inline a function with principal R; we let $\mathcal{D}(\cdot)$ abbreviate the context $let\ h=R[\![\lambda x.e]\!]$ in $\mathcal{C}(\cdot)$ and assume a preliminary renaming to prevent variable captures. Inlining of framed code may be described by the equation

$$\mathcal{D}(h\,v) \,\longmapsto\, \mathcal{D}(R[[e]]\{x\leftarrow v\}) \tag{11}$$

that transforms a function call hv into an inlined copy of the body e of h with v taking place of the formal parameter x—and thereby discards the inner frame. This differs from the literal inlining justified by equation (Fun Beta):

$$\mathcal{D}(h v) \equiv \mathcal{D}(R[[\lambda x.e]] v)$$

$$\stackrel{\triangle}{=} \mathcal{D}((\lambda x.R[R[[e]]]) v)$$

$$\equiv \mathcal{D}(R[R[[e]][x \leftarrow v]). \tag{12}$$

This is correct in λ_{sec} , but leaves the frame $R[\cdot]$ around inlined code. Conversely, (11) may or may not be a contextual equivalence, depending on the context \mathcal{D} .

As a consequence, literal inlining before framing (as performed by a source compiler) is also problematic, even if $\lambda x.e$ and v have the same principal. In the case v = R[w], an instance of (11) is:

$$\begin{array}{ll} e_0 \stackrel{\triangle}{=} & let \; h = R \llbracket \lambda x.e \rrbracket \; in \; R \llbracket h \; w \rrbracket \\ \longmapsto & e_1 \stackrel{\triangle}{=} & let \; h = R \llbracket \lambda x.e \rrbracket \; in \; R \llbracket e \{x \longleftarrow w\} \rrbracket \end{array}$$

Again, this transformation is not generally correct. Consider the inlined code $e = grant \ R$ in test R then oh else fail. Assuming $R \neq \emptyset$, we have $\emptyset[e_0] \Downarrow oh$

versus $\emptyset[e_1] \Downarrow fail$. In contrast, we do have

$$R[[let \ h = \lambda x.e \ in \ h \ w]] \simeq R[[let \ h = \lambda x.e \ in \ e\{x \leftarrow w\}]]$$

because our encoding of let, followed by framing, introduces an extra frame $R[\cdot]$ on both sides of the equation, which enable us to apply equation (Frame Frame). In the following, we extend the framing translation $R[\cdot]$ from frameless expressions to frameless contexts, with $R[\cdot]$ \triangleq (\cdot) . Unfolding our definitions, we obtain:

$$R[[let \ h = \lambda x.e \ in \ \cdot]] \stackrel{\triangle}{=} let \ h = R[[\lambda x.e]] \ in \ R[\cdot].$$

We have a more general correctness result for inlining before framing, which justifies a limited form of (11):

Lemma 1 (Local Inlining). For all expressions e, values w, and contexts \mathcal{B} in the frameless λ_{sec} , we have:

let
$$h = \lambda x.e$$
 in $\mathcal{B}(h w)$ [\simeq] let $h = \lambda x.e$ in $\mathcal{B}(e\{x \leftarrow w\})$.

PROOF. We let $\mathcal{C}(\cdot) = R[R[\mathcal{B}(\cdot)]]$ and keep the same definitions for v and \mathcal{D} as above: v = R[w] and $\mathcal{D}(\cdot) \stackrel{\triangle}{=} let \ h = R[\lambda x.e]$ in $\mathcal{C}(\cdot)$.

By definition of framing, we have $R[[let\ h = \lambda x.e\ in\ \mathcal{B}(\cdot)]] \stackrel{\triangle}{=} \mathcal{D}(\cdot)$. By definition of $[\![\simeq]\!]$, we can thus rewrite the statement of the lemma as an instance of the problematic inlining (11): for all R, $\mathcal{D}(R[\![h\ w]\!]) \simeq \mathcal{D}(R[\![e\{x\leftarrow w\}]\!])$, that is, $\mathcal{D}(h\ v) \simeq \mathcal{D}(R[\![e]\!]\{x\leftarrow v\})$.

Using the literal inlining Eq. (12), we already have the equivalence $\mathcal{D}(hv) \simeq \mathcal{D}(R[R[e]\{x\leftarrow v\}])$, so it suffices to show:

$$\mathcal{D}(R[R[e]\{x\leftarrow v\}]) \simeq \mathcal{D}(R[e]\{x\leftarrow v\}).$$

Since \simeq is a congruence, we can discard the binding for h, and it suffices to show the more general equation $\mathcal{C}(R[u]) \simeq \mathcal{C}(u)$, that is,

$$R[R[\mathcal{B}](R[u])] \simeq R[R[\mathcal{B}](u)] \tag{13}$$

for all principals R, expressions u, and frameless context \mathcal{B} . The proof of equation (13) is by structural induction on \mathcal{B} :

 $\mathcal{B}(\cdot) = (\cdot)$. : equation $R[R[u]] \simeq R[u]$ is rule (Frame Dup).

 $\mathcal{B}(\cdot)=x,\ \mathcal{B}(\cdot)=\mathit{fail}.:$ equations $R[x]\simeq R[x]$ and $R[\mathit{fail}]\simeq R[\mathit{fail}]$ are instances of rule (Eq Refl).

$$\mathcal{B}(\cdot) = \lambda x.\mathcal{B}_1(\cdot)$$
.:

$$R[R[\![\lambda x.\mathcal{B}_1]\!](R[u])]$$

 $\stackrel{\triangle}{=} R[\lambda x.R[R[\mathcal{B}_1]](R[u])]$

 $\simeq R[\lambda x.R[R[B_1](u)]]$

by induction hypothesis on \mathcal{B}_1 and application of the context

 $R[\lambda x.(\cdot)]$

 $\stackrel{\triangle}{=} R[R[[\lambda x.\mathcal{B}_1]](u)],$

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

```
\mathcal{B}(\cdot) = \mathcal{B}_1(\cdot) \, \mathcal{B}_2(\cdot).:
                 R[R[\mathcal{B}_1 \mathcal{B}_2](R[u])]
            \stackrel{\triangle}{=} R[(R[\mathcal{B}_1](R[u]))(R[\mathcal{B}_2](R[u]))]
            \simeq R[(R[R[B_1](R[u]))](R[R[B_2](R[u]))] by (Frame Appl)
            \simeq R[(R[R[\mathcal{B}_1]](u)])(R[R[\mathcal{B}_2]](u)])] by induction hypothesis (twice)
            \simeq R[(R[\mathcal{B}_1](u))(R[\mathcal{B}_2](u))] by (Frame Appl)
            \stackrel{\triangle}{=} R[R[\mathcal{B}_1 \mathcal{B}_2](u)],
\mathcal{B}(\cdot) = test \ S \ then \ \mathcal{B}_1(\cdot) \ else \ \mathcal{B}_2(\cdot). : First assume S \subseteq R.
                  R[R[test\ S\ then\ \mathcal{B}_1\ else\ \mathcal{B}_2](R[u])]
             \stackrel{\triangle}{=} R[test \ S \ then \ R[\mathcal{B}_1]](R[u]) \ else \ R[\mathcal{B}_2]](R[u])]
             \simeq test \ S \ then \ R[R[\mathcal{B}_1]](R[u])] \ else \ R[R[\mathcal{B}_2]](R[u])
                  by (Frame Test Then)
             \simeq test \ S \ then \ R[R[\mathcal{B}_1](u)] \ else \ R[R[\mathcal{B}_2](u)]
                  by induction hypothesis (twice)
             \simeq R[test\ S\ then\ R[\mathcal{B}_1]](u)\ else\ R[\mathcal{B}_2]](u)] by (Frame Test Then)
             \stackrel{\triangle}{=} R[R[test\ S\ then\ \mathcal{B}_1\ else\ \mathcal{B}_2](u)].
```

