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Abstract: A processor is described which can achieve highly parallel execution of programs represented in data- 
flow form. The language implemented incorporates conditional and iteration mechanisms, and the processor is a step 
toward a practical data-flow processor for a Fortran-level data-flow language. The processor has a unique archi- 
tecture which avoids the problems of processor switching and memory/processor interconnecion that usually limit the 
degree of realizable concurrent processing. The architecture offers an unusual solution to the problem of struc- 
turing and managing a two-level memory system. 

Introduction 

Studies of concurrent operation within a computer sys- 
tem and of the representation of parallelism in a pro- 
grarmming language have yielded a new form of program 
representation, known as data flow. Execution of a 
data-flow program is data-driven; that is, each instruc- 
tion is enabled for execution just when each required 
operand has been supplied by the execution of a prede- 
cessor instruction. Data-flow representations for pro- 
grams have been described by Karp and Miller [8], Rod- 
riguez Ill], Adams [i], Dennis and Fosseen [5], B~hrs 
[21, Kosinski [9, 101, and Dennis [4]. 

We have developed an attractive architecture for a pro- 
cessor that executes elementary data-flow programs [6, 
7]. The class of programs implemented by this processor 
corresponds to the model of Karp and Miller [81 . These 
data-flow programs are well suited to representing sig- 
nal processing computations such as waveform generation, 
modulation and filtering, in which a group of operations 
is to be performed once for each sample (in time) of the 
signals being processed. This elementary data-flow pro- 
cessor avoids the problems of processor switching and 
processor/memory interconnection present in attempts to 
adapt conventional Yon Neuman type machines for parallel 
computation. Sections of the machine communicate by the 
transmission of fixed size information packets, and the 
machine is organized so that the sections can tolerate 
delays in packet transmission without compromising ef- 
fective utilization of the hardware. 

We wish to expand the capabilities of the data-flow 
architecture~ with the ultimate goal of developing a 
general purpose processor using a generalized data-flow 
language such as described by Dennis [4], Kosinski [9, 
101 and B~hrs [21 . As an intermediate step, we have de- 
veloped a preliminary design for a basic data-flow pro- 
cessor that executes programs expressed in a more power- 
ful language than the elementary machine, but still not 
achieving a generalized capability. The language of the 
basic machine is that described by Dennis and Fosseen 
[51, and includes constructs for expressing conditional 
and iterative execution of program parts. 

In this paper we present solutions to the major problems 
faced in the development of the basic machine. A 
straightforward solution to the incorporation of decis- 
ion capabilities in the machine is described. In addi- 
tion, the growth in program size and complexity with the 
addition of the decision capability requires utilization 
of a two-level memory system. A design is presented in 
which only active instructions are in the operational 
memory of the processor, and each instruction is brought 
to that memory only when necessary for program execution, 
and remains there only as long as it is being utilized. 

The work reported here was supported by the National 
Science Foundation under research grant GJ-34671. 
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The Elementary Processor 

The Elementary Processor is designed to utilize the ele- 
mentary data-flow language as its base language. A pro- 
gram in the elementary data-flow language is a directed 
graph in which the nodes are operators or links. These 
nodes are connected by arcs along which values (conveyed 
by tokens) may travel. An operator of the schema is 
enabled when tokens are present on all input arcs. The 
enabled operator may fir.___~ at any time, removing the to- 
kens on its input arcs, computing a value from the oper- 
ands associated with the input tokens, and associating 
that value with a result token placed on its output arc. 
A result may be sent to more than one destination by 
means of a link which removes a token on its input arc 
and places tokens on its output arcs bearing copies of 
the input value. An operator or a link cannot fire un- 
less there is no token present on any output arc of that 
operator or link. 

An example of a program in the elementary data-flow lan- 
guage is shown in Figure I and represents the following 
simple computation: 

input a, b 
y := (a+b)/x 
x := (a*(a+b))+b 

output y, x 

LI 
L2 

All + 

L3 ~ -M 

A 2 1  / 

+ I A 4  

y × 

F i g u r e  I .  An e l e m e n t a r y  d a t a - f l o w  p r o g r a m .  
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Figure 2. Organization of the elementary data-flow processor. 

