
A Preliminary Architecture for a Basic Data-Flow Processor

Jack B. Dennis and David P. Misunas
Project MAC

Massachusetts Institute of Technology

Abstract: A processor is described which can achieve highly parallel execution of programs represented in data-
flow form. The language implemented incorporates conditional and iteration mechanisms, and the processor is a step
toward a practical data-flow processor for a Fortran-level data-flow language. The processor has a unique archi-
tecture which avoids the problems of processor switching and memory/processor interconnecion that usually limit the
degree of realizable concurrent processing. The architecture offers an unusual solution to the problem of struc-
turing and managing a two-level memory system.

Introduction

Studies of concurrent operation within a computer sys-
tem and of the representation of parallelism in a pro-
grarmming language have yielded a new form of program
representation, known as data flow. Execution of a
data-flow program is data-driven; that is, each instruc-
tion is enabled for execution just when each required
operand has been supplied by the execution of a prede-
cessor instruction. Data-flow representations for pro-
grams have been described by Karp and Miller [8], Rod-
riguez Ill], Adams [i], Dennis and Fosseen [5], B~hrs
[21, Kosinski [9, 101, and Dennis [4].

We have developed an attractive architecture for a pro-
cessor that executes elementary data-flow programs [6,
7]. The class of programs implemented by this processor
corresponds to the model of Karp and Miller [81 . These
data-flow programs are well suited to representing sig-
nal processing computations such as waveform generation,
modulation and filtering, in which a group of operations
is to be performed once for each sample (in time) of the
signals being processed. This elementary data-flow pro-
cessor avoids the problems of processor switching and
processor/memory interconnection present in attempts to
adapt conventional Yon Neuman type machines for parallel
computation. Sections of the machine communicate by the
transmission of fixed size information packets, and the
machine is organized so that the sections can tolerate
delays in packet transmission without compromising ef-
fective utilization of the hardware.

We wish to expand the capabilities of the data-flow
architecture~ with the ultimate goal of developing a
general purpose processor using a generalized data-flow
language such as described by Dennis [4], Kosinski [9,
101 and B~hrs [21 . As an intermediate step, we have de-
veloped a preliminary design for a basic data-flow pro-
cessor that executes programs expressed in a more power-
ful language than the elementary machine, but still not
achieving a generalized capability. The language of the
basic machine is that described by Dennis and Fosseen
[51, and includes constructs for expressing conditional
and iterative execution of program parts.

In this paper we present solutions to the major problems
faced in the development of the basic machine. A
straightforward solution to the incorporation of decis-
ion capabilities in the machine is described. In addi-
tion, the growth in program size and complexity with the
addition of the decision capability requires utilization
of a two-level memory system. A design is presented in
which only active instructions are in the operational
memory of the processor, and each instruction is brought
to that memory only when necessary for program execution,
and remains there only as long as it is being utilized.

The work reported here was supported by the National
Science Foundation under research grant GJ-34671.

126

The Elementary Processor

The Elementary Processor is designed to utilize the ele-
mentary data-flow language as its base language. A pro-
gram in the elementary data-flow language is a directed
graph in which the nodes are operators or links. These
nodes are connected by arcs along which values (conveyed
by tokens) may travel. An operator of the schema is
enabled when tokens are present on all input arcs. The
enabled operator may fir.___~ at any time, removing the to-
kens on its input arcs, computing a value from the oper-
ands associated with the input tokens, and associating
that value with a result token placed on its output arc.
A result may be sent to more than one destination by
means of a link which removes a token on its input arc
and places tokens on its output arcs bearing copies of
the input value. An operator or a link cannot fire un-
less there is no token present on any output arc of that
operator or link.