The case $\neg (S \subseteq R)$ is as above, using rule (Frame Test Else) before and after the induction hypothesis.

```
\mathcal{B}(\cdot) = grant \ S \ in \ \mathcal{B}_1(\cdot).:
```

```
R[R[grant\ S\ in\ \mathcal{B}_1]](R[u])]
\stackrel{\triangle}{=} R[grant\ S\ in\ R[\mathcal{B}_1]](R[u])]
\simeq R[grant\ S\cap R\ in\ R[R[\mathcal{B}_1]](R[u])]] \ \text{by (Frame Grant}\ \cap)
\simeq R[grant\ S\cap R\ in\ R[R[\mathcal{B}_1]](u)]] \ \text{by induction hypothesis}
\simeq R[grant\ S\cap R\ in\ R[R[\mathcal{B}_1]](u)]] \ \text{by (Frame Grant}\ \cap)
\stackrel{\triangle}{=} R[R[grant\ S\ in\ \mathcal{B}_1]](u)].
```

5.2 Tail Call Elimination

Tail call elimination is a useful optimization that also affects the structure of the stack. Instead of building a new frame for the last call in a function, the optimization overwrites the current frame so that the callee directly returns to the caller's caller. In the CLR, for instance, this may occur when the call is annotated as "tail callable" in the code [Box 2002], and the decision is made by the JIT compiler according to the security policy.

Informally, optimizing a tail call may create two problems: an untrusted caller may thereby remove its tracks from the calling stack; less importantly, perhaps, a trusted caller may inadvertently cancel permissions it has just granted. For these reasons, most implementations of stack inspection disallow or restrict tail calls. Various workarounds have been proposed [Benton et al. 1998; Schinz and Odersky 2001].

In our model, we reflect tail call elimination as a runtime transformation just before the call, rather than a specific language construct: we define \longmapsto as the least relation such that

$$R[v\,w] \longmapsto v\,w \tag{14}$$

in all evaluation contexts (or, more generally for callers that grant permissions, such that $R[\operatorname{grant} S \operatorname{in} v w] \longmapsto v w$ in all evaluation contexts). As in Section 2, we interpret (Red Frame) reduction steps as popping a runtime frame from the evaluation stack. With an ordinary call, the frame R is kept until v w completes, whereas it is immediately discarded with the tail call optimization. For instance, if the callee is of the form $v = \lambda x.S[e]$, compare:

$$R[v\,w] \rightarrow R[S[e\{x\leftarrow w\}]]$$
 ordinary call $R[v\,w] \longmapsto S[e\{x\leftarrow w\}]$ optimized call.

As with inlining, a frame is erased, but one level deeper in the stack. Clearly, (14) may not preserve contextual equivalence: we can formulate the two problems above as inequations. First, with examples (4) and (5) of Section 3, we have

```
System[Applet[displayFile "secrets"]] \\ \longmapsto System[displayFile "secrets"]
```

and the permission check fails only in the first expression, leading to different outcomes. Second, with example (6) from Section 3, we have

```
Applet[readVersion\ ok]
\rightarrow Applet[System[grant\ \{fileIO\}\ in\ readFile\ "version"]]
\longmapsto Applet[readFile\ "version"]
```

and the latter expression fails instead of returning the string "Build 2601".

Fortunately, tail call elimination is actually correct in most common cases. For instance:

—Assume the callee has at most the static permissions of the caller, that is, $v = \lambda x.S[e]$ with $S \subseteq R$. We have:

```
R[v w]
= R[(\lambda x.S[e]) w]
\simeq R[S[e\{x \leftarrow w\}]] \text{ by (Fun Beta)}
\simeq S[e\{x \leftarrow w\}] \text{ by (Frame Frame)}
= (S[e])\{x \leftarrow w\}
\simeq v w \text{ by (Fun Beta)}.
```

In particular, any tail call within the same component can be optimized as long as the caller does not grant permissions.

—Even if the caller grants permissions T, and as long as both the static permissions of the callee and the granted permissions are statically given to the caller $(T \cup S \subseteq R)$, the runtime may still be able to copy the grant to the new frame. With the same notations, let v' be v with the same additional grant

```
(v' = \lambda x.S[grant\ T\ in\ e]). We have: R[grant\ T\ in\ v\ w]
= R[grant\ T\ in\ (\lambda x.S[e])\ w]
\simeq R[grant\ T\ in\ S[e\{x\leftarrow w\}]] \ \text{by} \ (\text{Fun\ Beta})
\simeq R[S[grant\ T\ in\ e\{x\leftarrow w\}]] \ \text{by} \ (\text{Frame\ Grant\ Frame})
\simeq S[grant\ T\ in\ e\{x\leftarrow w\}] \ \text{by} \ (\text{Frame\ Frame})
= (S[grant\ T\ in\ e])\{x\leftarrow w\}
\simeq v'\ w\ \text{by} \ (\text{Fun\ Beta}).
```

6. KEEPING TRACK OF DEPENDENCIES

Informally, stack inspection is a mechanism that prevents untrusted code from causing harm. However, it is surprisingly hard to state a useful theorem that captures this intent for a general class of trusted and untrusted code. We give it a try, and also explore variants of the operational semantics that yield stronger, easier-to-explain theorems. Our results are meant to illustrate these semantics, rather than provide the most general statements.

6.1 What is Guaranteed by Stack Inspection?

A first problem is that there is no generic notion of "something bad happens". To this end, we re-interpret failures (fail) as security failures, rather than security exceptions. That is, we define "e does dangerous things" as $e \Downarrow fail$.

In the following, $S \subseteq \mathcal{P}$ represents an upper bound on the permissions effectively given to untrusted code. We introduce syntactic restrictions required in the results below, for any code (both trusted and untrusted).

Syntactic requirements

An expression e is safe against S when

- (1) *grant* R *in* e' occurs only with $R \subseteq S$
- (2) *fail* occurs only as test R then fail else e' with $R \not\subseteq S$.

Conservatively, fail in (2) stands for any potentially dangerous code protected by R, such as primRF in the examples, and (1) rules out any dangerous grant.

LEMMA 2. Assume e is safe against S and $e \to_V^U e'$.

- (1) Either $e' \downarrow fail$ or e' is safe against S.
- (2) If $V \subseteq S$, then e' is safe against S.

PROOF. We detail the proof of statement (2) of the lemma. Syntactic requirement (1) is clearly preserved by any series of reductions. Requirement (2) is established by induction on the depth of the derivation, for all $V \subseteq S$.

- —(Red Test): If the second branch is taken, e' is clearly safe against S. Since $V \subseteq S$ and $R \not\subseteq S$, the test yields $R \not\subseteq V$ hence the *fail*-branch is never taken.
- —(Fail Rator) and (Fail Rand) are excluded by hypothesis.
- —(Red Appl), (Red Frame), and (Red Grant) preserve requirement (2).

