
John Gilmore, Independent Consultant 
431Ashbury St. 
San Francisco, CA 94117 
Voice: (415) 621-9355 ABBS (300baud): (415) 863-4703 

December 12, 1980 

Copyright 1980 by John C. Gilmore. Copying without fee is permitted provided 
that the copies are not made or distributed for direct cu~,ercial advantage and 
that credit to the source is given. 

Suggested Enhancements to the Motorola MC68000 

The MC68000 is an outstanding processor -- one that the adjective "micro" does 
no justice to. It embodies a large-scale architecture, a very major advance 
over all other single-chip processors in existence. It does have rough edges, 
though, and it lacks facilities that could be provided at reasonable cost and 
with minimal changes. The body of this paper contains my suggestions for this 
"rounding out" process. 

First, a personal coa,~,ent. I wish the same functions had been provided without 
such extreme corner-cutting in encoding. The reusing of addressing modes in 
some instructions to encode other instructions, especially in light of the 
much-touted across-the-board consistency in addressing, leaves me wishing a few 
more opcodes had been used and the addressing left alone. I think a simpler 
instruction encoding -- simpler to explain, simpler to compile for, and simpler 
to decode -- ~uld have been worth it. 

i. Motorola documentation does not make any distinctions between the 
architecture of the 68000 family and the impl~nentation of the ~68000. 

For example, the User's Manual states that all instructions must be aligned, but 
Motorola has said they might allow non-aligned instructions in future. It would 
allow users to plan much more effectively for upward ccmpatability if they had a 
better idea what parts of the MC68000 implementation were considered relatively 
stable and which might be open to change. 

2. Support virtual memory. The current chip does not provide sufficient 
information to recover frcm a page fault; in particular, (A) the 

instruction that was executing cannot in general be identified, (B) there is no 
way to determine how far execution of the instruction had progressed before the 
page fault, and (C) any executing instruction is aborted when a page fault 
occurs because of instruction pre-fetching. 

While many instructions can be successfully restarted with heuristics, there are 
some that this is not possible for (eg MOVe4 (A3),A0-A7 with a fault after A6 
has been loaded. If we knew that A6 was the last one loaded, it ~uld be 
possible -- but we don't). 

The solution is for the chip to leave enough information around to enable us to 
restart, albeit with trouble. For example, (A) provide the address of the 
faulting instruction, (B) either rescind changes made by the instruction (hard), 
or provide sufficient information for software to recover or resume (easier); 
(C) Queue bus error indications from pre-fetch so that the trap only occurs when 
(and if) the instruction is decoded for execution. (This requires that the bus 
interface unit be able to get a bus error indication and then go thru several 
other bus cycles before taking the trap, but is vital. ) 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F641926.641928&domain=pdf&date_stamp=1980-10-31


Clearly, the bugaboo is (B)- rescinding changes or saying what has been 
changed. A complex, but workable, software algorithm for completing faulted 
instructions can probably be made with only two more pieces of information: the 
number of operand read bus cycles and the number of operand write bus cycles 
since the instruction began. (If immediate operands are accessed in 
mid-instruction, the count rmast include immediate operand reads, for cases like 
MOVE.L #X,D0 where the top half of DO has been clobbered before faulting on 
reading the second word of the literal. If immediate operands are all read 
before "true execution" begins, this is not a problem. ) It has not been proven 
that this information is always sufficient; clearly this needs to be done before 
considering solidifying such a scheme in silicon. 

3. Cause an Address Trap whenever an address is used which does not fit on the 
physical address bus used. The high-order bit of the physical bus should 

represent all high-order bits of the EA; that is, if bit 23 (the uppermost) of 
the 24-bit address bus is 0, bits 23 thru 31 of the EA must have been zero; if 
the uppermost bit is i, bits 23 thru 31 of the EA must have been one; otherwise 
(if bits 23 thru 31 of the EA were not all the same), an address trap occurs and 
no memory access is made. With a 24-bit address bus, addresses from 
00000000-007FFFFF and FF800000-F~'~'~'~'~'e'e are OK; the rest (00800000-FF7FFFFF) 
produce Address Traps. 

Why: It enforces upward compatability. 24-bit-bus users' programs will run 
correctly on a 32-bit-bus system, because they aren't depending on the 
truncation of addresses (which people are likely to rely on, as they do in 
System/360/370, and which will screw them when larger machines are released). 