An example of a program in the elementary data-flow lan-
guage is shown in Figure I and represents the following
simple computation:

input a, b
y := (a+b)/x
x := (a*(a+b))+b

output y, x

LI
L2

All +

L3 ~ -M

A 2 1 /

+ I A 4

y ×

F i g u r e I . An e l e m e n t a r y d a t a - f l o w p r o g r a m .

http://crossmark.crossref.org/dialog/?doi=10.1145%2F642089.642111&domain=pdf&date_stamp=1974-12-01

data
packets

Operation
Unit 0

Operation
Unlt m-I

I Instruction ~__
~ Cell 0 -i

Memory

~ Instruction J__
Cell n-I

i
4 •

J
operation
pockets

Figure 2. Organization of the elementary data-flow processor.

The r e c t a n g u l a r boxes i n F i g u r e 1 a r e o p e r a t o r s , and each
a r i t h m e t i c o p e r a t o r i n the above c o m p u t a t i o n i s r e f l e c t e d
in a corresponding operator in the program. The small
dots are links. The large dots represent tokens holding
values for the initial configuration of the program.

In the program of Figure I, links LI and L2 are initially
enabled. The firing of LI makes copies of the value a
available to operators A1 and A3; firing L2 presents the
value b to operators AI and A4. Once Li and L2 have
fired (in any order), operator A1 is enabled since it
will have a token on each of its input arcs. After AI
has fired (completing the computation of a +b), link L3
will become enabled. The firing of L3 will enable the
concurrent firing of operators A2 and A3, and so on.

The computations represented by an elementary program
are performed in a data-driven manner; the enabling of
an operator is determined only by the arrival of values
on all input links, and no separate control signals are
utilized. Such a schema prompted the design of a pro-
cessor organized as in Figure 2.

A data-flow schema to be executed is stored in the Me_...m-
ory of the processor. The Memory is organized into
Instruction Cells, each Cell corresponding to an opera-
tor of the data-flow program. Each Instruction Cell
(Figure 3) is composed of three registers. The first
register holds an instruction (Figure 4) which speci-
fies the operation to be performed and the address(es)
of the reglster(s) to which the result of the operation
is to be directed. The second and third registers hold
the operands for use in execution of the instruction.

When a Cell contains an instruction and the necessary op-
erands, it is enabled and signals the Arbitration Network
that it is ready to transmit its contents as an operation
ace to an Operation Unit which can perform the desired
function. The operation packet flows through the Arbi-

data
pocket

data
packet

rlstruction Cell

register

t instructi°n

register

{ , operond ,

register

II : operand R .

operation
packet

from
Instruction
Cel Is

to
Operation
Units

Figure 5. Structure o f the Arbitration Network.

tratlon Network which directs it to an appropriate Opera-
tion Unit by decoding the instruction portion of the pack-
et.

The result of an operation leaves an Oper&tion Unit as one
or more dat__. ! packets, consisting of the computed value and
the address of a register in the Memory to which the value
is to be delivered. The Dist£ibution Network accepts data
packets from the Operatlo n Units and utilizes the address
of each to direct the data item through the network to the
correct register in the Memory. The Instruction Cell con-
taining that register may then be enabled if an instruc-
tion and all operands are present in the Cell.

Many Instruction Cells may be enabled simultaneously s and
it is the task of the Arbitration Network to efficiently
deliver operation packets to Operation Units and to queue
operation packets waiting for each Operation Unit. A
structure for the Arbitration Network providing a path for
operation packets from each Instruction Cell to each Op-
eration Unit is presented in Figure 5. Each Arbitration
Unit passes packets arriving at its input ports one-at-a-
time to its output port t using a round-robin discipline to
resolve any ambiguity about which packets should be sent
next. A Switch Unit assigns a packet at its input to one
of its output ports s according to some property of the
packet s in this case the operation code.

The Distribution Network is similarly organized using
Switch Units to route data packets from the Operation
Units to the Memory Registers specified by the destina-
tion addresses. A few Arbitratlon Units are required so
data packets from different Operation Units can enter the
network simultaneously.