- —(Ctx Rator), (Ctx Rand): by induction hypothesis for the same set *V*.
- —(Ctx Frame): $R[e] \to_V^U R[e']$ using (Ctx Frame) if and only if $e \to_{V \cap R}^R e'$, so we apply the induction hypothesis to e for $V \cap R \subseteq S$.
- —(Ctx Grant): $grant\ R\ in\ e \to_V^U grant\ R\ in\ e'$ using (Ctx Grant) if and only if $e \to_{V \cup (U \cap R)}^U e'$. We have $V \subseteq S$ by hypothesis, $R \subseteq S$ by safety of $grant\ R\ in\ e$ against S, and we apply the induction hypothesis to e for $V \cup (U \cap R) \subseteq S$.

The proof of statement (1) is similar. We use the hypothesis $\neg(e' \Downarrow fail)$ instead of $V \subseteq S$. Since "fail occurs in evaluation context in e'" implies $e' \Downarrow fail$, the first branch is never taken in (Red Test). \square

As a direct corollary, we obtain:

Theorem 5 (Sandbox). If e is safe against S, then S[e] does not fail.

PROOF. Assume e is safe against S and $S[e] \to f$ (i.e., $S[e] \to_{\mathcal{P}}^{\mathcal{P}} f$ by definition). There are two cases:

- —e is an outcome o and $S[e] \rightarrow o$ using (Red Frame). We have $e \Downarrow o$ and $o \neq fail$ (since o is safe against S); hence, e does not fail.
- $-e \rightarrow_S^S e'$ and f = S[e'] using (Ctx Frame). Then e' is also safe against S by Lemma 2 for V = S.

This excludes any series of steps $S[e] \rightarrow^* fail$. \square

This basic result states that applets do nothing dangerous on their own, but does not capture the behavior of a system that runs S[e] in a more trusted environment, as illustrated in Section 3. Rather, it describes a sandbox policy with maximal permissions S. Such a policy can be enforced without the complications of dynamic stack inspections, using the constant set of permissions S or relying on types [Leroy and Rouaix 1999].

Next, we focus on trusted code that discards any untrusted result. With this discipline, applet code framed with S should not affect any code protected by permissions beyond S. The next theorem formalizes this reasonable property. Its statement relies on a partial erasure operator:

PARTIAL ERASURE OF UNTRUSTED CODE

```
Let S \subseteq \mathcal{P}. The function on terms (\cdot) \setminus S is defined by -(S[e];e') \setminus S \stackrel{\triangle}{=} ok; (e' \setminus S) -(\cdot) \setminus S otherwise commutes with all constructors.
```

The intent of the erasure is to make independence from the untrusted subterms syntactically obvious. We erase code that is framed with the permission set S exactly. However, we can apply our theorems several times with different S parameters to erase more code, and conversely we can add an extra permission to S and to some S-frames for a more selective erasure.

In general, erasure and evaluation do not commute, because diverging or failing computations may be erased. In our setting, we have:

Theorem 6 (Protection from Untrusted Procedures). Assume that e is safe against S. If $e \downarrow o$, then $e \setminus S \downarrow o \setminus S$.

Hence, if $e \Downarrow fail$, then also $e \backslash S \Downarrow fail$ on its own. Informally, security failures do not depend on any untrusted code that is erased.

PROOF. By induction on the length of the derivation before erasure $e_0 \to^* o$ (for all expressions e_0) and case analysis on the first step $e_0 \to e_1$.

 $-e_0 = \mathcal{C}(S[e]; f) \to e_1 = \mathcal{C}(S[e']; f)$ using $e \to_V^S e'$. Informally, the step occurs within an erased frame and is discarded by the erasure.

By Lemma 2, e' is still safe against S, hence e_1 is also safe against S. If $e_0 \Downarrow o$, then $e_1 \Downarrow o$ and, by induction hypothesis; $e_1 \setminus S \Downarrow o$. Finally, $e_0 \setminus S = e_1 \setminus S$ and thus $e_0 \setminus S \Downarrow o$.

—We are not in the case above and $e_0 = \mathcal{C}(S[o]; f) \to e_1 = \mathcal{C}(o; f)$. Informally, a step (Red Frame) removes the boundary of a frame erased by the translation. Since e_0 is safe against S, o is also safe, thus $o \neq fail$ and we have:

$$e_0 \rightarrow e_1 \rightarrow \mathcal{C}(f)$$

 $e_0 \setminus S = (\mathcal{C} \setminus S)(ok; f \setminus S) \rightarrow \mathcal{C}(f) \setminus S.$

If $e_0 \Downarrow o$, then $C(f) \Downarrow o$. Since C(f) is also safe against S, we have $C(f) \setminus S \Downarrow o$ by induction hypothesis, and thus $e_0 \setminus S \Downarrow o$.

—We are not in the cases above, that is, $e_0 = \mathcal{C}(e) \to e_1 = \mathcal{C}(e')$ for some evaluation context \mathcal{C} and some instance $e \to_V^U e'$ of a base reduction rule. Informally, such steps always commute with the erasure.

We show $e_0 \setminus S \to e_1 \setminus S$ using an instance $e \setminus S \to_V^U e' \setminus S$ of the same base rule. Base cases (Red Appl), (Fail Rator), (Fail Rand), and (Red Grant) are immediate.

Base cases (Red Frame) and (Red Test) follow from the absence of erased frames $S[\cdot]$ in evaluation context in $\mathcal C$ (otherwise one of the two cases above apply). In particular, this guarantees that tests in context $\mathcal C$ and $(\mathcal C\setminus S)(\cdot)$ always agree. \square

As can be expected from our examples, the theorem would not hold for a more general erasure operator that may discard untrusted expressions whose results are actually used by trusted code.

The theorem does not distinguish between trusted and untrusted code. Indeed, an erased frame S[e] may contain both trusted and untrusted parts; such frames naturally occur by reduction from the initial configurations obtained by framing, described in Section 2.3.

Due to its strict syntactic requirements, Theorem 6 may not immediately apply to these configurations, but we can use our equational theory to rearrange them. Specifically:

(1) As a prerequisite, both trusted and untrusted code must be safe against S. In the case untrusted code contains grants of permissions not in S, one can sometimes apply equations (Frame Grant) and (Grant Frame) to lower those grants and meet requirement (1).

(2) The theorem is useful inasmuch as untrusted frames are discarded. Hence, S frames should be moved into contexts such that $(\cdot) \setminus S$ erases them, when possible.

Typically, after framing untrusted code, S frames appear under abstractions rather than in contexts (\cdot) ; e. Consider, for instance, an expression that links trusted code (z e); e' and untrusted code $S[v] = \lambda x.S[e'']$ for some $x \notin fv(e e')$. We have

```
(\lambda z.(z e); e') \lambda x.S[e''] \equiv ((\lambda x.S[e'']) e); e'
\stackrel{\triangle}{=} (let \ x = e \ in \ S[e'']); e'
\equiv let \ x = e \ in \ (S[e'']; e')
(\cdot) \setminus S \ let \ x = e \setminus S \ in \ (ok; e' \setminus S)
\equiv (\lambda z.(z e); e') \setminus S \ \lambda x.ok
```

by applying first equations (Fun Beta) and (Let Let), then erasing the S frame, and finally applying those equations again. Thus, we can extend Theorem 6 to a stronger notion of erasure that embeds this pattern.