4. The Bit MBnipulation instructions should be superceded by a ne~z set of 
instructions, as there are tcx) mBny things wrong with the current ones. 

The old instructions would continue to be supported as dinosaurs. The 
replacements (and the new BSX) will: 

(A) number bits from high-order to icw-order. 
Numbering the bits in the same order as the bytes makes the machine's addressing 
totally consistent, and allows (B). (See "Internetworking Experiment Note #137: 
On Holy Wars and a Plea for Peace" by Danny Cohen of USC/ISI, for some 
historical background on bit orders. ) 

(B) correctly process bit numbers other than 0 thru 31. 
Bit number n in a string should simply be addressed that way, no matter what the 
magnitude of n. The processor would shift off the low 3 bits of the longword 
bit number as bit-within-byte, and add the rest to the supplied byte address. 
Negative bit nt~nbers are valid. 

(C) use the Read-Modify-Write memory cycle. 
Interleaved accesses by two processors (to twD different bits in the same byte) 
can lose one of the modifications unless this is done. Explicit interlocking 
via TAS is clumsy and not well supported by high-level languages. 
Read-Modify-Write exacts a small penalty in DMA performance and in bus error 
reoovery -- and it's worth it. 

(D) set the X flag the same as the addressed bit. 
X can be set by BSET, BCLR, BCHG, or BTST then shifted into a register or memory 
by RQXL/R. A bit shifted to X by I~XL/R can be stored by BSX, which sets the 
addressed bit from the X flag. A bit can be "picked up" by BTST then "put down" 
by BSX. These are useful in applications like the Data Encryption Standard or 
bit-array generation and processing. 



(E) use short instructions for flags in stack frames or low memory. 
It currently takes 3 words to address a bit when using indexed, displacement, or 
short absolute addressing. Immediate bit numbers of 0-7 should appear in the 
first word of the instruction, making 2 words total for the above cases. [arger 
immediate values, or bit numbers in registers, can use larger instruction 
formats due to their lower frequency. 

5. Provide instructions to aid in converting binary to and from BCD and ASCII. 
The four proposed instructions (TASC, TBCD, FASC, and FBCD) each use a long 

unsigned data register and a byte EA (using any addressing mode). TASC takes 
the value in the data register, divides it by i0, and returns the quotient to 
the data register, setting the condition codes from the quotient. It stores the 
remainder in the low nibble of the EA, with a 3 in the high nibble. Thus to 
convert an entire number, one might do: 

~E~a~T.E: TASC DO,-(A3) 
BNE MUMBLE 

convert one digit 
loop until done 

FASC would fetch the byte at the EA, do nothing except set C if the byte was not 
be~een hex 30 and 39, else multiply Dn by I0 and add the low nibble, clearing C 
and setting V, N, and Z based on the result. To convert a whole number: 

CLR DO start off with zero 
GETDIG: FASC DO, (A3)+ add in a digit 

BCC GETDIG loop 
* fall thru when we've seen a non-digit. 

Similarly, TBCD would divide by i00 and make two BCD digits out of the 
remainder, FBCD would multiply by i00, convert the byte of BCD to binary, and 
add it in. If either nibble is not in the range 0-9, FBCD sets C and no-ops. 
Why: Binary <-> decimal data conversion has always been a problem; this would 
simplify things for the majority of conversions being done in the 68000. ASCII 
<-> BCD conversions are already in the works as PACK and UNPK. 

6. Reassign the opccde for ORI. Why: A word of zeros is an ORI.B to data 
register zero. It should be an illegal instruction. (Opcode 00001110 is 

free and in the right format. ) At least provide a second opcode for ORI nc~, so 
people will use the new one and let the old one be phased out sometime in the 
future. Software could easily allow older programs to run, by intercepting the 
invalid instruction trap and changing the opcode or simulating the ORI (unless 
the instruction was ORI.B #0,D0 -- two ~Drds of zeros). Most users ~Duld gladly 
reassemble their programs, having old ORIs fixed on the fly until they did, so 
that wild branches into blocks of zeros could be trapped. 