The r e c t a n g u l a r  boxes  i n  F i g u r e  1 a r e  o p e r a t o r s ,  and each 
a r i t h m e t i c  o p e r a t o r  i n  the  above c o m p u t a t i o n  i s  r e f l e c t e d  
in a corresponding operator in the program. The small 
dots are links. The large dots represent tokens holding 
values for the initial configuration of the program. 

In the program of Figure I, links LI and L2 are initially 
enabled. The firing of LI makes copies of the value a 
available to operators A1 and A3; firing L2 presents the 
value b to operators AI and A4. Once Li and L2 have 
fired (in any order), operator A1 is enabled since it 
will have a token on each of its input arcs. After AI 
has fired (completing the computation of a +b), link L3 
will become enabled. The firing of L3 will enable the 
concurrent firing of operators A2 and A3, and so on. 

The computations represented by an elementary program 
are performed in a data-driven manner; the enabling of 
an operator is determined only by the arrival of values 
on all input links, and no separate control signals are 
utilized. Such a schema prompted the design of a pro- 
cessor organized as in Figure 2. 

A data-flow schema to be executed is stored in the Me_...m- 
ory of the processor. The Memory is organized into 
Instruction Cells, each Cell corresponding to an opera- 
tor of the data-flow program. Each Instruction Cell 
(Figure 3) is composed of three registers. The first 
register holds an instruction (Figure 4) which speci- 
fies the operation to be performed and the address(es) 
of the reglster(s) to which the result of the operation 
is to be directed. The second and third registers hold 
the operands for use in execution of the instruction. 

When a Cell contains an instruction and the necessary op- 
erands, it is enabled and signals the Arbitration Network 
that it is ready to transmit its contents as an operation 
ace to an Operation Unit which can perform the desired 
function. The operation packet flows through the Arbi- 
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Figure 5. Structure o f the Arbitration Network. 

tratlon Network which directs it to an appropriate Opera- 
tion Unit by decoding the instruction portion of the pack- 
et. 

The result of an operation leaves an Oper&tion Unit as one 
or more dat__. ! packets, consisting of the computed value and 
the address of a register in the Memory to which the value 
is to be delivered. The Dist£ibution Network accepts data 
packets from the Operatlo n Units and utilizes the address 
of each to direct the data item through the network to the 
correct register in the Memory. The Instruction Cell con- 
taining that register may then be enabled if an instruc- 
tion and all operands are present in the Cell. 

Many Instruction Cells may be enabled simultaneously s and 
it is the task of the Arbitration Network to efficiently 
deliver operation packets to Operation Units and to queue 
operation packets waiting for each Operation Unit. A 
structure for the Arbitration Network providing a path for 
operation packets from each Instruction Cell to each Op- 
eration Unit is presented in Figure 5. Each Arbitration 
Unit passes packets arriving at its input ports one-at-a- 
time to its output port t using a round-robin discipline to 
resolve any ambiguity about which packets should be sent 
next. A Switch Unit assigns a packet at its input to one 
of its output ports s according to some property of the 
packet s in this case the operation code. 

The Distribution Network is similarly organized using 
Switch Units to route data packets from the Operation 
Units to the Memory Registers specified by the destina- 
tion addresses. A few Arbitratlon Units are required so 
data packets from different Operation Units can enter the 
network simultaneously. 

Since the Arbitration Network has many input ports and 
only a few output ports, the rate of packet flow will be 
much greater at the output ports. Thus s a serial rep- 
resentation of packets is appropriate at the input ports 
to minimize the number of connections to the Memory, but 
a more parallel representation is required at the output 
ports so a high throughput may be achieved. Hence s 
serlal-to-parallel conversion is performed in stages 
within the Arbitration Network. Similarly~ parallel-to- 
serial conversion of the value portion of each result 
packet occurs within the Distribution Network. 

The Operation Units of the processor are pipelined in 

i o p e r a t i o n  c o d e  
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Figure 3. Operation of an Instruct ion Cell. 
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F i g u r e  4 .  I n s t r u c t i o n  f o r m a t .  



(o) data link (b )  cont ro l  l ink 

Figure  6. L inks of the basic d a t a - f l o w  language.  

order to allow maximum throughput. The destination ad- 
dress(es) of an instruction are entered into identity 
pipelines of the O~ratlon Units and are utilized to 
form data packets with the result when it appears. 