(3) After applying the theorem, if there is any residual untrusted code, such as functions whose results are not discarded, some more equational reasoning may be required to assess their effect on the computation.

An interesting approach to obtain similar guarantees (and to benefit further from stack inspection) is to modify the interface between trusted and untrusted code. For instance, one can perform a local continuation-passing style transform (CPS) on untrusted functions: whenever the results of untrusted applets are used in trusted code, one can instead pass the result to a trusted continuation. (While it is tempting to apply a global CPS, this has little practical interest, inasmuch as its effective implementation rules out the stack-based, on demand inspection algorithm.)

For example, if the expression $(e_1S[f])$; e_2 is modified by CPS-transform into $(\lambda \kappa.(S[\kappa\ f];e_2))$ e_1 , and as long as the whole expression is safe against S, we can erase f and apply Theorem 6 to show that the outcome of the expression does not depend on f. However, this modification is not a contextual equivalence in $\lambda_{\rm sec}$.

6.2 Tracking all Call-by-Value Dependencies

To get a better understanding of the limitations of stack inspection, we now consider alternative operational semantics that keep track of dependencies more systematically.

We let extended values be values within frames and grants:

Grammar for extended values

GIRMANIA TON ENTENDED TIEGES	
w :=	extended value
v	value
R[w]	framed value
grant R in w	privileged value

For every w, we have $w \mapsto_D^S v$ for a unique v that does not depend on S or D—we just repeatedly apply steps (Red Frame) and (Red Grant)—and moreover $v \cong w$ by rules (Frame o) and (Grant o). Hence, we could substitute extended values for values in the semantics given in Section 2 without affecting contextual equivalence.

For simplicity, in the following, we only consider λ_{sec} without permission grants. (We believe that our alternative semantics can be generalized to deal with grants in a reasonable way.)

Our first modified semantics keeps track of all dependencies, much like information flow.

REDUCTION RULES FOR CBV DEPENDENCY TRACKING

(Red Frame), (Ctx Rand), and (Fail Rand) are replaced by:

$$\begin{array}{ll} \text{(Red Frame Rand)} & \text{(Ctx Rand W)} \\ v_1 \ R[w_2] \rightarrow_D^S \ R[v_1 \ w_2] & \dfrac{e_2 \rightarrow_D^S \ e_2'}{w_1 \ e_2 \rightarrow_D^S \ w_1 \ e_2'} \\ \\ \text{(Red Frame Rator)} & \text{(Fail Frame)} & \text{(Fail Rand W)} \\ R[w_1] \ w_2 \rightarrow_D^S \ R[w_1 \ w_2] & R[fail] \rightarrow_D^S \ fail & w \ fail \rightarrow_D^S \ fail \end{array}$$

Other rules are unchanged from Section 2.2:

$$\begin{array}{ll} (\text{Red Appl}) & (\text{Red Test}) \\ (\lambda x.e) \, v \to_D^S e\{x \leftarrow v\} & \textit{test } R \textit{ then } e_{\text{true}} \textit{else } e_{\text{false}} \to_D^S e_{R \subseteq D} \\ (\text{Ctx Rator}) & (\text{Ctx Frame}) \\ \frac{e_1 \to_D^S e_1'}{e_1 \, e_2 \to_D^S e_1' \, e_2} & \frac{e \to_{D \cap R}^R e'}{R[e] \to_D^S R[e']} & \textit{fail } e \to_D^S \textit{fail} \\ \end{array}$$

Rules (Red Frame Rand), (Red Frame Rator), and (Fail Frame) refine rule (Red Frame) with three disjoint cases. The net effect of the refined semantics is to accumulate every frame that ever occurs in evaluation context, instead of discarding frames after local evaluation.

Pragmatically, this variant is much harder to implement lazily: stack inspection must be supplemented with a mechanism that captures the current security environment and attaches it to any value. Conversely, a security-passing style implementation of the λ -calculus, at least, could easily accommodate this variation.

Rules (Red Frame Rand) and (Red Frame Rator) for frames correspond to the two operational rules for labels in the call-by-value semantics given by Abadi et al. [1996 Sect. 3.7]. Their semantics also strictly keep track of dependencies, although their intent is quite different.

With our modified semantics, we have a stronger, simpler variant of Theorem 6. We redefine the erasure operator as follows: $S[e] \setminus S = S[ok]$, and

 $(\cdot) \setminus S$ commutes with all other constructors. Hence, we uniformly erase untrusted code, independently of its usage.

Theorem 7 (Independence from untrusted code). Assume that e is safe against S. With the dependency tracking semantics above, we have:

```
e \Downarrow fail \iff e \setminus S \Downarrow fail
e \Downarrow w \iff e \setminus S \Downarrow w \setminus S for any extended value w not framed by S.
```

The first claim of the theorem asserts that failures in e do not depend on any S-framed code. Less importantly, perhaps, the second claim describes computations that do not use S-framed code.

Before proving the theorem, we establish some basic properties of the dependency tracking semantics. With this semantics, evaluation contexts now have the grammar $\mathcal{E}(\cdot) := \cdot \mid \mathcal{E}(\cdot) e \mid w \mathcal{E}(\cdot) \mid R[\mathcal{E}(\cdot)]$.

We say that an expression is S-framed when it is of the form $\mathcal{E}(S[e])$ for some evaluation context \mathcal{E} . Similarly, a context is S-framed when it is of the form $\mathcal{E}_1(S[\mathcal{E}_2(\cdot)])$ for some evaluation contexts \mathcal{E}_1 and \mathcal{E}_2 .

Lemma 3 (Erasure in Framed Expressions)

- (1) e is S-framed if and only if $e \setminus S$ is S-framed.
- (2) If *e* is not *S*-framed, then $e \to_V^U e' \iff e \setminus S \to_V^U e' \setminus S$.
- (3) If $e = \mathcal{E}(fail)$ for some evaluation context \mathcal{E} that is not S-framed, then both $e \Downarrow fail$ and $e \setminus S \Downarrow fail$.

PROOF. (1) follows from the definition of $\cdot \setminus S$.

We prove (2) by induction on the derivation of $e \to_V^U e'$; since e is not S-framed, we have $R \neq S$ for the rules (Ctx Frame), (Red Frame Rand), (Red Frame Rator), (Fail Frame). The other rules are immediate.

We prove (3) by induction on the depth of \mathcal{E} . For each constructor, we apply (Fail Rator), (Fail Rand W), or (Fail Frame) until we obtain *fail*. \square

Lemma 4 (Reduction for Safe Expressions). Let e be safe against S and assume $e \to_V^U e'$. We have the following properties:

- (1) Either e' is also safe against S, or $e' = \mathcal{E}(fail)$ for some evaluation context \mathcal{E} that is not S-framed.
- (2) If e is S-framed, then e' is S-framed and safe against S.

Proof. The two proofs are by induction on the derivation of $e \to_V^U e'$.