Since the Arbitration Network has many input ports and
only a few output ports, the rate of packet flow will be
much greater at the output ports. Thus s a serial rep-
resentation of packets is appropriate at the input ports
to minimize the number of connections to the Memory, but
a more parallel representation is required at the output
ports so a high throughput may be achieved. Hence s
serlal-to-parallel conversion is performed in stages
within the Arbitration Network. Similarly~ parallel-to-
serial conversion of the value portion of each result
packet occurs within the Distribution Network.

The Operation Units of the processor are pipelined in

i o p e r a t i o n c o d e

d e s t i n a t i o n
I 2

J,.. A

• ~ - - - - s p e c i a l i z e d f u n c t i o n

o p e r a t i o n u n i t

d e s t i n a t i o n

Figure 3. Operation of an Instruct ion Cell.

127

F i g u r e 4 . I n s t r u c t i o n f o r m a t .

(o) data link (b) cont ro l l ink

Figure 6. L inks of the basic d a t a - f l o w language.

order to allow maximum throughput. The destination ad-
dress(es) of an instruction are entered into identity
pipelines of the O~ratlon Units and are utilized to
form data packets with the result when it appears.

A more detailed explanation of the elementary processor
and its operation is given in [6]. We have completed
designs for all units of the elementary processor in the
formof speed-lndependent interconnections of a small
set of basic asynchronous module types. These designs
are presented in [7].

The Basic Data-Flow LanguaRe

Our success in the architecture of the elementary data-
flow processor led us to consider applying the concepts
to the architecture of machines for more complete data-
flow languages. For the first step in generalization,
we have chosen, a .class of data-flpw programs that corre-
spond to a formal data-flow model studied by Dennis and
Fosseen [5].

The representation of conditionals and iteration in
data-flow form requires additional types of links and
actors. The types of links and actors for the basic
data-flow language are shown in Figures 6 and 7.

Data values pass through data links in the manner pre-
sented previously. The tokens transmitted by control
links are known as control tokens, and each conveys a
value of either t.rue or false. A control token is gener-
ated at a decider which, upon receiving values from its
input arcs, applies its associated predicate, and produces
either a ~.rue or false control token at its output arc.

The control token produced at a decider can be combined
with other control tokens by means of a Boolean operator
(Figure 7f), allowing a decision to be built up from
simpler decisions.

COntrol tokens direct the flow of data tokens by means
of T-gates, F-gates, or merge actors (Figure 7c, d, e).
A T-gate passes the data token on its input arc to its
output arc when it receives a control token conveying

n

Figure 8. Dota-flow representation of the basic program.

(o) operoto'r (b) decider

(c) T - g a t e (d) F-gate

o I ^,v,-, l

(e) merge (f) boolean ope ra to r

F igure 7. Ac to rs of the basic d a t a - f l o w language.

the value true at its control input. It will absorb the
data token on its input arc and place nothing on its out-
put arc if a false-valued control token is received,
Similarly, the F-gate will pass its input data token to
its output arc only on receipt of a false-valued token
on the control input. Upon receipt of a true-valued to-
ken, it will absorb the data token.

A merge actor has a true input, a false input, and a
Oontro.l input. St passes to its output arc a data token
from the input arc' corresponding to the value of the
control token received. Any tokens on the other input
are not affected.

As with the elementary schemas, a llnk or actor is not
enabled to fire unless there is no token on any of its
output arcs.

Using the actors and links of the basic data-flow lan-
guage, conditionals and iteration can be easily repre-
sented. In illustration, Figure 8 gives a basic data-
flow program for the following computation:

input y, x
n := 0

while y < x d q
y :=y+x
n :=n+l
end

output y, n

The control input arcs of the three merge actors carry
false-valued tokens in the initial configuration so the
input values of x and y and the constant 0 are admitted
as initial values for the iteration. Once these values
have been received, the predicate y < x is tested. If
it is true, the value of x and the new value for y are
cycled back into the body f)f the iteration through the
T-gates and two merge nodes. Concurrently, the remaining
T-gate and merge node return an incremented value of the
iteration count n. When the output of the decider is
false, the current values of y and n are delivered
through the two F-gates, and the initial configuration
is restored.