7. Provide an on-chip identifier which is accessible to user and supervisor 
software. The identifier should consist of 32 bits, where the high-order 

bits identify the processor revision, and the low-order bits identify the 
physical chip. The identifier need not be unique to the chip (although that 
would be nice), but at least 5 or 6 bits of uniqueness should be provided. The 
identifier must not be changeable once the chip has left the factory. Possible 
technologies: a small PROM progran~ed before packaging, by electronic means or 
by laser; or rather than replicating a mask exactly n times onto a wafer of 
silicon that would eventually produce n chips, have each copy on the wafer be 
slightly different in having a different circuit for the on-chip identifier ROM; 
this shouldn't affect too many of the masks, and if there are 64 on a wafer, 
this is enough uniqueness. It doesn't matter if scme of the chips drop out 
later as long as 64 different kinds of chips come out in reasonably-close 
numbers. (With computer-controlled electron beam lithography, a unique number 
could be assigned to each chip as it is exposed. ) 

i0 



Why: to provide sGme protection against software piracy. Purchased software 
would contain the user's processor identifier in some encoded form before being 
shipped. The software would check this identifier during operation to ensure it 
matched the identifier of the current processor. If the software is pirated to 
another processor, it can refuse to operate (or refuse to operate correctly). 
(The checking of the processor identifier must be done with some stealth by the 
software designer, as the user could run the application in trace mode to find 
out where the check is made and patch it out. This will provide great 
opportunities for ingenuity on the part of software designers and 
security-breakers both. Nevertheless, having the identifier accessible is much, 
much better than not having it: most end-users will not have the inclination or 
knowledge to defuse the check if it is known to exist. Currently, of course, it 
is known not to exist, encouraging piracy even among normally "moral" people. ) 

8. Provide a 32-bit by 32-bit multiply instruction that returns a 32-bit 
result, and sets V if an overflew occurs. Signed and unsigned would be 

nice, as well as word multiplies that produce a word result (and V for 
overflow), why: Except for the very unusual case of multi-precision work, 
n-by-n-giving-2n multiplies are painful for programmers to use. Most of us take 
the easy way out and simply ignore the top n bits of the product. There were 
several system security breaches in IBM's APL\360 system that were a direct 
result of this. (The system was multiplying the dimensions of an array tcxjether 
to determine how much space it would occupy; clever users created arrays with 
65536 rows and 65536 columns, which multiplied into "0" bytes of space, but 
allcwed them to access all of main storage with valid indices into the array. ) 

9. Provide a 32-bit by 32-bit divide instruction giving a 32-bit quotient and 
remainder. Signed and unsigned ~guld be nice again. The instruction 

should explicitly specify the register which will cont~n the remainder, rather 
than having it be a register "next to" the quotient register, for twp reasons: 
flexibility in register assignments, especially for c~,~ilers; and to allow a 
divide-without-remainder by specifying the same register as quotient and 
remainder. Many applications never use the remainder anyway. The Carry bit 
should be set if the remainder is nonzero in any case; this allcws a program to 
check if the divide was "even", whether or not it requested a remainder. 
Word-by-word-giving-~Drd divides with the same characteristics should also be 
supplied. Why: Because most users will want to divide longwords by longwprds 
or ~Drds by words, not 64-bits by longwords or longwords by words. 

i0. Use one of the free bits in an EA extension ~Drd (currently containing the 
index register and offset) to indicate that the index register is in 

elements rather than bytes: if the instruction size is Word, shift the index 
register left one bit before adding it to the base and displac~mnent; if the 
instruction size is Long, shift the index register left twp bits; if the 
instruction size is Byte, do no shifting; if the instructin is Unsized, take an 
Invalid Instruction trap. Why: subscripting. 

ii. Provide all 32 bits on the address bus. This is important for applications 
that do serious virtual memory work (as other manufacturers have found out) 

-- such as making all files on a hard disk (or videodisk! ) addressable by normal 
instructions without having to OPEN, READ, POSITION, etc. 

12. Provide a small instruction cache for use in DBcc loops. The cache would 
store a small number of ~grds, on the order of 3 to 20. A 32-bit cache 

base address register and a small cache length register would be used in 
conjunction with a c~arision network that would indicate whether a given 
memory address (to be placed on the address bus for reading or writing) was 
within the cache. Any write into the same address range clears the cache (by 
setting its length to zero). Operand reads from the range are unaffected (as 
they might be coming frcm data space instead of instruction space) and do not 

ii 



affect the cache. The cache is flushed by a successful branch instruction that 
branches to outside the range of the cache; this prevents it from getting 
fragmented and requiring more registers to keep track of it. 

Successful branch instructions that branch into the range of the cache cause 
"cache fetch mode" to be entered, in which instruction fetches come from the 
cache. Cache fetch mode ends when the cache is flushed, or when the end of the 
cache is reached; normal instruction fetching then restm~s. 