- (1) We easily check that any reduction yields an expression e' safe against S, except perhaps (Red Test) on $test\ R$ then fail else f. Since $R \not\subseteq S$ by safety requirement, the else branch is always chosen when the test occurs in an S-framed context, so fail never appears in S-framed evaluation contexts.
- (2) The only reduction rule that may discard an S-frame in evaluation context is (Fail Frame). This rule never applies in expressions safe against S. \square

PROOF OF THEOREM 7. Let e be safe against S, and consider its (finite or infinite) series of derivatives $e=e_0\to e_1\to\cdots\to e_i\to\cdots$. We distinguish three cases:

e becomes S-framed. For some $n \ge 0$, there exists $e = e_0 \to \cdots \to e_{n-1} \to e_n$ such that e_0, \ldots, e_{n-1} are all safe against S but not S-framed, while e_n is both safe against S and S-framed.

By Lemma 3(2), we obtain $e \setminus S \to^n e_n \setminus S$. The expression after erasure $e_n \setminus S$ is also safe against S and, by Lemma 3(1), it is also S-framed. Applying Lemma 4(2) to e_n and $e_n \setminus S$, these two expressions always remain S-framed and safe against S; they may independently diverge or converge to any S-framed extended values.

e becomes unsafe. For some $n \ge 0$, there exists $e = e_0 \to \cdots \to e_n \to f$ such that e_0, \ldots, e_n are all safe against S and not S-framed, whereas f is not safe against S.

By Lemma 3(2), we obtain $e \setminus S \to^{n+1} f \setminus S$. By Lemma 4(1), we have $f = \mathcal{E}(fail)$ for some evaluation context \mathcal{E} that is not S-framed. By Lemma 3(3), we have $f \Downarrow fail$ and $f \setminus S \Downarrow fail$, and thus $e \Downarrow fail$ and $e \setminus S \Downarrow fail$.

e remains safe and not S-framed. For all i, e_i is safe against S but not S-framed. By Lemma 3(2), we obtain $e \setminus S \to^i e_i \setminus S$. Thus, either e and $e \setminus S$ diverge, or we have $e \downarrow w$ for some w that is not S-framed and, since $e \setminus S$ is also an extended value, $e \setminus S \downarrow w \setminus S$. \square

6.3 Two Intermediate Tracking Semantics

Starting from the semantics for CBV dependency tracking, we can give up the preservation of convergence and get a coarser semantics by (1) discarding rule (Red Frame Rand), and (2) generalizing (Red Appl) to substitute framed values. This is similar in spirit to the first labelled semantics of Abadi et al. [1996], where labels are parts of values.

REDUCTION RULES WITH FRAMED VALUES

(Red Appl) is replaced by
$$(\text{Red Appl W})$$

 $(\lambda x.e) w \rightarrow_D^S e\{x \leftarrow w\}$

Other rules are unchanged from Sections 2.2 and 6.2:

Alternatively, we can obtain a similar semantics without modifying (Red Appl) by pushing the frame constructors under abstractions instead of discarding them.

REDUCTION RULES WITH FRAME CAPTURE IN FUNCTIONS

(Red Frame) is replaced by
$${\rm (Red\ Frame\ Fun)}\atop R[\lambda x.e] o_D^S \lambda x.R[e]$$

Other rules are unchanged from Sections 2.2 and 6.2:

$$\begin{array}{cccc} \text{(Ctx Rator)} & \text{(Ctx Rand)} & \text{(Ctx Frame)} \\ \underline{e_1 \rightarrow_D^S e_1'} & \underline{e_2 \rightarrow_D^S e_2'} & \underline{e \rightarrow_{D \cap R}^R e'} \\ \underline{e_1 e_2 \rightarrow_D^S e_1' e_2} & v_1 e_2 \rightarrow_D^S v_1 e_2' & \underline{R[e] \rightarrow_D^S R[e']} \\ \text{(Red Appl)} & \text{(Red Test)} \\ (\lambda x.e) \ v \rightarrow_D^S e\{x \leftarrow v\} & test \ R \ then \ e_{\text{true}} \ else \ e_{\text{false}} \rightarrow_D^S e_{R \subseteq D} \\ \text{(Fail Frame)} & \text{(Fail Rator)} & \text{(Fail Rand)} \\ R[fail] \rightarrow_D^S fail & fail \ e \rightarrow_D^S fail & v \ fail \rightarrow_D^S fail \\ \end{array}$$

These two intermediate semantics model the capture of the dynamic security environment (here D) that sometimes occurs in runtimes, for example when preparing the first call to a new thread. They are weaker than CBV dependency tracking; for instance, the divergence properties of low-privileged, unused subterms are not taken into account. For both of these semantics, we have $R[\lambda x.e] \simeq \lambda x.R[e]$ and so they are roughly equivalent.

We summarize our semantics variants by considering reductions for the expression $e_0 = (\lambda x.e)R[\lambda y.f]$, from the coarsest to the most restrictive: standard stack inspection; stack inspection with frame capture; stack inspection with framed values; and CBV dependency tracking.

$$\begin{array}{cccc} e_0 & \xrightarrow{\text{(Red Frame)}} & \xrightarrow{\text{(Red Appl)}} & e\{x \leftarrow \lambda y.f\} \\ e_0 & \xrightarrow{\text{(Red Frame Fun)}} & \xrightarrow{\text{(Red Appl)}} & e\{x \leftarrow \lambda y.R[f]\} \\ e_0 & \xrightarrow{\text{(Red Appl)}} & & e\{x \leftarrow R[\lambda y.f]\} \\ e_0 & \xrightarrow{\text{(Red Frame Rand)}} & \xrightarrow{\text{(Red Appl)}} & R[e\{x \leftarrow \lambda y.f\}] \end{array}$$

In order to get an adequate theorem for the intermediate semantics, we adapt again the erasure operator, as follows: To preserve convergence, we use a closed value t instead of ok such that $\lambda_- t \simeq t$. We let $S[e] \setminus S = t$, and let $(\cdot) \setminus S$ commute with all other constructors.

Theorem 8 (Protection from Untrusted Code). Assume that e is safe against S. With any of the two semantics above, we have $e \Downarrow fail \Longrightarrow e \setminus S \Downarrow fail$.

Proof of Theorem 8 for the Second Variation (Frame Capture). The structure of the proof is similar to those for the previous semantics. Evaluation contexts are given by the grammar $\mathcal{E}(\cdot) ::= \cdot \mid \mathcal{E}(\cdot) e \mid v \ \mathcal{E}(\cdot) \mid R[\mathcal{E}(\cdot)]$.

We successively show that:

- (1) Let e be safe against S. If $e ov_V^U e'$, then either e' is safe against S, or e' is of the form $\mathcal{E}(fail)$ for some evaluation context \mathcal{E} that is not S-framed, much as in Lemma 4(1).
- (2) If *fail* occurs in evaluation context in e and is not S-framed, then $e \downarrow fail$ and $e \setminus S \downarrow fail$, much as in Lemma 3(3).
- (3) Assume e is safe against S and $e \rightarrow e'$. If $e' \setminus S \Downarrow fail$, then also $e \setminus S \Downarrow fail$.
 - The proof is by cases of the derivation of $e \rightarrow e'$. One of the following holds:
 - (a) e is not S-framed. Then, $e \setminus S \to e' \setminus S$ and thus $e \setminus S \Downarrow fail$, much as in Lemma 3(2).
 - (b) The step is $\mathcal{E}(S[f]) \to \mathcal{E}(S[f'])$ for some non-S-framed evaluation context \mathcal{E} . Then we have $e \setminus S = e' \setminus S$.
 - (c) The step is $\mathcal{E}(S[\lambda x.f]) \to \mathcal{E}(\lambda x.S[f])$ for some non-S-framed evaluation context \mathcal{E} , using (Red Frame Fun) in context \mathcal{E} . Then, we have $e \setminus S = (\mathcal{E} \setminus S)(t)$ and $e' \setminus S = (\mathcal{E} \setminus S)(\lambda x.t)$. From the equation $t \simeq \lambda x.t$ in context $\mathcal{E} \setminus S$, we obtain $e \setminus S \Downarrow fail$.
- (4) Assume e is safe against S and $e \Downarrow fail$. We obtain $e \setminus S \Downarrow fail$ by induction on the length of the derivation $e \rightarrow^n fail$. \square

PROOF OF THEOREM 8 FOR THE FIRST VARIATION (FRAMED VALUES). The proof has the same structure as above. In the case analysis, the specific case (3c) now uses rule (Red Frame Rator) with R=S.