A more detailed explanation of the elementary processor 
and its operation is given in [6]. We have completed 
designs for all units of the elementary processor in the 
formof speed-lndependent interconnections of a small 
set of basic asynchronous module types. These designs 
are presented in [7]. 

The Basic Data-Flow LanguaRe 

Our success in the architecture of the elementary data- 
flow processor led us to consider applying the concepts 
to the architecture of machines for more complete data- 
flow languages. For the first step in generalization, 
we have chosen, a .class of data-flpw programs that corre- 
spond to a formal data-flow model studied by Dennis and 
Fosseen [5]. 

The representation of conditionals and iteration in 
data-flow form requires additional types of links and 
actors. The types of links and actors for the basic 
data-flow language are shown in Figures 6 and 7. 

Data values pass through data links in the manner pre- 
sented previously. The tokens transmitted by control 
links are known as control tokens, and each conveys a 
value of either t.rue or false. A control token is gener- 
ated at a decider which, upon receiving values from its 
input arcs, applies its associated predicate, and produces 
either a ~.rue or false control token at its output arc. 

The control token produced at a decider can be combined 
with other control tokens by means of a Boolean operator 
(Figure 7f), allowing a decision to be built up from 
simpler decisions. 

COntrol tokens direct the flow of data tokens by means 
of T-gates, F-gates, or merge actors (Figure 7c, d, e). 
A T-gate passes the data token on its input arc to its 
output arc when it receives a control token conveying 

n 

Figure 8. Dota-flow representation of the basic program. 

(o) operoto'r  (b )  decider 

( c )  T - g a t e  (d) F-gate 

o I ^,v,-, l 

(e) merge ( f )  boolean ope ra to r  

F igure  7. Ac to rs  of the basic d a t a - f l o w  language. 

the value true at its control input. It will absorb the 
data token on its input arc and place nothing on its out- 
put arc if a false-valued control token is received, 
Similarly, the F-gate will pass its input data token to 
its output arc only on receipt of a false-valued token 
on the control input. Upon receipt of a true-valued to- 
ken, it will absorb the data token. 

A merge actor has a true input, a false input, and a 
Oontro.l input. St passes to its output arc a data token 
from the input arc' corresponding to the value of the 
control token received. Any tokens on the other input 
are not affected. 

As with the elementary schemas, a llnk or actor is not 
enabled to fire unless there is no token on any of its 
output arcs. 

Using the actors and links of the basic data-flow lan- 
guage, conditionals and iteration can be easily repre- 
sented. In illustration, Figure 8 gives a basic data- 
flow program for the following computation: 

input y, x 
n := 0 

while y < x d q 
y :=y+x 
n :=n+l 
end 

output y, n 

The control input arcs of the three merge actors carry 
false-valued tokens in the initial configuration so the 
input values of x and y and the constant 0 are admitted 
as initial values for the iteration. Once these values 
have been received, the predicate y < x is tested. If 
it is true, the value of x and the new value for y are 
cycled back into the body f)f the iteration through the 
T-gates and two merge nodes. Concurrently, the remaining 
T-gate and merge node return an incremented value of the 
iteration count n. When the output of the decider is 
false, the current values of y and n are delivered 
through the two F-gates, and the initial configuration 
is restored. 

The Basic Data-Flow Processor 

Two problems must be faced in adapting the design of the 
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elementary data-flow processor for basic data-flow pro- 
grams. The first task is to expand the architecture of 
the elementary machine to incorporate decision capability 
by implementing deciders, gates and merges. A fairly 
straightforward solution to this problem will be pre- 
sented. 

However, in contrast to elementary data-flow programs, 
the nodes of a basic data-flow program do not fire 
equally often during execution. As computation pro- 
ceeds, different parts of the program become active or 
quiescent as iterations are initiated and completed, 
and as decisions lead to selection of alternate parts 
of a program for activation. Thus it would be wasteful 
to assign a Cell to each instruction for the duration of 
program execution. The basic data-flow processor must 
have a multi-level memory system such that only the ac- 
tive instructions of a program occupy the Instruction 
Cells of the processor. In the following sections we 
first show how decision capability may be realized by 
augmenting the elementary processor; then we show how an 
auxiliary memory system may be added so the Instruction 
Cells act as a cache for the most active instructions. 