The Basic Data-Flow Processor

Two problems must be faced in adapting the design of the

128

elementary data-flow processor for basic data-flow pro-
grams. The first task is to expand the architecture of
the elementary machine to incorporate decision capability
by implementing deciders, gates and merges. A fairly
straightforward solution to this problem will be pre-
sented.

However, in contrast to elementary data-flow programs,
the nodes of a basic data-flow program do not fire
equally often during execution. As computation pro-
ceeds, different parts of the program become active or
quiescent as iterations are initiated and completed,
and as decisions lead to selection of alternate parts
of a program for activation. Thus it would be wasteful
to assign a Cell to each instruction for the duration of
program execution. The basic data-flow processor must
have a multi-level memory system such that only the ac-
tive instructions of a program occupy the Instruction
Cells of the processor. In the following sections we
first show how decision capability may be realized by
augmenting the elementary processor; then we show how an
auxiliary memory system may be added so the Instruction
Cells act as a cache for the most active instructions.

Decision Capability

The organization of a basic data-flow processor without
the two-level memory is shown in Fig. 9. As in the ele-
mentary processor, each Instruction Cell consists of
three Registers and holds one instruction together with

Operat ion
Un i ts

Decision
Uni ts

Network

1-.-1
- - -j cell o .j "=

i "
I n s t r u c t i o n

[co,, o , t I
Figure 9. Organ iza t i on of a basic d a t a - f l o w processor

wi thout t w o - l e v e l m e m o r y .

The gating codes permit representation of gate actors
that control t~e reception of operand values by the op-
erator or decider represented by the Instruction Cell.

spaces for receiving its operands. Each instruction car- The meanings of the code values are as follows:
responds to an operator, a decider, or a Boolean operator

code value meaninE

the associated operand is not gated. n__q

true an operand value is accepted by arri-
val of a true gate packet; discarded
by arrival of a false gate packet.

false an operand value is accepted by arri-
val of a false gate packet; discarded
by arrival of a true gate packet.

cons the operand is a constant value.

The stru=ture of a data or control receiver (Fig. Ii)
provides space to receive a data or Boolean value, and
two flag fields in which the arri@al of data and control
packets is recorded. The gate fla~ is changed from of__~
to true or false by a true or false gate-type cuntroi
packet; the value flag is changed from off to o_nn by a
data packet or value type control packet according to
the type of receiver.

(a) operators (b) deciders

o 1 *l I Op dl I pr d l

, gl vl I

D 92 v2

D gl v l

D 92 v2

(C) Boolean operators and
control distr ibution

i I bo tl d I

B 9 I cl t2 d2
i

,B J9 2 c2 t3 d3

- - op
I

D 91 I

d l

d2

v l

t l d l
pr

t2 d2

gl I v l

t t l dL
bo

t2 d2

B gL cl t3 d3

op - operation code
p r - predicate code
b o - Boolean operation code

t instruction codes

d I , d2 , d5 destination addresses
t L , t 2 , t 3 result togs
9 I , g2 gat ing codes
v I , v 2 data receivers
C I , C2 control receivers

Figure I0. Ins t ruc t ion Cell formats for the basic processor.

of a basic data-flow program. The gate and merge actors
of the data-flow program are not represented by separate
instructions; rather, the function of the gates is incor-
porated into the instructions associated with operators
and deciders in a manner that will be described shortly,
and the function of the merge actors is implemented for
free by the nature of the Distribution Network.

Instructions that represent operators are interpreted by
the Operation Units to yield data packets as in the ele-
mentary processor. Instructions that represent deciders
or Boolean operators are interpreted by the Decision
Units to yield control packets having one of the two
forms {~, [true 1

ifalse~, <address>}

{yalue, [true 1 <address>}
A gate-type control packet performs a gating function at
the addressed operand register. A value-type control
packet provides a Boolean operand value to an Instruction
Cell that represents a Boolean operator.

