
The PSG System: From Formal Language
Definitions To Interactive Programming
Environments
ROLF BAHLKE and GREGOR SNELTING
Technical University of Darmstadt

The PSG programming system generator developed at the Technical University of Darmstadt
produces interactive, language-specific programming environments from formal language definitions.
All language-dependent parts of the environment are generated from an entirely nonprocedural
specification of the language’s syntax, context conditions, and dynamic semantics. The generated
environment consists of a language-based editor, supporting systematic program development by
named program fragments, an interpreter, and a fragment library system. The major component of
the environment is a full-screen editor, which allows both structure and text editing. In structure
mode the editor guarantees prevention of both syntactic and semantic errors, whereas in textual
mode it guarantees their immediate recognition. PSG editors employ a novel algorithm for incremental
semantic analysis which is based on unification. The algorithm will immediately detect semantic
errors even in incomplete program fragments. The dynamic semantics of the language are defined in
denotational style using a functional language based on the lambda calculus. Program fragments are
compiled to terms of the functional language which are executed by an interpreter. The PSG generator
has been used to produce environments for Pascal, ALGOL 60, MODULA-2, and the formal language
definition language itself.

Categories and Subject Descriptors: D.2.3 [Software Engineering]: Coding-pretty printers, pro-
gram editors; D.2.6 [Software Engineering]: Programming Environments; D.3.1 [Programming
Languages]: Formal Definitions and Theory-semantics, syntax; D.3.4 [Programming Lan-
guages]: Processors-compilers, interpreters, parsing, translator writing systems and compiler gener-
ators; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages-
denotational semantics; F.4.2 [Mathematical Logic and Formal Languages]: Grammars and
Other Rewriting Systems-grammar types, parsing; 1.2.3 [Artificial Intelligence]: Deduction and
Theorem Proving-rule-based deduction

General Terms: Algorithms, Design, Documentation, Languages, Theory, Verification

Additional Key Words and Phrases: Hybrid editor, unification-based incremental semantic analysis

1. INTRODUCTION

The Programming System Generator, PSG, developed at the Technical Univer-
sity of Darmstadt generates language-dependent interactive programming
environments from formal language definitions. From a formal definition of a
language’s syntax, context conditions, denotational semantics, and additional

Preliminary versions of parts of this paper appeared in the Proceedings of the ACM SZGPLAN 85
Symposium on Language Issues in Programming Environments, June 1985 [7] and in the Conference
Record of the 13th ACM Symposium on Principles of Programming Languages, Jan. 1986 [39].
This work was supported in part by the Deutsche Forschungsgemeinschaft under grants He
1170/2-3 and He 1170/3-l.
Authors’ address: Technische Hochschule Darmstadt, Fachbereich Informatik, Magdalenenstr. llc,
D-6100 Darmstadt, West Germany.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1986 ACM 0164-0925/86/1000-0547 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986, Pages 547-576.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F6465.20890&domain=pdf&date_stamp=1986-08-01

548 l R. Bahlke and G. Snelting

information it produces an integrated software development environment. One
of the major components of a PSG environment is a powerful hybrid editor which
allows structure-oriented editing as well as text editing. In structure mode, the
editor guarantees prevention of both syntactic and semantic errors, whereas in
textual mode it guarantees their immediate recognition. The editor is generated
from the language’s syntax and context conditions. Furthermore, a PSG environ-
ment includes an interpreter which is generated from the language’s denotational
semantics. A language-independent library system is also part of the PSG
environment.

The basic units for editing and executing are called fragments, which are
internally represented as abstract syntax trees. A fragment is an arbitrary pati
of a program, for example, a statement, a procedure declaration, or an entire
program. Fragments may be incomplete, that is, subcomponents may be missing.
Missing subcomponents are called placeholders. Bottom-up system development
is provided by combining fragments, while the fragments themselves are
constructed top-down.

The editor supports two editing modes, which are fully integrated and may be
mixed freely by the user. In textual mode, the editor behaves like a normal screen-
oriented text editor with the usual facilities to enter, modify, delete, and search
text. Incremental syntactic and semantic analyses are invoked by keystroke. If
the input was error-free, the text will be pretty-printed according to the format-
ting rules of the language definition, and editing may proceed. If any syntactic
or semantic errors are detected, an error message will be displayed by a menu-
driven error-recovery routine. The earliest possible detection of both syntactic
and semantic errors is guaranteed: As soon as a fragment cannot be embedded
into a syntactically and semantically correct program, it will be classified as
erroneous. For semantic errors this works even if declarations of, for instance,
variables or types are still missing or incomplete. In structured mode, programs
are developed in menu-driven refinement or modification steps. The menus are
generated according to the abstract syntax of the language. The usual structure-
oriented commands are offered to the user, such as refinement of a structure,
selection from alternatives of a syntactic class, modification, insertion and
deletion of substructures, zooming of substructures, copying of substructures,
and so on. However, the menus are filtered dynamically by the context analysis
such that only those menu items producing syntactically and semantically correct
refinements or modifications after their selection will be offered to the user.
Thus, in structured input mode, neither syntactic nor semantic errors can occur.

Although PSG editors guarantee the immediate detection of errors, users are
not forced to correct errors on the spot. The editor is fault-tolerant and accepts
syntactically or semantically incorrect fragments; erroneous parts of the fragment
are displayed in a special font. In addition users may retrieve the context
information that has already been derived. For example, they might ask the
system’which variables are already declared, which are still undeclared, what
possible types the undeclared variables may possess and so on.’ The user interface
of the PSG editors is described in detail in [8].

’ In our philosophy, declaration before use is not required. An undeclared variable is considered a
semantic error as soon as the last placeholder offering the possibility of declaring that variable has
been deleted.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

The PSG System l 549

Like all other system components, the interpreter is able to handle arbitrary
incomplete fragments. As long as control flow in the interpreted fragment does
not touch any syntactically incomplete structure, the fragment can be interpreted
without difficulty. If control flow encounters a placeholder, the editor will be
invoked, asking the user to enter the missing parts of the fragment. Additionally,
the language definer may force the interpreter to ask the user for values of
uninitialized variables or missing expressions, for instance.

A language-independent fragment library system, which stores fragments as
abstract syntax trees, is also part of a generated environment. Reading, writing,
and rewriting of fragments is performed automatically by the environment if
necessary. Deletion of fragments requires an explicit user command. The PSG
editor offers the facility of redirecting input to external text files. Furthermore,
fragments may be written in pretty-printed style onto external files.

2. THE PSG LANGUAGE DEFINITION

One of the most important goals in the development of PSG was the definition
of a formal language definition language, covering the whole spectrum of a
language’s syntax, context conditions, and dynamic semantics. Thus the language
definer working with PSG is offered a formal, nonprocedural definition language.
This is in striking contrast to most existing environment generators, which
frequently support only the formal definition of the syntactic aspects of a
language. It is common practice to use an abstract syntax for the generation of
structure-oriented editors, together with a format syntax describing unparsing
schemes for abstract syntax trees. If the editor incorporates a facility for proc-
essing textual input, a context-free grammar serves as input to a parser generator
(actually, many systems use the YACC [21] parser generator). For the description
of the static and dynamic semantics of a language, most environment generators
are based either on the attribute grammar approach or on the action routines
approach. In both cases, attribute evaluation functions or action routines have
to be coded in a procedural programming language. In these approaches no
distinction is usually made between static and dynamic semantics, both have to
be defined using the same metalanguage.