Decision Capability 

The organization of a basic data-flow processor without 
the two-level memory is shown in Fig. 9. As in the ele- 
mentary processor, each Instruction Cell consists of 
three Registers and holds one instruction together with 

Operat ion 
Un i ts  

Decision 
Uni ts  

Network  

1-.-1 
- -  -j cell o .j "= 

i " 
I n s t r u c t i o n  

[co,, o , t  I 
Figure 9. Organ iza t i on  of a basic  d a t a - f l o w  processor  

wi thout  t w o - l e v e l  m e m o r y .  

The gating codes permit representation of gate actors 
that control t~e reception of operand values by the op- 
erator or decider represented by the Instruction Cell. 

spaces for receiving its operands. Each instruction car- The meanings of the code values are as follows: 
responds to an operator, a decider, or a Boolean operator 

code value meaninE 

the associated operand is not gated. n__q 

true an operand value is accepted by arri- 
val of a true gate packet; discarded 
by arrival of a false gate packet. 

false an operand value is accepted by arri- 
val of a false gate packet; discarded 
by arrival of a true gate packet. 

cons the operand is a constant value. 

The stru=ture of a data or control receiver (Fig. Ii) 
provides space to receive a data or Boolean value, and 
two flag fields in which the arri@al of data and control 
packets is recorded. The gate fla~ is changed from of__~ 
to true or false by a true or false gate-type cuntroi 
packet; the value flag is changed from off to o_nn by a 
data packet or value type control packet according to 
the type of receiver. 

(a) operators (b) deciders 

o 1 *l I Op dl  I pr d l  

, gl vl I 

D 92 v2  

D gl v l  

D 92 v2  

(C) Boolean operators and 
control distr ibution 

i I bo tl d I 

B 9 I cl  t2 d2 
i 

,B J9 2 c2 t3 d3 

- -  op 
I 

D 91 I 

d l  

d2 

v l  

t l  d l  
pr 

t2 d2 

gl I v l  

t t l  dL 
bo 

t2 d2 

B gL cl  t3  d3 

op - operation code 
p r - predicate code 
b o - Boolean operation code 

t instruction codes 

d I , d2 , d5 destination addresses 
t L , t 2  , t 3  result togs 
9 I , g2 gat ing codes 
v I , v 2  data receivers 
C I , C2 control receivers 

Figure I0. Ins t ruc t ion  Cell formats for the basic processor. 

of a basic data-flow program. The gate and merge actors 
of the data-flow program are not represented by separate 
instructions; rather, the function of the gates is incor- 
porated into the instructions associated with operators 
and deciders in a manner that will be described shortly, 
and the function of the merge actors is implemented for 
free by the nature of the Distribution Network. 

Instructions that represent operators are interpreted by 
the Operation Units to yield data packets as in the ele- 
mentary processor. Instructions that represent deciders 
or Boolean operators are interpreted by the Decision 
Units to yield control packets having one of the two 
forms {~, [true 1 

ifalse~, <address>} 

{yalue, [true 1 <address>} 
A gate-type control packet performs a gating function at 
the addressed operand register. A value-type control 
packet provides a Boolean operand value to an Instruction 
Cell that represents a Boolean operator. 

The six formats for the contents of Instruction Cells in 
the basic processor are given in Figure I0. The use of 
each Register is specified in its leftmost field: 

I instruction register 
D operand register for data values 
B operand register for Boolean values 

Only Registers specified to be operand registers of con- 
sistent type may be addressed by instructions of a valid 
program. 

The remaining fields in the Instruction Cell formats are: 
an instruction code, op, pr or bo, that identifies the 
class and variation of the instruction in the Cell; from 
one to three destination addresses dl, d2, d3 that speci- 
fy target operand registers for the packets generated by 
instruction execution; in the case of deciders and Boolean 
operators, a result tad tl, t2, t3 for each destination 
that specifies whether the control packet is of gate-type 
(tag =mate) or of value type (tag =value); and, for each 
operand register, a ~ating code gl, g2 and either a data 
receiver vl, v2 or a control receiver cl, c2. 
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Receiver: 

f I I 

L value (data Or Boolean) 

c 
- - v a l u e  flag ~ o f f  no value received 

L on value received 

f of....._f_ no gate-type control packet received 
gate flag tru._._.e true gate-type control packet received 

false false gate-type control packet received 

Figure I1. Structure and states of receivers. 