The six formats for the contents of Instruction Cells in
the basic processor are given in Figure I0. The use of
each Register is specified in its leftmost field:

I instruction register
D operand register for data values
B operand register for Boolean values

Only Registers specified to be operand registers of con-
sistent type may be addressed by instructions of a valid
program.

The remaining fields in the Instruction Cell formats are:
an instruction code, op, pr or bo, that identifies the
class and variation of the instruction in the Cell; from
one to three destination addresses dl, d2, d3 that speci-
fy target operand registers for the packets generated by
instruction execution; in the case of deciders and Boolean
operators, a result tad tl, t2, t3 for each destination
that specifies whether the control packet is of gate-type
(tag =mate) or of value type (tag =value); and, for each
operand register, a ~ating code gl, g2 and either a data
receiver vl, v2 or a control receiver cl, c2.

129

Receiver:

f I I

L value (data Or Boolean)

c
- - v a l u e flag ~ o f f no value received

L on value received

f of....._f_ no gate-type control packet received
gate flag tru._._.e true gate-type control packet received

false false gate-type control packet received

Figure I1. Structure and states of receivers.

Instruction Cell Operation

The function of each Instruction Cell is to receive data
and control packets, and, when the Cell becomes enabled,
to transmit an operation or decision packet through the
Arbitration Network and reset the Instruction Cell to
its initial status. An Instruction Cell becomes enabled
just when all three of its registers are enabled. A reg-
ister specified to act as an instruction register is al-
ways enabled. Registers specified to act as operand reg-
isters change state with the arrival of packets directed
to them. The state transitions and enabling rules for
data operand registers are defined in Fig. 12.

In Fig. 12 the contents of an operand register are rep-
resented as follows :

D, (o f f , of_at)

t t t t
D

g a t i n g c o d e

n o : l - - J e m p t y

t
t r u e : (t r u e , o__.n) ~ ~ f i l l e d and enab led

ga te f l o g J

r e g i s t e r use i n d i c a t o r

The asterisk indicates that the Register is enabled.
Events denoting arrival of data and control packets
are labelled thus:

d data packet
t true gate-type control packet
f false gate-type control packet

With this explanation of notation, the state changes and
enabling rules given in Fig. 12 should be clear. Similar
rules apply to the state changes and enabling of Boolean
operand registers. Note that arrival of a gate-type con-
trol packet that does not match the gating code of the
Register causes the associated data packet to be discar-

D, n£: (of__f, o f f)l l d , (of f , o_.~) ~ *

f

D. tru..~_e: (o f f , o f f) { ~ . ~ - ~ - - e , . (t r u e , o f f) j] d h (t r u e , o n) ~ ~ -
~ . ~ d f ~ (f~lse ~°f f) / [J - - - -

/- t d.~(off, ~)~¢77~--.L
f f d D, f a l s e : (o f f , o f) [~ - - o , - (f a l s e , off) r - -~~-- . - - .b (fa lse,on) ~ z T ~ -

~ -d " L " (t'ue ' ° ~ % ["J

D, con__._~: (of._f, on) ~ *

Figure 12. State transition and enabling rules for
data operand registers.

$30

ded, and resets the Register to its starting condition.

The operation packets sent to Operation Units and deci-
sion packets sent to Decision Units consist of the en-
tire contents of the Instruction Cell except for the
gating codes and receiver status fields. Thus the pack-
ets sent through the Arbitration Network have the fol-
lowing formats:

To the Operation Units:

op, vl, v2, dl
op, vl, dl, d2

To the Decision Units:

pr, vl, v2, tl, dl
pr, vl, tl, dl, t2, d2
bo, cl, c2, tl, dl, t2, d2, t3, d3
bo, cl, tl, dl, t2, d2, t3, d3

An initial configuration of Instruction Cells correspon-
ding to the basic data-flow program of Fig. 8 is given
in Fig. 13. For simplicity, Cells containing control
distribution and data forwarding instructions are not
shown. Instead, we have taken the liberty of writing
any number of addresses in the destination fields of
instructions.