The ALOE generator of the GANDALF system [24, 251 uses action routines
written in GC, a dialect of C. To integrate an execution tool, the language definer
must either produce a new code generator or modify an existing one. However,
V. Ambriola and C. Montangero [3] report on the possibility of integrating an
automatically derived interpreter into a GANDALF environment. A new model
for action routines [14] has recently been developed. The PECAN system [30]
uses a statement-oriented language to code action routines; separate specifica-
tions detailing the uses of symbols, data types, and expressions of the language
also have to be given. Using the Synthesizer Generator [33], which is based on
attribute grammars, the language definer has to write a specification in the
synthesizer specification language, SSL. The first version of SSL [31] used the
language C for coding attribute evaluation functions, the current version of the
generator [34] supports the definition of semantic equations and functions within
SSL. The MENTOR specification language, METAL [22], supports the
generation of environments for syntax-directed editing and manipulation of

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

550 l FL Bahlke and G. Snelting

programs; a formalism to specify type-checking will be integrated in a future
version [12, 131.

A PSG language definition consists of three major parts, structured as follows:

(1) Syntax of the language
1.1 Lexical structure
1.2 Abstract syntax
1.3 Concrete syntax
1.4 Format syntax
1.5 Titles and menus

(2) Context conditions of the language
2.1 Scope and visibility rules
2.2 Data attribute grammar
2.3 Format syntax of the data attributes
2.4 Basic context relations

(3) Dynamic semantics of the language
3.1 Domain definitions
3.2 Auxiliary functions
3.3 Meaning of executable fragments
3.4 Meaning functions

As the core of any language definition, the syntax part is mandatory, whereas
the others are optional. If the context conditions are missing, only a context-free
editor will be generated, if the dynamic semantics definition is missing, an
environment without an execution tool will be generated.

3. THE DEFINITION OF THE SYNTAX

The syntax definition part starts with the definition of the lexical structure of
the language. The language definer has to specify the reserved words and the
delimiters (special symbols):*

while + ‘WHILE’;
do + ‘DO’;
if 4 ‘IF’;
then + ‘THEN’;
else + ‘ELSE’;

sem --* ‘ ; ‘;
ass 3 ‘ := ‘;
SIP 3 ‘ [‘;

4 ‘] ‘;
2 4‘ ‘.

1P --* 6 i :;

rp + ‘) ‘;
. . .

’ In the following, all language definition examples refer to the definition of a Pascal subset called
MIDIPAS [5], unless otherwise stated.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

The PSG System l 551

The classes of identifiers (Id) and constants (Int, Real, String) are predefined in
PSG. Language-dependent tables are generated from the lexical definition to be
used by the scanner and the unparser.

The abstract syntax defines the structure of the abstract syntax trees, which
serve as the internal representation of any fragment in a PSG environment.
Abstract syntax is specified by a collection of class and constructor rules. Sets of
syntactic alternatives are described by class rules:

CLASS type = integer, real, bool, arraytype, recordtype, typeid,
CLASS stat = assign, withstat, whilestat, forstat, ifthen,

callstat, repeatstat, readlnstat, readstat,
writelnstat, writestat, compound, casestat;

CLASS var = Id, indref, recref;
CLASS expr = var, constant, add, sub, mult, idiv, rdiv, not,

andexpr, orexpr, equ, It, gt;
CLASS constant = Int, Real, true, false, Id;
. . .

Constructor rules are either node or list rules:

NODE arraytype :: indrangelist type;
LIST indrangelist = indrange+;
NODE indrange :: constant constant;
. . .
NODE indref :: var exprlist;
NODE recref :: var Id;
. . .
NODE assign :: var expr;
NODE compound :: statlist;
LIST statlist = stat+;
NODE ifthen :: expr stat [stat];
NODE callstat :: Id [actplist];
. . .

Node rules define syntactic entities with a fixed number of subcomponents, which
may be of different syntactic types. Subcomponents enclosed in ‘[’ and ‘I’ are
optional (e.g., the parameterlist of a procedure call may be omitted). List rules
define syntactic entities with a variable number of subcomponents of the same
syntactic type.

Missing subcomponents of a node are called placeholders; they represent
pending refinements. Placeholders for sublists may be moved, deleted, or inserted
freely within a list.

The structure-oriented commands and menus offered to the user are generated
according to the abstract syntax. For example, a menu of refinement or modifi-
cation possibilities is associated with each placeholder. However, this menu is
dynamically filtered with respect to context conditions (see below).

The concrete syntax defines the transformation from the textual representation
of fragments (i.e., character strings) to abstract syntax trees. It is based on
a context-free grammar augmented by transformation rules describing the

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1986.

552 l R. Bahlke and G. Snelting

construction of the abstract syntax tree. Thus the concrete syntax is actually a
string-to-tree transformation grammar:

statlist ::= LIST stat + - sem;
stat :: = NODE var, ass, expr + assign

1 NODE while, expr, do, stat * whilestat
1 NODE if, expr, then, stat, elseopt + ifthen
1 NODE repeat, statlist, until, expr + repeatstat
. . . ,

elseopt ::= [else, stat];
var ::= Id, varl;
Jar1 ::= var2, varl

1 EMPTY;
var2 ::= UPDATENODE slp, exprlist, srp + indref

I UPDATENODE dot, Id =+ recref;
. . .

The list and node rules of concrete syntax resemble the corresponding rules of
abstract syntax. List rules may specify a separator symbol (a semicolon separates
the elements of a statement list); the right-hand side of node rules contains
nonterminal as well as terminal symbols. Since top-down parsing is used in the
PSG system, concrete syntax is restricted to LL(1) grammars. The above example
illustrates left-factorization in order to avoid LL(1) conflicts in the definition of
var. The usual left-recursive definition of variables is not top-down parsable:

var ::= Id
1 NODE var, slp, exprlist, srp * indref
1 NODE var, dot, Id + recref;

It must be transformed by left-factorization of the nonterminal “var” into
LL(l)-form, which involves the transformation of node rules to so-called
updatenode rules. As usual, parsing proceeds from left to right, construction of
the abstract syntax tree is done parallel to parsing. The parser should be able to
process any incomplete input entered in textual mode. So the parser has to accept
arbitrary valid prefixes of any input conforming to the syntactic category of a
given placeholder and to construct the corresponding (possibly incomplete)
abstract syntax tree. Thus, tree construction has to be done top-down, since
bottom-up tree construction will not lead to satisfactory and unambiguous results
in connection with incomplete input texts. Building abstract syntax trees bottom-
up, tree nodes are constructed after the recognition of the complete right-hand
side of a nonterminal (i.e., when the right-hand side is reduced to the nonter-
minal). Building trees top-down, nodes are constructed before the processing of
the right-hand side (i.e., directly after the prediction of the right-hand side). The
tree construction process specified by the left-factorized nonterminal “var” in
the above example is illustrated by the following: Consider ‘ab :=’ to be an input
for a statement placeholder. Starting with the statement rule and recognizing
the identifier ‘a’, an assignment node is constructed, and a pointer to its first
subcomponent (a placeholder for variable) is passed to the nonterminal “var”.
The right-hand side of the rule for var constructs an identifier node (with value
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1966.