The step is $\mathcal{E}(S[w_1]w_2) \to \mathcal{E}(S[w_1w_2])$. After the erasure, with $w_2' \triangleq w_2 \setminus S$, we have $e \setminus S = (\mathcal{E} \setminus S)(tw_2')$ versus $e' \setminus S = (\mathcal{E} \setminus S)(t)$. From the equation $t \simeq \lambda_- t$, we obtain $(\mathcal{E} \setminus S)(tw_2') \simeq (\mathcal{E} \setminus S)((\lambda_- t)w_2') \to (\mathcal{E} \setminus S)(t) = e' \setminus S$. \square

7. CONCLUSIONS AND RELATED WORK

We began the article by casting doubt on the claims that stack inspection (1) allows easy and precise statement of security requirements and (2) is transparent for most programmers. To be clear, we are not denying the entirety of these claims; after all, stack inspection has been an effective security tool in runtimes like the JVM or the CLR.

Instead, we are probing its limitations. The limits of (1) appear in Sections 3 and 6 as we model complex interactions between trusted and untrusted code. The limits of (2) appear as we investigate standard program transformations in Sections 4 and 5. Although we use a formalism, we attempted throughout also to explain the issues in implementation terms. Inevitably, we leave aside important issues in the details of the implementations. In a recent, related work, Abadi and Fournet [2003] advocate an alternative to stack inspection, but in more concrete terms than we do in Section 6.3.

As well as casting doubt, the article casts light on the semantics of stack inspection. The equational theory in Section 4.1 allows us to reason carefully about compiler transformations, in principle. The variations in Section 6 strike different balances between security requirements and their implementation

cost. Still, these variations are exploratory, and so far purely theoretical. Implementation experiments remain future work. To the best of our knowledge, ours is the first work to analyse contextual equivalence in the presence of stack inspection, or to attempt to formulate high-level program-independent guarantees.

Wallach et al. [2000] provide an alternative semantics, security-passing style, that makes explicit the security environment as an extra argument passed to every function; they clearly separate the security intent from its implementation mechanism; they also present a semantics in terms of authentication logic. Our security-indexed semantics amounts to a direct account of security-passing style.

Jensen et al. [1999] and Besson et al. [2001] propose a logic for security properties of the control flow graph of a program. Their strategy is to identify specific properties, construct a flow graph, and apply a model-checker. Their logic can express the behavior of stack inspection as a formula. Their work is notable for its success in proving interesting program-dependent guarantees.

Erlingsson and Schneider [2000] implement two formulations of stack inspection by constructing an inlined reference monitor. They informally outline shortcomings of stack inspection with respect to thread creation and method inheritance.

Skalka and Smith [2000] and Pottier et al. [2001] introduce the λ_{sec} -calculus in their work on avoiding dynamic stack inspections by type-based static analysis. Their types express detailed information on permissions, which may be useful in a typed equational theory.

Banerjee and Naumann [2001] develop an eager denotational semantics for a λ -calculus similar to λ_{sec} , and show its correspondence to a lazy operational semantics. They present a static analysis, similar to but more abstract than the analysis of Pottier, Skalka, and Smith, that can safely eliminate certain stack inspections. They identify program transformations validated by their denotational semantics; this is the only other work we know of to analyse program equivalence in the presence of stack inspection. In subsequent work, Banerjee and Naumann [2002] extend their denotational semantics to model stack inspection in a Java-like class-based language. An abstraction theorem for their semantics is the basis for ongoing work on proving security properties of programs.

Karjoth [2000] gives a detailed operational semantics of the stack inspection mechanism in Java 2, but does not consider the effect of stack inspection on code optimisations.

Bartoletti et al. [2001] analyse bytecode to approximate the set of permissions effectively granted or denied at run-time, and use this information to optimize stack inspection mechanisms.

We discussed in Section 6 the view that stack inspection approximates a flow analysis. Several authors consider flow analyses for security. For instance, \emptyset rbæk and Palsberg [1997] model trust in a pure λ -calculus supplemented with trust, distrust, and check constructors. Trust and distrust annotations remain attached to values, much like labels or S-frames in Section 6.2, but they can cancel one another, with for instance trust $(distrust \, e) \to trust \, e$. Their

semantics does not fix a particular evaluation strategy. They provide a type system that rules out erroneous expressions *check* (*distrust e*). Myers [1999] also proposes a flow analysis for protecting privacy and integrity properties in Java programs.

Grossman et al. [2000] model multiple principals within a typed λ -calculus, with a reduction semantics similar to the tracking semantics of Section 6. They are not concerned with access control, but prove various safety and abstraction properties.

APPENDIXES

A. SEMANTICS WITH EXPLICIT STACK INSPECTION

Pottier et al. [2001] give two different semantics for λ_{sec} . The first semantics gives an explicit account of stack inspection: it closely models the complex inspection mechanism that occurs on demand when testing permissions, as an inductive predicate on the current evaluation context. Still, modulo minor syntactic differences, we can prove that our top-level reduction relation equals their reduction relation with stack inspection (Corollary 2). In short, our definition is equivalent but more abstract.

Their second semantics is by translation to a standard λ -calculus plus primitive operations on permission sets. This is the security-passing style transformation proposed by Wallach et al. [2000]. Our security-indexed operational semantics represents this style directly rather than by translation; the dynamic permissions set D in \rightarrow_D^S is essentially the additional parameter in security-passing style.

We recall the first semantics given by Pottier et al. [2001] for our variant of λ_{sec} . The semantics is given as reduction steps in evaluation context. Crucially, permission tests depend on a stack-inspection predicate that takes the current context as a parameter. (Evaluation contexts \mathcal{E} are defined in Section 2.2.) For simplicity, we describe stack inspection independently for each requested permission and aggregate the results in (SI Test).