The initial values of x and y are placed in Registers 2
and 5. Cells i and 2, containing these values, are
then enabled and present to the Arbitration Network the
operation packets

{ident; ~, ii, 14}

and ' ~

These packets are directed to an identity Operation
Unit which merely creates the desired data packets with
the values of x and y and delivers the packets to the
Distribution Network.

Upon receipt by the Memory of the data packets directed
to Registers 7 and 8, cell 3 will be enabled and will
transmit its decision packet to a Decision Unit to per-
form the less than function. The result of the decision
will be returned through the Control Network as five con-
trol packets. If the result is true, Cells 4, 5 and 6
will be enabled and will send their contents through the

cell I

O0 I
- - [i d e n t (8,11, 14)]

02 D n__o x

cell 5

12 l plus (7 ,15,20)

13 D true (-)

14 O no (-)

cell 2

03 1
- - [ident (7,13,20)]

04 I

05 D n_.~ y

cel I 6

15 [plus (16,25)

16 D true 0

17 D cons I

cell 3

06 I less gate (11,13,16,20,23)

07 D ~ no (-)

08 i D n._£ (-)
I

cell 7

18 I print ()

19 D cons <format>
i

20 I D i false (-)

cell 4

09 I I
- - l [ident {8,11,14)]

I0 I

I I D tru._._e (-)

21

22

23

cell 8
i print ()

D cons < format>

D J false (-)

Figure 13. Instruction Cell initialization for the basic
data- f low program in Figure 8.

Arbitration Network to Operation Units capable of per-
forming the identity and addition operations. If the
result of the decision is false, output cells 7 and 8
will be enabled, and cells 4, 5, and 6 will have their
gated operands deleted.

Two-Level Memory Hierarchy

The high level of parallel activity achievable in data-
flow processors makes a unique form of memory hierarchy
feasible: the Instruction Cells are arranged to act as
a cache for the most active instructions of the data-
flow program. Individual instructions are retrieved
from auxiliary memory (the Instruction Memory) as they
become required by the progress of computation, and in-
structions are returned to the Instruction Memory when
the Instruction Cells holding them are required for more
active parts of the program.

The organization of a basic data-flow processor with
Instruction Memory is given in Fig. 14.

Instruction Memory

The Instruction Memory has a storage location for each
possible register address of the basic processor.
These storage locations are organized into groups of
three locations identified by the address of the first
location of the group. Each group can hold the contents
of one Instruction Cell in the formats already given in
Fig. I0.

A memory command packet ~a, retr} presented to the com-
mann port of the Instruction Memory, requests retriev---al
of an instruction packet [a, x} in which x is the Cell
contents stored in the group of locations specified by
address a. The instruction packet is delivered at the
retrieve port of the Instruction Memory.

An instruction packet {a, x] presented at the store port
of the Instruction Memory requests storage of Cell con-
tents x in the three-location group specified by address
a. However, thestorage is not effective until a memory
command packet {a, store] i8 received by the Instruction

data
packets

Operation
Units

Decision
control Units
pockets

Control
Network

operation packets

decision
packets

Ceils

Cell
Block 0

Memory •

Cell
Block k - I

instruction
packets

Memory
Command
Network

instruction
packets

memory command
packets

command I
retrieve store ,

Instruction
Memory

Figure 14. Organization of the basic data- flow processor
with auxil iary memory.

131

Memory at its command port, and any prior retrieval re- .
quest has been honored. Similarly, retrieval requests
are not honored until prior storage requests for the
group have taken effect.

We envision that the Instruction Memory would be de-
signed to handle large numbers of storage and retrieval
~equests concurrently, much as the input/output facilities
of contemporary computer systems operate under software
control.