The PSG System l 553

‘a’) by refining the placeholder for variable. A pointer to the identifier node is
passed to the nontermianl “varl” (note that the abstract syntax tree for the
statement so far constructed is ‘a :=. (expr)‘): After prediction of the first
alternative for “varl”, the same pointer is passed to the nonterminal “var2”.
Using the lookahead ‘.‘, the second rule for “var2” is predicted and the up-to-
now constructed tree is changed according to the updatenode rule. The current
tree pointer refers to the identifier node; this node is replaced in the abstract
syntax tree by a record-reference node whose first subcomponent is the just-
replaced identifier node. After the change of the abstract syntax tree invoked by
the updatenode rule, the abstract syntax tree looks as follows: ‘a. (Id) := (expr]‘.

If any syntax errors are detected in the input text during parsing, a recovery
routine will compute a menu comprising all local correction possibilities, which is
then presented to the user. Alternatively, users may switch to global recovery
mode, where they may correct the input by editing in textual mode or simply
accept the correct part of the input.

The format syntax is a tree-to-string transformation grammar used to construct
the external textual representation of an abstract tree:

arraytype + array slp indrangelist srp of type[2];
assign 4 ! var ass expr;
repeatstat + ! repeat statlist[2] ! until expr;
ifthen + ! if expr then stat[2] (stat[2] ---) ! else,);
equ + CLASS (expr=equ,lt,gt -+ lp,rp) eq CLASS (expr=equ,lt,gt + lp,rp);

Pretty-printing information, like insertion of newlines (‘!‘) and indentation of
substructures (‘[. .I’), is part of the format definition. Conditional formatting,
depending either on the existence of optional substructures or on the type of
substructure, is supported. The first kind is illustrated by the else-part of the
if-then-statement (if it exists, it is prefixed with a newline and the keyword
‘ELSE’), the second kind by the equal expression. Here the conditional format
rule is used to put left and right parentheses around the node’s subexpressions if
and only if they are relational expressions (note that parentheses are discarded
during parsing and that operator precedences are reflected by the structure of
the abstract syntax tree).

In the last part of the syntax definition, titles and menu texts have to be
specified; these are used to generate the textual representation of placeholders
and menu items.

4. INCREMENTAL SEMANTIC ANALYSIS WITHIN PSG EDITORS

The context analysis of PSG has been of special interest because classical
concepts like attributed grammars do not work very well if arbitrary incomplete
fragments have to be analyzed. Consider the following incomplete Pascal
procedure fragment:

PROCEDURE procl (VAR parl: typel; par2: type2);
BEGIN

parl[parl[par2 + 513 := (Expression];
(Statementlist]

END;
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

554 l R. Bahlke and G. Snelting

Although the types of ‘parl’ and ‘par2’ are undeclared within that fragment, the
context analysis must derive immediately that ‘pad has type “integer” (or a
subrange thereof), that ‘parl’ is a one-dimensional array with index and com-
ponent type “integer”, and that the still missing right-hand side of the assignment
must also be compatible with “integer”. If a user refines the missing expression
of the assignment to the real constant ‘3.14’, a semantic error must immediately
be reported. In addition, the menu for the right-hand-side placeholder must be
filtered in such a way that the menu items for all noninteger expressions will not
be displayed. In MIDIPAS, the unfiltered menu for expressions consists of the
following items:

‘Variable’ ‘Constant‘ ‘Addition’
‘Subtraction’ ‘Multiplication’ ‘Integer Division’
‘Real-Division’ ‘Not’ ‘And
‘Or’ ‘Equal’ ‘Less’ ‘Greater’

The actual menu for the assignment’s right-hand-side expression will be reduced
by the context analysis to the following items:

‘Variable’ ‘Constant’ ‘Addition’
‘Subtraction’ ‘Multiplication’ ‘Integer Division’

After selecting the second item, only the two items ‘Integer-Constant’ and
‘Identifier’ will appear in the menu for constants, as opposed to the complete
menu:

‘Integer-Constant’ ‘Real-Constant’
‘TRUE’ ‘FALSE’ ‘Identifier’

Considering this example, the context analysis must fulfill several requirements
in our setting:

-The context analysis must be able to analyze arbitrary incomplete fragments.
-The context analysis must guarantee the immediate detection of semantic

errors even in incomplete fragments.
-For efficient use in an interactive programming environment, the context

analysis must work in an incremental manner.
-Since PSG is a generating system, the context analysis must be generated from

a formal specification of the language’s context conditions.

Since the classical methods first collect the type information of variables from
the declarations and then use this information to type-check expressions, these
methods do not work in the above example because the declarations of ‘typel’
and ‘type2’ are not part of the fragment. Even incremental attribute-evaluation
algorithms [20, 31, 321 are unable to derive type information in incomplete
program fragments if attribute grammars are defined as usual (one can, however,
do type inference with attribute grammars, see below).

4.1 The Concept of Context Relations

The concept of context relations has been developed to overcome difficulties with
the more classical approaches. The basic idea is as follows: A fragment is correct
if it is a correct program or if it can be embedded into a correct program. As usual,
we want to use attributes for purposes of context analysis. However, in incomplete
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

The PSG System 555

fragments, a unique assignment of attribute values to tree nodes does not
generally exist, since important information (e.g., variable declarations) may be
missing.

Because of this defect we explicitly pass over from attribute values to sets of
still-possible attribute values. The basic idea is as follows: An arbitrary correct
fragment can be embedded into a (usually infinite) set of correct and complete
programs. These programs can be attributed, yielding a set of attribute assign-
ments to tree nodes. The restriction of all these assignments onto the fragment
in question results in a set of attribute assignments for the fragment, which
represents exactly the context information corresponding to the fragment.
Instead of using several attributes for a tree node, we use at most one attribute
for each node, which, however, may be structured. As attribute values are
associated with tree nodes, a collection of attribute assignments can then be seen
as a relation in the sense of relational database theory: the columns of such a
relation are labelled with the tree nodes, tuple elements are attribute values, and
each tuple represents a possible attribute assignment for the fragment. Such a
relation is called a context relation. A context relation associated with a fragment
contains exactly the still-possible attribute assignments of the fragment. If the
fragment is complete and correct, the relation will contain exactly one tuple, as
there is only one possible attribute assignment for complete programs. In case of
a semantic error, the relation will become empty, because no correct assignment
of attribute values to tree nodes exists. Note that a context relation may be of
infinite size, if the set of underlying attribute values is infinite.

Formally, let A be the set of possible attribute values of the language, N the
nodes of a fragment F. The context relation CR(F) associated with F is a set of
mappings

(t: N+ A].