REDUCTION RELATIONS WITH STACK INSPECTION

$e \xrightarrow{w} e'$	top-level reduction relation
$\mathcal{E} dash p$	the context $\mathcal E$ yields permission p
$\mathcal{E} \vdash_s p$	the context $\mathcal E$ yields static permission p
Ī	

OPERATIONAL SEMANTICS WITH STACK INSPECTION

```
(\text{SI Appl}) \qquad \qquad (\text{SI Fail}) \\ \mathcal{E}((\lambda x.e) \, v) \stackrel{\scriptscriptstyle{w}}{\rightarrow} \mathcal{E}(e\{x\leftarrow v\}) \qquad \stackrel{\scriptscriptstyle{\mathcal{E}}}{\mathcal{E}}(fail \, e) \stackrel{\scriptscriptstyle{w}}{\rightarrow} \mathcal{E}(fail) \\ \mathcal{E}(v \, fail) \stackrel{\scriptscriptstyle{w}}{\rightarrow} \mathcal{E}(fail) \\ (\text{SI Frame}) \qquad (\text{SI Grant}) \\ \mathcal{E}(R[o]) \stackrel{\scriptscriptstyle{w}}{\rightarrow} \mathcal{E}(o) \qquad \mathcal{E}(grant \, R \, in \, o) \stackrel{\scriptscriptstyle{w}}{\rightarrow} \mathcal{E}(o) \\ (\text{SI Test}) \\ \mathcal{E}(test \, R \, then \, e_{\text{true}} \, else \, e_{\text{false}}) \stackrel{\scriptscriptstyle{w}}{\rightarrow} \mathcal{E}(e_{(\forall p \in R \, . \, \mathcal{E} \vdash p)})
```

$$\begin{array}{c} (\text{Walk Frame}) \\ \mathcal{E} \vdash p \quad p \in S \\ \mathcal{E}(S[\cdot]) \vdash p \end{array} \qquad (\text{Walk Top}) \qquad \frac{\mathcal{E} \vdash p}{\mathcal{E}(\cdot e) \vdash p} \\ (\cdot) \vdash p \qquad \frac{\mathcal{E}(\cdot e) \vdash p}{\mathcal{E}(v \cdot) \vdash p} \\ (\text{Walk Grant}) \\ \frac{\mathcal{E} \vdash_s p \quad p \in T}{\mathcal{E}(grant \ T \ in \ \cdot) \vdash p} \\ \\ (\text{Find Frame}) \\ \frac{p \in S}{\mathcal{E}(S[\cdot]) \vdash_s p} \qquad (\text{Find Top}) \qquad \frac{\mathcal{E} \vdash_s p}{\mathcal{E}(v \cdot) \vdash_s p} \\ \mathcal{E}(grant \ T \ in \ \cdot) \vdash_s p \\ \mathcal{E}(grant \ T \ in \ \cdot) \vdash_s p \\ \mathcal{E}(grant \ T \ in \ \cdot) \vdash_s p \\ \mathcal{E}(grant \ T \ in \ \cdot) \vdash_s p \end{array}$$

Next, we relate this semantics to the one given in Section 2. The first lemma states that the sets S and D passed in reductions \rightarrow_D^S collect the static and dynamic permissions that can be read on demand from the stack, in order to process a permission test. As a corollary, we obtain agreement between the two semantics.

Lemma 5 (Stack Inspection vs Security Passing). Let \mathcal{E} be an evaluation context. Let $S = \{p \mid \mathcal{E} \vdash_s p\}$ and $D = \{p \mid \mathcal{E} \vdash p\}$. We have $\mathcal{E}(e) \to \mathcal{E}(e') \iff e \to_D^S e'$

PROOF. The proof is by induction on the depth of \mathcal{E} , for all e and e'.

The base case $\mathcal{E}(\cdot) = (\cdot)$ follows from the definition of top-level reductions $\to \to \to_{\mathcal{P}}^{\mathcal{P}}$. With the notations of the lemma, we have $D = S = \mathcal{P}$ by rules (Walk Top) and (Find Top), respectively.

Inductively, we consider the inner constructor in \mathcal{E} :

 $-\mathcal{E}(\cdot) = \mathcal{E}'(grant\ T\ in\ \cdot)$. Let S and D be defined as in the lemma, and let S' and D' be the permissions within \mathcal{E}' , that is, $S' = \{p \mid \mathcal{E}'(\cdot) \vdash_s p\}$ and $D' = \{p \mid \mathcal{E}'(\cdot) \vdash_p\}$. By definition of stack inspection, we have S = S' using rule (Find Further) and $D = D' \cup (T \cap S)$ using rules (Walk Grant) and (Walk Further). In particular, $D \subseteq S \iff D' \subseteq S$.

By rule (Ctx Grant), $e \to_D^S e' \iff grant \ T \ in \ e \to_{D'}^S grant \ T \ in \ e'$. By induction hypothesis for $(\mathcal{E}', grant \ T \ in \ e, grant \ T \ in \ e')$, we have $\mathcal{E}'(grant \ T \ in \ e) \to \mathcal{E}'(grant \ T \ in \ e') \iff grant \ T \ in \ e \to_{D'}^S grant \ T \ in \ e'$. We thus obtain $\mathcal{E}(e) \to \mathcal{E}(e') \iff e \to_D^S e'$.

- $-\mathcal{E}(\cdot) = \mathcal{E}'(R[\cdot])$. We use the same notations S, D, S', and D' as above. By definition of stack inspection, we have S = R using rule (Find Frame) and $D = D' \cap R$ using rule (Walk Frame). By rule (Ctx Frame) we have $e \to_{D'\cap R}^R e'$ iff $R[e] \to_{D'}^{S'} R[e]$, and we conclude by induction hypothesis for $(\mathcal{E}', R[e], R[e'])$.
- $-\mathcal{E}(\cdot) = \mathcal{E}'(\cdot e)$, and $\mathcal{E}(\cdot) = \mathcal{E}'(v \cdot)$. These cases are similar but simpler, since the constructor leaves S and D unchanged. \square

Corollary 2 (Top-Level Agreement). $e \xrightarrow{w} e' \iff e \rightarrow e'$

PROOF. By definition, the stack inspection semantics has the same evaluation contexts as our small-step semantics, so we just have to compare the base reduction rules.

Let \mathcal{E} be an evaluation context, and let S,D be obtained from \mathcal{E} as in Lemma 5. We prove that $\mathcal{E}(e) \stackrel{\text{\tiny w}}{\to} \mathcal{E}(e')$ using a base rule (SI -) iff $e \to_D^S e'$ using a base rule (Red -). We then apply Lemma 5 and conclude $\mathcal{E}(e) \stackrel{\text{\tiny w}}{\to} \mathcal{E}(e')$ iff $\mathcal{E}(e) \to \mathcal{E}(e')$ for all \mathcal{E}, e , and e'.

We get a syntactic correspondence for the rules (SI Appl) and (Red Appl); (SI Fail) and (Fail Rand), (Fail Rator); (SI Frame) and (Red Frame); (SI Grant) and (Red Grant). We detail the rules (Red Test) and (SI Test), since their respective test predicates are expressed differently:

(Red Test) test
$$R$$
 then e_{true} else $e_{\text{false}} \to_D^S e_{R \subseteq D}$ (SI Test) $\mathcal{E}(\text{test } R \text{ then } e_{\text{true}} \text{ else } e_{\text{false}}) \xrightarrow{w} \mathcal{E}(e_{(\forall p \in R}, \mathcal{E} \vdash_{D}))$.

By definition, $D \stackrel{\triangle}{=} \{p \mid \mathcal{E} \vdash p\}$, so the two predicates always agree. \square

B. SECURITY-INDEXED EVALUATION SEMANTICS

In Section 4.3, we defined a security-indexed evaluation relation, $e \downarrow_D^S o$, in terms of the security-indexed reduction relation, $e \to_D^S e'$. We defined $e \downarrow_D^S o$ to mean $e (\to_D^S)^* o$ and $D \subseteq S$. This section presents an alternative characterization—a direct inductive definition. The associated induction principle is useful for the proofs [Fournet and Gordon 2001]. We allow $e \downarrow_D^S o$ only when $D \subseteq S$.