Cell Block Operation

For application of the cache principle to the basic data-
flow processor, an Instruction Memory address is divided
into a major address and a minor address , each containing
a number of bits of the address. One Cell Block of the
processor is associated with each possible major address.
All instructions having the same major address are pro-
cessed by the Instruction Cells of the corresponding Cell
Block. Thus the Distribution and Control Networks use
the major address to direct data packets, control packets,
and instruction packets to the appropriate Cell Block.
The packets delivered to the Cell Block include the minor
address, which is sufficient to determine how the packet
should be treated by the Cell Block.

Operation and decision packets leaving a Cell Block have
exactly the same format as before. Instruction packets
leaving a Cell Block have the form [m, x} where m is a
minor address and x is the contents of an Instruction
Cell. The major address of the Cell Block is appended
to each instruction packet as it travels through the Ar-
bitration Network. In the same way, memory command
packets leave the Cell Block with just a minor address,
which is augmented by the major address of the Cell Block
during its trip through the Memory Command Network.

Fig. 15 shows the structure of a Cell Block. Each In-
struction Cell is able to hold any instruction whose ma-
jor address is that of the Cell Block. Since many more
instructions share a major address than there are Cells
in a Cell Block, the Cell Block includes an Association
Table which has an entry {m, i) for each Instruction
Cel%: m is the minor address of the instruction to which
the Cell is assigned, and i is a Cell status indicator
whose values have significance as follows:

status value meanln~

free the Cell is not assigned to any in-
struction

en~a~ed the Cell has been engaged for the in-
struction having minor address m, by
arrival of a data or control packet

occupied the Cell is occupied by an instruction
with minor address m

The Stack element of a Cell Block holds an ordering of
the Instruction Cells as candidates for displacement of
their contents by newly activated instructions. Only
Cells in occupied status are candiates for displacement.

Operation of a Cell Block can be specified by giving two
procedures -- one initiated by arrival of a data or con-
trol packet at the Cell Block, and the other activated
by arrival of an instruction packet from the Instruction
Memory.

Procedure i: Arrival of a data or control packet In, y)
where n is a minor address and y is the packet con-
tent.

step I. Does the Association Table have an entry with
minor address n? If so, let p be the Cell corre-
sponding to the entry, and go to step 5. Otherwise
continue with step 2.

step 2. If the Association Table shows that no Instruc-
tion Cell has status free, go to step 3. Otherwise
let p be a Cell with status free. Let the Associa-

L Control NetTk I

• eontrol
pockets

- - t AssociotiO I o0-''o data Table pockets,
pockets ~ decision

packets
Distribution " Arbitration
Network ~ Network

instruction
instruction packets

~ c~2°JA~
pockets

I
Network

Fi~lure 15. Structure of e Cell Block.

tlon Ta61e entry for p be [m, free}; go to step 4.

step 3. Use the Stack to choose a Cell p in occupied
status for preemption; let the Association Table
entry for p be [m, occupie.d}; transmit the con-
tents z of Cell p as an instruction packet {m, z}
to the Instruction Memory via the Arbitration Net-
work; transmit the memory cormmand packet {m, store)
to the Instruction Memory through the Memory Com-
mand Network.

step 4. Make an entry {n, enKaged} for Cell p in the
Association Table; transmit the memory cozm~and
packet [n, re.tr} to the Instruction Memory via the
Memory Command Network.

step 5. Update the operand register of Cell p having
minor address n according to the content y of the
data or control packet (the rules for updating are
those given in Fig. 12). If Cell p is occupied
the state change of the register must be consis-
tent with the instruction code or the program is
invalid. If Cell p is engaged, the changes most
be consistent with the register status left by
preceding packet arrivals.

step 6. If Cell p is occupied and all three regis~:ers
are enabled (according to the rules of Fig, 12),
the Cell p is enabled: transmit an operation or de-
cision packet to the Operation Units or Decision
Units through the Arbitration Network; leave Cell
p in occupied status holding the same instruction
with its operand registers reset (receivers empty
with the gate and value flags set to of_l). Change
the order of Cells in the Stack to make Cell p the
last candidate for displacement.