Normal instruction fetching always adds the fetched instruction to the cache and 
increments its length (possibly dropping an old instruction, if it is full). 
The cache is always either empty, ends just before the current instruction, or 
is being fetched from. 

Why: The flexibility of the autoincre~ent, autodecrement, DBcc approach to 
repetitive processes is wonderful, and adding specialized instructions (eg move 
a block of bytes) just for spccd would be distasteful. But at least 1/3 of the 
time taken in such icops is cons~ned by instruction fetch. A typical MOVE loop, 
such as 

FOO: MOVE.L (A0)+, (Ai)+ 
DBRA DO, FOO 

consumes ii cycles in doing work (4 to read a longword, 4 to write one, and 3 to 
update and test the counter) and 6 cycles in reading instructions, for each 
long~]rd moved. More cxJ~licated loops spend even a higher percentage of their 
time in instruction reads. A 3-word cache would handle move, clear, compare, 
and multi-precision loops; extending this to 8 or i0 words would handle most 
hand-assembled loops and some compiler-generated loops. 

13. As an alternative to providing an instruction cache, do the following: If 
the displacement of a successful DBcc instruction is -4, fetch the 

instruction at that address and save it in an internal register. Then go into a 
special execution mode in which that instruction is presented to the rest of the 
microcode for execution, then the condition testing and decrementing specified 
by the DBcc are done, and the process is repeated until the condition or 
decrement fails, or a trap occurs. The looping action is performed without 
further reference to main storage; the (l-word) instruction, the condition, and 
the data register to be decremented are saved in processor-internal storage. 
(If a trace or other trap occurs, of course, the PC must point to the right 
place. ) Why: This will speed up MOVE, CMPM, ADDX, SUBX, NEGX, ABCD, SBCD, 
NBCD, and CLR loops at a much lower implementation cost than suggestion #12. It 
doesn't help larger loops such as addition of two vectors. 

14. Provide a mode, controlled by a CCR bit, which would cause all instructions 
that read and subsequently replace an operand in storage to use the 

read-modify-write cycle, rather than a read followed by a write. This includes 
ADD, ADDX, NEG, NEGX, SUB, SUBX, AND, OR, ~OR, ~OT, ANDI, ORI, EORI, ADDI, SUBI, 
ADDQ, SUBQ, shifts and rotates, ABCD, SBCD, and NBCD. (This assumes that the 
bit operations are always interlocked; see #4. ) Having the opticn of having the 
next Read-Modify-Write cycle turn off the mode bit would be very nice. This 
would allow a program to interlock all following instructions with ORI 
#LOCK, CCR; or to just interlock the next instruction with ORI #LOCK+T~4P,CCR. 

12 



Why: While it can't synchronize longword operations, it provides much better 
(and easier-to-use) protection in a multiprocessor system than explicit use of 
TAS whenever shared data is being modified. 

15. Allow the TST, CLR, NEG, NEGX, 5E~T, ADDI, SUBI, and CMPI instructions to 
act on address registers. Why: sane are useful (haven't you ever tested a 

pointer against zero?); no reason to restrict the rest. The immediate 
instructions can be simulated with ADDA, SUBA, and CMPA with immediate operands, 
but this makes it harder to cc~pile code and blows "(x~nsistency". One can ADDQ 
but not ADDI to +an address register! 

16. On a RESET exception, the MPU fetches the new SSP while it still has the 
old PC; it should push it onto the newly-established supervisor stack, then 

fetch the new PC. If the system hangs, and RESET is the only way out, it sure 
is nice to be able to tell what piece of code hung it up. Having the old SSP 
would be nice, too, if there's a register in the chip where it could be saved 
until it's pushed. 

17. Currently the overflc~4 flag tin/st be tested after each instruction that 
might set it, if indeed one wants to detect overflows. A possible solution 

might be to have the V flag never turned off except by explicit progran~er 
action (ANDI to CCR, for ex~t~le); this would allow the use of a single test at 
the end of a series of instructions. This, unfortunately, messes up the GE, LT, 
GT, and LE condition code tests, which depend on V's being set at the same time 
as Z, N, and C. 

Another possibility is to have a mode which would cause a trap in~nediately after 
(or during) an instruction which sets V on. This has the side effect of taking 
traps on innocent instructions like CMP, which must set V the same way as SUB, 
or the multi-precision instructions, which might set V in the middle of an 
operation. 