The set of all context relations is denoted by CR.
During editing, a fragment is produced step-by-step by composing a bigger tree

from smaller trees: subtree placeholders (unexpanded nonterminals) will be
replaced by subtrees, or subtrees of a fragment will be deleted and replaced by
subtree placeholders. As a basis for incremental analysis, we therefore need an
operation that computes the relation of a fragment from the relations of its
components. Actually, this operation is just the natural join of relations (as
known from database theory, see [l]). If a placeholder X in a fragment F is
replaced by a fragment G, thus giving a new fragment H, we have

CR(H) = CR(G) w CR(F).

This property is generally valid for all languages that do not allow the definition
of overloaded or polymorphic objects. Overloaded built-in constants or functions
do not destroy the property, but for user-defined objects we have to assume that
they have at most one final type or attribute. The examples given later will clarify
this fact.

There must of course be some relations to start with. These so-called basic
relations have to be specified by the language definer for all terminals and all
constructors of the abstract syntax of the language. Once these basic relations
have been defined, all fragments may be analyzed by joining the basic relations
of their components. Examples of basic relations are given later.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

556 l R. Bahlke and G. Snelting

4.2 The Representation of Context Relations

As context relations are usually infinite, we have to construct a finite represen-
tation. The basic idea is to use a grammar: The set of all attribute values is
described by an abstract syntax, a so-called data attribute grummur (DAG),
where the structure of the attributes of the language is defined. The DAG
has to be specified by the language definer. For MIDIPAS, typical DAG rules
look like this:

CLASS attribute = expr-attr, proc-attr, type, parmlist-attr, . . . ;
NODE expr-attr :: type class cconstval;
CLASS type = simple-type, array-type, record-type, . . . ;
CLASS simple-type = arithmetic, ordinal;
CLASS arithmetic = integer, real;
CLASS ordinal = integer, boolean;
NODE array-type :: ordinal type;
CLASS class = cprog, cproc, ctype, ccomp;
CLASS ccomp = cvars, cconst, cexpr;
CLASS cvars = controlvar, non-controlvar;
CLASS non-controlvar = cvariable, cppdescr, csel;
. . .

This MIDIPAS example specifies that an attribute of a syntactic object is either
an expression attribute, a procedure attribute, a type attribute, or a parameterlist
attribute. An expression attribute has three subcomponents, namely the type of
the expression, its object-class, and a constant value (used only for constant
expressions). A type may be a simple type, an array type, or a record type; a
simple type is either arithmetic or ordinal, where arithmetic is integer or real
and ordinal is integer or boolean. An array type attribute has two subcomponents:
the ordinal index type and the component type of the array. Possible object-
classes are programs, procedures, types, and computational objects, where the
latter comprises variables, constants, or expressions; a variable may be either a
control variable or a noncontrol variable. A noncontrol variable is either a
variable, a procedure parameter, or a field selector.

Since attribute classes may contain subclasses, a DAG also includes the concept
of a subtype or inheritance in a natural way: “integer” is also an ordinal type,
and each ordinal type is a simple type, each simple type is a type. DAG symbols
not occuring on the left-hand side of a rule are considered to be terminals. Note
that classes need not be disjoint: “integer” is an arithmetic type as well as an
ordinal type.

A DAG describes a many-sorted free algebra with subsorts (that is, an order-
sorted algebra [16]) as follows: Each symbol of the DAG gives rise to a sort. The
terminal symbols are considered as nullary constants of their own sort, and the
left-hand sides of node rules are considered as nonnullary function symbols with
arity according to the DAG. The terms freely generated by all terminal symbols
are exactly the possible attribute values, denoted by A(DAG). As an abstract
syntax also describes a set of trees, A(DAG) can also be seen as the tree language
generated from the DAG. The terms freely generated by the terminal symbols
and the class names (which also are considered nullary constants) are just the
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

The PSG System l 557

incomplete derivation trees (sentential forms) generated by the DAG; they are
called attribute forms and are denoted by AF(DAG). Thus, an attribute form may
contain nonterminal leaves. As usual, we also use the notion of derivation: for
x, y E AF(DAG) we write x 4 y iffy can be derived from x by substituting an
attribute form of the correct sort for a nonterminal leaf. In this case we also
consider the sort associated with y to be a subsort of the sort associated with x.
An attribute form can be used to represent an infinite set of attributes, namely,
all those attributes that can be derived from it.

As usual, we add variables: The algebra freely generated by the terminals, class
symbols, and an infinite set of sorted variables is called the algebra of attribute
forms with uariubles, and denoted by AFV(DAG). The sort of a variable u is
denoted by sort(u), and for x E AFV(DAG) we denote the variables in x: by
vars(r).

An almost identical scheme has recently been proposed by Ait-Kaci and Nasr
in order to extend PROLOG with inheritance concepts [2]. They propose terms
of an order-sorted algebra as the basic PROLOG structure instead of the standard
type-free terms; this can shorten the resolution process considerably.

We now define the notion of attribute form relations: Given a fragment F, an
attribute-form relation describing F is a finite set of mappings from the tree
nodes N of F to attribute forms with variables. In addition, each mapping has an
environment attached, which gives values for the instantiated variables of tuple
components. Of course, these values must have correct sorts with respect to the
sort structure induced by the DAG. The set of all attribute-form relations is
denoted by AFR. An attribute form relation r E AFR represents a possibly
infinite context relation R [r] E CR as follows:

t E R[r] iff there is (t ‘, e ‘) E r and there is a mapping
e: vars(t’) + A(DAG)
such that for all s E dam(t)
e*(t’(s)) & t(s)
and for all u E vars(t’): e’(u) 2. e(u)

where e* is the homomorphic extension of e to attribute forms.
At this point, we give some examples. Consider the following MIDIPAS

fragments:
(1) a[(expressionl)] := (expression2)
(2) 4k + 51
(3) k AND j

with corresponding abstract syntax trees:

(an incomplete assignment)
(a variable)
(an expression)

a

/Y a +

/A
k 5

k j

For simplicity, we do not distinguish between a subrange type and its base
type, and we assume that within an assignment both sides must have the same

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

558 l R. Bahlke and G. Snelting

type or that the left-hand side has type “real” and the right-hand side has type
“integer” (these simplifications are not essential). Therefore, in fragment one,
we do not know the component type of the array, but it is clear that the still-
missing index must be of ordinal type. Furthermore, the still-missing right-hand
side of the assignment must either have the same type as the component type of
array ‘a’, or ‘u’ has component type “real” and the right-hand side has type
“integer”. In the second fragment, ‘k’ and the index type of ‘a’ must be compatible
with “integer”. Note that even though the addition in MIDIPAS is overloaded,
‘k’ cannot be “real”, as it is used within an array index. The fragment itself has
the same type as the component type of array ‘a’. In the third fragment, ‘It’, ‘j’,
and the fragment itself must have type “boolean”.