EVALUATION RELATION

 $e \Downarrow_D^S o$ security-indexed evaluation $(D \subseteq S)$

SECURITY-INDEXED EVALUATION RULES

The inductive definition above coincides with the definition from Section 4.3 in terms of the reduction semantics. The argument follows standard lines [Fournet and Gordon 2001].

Proposition 4. For all e, o, S, D, we have $e \Downarrow_D^S o$ if and only if $e (\rightarrow_D^S)^*$ o and $D \subseteq S$.

ACKNOWLEDGMENTS

This work benefited from discussion with Martín Abadi, Tony Hoare, Butler Lampson, and Erik Meijer. We also thank the referees for helpful suggestions.

REFERENCES

- Abadi, M. and Fournet, C. 2003. Access control based on execution history. In *Proceedings of the 10th Annual Network and Distributed System Symposium (NDSS'03)*. Internet Society, 107–121.
- ABADI, M., LAMPSON, B., AND LÉVY, J.-J. 1996. Analysis and caching of dependencies. In *Proceedings* of the 1st ACM SIGPLAN International Conference on Functional Programming (ICFP'96). ACM, New York, 83–91.
- Abramsky, S. and Ong, L. 1993. Full abstraction in the lazy lambda calculus. *Inf. Comput.* 105, 159–267.
- Banerjee, A. and Naumann, D. 2001. A simple semantics and static analysis for Java security. CS Report 2001–1, Stevens Institute of Technology.
- Banerjee, A. and Naumann, D. 2002. Representation independence, confinement, and access control. In *Proceedings of the 29th ACM Symposium on Principles of Programming Languages* (*POPL'02*). ACM, New York, 166–277.
- Bartoletti, M., Degano, P., and Ferrari, G. 2001. Static analysis for stack inspection. In ConCoord: International Workshop on Concurrency and Coordination. ENTCS, vol. 54. Elsevier North-Holland, Amsterdam, The Netherlands.
- Benton, N., Kennedy, A., and Russell, G. 1998. Compiling Standard ML to Java bytecodes. In *Proceedings of the 3rd ACM SIGPLAN International Conference on Functional Programming (ICFP'98)*. ACM, New York, 129–140.
- Besson, F., Jensen, T., Métayer, D. L., and Thorn, T. 2001. Model checking security properties of control flow graphs. *J. Comput. Sec.* 9, 217–250.
- Box, D. 2002. Essential .NET Volume I: The Common Language Runtime. Addison-Wesley, Reading, Mass.
- ERLINGSSON, Ú. AND SCHNEIDER, F. 2000. IRM enforcement of Java stack inspection. In Proceedings of the 2000 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, Los Alamitos Calif., 246–255.
- FOURNET, C. AND GORDON, A. D. 2001. Stack inspection: Theory and variants. Tech. Rep. MSR-TR-2001-103, Microsoft Research. http://research.microsoft.com/scripts/pubs/view.asp? TR_ID=MSR-TR-2001-103.
- Fournet, C. and Gordon, A. D. 2002. Stack inspection: Theory and variants. In *Proceedings of the 29th ACM Symposium on Principles of Programming Languages (POPL'02)*. ACM, New York, 307–318.
- Gong, L. 1999. Inside JavaTM 2 Platform Security. Addison-Wesley, Reading, Mass.
- Gordon, A. D. and Pitts, A. M., Eds. 1998. Higher Order Operational Techniques in Semantics. Publications of the Newton Institute. Cambridge University Press.
- Grossman, D., Morrisett, G., and Zdancewic, S. 2000. Syntactic type abstraction. *ACM Trans. Prog. Lang. and Systems* 22, 6, 1037–1080.
- HARDY, N. 1988. The confused deputy. ACM Oper. Syst. Rev. 22, 4 (Oct.), 36-38. http://www.cis.upenn.edu/~KeyKOS/ConfusedDeputy.html.
- Howe, D. J. 1996. Proving congruence of bisimulation in functional programming languages. *Inf. Comput.* 124, 2, 103–112.
- ACM Transactions on Programming Languages and Systems, Vol. 25, No. 3, May 2003.

- Jensen, T., Metayer, D. L., and Thorn, T. 1999. Verification of control flow based security properties. In Proceedings of the 1999 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, Los Alamitos, Calif., 89-103.
- Karjoth, G. 2000. An operational semantics for Java 2 access control. In 13th Computer Security Foundations Workshop. IEEE Computer Society Press, 224–232.
- LAMACCHIA, B., LANGE, S., LYONS, M., MARTIN, R., AND PRICE, K. T. 2002. NET Framework Security. Addison-Wesley, Reading, Mass.
- LEROY, X. AND ROUAIX, F. 1999. Security properties of typed applets. In Secure Internet Programming—Security Issues for Mobile and Distributed Objects, J. Vitek and C. Jensen, Eds. Lecture Notes in Computer Science, vol. 1603. Springer-Verlag, New York, 147-
- LINDHOLM, T. AND YELLIN, F. 1997. The JavaTM Virtual Machine Specification. Addison-Wesley, Reading, Mass.
- MICROSOFT. 2001. NET Framework Developer's Guide: Security Optimizations. http://msdn. microsoft.com/library/en-us/cpguide/html/cpconsecurityoptimizations.asp.
- MILNER, R. 1977. Fully abstract models of typed lambda-calculi. Theoret. Comput. Sci. 4, 1–23.
- Moggi, E. 1989. Notions of computations and monads. Theoret. Comput. Sci. 93, 55–92.
- MORRIS, J. H. 1968. Lambda-calculus models of programming languages. Ph.D. dissertation. MIT Cambridge, Mass.
- Myers, A. C. 1999. JFlow: Practical, mostly-static information flow control. In Proceedings of the 26th ACM Symposium on Principles of Programming Languages (POPL'99). ACM, New York,
- ØRBÆK, P. AND PALSBERG, J. 1997. Trust in the λ-calculus. J. Funct. Prog. 3, 2, 75-85.
- PLOTKIN, G. D. 1975. Call-by-name, call-by-value and the λ-calculus. Theoret. Comput. Sci. 1,
- Pottier, F., Skalka, C., and Smith, S. 2001. A systematic approach to access control. In Programming Languages and Systems (ESOP 2001). Lecture Notes in Computer Science, vol. 2028. Springer-Verlag, New York, 30-45.
- Schinz, M. and Odersky, M. 2001. Tail call elimination on the Java Virtual Machine. In Proceedings of the SIGPLAN Workshop on Multi-Language Infrastructure and Interoperability (BABEL'01). ENTCS, vol. 59(1). Elsevier North Holland, Amsterdam, The Netherlands, 155-
- SKALKA, C. AND SMITH, S. 2000. Static enforcement of security with types. In Proceedings of the 5th ACM SIGPLAN International Conference on Functional Programming (ICFP'00). ACM, New York, 34-45.
- WALLACH, D. S., APPEL, A. W., AND FELTEN, E. W. 2000. SAFKASI: A security mechanism for languagebased systems. ACM Trans. on Softw. Eng. Meth. 9, 4, 341-378.

Received March 2002; accepted August 2002