Instruction Cell Operation 

The function of each Instruction Cell is to receive data 
and control packets, and, when the Cell becomes enabled, 
to transmit an operation or decision packet through the 
Arbitration Network and reset the Instruction Cell to 
its initial status. An Instruction Cell becomes enabled 
just when all three of its registers are enabled. A reg- 
ister specified to act as an instruction register is al- 
ways enabled. Registers specified to act as operand reg- 
isters change state with the arrival of packets directed 
to them. The state transitions and enabling rules for 
data operand registers are defined in Fig. 12. 

In Fig. 12 the contents of an operand register are rep- 
resented as  follows : 

D, ( o f f ,  of_at ) 

t t t t  
D 

g a t i n g  c o d e  

n o :  l - - J  e m p t y  

t 
t r u e :  ( t r u e ,  o__.n) ~ ~ f i l l e d  and  enab led  

ga te  f l o g J  

r e g i s t e r  use  i n d i c a t o r  

The asterisk indicates that the Register is enabled. 
Events denoting arrival of data and control packets 
are labelled thus: 

d data packet 
t true gate-type control packet 
f false gate-type control packet 

With this explanation of notation, the state changes and 
enabling rules given in Fig. 12 should be clear. Similar 
rules apply to the state changes and enabling of Boolean 
operand registers. Note that arrival of a gate-type con- 
trol packet that does not match the gating code of the 
Register causes the associated data packet to be discar- 

D, n£: (of__f, o f f  )l l d , (of f ,  o_.~) ~ * 

f 

D. tru..~_e: ( o f f , o f f ) { ~ . ~ - ~ - - e , . ( t r u e , o f f )  j ] d h ( t r u e , o n ) ~ ~ -  
~ . ~  d f ~  (f~lse ~°f f ) / [  J - -  - -  

/- t d.~(off, ~)~¢77~--.L 
f f d D, f a l s e :  (o f f ,  o f) [ ~ - - o , - ( f a l s e ,  off)  r - -~~-- . - - .b  ( fa lse,on) ~ z T ~  - 

~ -d " L "  (t'ue ' ° ~ %  [ "J 

D, con__._~: (of._f, on) ~ * 

Figure 12. State transition and enabling rules for 
data operand registers. 
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ded, and resets the Register to its starting condition. 

The operation packets sent to Operation Units and deci- 
sion packets sent to Decision Units consist of the en- 
tire contents of the Instruction Cell except for the 
gating codes and receiver status fields. Thus the pack- 
ets sent through the Arbitration Network have the fol- 
lowing formats: 

To the Operation Units: 

op, vl, v2, dl 
op, vl, dl, d2 

To the Decision Units: 

pr, vl, v2, tl, dl 
pr, vl, tl, dl, t2, d2 
bo, cl, c2, tl, dl, t2, d2, t3, d3 
bo, cl, tl, dl, t2, d2, t3, d3 

An initial configuration of Instruction Cells correspon- 
ding to the basic data-flow program of Fig. 8 is given 
in Fig. 13. For simplicity, Cells containing control 
distribution and data forwarding instructions are not 
shown. Instead, we have taken the liberty of writing 
any number of addresses in the destination fields of 
instructions. 

The initial values of x and y are placed in Registers 2 
and 5. Cells i and 2, containing these values, are 
then enabled and present to the Arbitration Network the 
operation packets 

{ident; ~, ii, 14} 

and ' ~  

These packets are directed to an identity Operation 
Unit which merely creates the desired data packets with 
the values of x and y and delivers the packets to the 
Distribution Network. 

Upon receipt by the Memory of the data packets directed 
to Registers 7 and 8, cell 3 will be enabled and will 
transmit its decision packet to a Decision Unit to per- 
form the less than function. The result of the decision 
will be returned through the Control Network as five con- 
trol packets. If the result is true, Cells 4, 5 and 6 
will be enabled and will send their contents through the 

cell I 

O0 I 
- - [ i d e n t  ( 8,11, 14)] 

02 D n__o x 

cell 5 

12 l plus ( 7 ,15,20 ) 

13 D true ( - )  

14 O no ( - )  

cell 2 

03 1 
- -  [ident (7,13,20)]  

04 I 

05 D n_.~ y 

cel I 6 

15 [ plus (16,25) 

16 D true 0 

17 D cons I 

cell 3 

06 I less gate (11,13,16,20,23) 

07 D ~ no ( - )  

08 i  D n._£ ( - )  
I 

cell 7 

18 I print ( ) 

19 D cons <format> 
i 

20 I D i false ( - )  

cell 4 

09 I I 
- - l  [ident {8,11,14)] 

I0 I 

I I D tru._._e ( - )  

21 

22 

23 

cell 8 
i print ( ) 

D cons < format> 

D J false ( - )  

Figure 13. Instruction Cell initialization for the basic 
data- f low program in Figure 8. 