These inferences are valid regardless of the programs into which the fragments
can be hypothetically embedded, and can be done without looking at any decla-
rations-but more cannot be said. We now describe the possible attribute
assignments to fragment nodes by attribute-form relations. For readability, we
ignore the object-class and constval component of attributes and simply con-
centrate on the types of the objects involved. The attribute-form relations
corresponding to the fragments are

(1)

U

array-type(ORDINAL, TYPE)
array-type(ORDINAL, real)

(2)
U

array-type(integer, TYPE)

(expressionl}] []] (expression2)

ORDINAL I TYPE I TYPE
ORDINAL] real] integer

[II k I + I 5
TYPE] integer] integer] integer

(3)
k] and] j

boolean] boolean] boolean

The column labels of these relations are the nodes of the corresponding
fragments that possess an attribute. Tuple components are attribute forms with
variables. The first relation has two tuples. The first tuple contains the variables
“ORDINAL” and “TYPE”, which are (similar to PROLOG) written in upper-
case letters. For simplicity, the names of the variables also indicate their sort (if
necessary, indices will be used to distinguish several variables of the same sort).
Thus the first tuple states that ‘u’ may be an array of unknown index and
component type and that the still-missing index expression is of the same ordinal
type; the right-hand side must be of the same type as the array-component type.
The second tuple states that alternatively ‘u’ may have component type real and
the right-hand-side type integer; again the variable “ORDINAL” describes that
the unknown index type must be the same as the type of the still-missing index.
Note that the scope of a variable is always the tuple it occurs in. The first two
relations represent infinite context relations, whereas the third relation repre-
sents a one-tuple context relation (which is accidentally identical with the
basic relation for the logical ‘and’ operator). Note that still-possible attribute
assignments different from those represented by the given relations do not exist
for our fragments, regardless of global context.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

The PSG System l 559

The most important part of the context condition definition is the specification
of the basic relations, which must be specified for each terminal and each node
rule of the abstract syntax. A basic relation is simply an attribute-form relation,
which defines a (possibly infinite) set of attribute assignments to the components
of a node rule or a terminal, respectively. Thus the basic relations describe the
context conditions local to a given abstract syntax rule. The basic relation for an
assignment consists of two tuples, which use the variable “TYPE”:

assign:
NIL
MK-expr-attr(TYPE, non-controlvar, cconstval)
MK-expr-attr(TYPE, ccomp, cconstval)

1 NIL
MK-expr-attr(rea1, non-controlvar, cconstval)
MK-expr-attr(integer, ccomp, cconstval);

which says that in an assignment, either

-the left-hand side is a noncontrol variable of a certain “TYPE”, and the right-
hand side is an expression of the same “TYPE”; or

-the left-hand side is a real variable, and the right-hand side is an integer
expression.

The assignment operator itself has no attribute; this is indicated by the null
attribute “NIL”. In contrast to the notation used above, this example shows how
relations within a PSG specification actually look: each line contains one tuple
component, the position of tuple components corresponds to the position of
symbols in the abstract syntax rule referred to, and tuples are separated by ‘] ‘.
The basic relation for an integer constant

Int:
MK-expr-attr(integer, cconst, LEXID(Int));

says that a syntactic integer constant has type integer, is a constant, and has a
constant value copied from the abstract syntax tree (this is specified by the built-
in LEXID function).

The tuples occuring in an attribute-form relation can be seen as special terms
in our order-sorted attribute algebra: for i E N, introduce new function symbols
tupi with arity i. A tuple can then be written as a term tupi (xi, . . . , xi), where
the xi)s are the tuple components, and the argument position of an Xj corresponds
to the column label of an attribute-form relation column.

4.3 Unification as a Device for Modeling the Join

It is necessary to construct an operation for attribute-form relations that exactly
represents the join. This operation is unification in our many-sorted algebra with
subsorts. Unification in order-sorted algebras works similarly to the classical
Robinson unification [37]. However, as we have subsorts and nondisjoint sorts,
in order to unify two variables of different sorts, it is necessary to find a sort
that describes exactly the intersection of the original sorts. Therefore, we require
for two sorts that their intersection is either empty or again a sort, which is
equivalent to

(AF(DAG); a) is an upper semilattice.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

560 l R. Bahlke and G. Snelting

Thus unification has to compute suprema in this lattice from time to time. For
our sample DAG, if we have a variable of sort “ordinal” and a variable of sort
“arithmetic”, their unification is a variable of sort “integer”. Of course, the
unification of a variable of sort “array-type” and another variable of sort “real”
fails, as “real” and “array-type” are disjoint sorts.

It is not a restriction that the type structure has to be a semilattice. Every
partial order can be embedded into a semilattice, and if the type system of the
language to be defined does not have a partial ordering at all, one can use the
flat semilattice.

The unification algorithm is sketched below.

function unify (tl, t2: AFV(DAG); env: ENV): AFV(DAG) x ENV;
{Unifies two terms tl, t2 of the order-sorted attribute algebra in a given environment
env; an environment is a mapping of variables of tl and t2 to attribute terms. Output
is a result term as well as a new environment. If unification fails, the result is nil.)

begin
if tl is a constant then

if t2 is a constant then
begin

s := sort(t1) A sort(t2);
ifs = nil then

unify := nil
else

unify := (“a new constant of sort sn, env)
end

else if t2 is a variable then
unify := unify(t2, tl, env)

else if tl and t2 are compound terms with identical fnnctors,
t1 = f(hl, . . . , hn),
t2 = f(tzl, . . . , tzn) then

begin
i := 1;
repeat

(Ui, newenv) := Unify(tli, tzi, env);
i:=i+ 1;
env := newenv

until i = n Or Ui = nil;
if oi = nil then

unify := nil
else

unify := (f(a,, . . . , a,), newenv)
end

else if tl is an uninstantiated variable and not occurs (tl, t2) then
begin

s := sort(t1) A sort(t2);
ifs = nil then

unify := nil
else

unify := (tl, env+[tl + t2])
end

else if tl is an instantiated variable then
unify := unify(env(tl), t2, env)

else if t2 is a Variable then
unify := unify(t2, tl, env)

else
unify := nil

end;

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

The PSG System 561

Note that from a theoretical point of view it is not essential to include
nondisjoint DAG classes. The special case “classes must be disjoint” is theoreti-
cally sufficient and leads to a subsort ordering which has tree structure rather
than being an upper semilattice. From a practical point of view, however, it is
essential that relations contain as few tuples as possible. Therefore, any attribute
subset relevant in a language should be represented by a DAG class rather than
by different tuples within a relation. Considering the above, including nondisjoint
DAG classes is essential for performance.

THEOREM. If the DAG induces an upper semilattice, tuple-wise unification of
attribute-form relations represents the natural join exactly:

R[((t, e) # NIL] there are (t’, e’) E rl, (t”, e”) E r2,
(t, e) = unify(t’, tN, e’ + e”))] = R[rl] W R[r2]

Furthermore, the unification as sketched above will produce a correct and unique
most-general unifier for many-sorted algebras with semilattice-ordered subsorts.

PROOF. See [40].