Procedure 2: Arrival of an instruction packet In, x}
with minor address n and content x.

ste~ I. Let p be the Instruction Cell with entry
{n, engaged} in the Association Table,

st~ 2. The status of the operand registers of Cell p
must be consistent with the content x of the in-
struction packet s or the program is invalid. Up-
date the contents of Cell p to incorporate the in-
struction and operand status information in the in-
struction packet.

step 3. Change the Association Table entry for Cell p
from {n, engaged} to {n, occupied}.

step 4. If all registers of Cell p are enabled, then

132

Cell p is enabled: transmit an operation or deci-
sion packet to the Operation Units or Decision
Units through the Arbitration Network; leave Cell
p in occupied status holding the same instruction
with its operand registers reset. Change the order
of Cells in the Stack to make Cell p the last can-
didate for displacement.

Conclusion

The organizatibn of a computer which allows the execu-
tionof programs represented in data-flow form offers a
very promising solution to the problem of achieving
highly parallel computation. Thus far, the design of
two processors, the elementary and the basic data-flow
processors, has been investigated. The elementary pro-
cessor is attractive for stream-oriented signal pro-
cessing applications. The basic processor described here
is a first step toward a highly parallel processor for
numerical algorithms expressed in a Fortran-like data-
flow language. However, this goal requires further elab-
oration of the data-flow architecture to encompass ar-
rays, concurrent activation of procedures, and some means
of exploiting the sort of parallelism present in vector
operations. We are optimistic that extensions of the
architecture to provide these features can be devised,
and we are hopeful that these concepts can be further
extended to the design of computers for general-purpose
computation based on more complete data-flow models such
as presented by Demiis [4].

References

I. Adams, D. A. A Compg~ation Model With Data Flow Se-
quencing. Technical Report cs 117 s Computer Science
Department, School Of Humanities and Sciences, Stan-
ford University, Stanford, Calif., December 1968.

2. B~hrs, A. Operation patterns (An extensible model
of an extensible language). Symposium o n~neoret-
ical ProRrafmning, Novosibirsk, USSR, August 1972
(preprint).

3. Dennis, J. B. Programming generality, parallelism
and computer architecture. Information Processing
68, North-Holland Publishing Co., Amsterdam 1969,
484-492.

4. Dennis, J. B. First version of a data flow proced-
ure language. Symposium o_n Pro~rammlng, Institutde
Progranmmtion, University of Paris, Paris, Prance,
April 1974, 241-271.

5. Dennis, J. B., and J. B. Fosseen. Introduction to
Data Flow Schemas. November 1973 (submitted for
publication).

6. Dennis, J. B., and D. P. Misunas. A computer archi-
tecture for highly parallel signal processing.
Proceedings of the ACM 1974 National Conference,
ACM, New York, November 1974.

7. Dennis, J. B., and D. P. Misunas. Th_e DesIKn of a
Highly Parallel Computer fo_.2. Signal Prqcessin~ A~-
plicati.ons~ Cdmputation Structures Group Memo I01,
Project MAC, M.I.T., Cambridge, Mass., July 1974.

8. Karp, R. M., and R. E. Miller. Properties of a
model for parallel computations: determinacy, ter-
mination, queuelng.. SIAM J. Appi. Math. 14
(November 1966), 1390-1411.

9. Kosinski, P. R. A Data Flow ProKTammlng LanKuage.
Report RC 4264, IBM T. J. Watson Research Center,
Yorktown Heights, N. Y., March 1973.

Kosinskl, P. R. A data flow language for operating
systems programming. Proceedings of ACM SIGPLAN-
S~COPS Interface Meeting, SIGPLAN Notices 8, 9
(September 1973), 89-94.

II. Rodriguez, J. E. A Graph Mode____ ! fo__~ Paralle____~ Compu-
tation. Report TK-64, Project MAC, M.I.T., Cam =
bridge, Mass., September 1969.

I0.