Arbitration Network to Operation Units capable of per- 
forming the identity and addition operations. If the 
result of the decision is false, output cells 7 and 8 
will be enabled, and cells 4, 5, and 6 will have their 
gated operands deleted. 

Two-Level Memory Hierarchy 

The high level of parallel activity achievable in data- 
flow processors makes a unique form of memory hierarchy 
feasible: the Instruction Cells are arranged to act as 
a cache for the most active instructions of the data- 
flow program. Individual instructions are retrieved 
from auxiliary memory (the Instruction Memory) as they 
become required by the progress of computation, and in- 
structions are returned to the Instruction Memory when 
the Instruction Cells holding them are required for more 
active parts of the program. 

The organization of a basic data-flow processor with 
Instruction Memory is given in Fig. 14. 

Instruction Memory 

The Instruction Memory has a storage location for each 
possible register address of the basic processor. 
These storage locations are organized into groups of 
three locations identified by the address of the first 
location of the group. Each group can hold the contents 
of one Instruction Cell in the formats already given in 
Fig. I0. 

A memory command packet ~a, retr} presented to the com- 
mann port of the Instruction Memory, requests retriev---al 
of an instruction packet [a, x} in which x is the Cell 
contents stored in the group of locations specified by 
address a. The instruction packet is delivered at the 
retrieve port of the Instruction Memory. 

An instruction packet {a, x] presented at the store port 
of the Instruction Memory requests storage of Cell con- 
tents x in the three-location group specified by address 
a. However, thestorage is not effective until a memory 
command packet {a, store] i8 received by the Instruction 

data 
packets 

Operation 
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control Units 
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Network 

operation packets 
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Ceils 
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Block 0 

Memory • 
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Block k - I  

instruction 
packets 

Memory 
Command 
Network 

instruction 
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command I 
retrieve store , 

Instruction 
Memory 

Figure 14. Organization of the basic data- flow processor 
with auxil iary memory. 
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Memory at its command port, and any prior retrieval re- . 
quest has been honored. Similarly, retrieval requests 
are not honored until prior storage requests for the 
group have taken effect. 

We envision that the Instruction Memory would be de- 
signed to handle large numbers of storage and retrieval 
~equests concurrently, much as the input/output facilities 
of contemporary computer systems operate under software 
control. 

Cell Block Operation 

For application of the cache principle to the basic data- 
flow processor, an Instruction Memory address is divided 
into a major address and a minor address , each containing 
a number of bits of the address. One Cell Block of the 
processor is associated with each possible major address. 
All instructions having the same major address are pro- 
cessed by the Instruction Cells of the corresponding Cell 
Block. Thus the Distribution and Control Networks use 
the major address to direct data packets, control packets, 
and instruction packets to the appropriate Cell Block. 
The packets delivered to the Cell Block include the minor 
address, which is sufficient to determine how the packet 
should be treated by the Cell Block. 

Operation and decision packets leaving a Cell Block have 
exactly the same format as before. Instruction packets 
leaving a Cell Block have the form [m, x} where m is a 
minor address and x is the contents of an Instruction 
Cell. The major address of the Cell Block is appended 
to each instruction packet as it travels through the Ar- 
bitration Network. In the same way, memory command 
packets leave the Cell Block with just a minor address, 
which is augmented by the major address of the Cell Block 
during its trip through the Memory Command Network. 

Fig. 15 shows the structure of a Cell Block. Each In- 
struction Cell is able to hold any instruction whose ma- 
jor address is that of the Cell Block. Since many more 
instructions share a major address than there are Cells 
in a Cell Block, the Cell Block includes an Association 
Table which has an entry {m, i) for each Instruction 
Cel%: m is the minor address of the instruction to which 
the Cell is assigned, and i is a Cell status indicator 
whose values have significance as follows: 

status value meanln~ 

free the Cell is not assigned to any in- 
struction 

en~a~ed the Cell has been engaged for the in- 
struction having minor address m, by 
arrival of a data or control packet 

occupied the Cell is occupied by an instruction 
with minor address m 

The Stack element of a Cell Block holds an ordering of 
the Instruction Cells as candidates for displacement of 
their contents by newly activated instructions. Only 
Cells in occupied status are candiates for displacement. 