Examples. (a) We compose fragments (1) and (2), thus obtaining the fragment:

a[a[k + 511 := (expression]

We have to unify tuple components in corresponding columns of our two
relations. In the example, the column for ‘a’ in relation (1) has to be matched
against the corresponding column for ‘a’ in relation (2), and the column for
‘(expressionl)’ in relation (1) has to be matched against the column for ‘[1’ in
relation (2). Note that in general the scope and visibility rules of the language in
question must be obeyed when determining which columns match (see below).

Unifying the attributes “array&pe(ORDINAL, TYPE)” and “array-
type(integer, TYPE)” results in a new sort for “ORDINAL”, namely “integer”,
as integer is a subsort of “ordinal”. Furthermore, the two “TYPE” variables are
unified. Next, considering the columns for ‘(expressionl)’ in relation (1) and ‘[1’
in relation (2), we have to unify the variables “ORDINAL” and “TYPE”.
But “ORDINAL” has already been substituted for by “integer”. Therefore,
“TYPE” also changes its sort and becomes “integer” (note that in our setting for
a variable “to change sort” and “to get a new value” are somewhat equivalent).
Now the second tuple of the first relation must be considered. Here we unify
“array-type(ORDINAL, real)” and “array-type(integer, TYPE)“, resulting in a
new sort for “ORDINAL”, namely “integer”, and a new sort for “TYPE”, namely
“real”. Next, “ORDINAL” and “TYPE” have to be unified, however, because the
constants “integer” and “real” are not unifiable, (the intersection of the corre-
sponding sorts is empty), the whole unification fails. Thus we obtain a new
relation consisting of one tuple:

a I 1 1 I [1 I k I + I 5 I Iexpression
array-type(integer, integer) 1 integer 1 integer 1 integer l integer 1 integer l integer

that is, we have inferred that the still missing right-hand side of the assignment,
as well as the index and component type of array ‘a’, must be of type integer.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

562 l FL Bahlke and G. Snelting

(b) We compose our newly derived fragment and our original fragment (3) to
form the assignment:

a[a[k + 511 := k AND j.

Here we have to unify the attributes for ‘(expression)’ in fragment (1) and the
‘and’ node in fragment (3), as well as the attributes for ‘k’. However, unification
of “integer” and “boolean” fails at once. We therefore obtain the empty relation:

a II II[II k I + 15 bdli
111111 I’

indicating a semantic error: type conflict in an assignment. This example illus-
trates how the method guarantees immediate detection of semantic errors even
in incomplete fragments. Furthermore, since the columns and attributes that did
not match are known, it is also possible to locate semantic errors exactly and to
produce appropriate error messages.

In general, the scope and visibility rules of the language in question have to be
obeyed when determining which columns match. The language definer has
therefore to specify these rules for identifiers as part of the context-condition
specifications. This information is used to determine whether the different
occurrences of the lexically same identifier in a fragment denote the same abstract
identifier. If so, their columns in two context relations match, and the attribute
terms in these columns have to be unified.

In the current implementation, the scope analysis specification language is
rather simple-minded. It offers various built-in concepts to the language definer,
but is not a general mechanism. The concepts that are supported at the moment
are the block concept and a concept of named-scopes (record concept). A more
general scheme is currently under development.

The process of scope and visibility analysis must be done before any relations
are joined. This analysis computes an equivalence relation on the nodes of the
abstract syntax tree. Since this is done before the computation of attributes
actually starts (the join needs the column-matching information first), the anal-
ysis of user-defined overloading is not possible within the current system. In
addition to scope rules, overloading resolution requires type information too,
which, however, has not been computed at the time of scope analysis. It seems
that for overloading resolution, declarations are actually required. If overloaded
procedures are declared within a fragment, one can build up a basic relation for
each overloaded object which contains one tuple for each overloaded variant, and
then use this relation instead of the standard basic relation for procedure calls.
Thus context relations can also be used as a natural tool for overloading
resolution. An experimental implementation of our unification-based semantic
analysis using the Synthesizer Generator uses this approach [35].

4.4 Building in Equational Theories

The use of sorted variables allows the specification of equality in certain
(sub)attributes of a tuple together with an indication of admissible substitutions.
However, for practical purposes this is not enough. We give an example:
MODULA-2 allows the use of constant expressions within constant declarations.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

The PSG System 563

For purposes of semantic analysis, it is important to evaluate these constant
expressions: The fragment

CONST a = 3;
b=a-3;

VAR X: ARRAY [a..b] OF (type)

is obviously incorrect. Expression evaluation within semantic analysis based on
unification is equivalent to unification in algebras with nonempty equational
theory. The unification algorithm in our example must know that 3 - 3 = 0 and
3 I 0 = false. Arbitrarily complicated examples such as this may be constructed.
However, in his well-known paper [29], Plotkin showed that finite most-general
unifiers for algebras with nonempty equational theory in general do not exist.
There are equational theories where finite unifiers exist; but we do not want to
force the language definer to look for a correct unification algorithm for his
specific langauge.

Since the general problem is not solvable, we have developed an extension of
our unification in order to be able to handle arbitrary equational theories-which
works correctly with almost any input in the sense of open problem 8 in [38].
The basic idea is as follows:

We extend our attribute algebra with sorts and terms for which an interpreter
is assumed to exist, that is, we mark certain attribute forms as evaluable. In our
example we introduce integer values and arithmetic and assume that an inter-
preter for arithmetic and relational expressions exists which, for instance, can
determine that 3 - 3 = 0. Thus, if we assume that constants are described by
their type and value:

NODE const-attr :: simple-type value

CLASS value = Int-value, Real-value, Bool-value

where Int-value, and so on, are assumed to be predefined DAG classes. The basic
relation for constant addition in MODULA-2 might look as follows:

const-add:
MK-const-attr(ARITHMETIC, VALUE1 + VALUEB)

MK-const-attr(ARITHMETIC, VALUEl)
MK-const-attr(ARITHMETIC, VALUEB);

During analysis, unification and evaluation are interleaved. The system keeps
track of unevaluated expressions. Once the necessary arguments of as yet une-
valuated expressions are known (this might be a consequence of unification), the
expressions are evaluated at once. This is known as data-driven evaluation:
Unevaluated expressions are waiting as demons; they are always evaluated as
soon as possible. Thus, unification calls evaluation if possible; however, the
results of evaluation must again be considered for unification: evaluation calls
unification if necessary. This concept does not work in every case: there may be

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

564 l R. Bahlke and G. Snelting

unevaluated expressions that in case of evaluation would cause subsequent
unifications to fail-they, however, never get evaluated. As an example consider:

CONST a = (constant expression);
b=a-3;

VAR x: ARRAY [a . . b] OF (type)

This fragment is already incorrect, but that will not be detected until the
‘(constant expression)’ placeholder is replaced by a constant or complete constant
expression. Fortunately this does not happen very often, and as mentioned above,
something better will probably not exist for arbitrary equational theories.

Note that extending unification by data-driven evaluation is also considered a
useful extension of PROLOG. We consider this approach to be an alternative to
narrowing algorithms [36].

The interpreter used in the current implementation is able to handle
arithmetic, relational, and boolean operators as well as operations on lists.
The concept itself, however, can be used with a full-scale interpreter for a
functional language. Therefore, in addition to the unification mechanism, arbi-
trarily complicated functions may be evaluated during the analysis.