Probably the best way to fix it is to disregard the current mechanism and add 
what would do the job best. A new bit in the CCR should cause the following 
instructions to trap rather than setting V: ADD, ADDI, ADDQ, SUB, SUBI, SUBQ, 
DIVS, DIVU, NEG, ASL, and the proposed multiply instructicns. Other 
instructions that set V are unchanged. The trap takes place before the results 
of the instruction are stored; no registers or memory are affected by the 
instruction. 

18. The 68000 is weak on mixed-data-width operations, which is a shame since it 
supports so many different types of data. That could be remedied by 

putting a mode bit in the OCR which ~uld cause two-operand in~ructions with 
data register results to sign-extend the other operand and use the whole 
register. In particular, ADD, ADDI, SUB, and SUBI would use the whole register 
as an operand (independent of the specified size of the EA or immediate operand) 
and return the result to the whole register. CMP, CMPI, and CHK would c~,t~are 
the entire data register. MOVE.B, MOVE.W, EXT.W, MOVE SR/CCR, MOVEP, and Scc 
would set the entire data register. It doesn't make sense to extend the logical 
operations, as the upper bits would either be unaffected or cleared; and the 
one-operand instructions need not deal with two sizes of operands. 

Note that MOV~M already has this effect -- it should be possible in all 
operations. Also note that operations on address registers provide some of the 
above, but they don't set condition codes, don't support byte operands, and 
don't include all operations. 

13 



19. An I~m.~ standard floating point co-processorwouldbe nice. 

20. Allow the TST instruction on all addressing modes, not just alterable ones. 
Why: No reason to restrict it. There are several ways non-predictable 

data could be in I-space; consider a control table linked in with a code module, 
or some operating-system-provided, read-only parameters. (Note that BTST is 
correct in this regard.) 

21. Inthe TSTand TAS instructions, set theCarrybit tot he low-order bit of 
the operand. This provides an "odd/even" test. Why: This won't mess up 

any condition tests, and allows the testing of several flags at once. 

22. Provide byte, word, and long variants of subtraction whichperform 
EA-Dn->Dn and Dn-EA->EAoperations. Why: Since subtraction is 

non-associative, a compiler (or assembler language programmer) must watch out 
for which operand is where the result will go. Having an instruction where the 
minuend and result correspond, instead of the subtrahend and result, removes 
this difficulty. This also applies to division, if/whendivisionhas the 
flexibility and attention that subtraction has (Word/Long, result to Dn or Ea, 
etc). 

23. Provide a conditional Trap instruction withall 16possible conditions and 
the ability topass a 6-to-8-bit literal to the trap handler. (The 

instruction should probably not vector; but just make the literal available to 
the handler). The instruction should execute in minimum time (two cycles) if 
the condition is not satisfied. Why: quick validity tests (ASSERT statements) 
and run-time error checks. This instruction can also obviate TRAPVand C~IK. 
(It can currently be simulated with a Bcc toanodd address, but that might not 
work forever.) 

24. Provide a return instruction which specifies a literal value, to be 
subtracted frc~the stack pointer after the PC is popped. Why: Subroutine 

calls with arguments on the stack require the caller to decrement the stack 
pointer past the arguments, after the routine returns. This instruction would 
allow the callee to do it, saving space and ocr~plexity. 

25. Provide indirect JumpandJSR instructions. The EAcould address a word 
self-relative, longword self-relative, or longword absolute pointer, at the 

user's option. Why: branch tables. Indirection can generally be simulated by 
loading thepointer, but one maywant to J~Por JSRwithouthaving a free 
register. 

26. Provide a CARRY instruction which would add the C (or X) flag to bit 8 or 
16 of a data register. Ideally it would have three variants: 

byte-to-word, word-to-long, and byte-to-long. Why: This would enhance the 
68000's ability to add and subtract s~aller-sized quantities to larger 
quantities. Following an ADD.B by a CARRY.B Dn.L would add the byte to the 
long register. This is especially useful in s~L~t~ng a series of bytes or words 
into a data register. Also see #18. 

27. The SR should be extended to 32 bits. Why: I've already proposed enough 
new bits to fill the current 16-bit one! 

28. ABCD and SBCD should trap if presented with non-BCD data. 

29. No instructions should leave the condition oodes undefined. Currently 
ABCD, (~K, NBCD, and SBCD do. 

14 