Operation of a Cell Block can be specified by giving two 
procedures -- one initiated by arrival of a data or con- 
trol packet at the Cell Block, and the other activated 
by arrival of an instruction packet from the Instruction 
Memory. 

Procedure i: Arrival of a data or control packet In, y) 
where n is a minor address and y is the packet con- 
tent. 

step I. Does the Association Table have an entry with 
minor address n? If so, let p be the Cell corre- 
sponding to the entry, and go to step 5. Otherwise 
continue with step 2. 

step 2. If the Association Table shows that no Instruc- 
tion Cell has status free, go to step 3. Otherwise 
let p be a Cell with status free. Let the Associa- 
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tlon Ta61e entry for p be [m, free}; go to step 4. 

step 3. Use the Stack to choose a Cell p in occupied 
status for preemption; let the Association Table 
entry for p be [m, occupie.d}; transmit the con- 
tents z of Cell p as an instruction packet {m, z} 
to the Instruction Memory via the Arbitration Net- 
work; transmit the memory cormmand packet {m, store) 
to the Instruction Memory through the Memory Com- 
mand Network. 

step 4. Make an entry {n, enKaged} for Cell p in the 
Association Table; transmit the memory cozm~and 
packet [n, re.tr} to the Instruction Memory via the 
Memory Command Network. 

step 5. Update the operand register of Cell p having 
minor address n according to the content y of the 
data or control packet (the rules for updating are 
those given in Fig. 12). If Cell p is occupied 
the state change of the register must be consis- 
tent with the instruction code or the program is 
invalid. If Cell p is engaged, the changes most 
be consistent with the register status left by 
preceding packet arrivals. 

step 6. If Cell p is occupied and all three regis~:ers 
are enabled (according to the rules of Fig, 12), 
the Cell p is enabled: transmit an operation or de- 
cision packet to the Operation Units or Decision 
Units through the Arbitration Network; leave Cell 
p in occupied status holding the same instruction 
with its operand registers reset (receivers empty 
with the gate and value flags set to of_l). Change 
the order of Cells in the Stack to make Cell p the 
last candidate for displacement. 

Procedure 2: Arrival of an instruction packet In, x} 
with minor address n and content x. 

ste~ I. Let p be the Instruction Cell with entry 
{n, engaged} in the Association Table, 

st~ 2. The status of the operand registers of Cell p 
must be consistent with the content x of the in- 
struction packet s or the program is invalid. Up- 
date the contents of Cell p to incorporate the in- 
struction and operand status information in the in- 
struction packet. 

step 3. Change the Association Table entry for Cell p 
from {n, engaged} to {n, occupied}. 

step 4. If all registers of Cell p are enabled, then 
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Cell p is enabled: transmit an operation or deci- 
sion packet to the Operation Units or Decision 
Units through the Arbitration Network; leave Cell 
p in occupied status holding the same instruction 
with its operand registers reset. Change the order 
of Cells in the Stack to make Cell p the last can- 
didate for displacement. 

Conclusion 

The organizatibn of a computer which allows the execu- 
tionof programs represented in data-flow form offers a 
very promising solution to the problem of achieving 
highly parallel computation. Thus far, the design of 
two processors, the elementary and the basic data-flow 
processors, has been investigated. The elementary pro- 
cessor is attractive for stream-oriented signal pro- 
cessing applications. The basic processor described here 
is a first step toward a highly parallel processor for 
numerical algorithms expressed in a Fortran-like data- 
flow language. However, this goal requires further elab- 
oration of the data-flow architecture to encompass ar- 
rays, concurrent activation of procedures, and some means 
of exploiting the sort of parallelism present in vector 
operations. We are optimistic that extensions of the 
architecture to provide these features can be devised, 
and we are hopeful that these concepts can be further 
extended to the design of computers for general-purpose 
computation based on more complete data-flow models such 
as presented by Demiis [4]. 
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