4.5 The Incremental Analysis Algorithms

We have, seen that unification, interleaved with evaluation, gives a useful basis
for incremental semantic analysis. Conceptually, it would be sufficient to store
with each fragment one big global relation which contains all the attributes of
the fragment. During editing this relation must then be modified after each
editing step. If, for example, an unexpanded nonterminal is replaced by a new
subtree, it would be sufficient to analyze the new subtree by joining the basic
relations of its components, and then to use one join to update the global relation.
This scheme, however, is not very appropriate, because it might require a
complete reanalysis of fragments after subtree deletions. It is far better to
distribute the global relation within the syntax tree: Some fragment nodes have
a local relation attached, which describes part of the subtree subordinate to that
node. In a local relation attached to node X, it is not necessary to include columns
for attributes of objects that, according to the scope rules of the language, are
not visible at X. For example, consider the MIDIPAS fragment:

(1) PROCEDURE p (x: t);
(2) VAR a: t2;
(3) PROCEDURE q;

it;
VAR b: REAL;

BEGIN
(6) b := 5

END;
(7) BEGIN
(8) a[x] := (expression];

(statements)
END;

If we assume that each statement, declaration, procedure, and program has a
local relation attached, the local relations for this fragment have columns for the
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

The PSG System l 565

following syntactic objects:

(1) p, n, t, a, t2, q, (expression}
(2) a, t2
(3) q, b
(4) b, REAL
(5) b
(6) b, 5
(7) a, x, (expression)
(8) a, [1, X, (expression)

In order to see that no more information is needed, consider the local variable
‘b’: since its declaration is complete, ‘b’ cannot influence relations outside ‘q’.
Semantic information about ‘q’ is part of the attributes of ‘q’, nothing else is
needed outside ‘q’. As a consequence, the complete bottom-up analysis of a
fragment can use a variant of the join, which does not copy all columns of the
second relation and is therefore more efficient: given a position in the tree, the
join will determine via scope analysis which columns of its second argument are
actually needed at that position. The join operation is sketched below:

function join(r1, ~2: AFR, x: tree-node): AFR,
(Joins two context relations by unifying corresponding tuple components. x is used to
check which columns of ~2 have to be included in the result)

begin
F := empty-relation;
for all tuples tl in rl do

for all tuples t2 in ~2 do
begin

e := env(t1) + env(t2);
t := empty-tuple;
for all components cl of tl do

for all components c2 of t2 do
if cl and c2 have to be matched then

begin
(c, el) := unify(c1, c2, e);
e := el;
if c = nil then

t := nil
else

add c as a tuple component to t
end

else
begin

add cl as a tuple component to t;
if c2 is needed at x then

add c2 as a tuple component to t
end,

if t # nil then
add tuple t with environment e to relation F

end,
join := r

end;

The data-driven evaluation of expressions is not shown in this algorithm.
After an editing step there is usually only a small number of local relations to

be updated, which is far more efficient than to update a single global relation.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1986.

566 9 R. Bahlke and G. Snelting

Only local relations attached to fragment nodes on the path from the modified
subtree to the fragment root must be considered, since local relations describe
local semantic information and are therefore independent from siblings or parents
of the tree node they are attached to. After a subtree insertion these relations
have to be joined with the relation of the new subtree (which has to be analyzed
first). After a subtree deletion these relations must be recomputed from basic
relations and other local relations which are not affected by the subtree deletion
and therefore need not be recomputed. The analysis can often be stopped after
considering just one or two local relations: as soon as a local relation on the path
from the modification point to the fragment root does not change, updating
of local relations may be aborted. A sketch of the analysis algorithms is given
below:

function complete-analysis(t: fragment): AFR,
(Complete bottom-up analysis of a fragment]
if t is a terminal leaf then

complete-analysis := basicrelation
else

begin
r := basicrelation(
for all sons s oft, s not a placeholder do

r := join(r, complete-analysis(s), t);
if t has a local relation then

relation(t) := r;
complete-analysis := r

end,

function partial-analysis(t: fragment): AFR;
(Analyzes t, using local relations that might be attached to nodes of t)
if t is a terminal leaf then

partial-analysis := basicrelation
else

begin
r := basicrelation(
for all sons s of t, s not a placeholder do

ifs has a local relation attached then
r := join(r, relation(s), t)

else
r := join(r, partial-analysis(s), t);

partial-analysis := r
end,

procedure analyze-refinement(t: fragment; x tree-node; n: fragment);
{Analysis of replacing placeholder x in fragment f by fragment n)
begin

r := complete-analysis(n);
s := x;
repeat

s := parent(s);
ifs has a local relation attached then

relation(s) := join(relation(s), r, s);
until relation(s) did not change or s = root oft

end,

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

The PSG System 567

procedure analyze-deletion(t: fragment; x: tree-node);
(Analysis for deleting the subtree starting at x from fragment t)
begin

s := x;
repeat

s := parent(s);
ifs has a local relation attached then

relation(s) := partial-analysis(s)
until relation(s) did not change or s = root oft

end;

The complete analysis of a fragment of size n requires O(n) unifications. In an
incremental setting, however, where local relations have to be computed and
updated, the complete analysis of a fragment of size n requires O(n * In n)
unifications, whereas the incremental analysis after one editing step requires
typically O(ln n) unifications. On a SIEMENS 7551 (a machine comparable to
a VAX 780), the complete analysis of a 90-line MIDIPAS program needs
1.4 CPU seconds, whereas deletion of a statement requires 0.4 seconds and
reinsertion of that statement needs 0.1 seconds. These results, however, are
correct only if the number of tuples within relations is bounded. This is usually
the case; one can, however, give examples where combinatorial explosion
occurs. In such a situation the method becomes unusable. It depends on
the language definition whether the number of tuples in local relations is always
bounded or not.

The incremental analysis algorithms can be further improved by splitting up
local relations into several smaller relations. The idea is as follows: A relation
needs columns only for those tree nodes whose attributes are mutually dependent
owing to variables within tuples. Thus a local relation may be split up in such a
way that each subrelation has columns for mutually dependent nodes only;
attributes in different subrelations are independent. After a modification of the
tree, only the affected subrelations of local relations have to be considered, which
reduces the complexity of incremental analysis. In order to see how combinatorial
explosion can be avoided, consider the fragment:

BEGIN
a := b;
c := d;
e := f

END;

Its local relation has 6 columns, 8 tuples, and 48 attributes. However, since the
attributes of (a, b], (c, dj, and (e, f) are independent, it can be split up into three
subrelations with two columns and two tuples each, resulting in 12 attributes.
Thus, dynamic analysis of attribute dependencies together with the concept of
splitting local relations may result in a substantial performance improvement
and reduced memory requirements.

During editing the context relations are primarily used to detect semantic
errors. Of course, relations associated with fragments can also be used as symbol
tables. Within a PSG environment the user may always have a look at the still-
possible attributes of syntactic objects. Note that relational analysis does not
require any objects to be declared, scope analysis will however detect missing

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

568 l FL Bahlke and G. Snelting

declarations as soon as the last possibility of declaring that object has been
deleted and there is no possibility of declaring that object outside the fragment
in question. If any semantic error is detected, the user is not forced to correct it
immediately. The method is fault-tolerant: inconsistent parts of a fragment are
displayed in a different font, but editing may continue. The analysis algorithms
simply ignore empty local relations.

In order to perform dynamic context-sensitive menu filtering, it suffices to
check for each menu item whether its selection would result in an empty local
relation. This is done by testing whether the join of the basic relation of a menu
item and the local relation containing its attributes will become empty, which is
easier than actually computing the join. Note that since a tree node may possess
columns in more than one local relation, the one nearest to the fragment root
has to be used, as it contains the most precise information. In order to avoid
unnecessary searching, all tree nodes have a pointer attached to their “outermost”
local relation.

Dynamic context-sensitive menu filtering is one of the most important features
of the PSG editor. No other programming environment known to the authors
provides an equally powerful method to prevent semantic errors in structured
input mode. The guarantee that programs are correct at every stage of their
development and the prevention of syntactic and semantic errors in structured
input mode has turned out to be very helpful, particularly for beginners.

4.6 Comparison with Related Work

Several techniques for incremental semantic analysis in language-specific editors
have been developed. The most well-known concepts are probably semantic
action routines in GANDALF and incremental attribute evaluation within the
Synthesizer Generator; there are also variations on the attribute grammar theme
(e.g., [20]). It is possible to implement our concept using these techniques. In
fact, context relations and unification have been experimentally implemented
using the Synthesizer Generator [35]. However, the concept of inferring sets of
still-possible attributes within incomplete fragments seems to be new. All the
known language-independent concepts have always obeyed the classical scheme:
first inspect the declarations, then use the collected information for the analysis
of statements. It was a direct consequence of the PSG fragment concept that we
had to do it another way.

The Milner-style analysis [27] of type-free lambda calculus expressions (in-
cluding a let construct) computes the most general polymorphic type of a given
lambda term. It also uses unification, and is in some sense similar to our scheme:
Milner’s notion of a most-general polymorphic type corresponds to our notion of
sets of still-possible attributes of a fragment. However, the original approach is
language-dependent and is not incremental.

Meertens extended Milner’s approach with incremental algorithms [26]. He
used the incremental polymorphic type inference algorithms within an editor for
the language B. The incremental analysis concepts are similar to our algorithms.
His scheme, however, is also a language-specific concept.

More recently, the MENTOR group has developed a generator for semantic
analysis, which is based on inference rules and unification [12]. The context
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

The PSG System l 569

conditions are specified in a special language for inference rules, called TYPOL,
and then translated into PROLOG programs, which are executed during editing.
Their scheme, however, is not fully incremental, since the necessity for change
propagation is not checked dynamically. After a program modification, all infer-
ence rules that depend statically (that is, are program-independent) on the
modification are reconsidered.

Finally, let us discuss some limitations of the relational approach. The concept
has been developed for the semantic analysis of Pascal-like languages, primarily.
It can, however, be used for other purposes. For example, we have generated a
proof editor for propositional calculus, where the semantic analysis checks proofs
for correctness [40]. The main restrictions of the current specification language
can be found in the scope analysis. As mentioned above, the current version is
not very flexible and cannot be used to specify certain complicated language
features (e.g., module interfaces in Ada). Also, the algorithm cannot analyze
polymorphism since it assumes that every object has just one final type. In
order to analyze polymorphisms (as in Milner’s algorithm), a careful and
language-specific analysis of variable bindings is necessary; this cannot be
specified within PSG.

From a practical viewpoint, the problem of combinatorial explosion is more
difficult. If the language has many constructs that are overloaded, the number of
tuples within local relations tends to increase quickly. There are two techniques
for coping with this problem. The first is to decrease the number of local relations.
Each local relation thus describes a bigger part of the abstract tree, and therefore
contains more information, that is, fewer tuples. Incremental behavior will
however not benefit from such a change. The second technique is to replace basic
relations with more than one tuple by basic relations with only one tuple and
additional functional dependencies, as described in Section 4.4. This is always
possible, but, since expression evaluation may be delayed, immediate error
detection can no longer be guaranteed-a semantic error may not be detected
until the declarations of the objects involved are complete.

5. SEMANTICS DEFINITION AND FRAGMENT EXECUTION

5.1 The Denotational Semantics Definition

In the PSG system, denotation& semantics [41,42] are used to define the dynamic
semantics of a language. As usual, the language definer must specify a semuntic
function for each syntactic construct, defining the meaning of that construct
within a semantic domain, depending on the meaning of its subcomponents.
Semantic functions are written in a functional language based on a type-free
lambda calculus. This language supports the basic data types integer, real,
boolean, string, and identifier, the structured high-level data types list/tuple
and map, and higher-order functionals of arbitrary rank. The common operations
on these data types are supported as well as function application, control
constructs (if-then-else, McCarthy conditional), various combinators for list
applications (similar to, e.g., mapcar in InterLisp), and the usual let and letrec
constructs, where the latter allows the definition of recursive functions and
recursive maps. The definition language has been inspired by the applicative

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

570 - Ft. Bahlke and G. Snelting

parts of META-IV [9, lo]. Function application evaluates its arguments call-by-
need, whereas the elements of the structured data types are evaluated call-by-
value. It is possible, however, to specify that selected range elements of maps be
evaluated call-by-need. Call-by-need (i.e., delayed parameter evaluation) has been
chosen because it combines the advantages of both call-by-value and call-by-
name: Arguments are evaluated only once as in call-by-value, but only when
needed, as in call-by-name, so unnecessary computations of function arguments
which are never used are avoided. Call-by-need is a correct implementation of
recursion, allowing nonstrict functions [43]. Actually, the PSG environment
forces a call-by-need strategy, since the evaluation of some language constructs
may have visible side effects within the environment (note that the language
itself is side-effect-free). For example, the answer construct behaves like the
identity function, but within the PSG programming environment its argument
will be output interactively on the screen. However, a simple strictness analysis
is performed to find those parameters of functions that are evaluated in all calls
of the function. Strict parameters are evaluated call-by-value to avoid the
unnecessary overhead of building closures. More complex strictness analysis
algorithms are described in [ll] and [19].

Syntactic domains correspond to the abstract syntax; semantic domains are
explicitly specified in the semantics definition. Domain definitions are used to
type-check semantic functions. The semantics definition specifies a direct map-
ping from syntactic objects (the constructs of the abstract syntax) to their
denotations (i.e., semantic objects). Consider as an illustrative example the
semantics of the assignment command in the (very elementary) language LOOP
[42]. The relevant parts of the domain definition are given first:

State = [Id + Int];

i ICmd]] : State + State;
] [Expr]] : State + Int;

iAbstract Syntax: NODE Assignment :: Id Expr;)
Assignment: LAM st. MAPADD st, [] [Id]] + (] [Expr]] St)];

The meaning of any LOOP command is a function from states to states. A state
defines a mapping from variables (i.e., identifiers) to their current values, which
are integers. The symbols ‘] [’ and ‘1] ’ are the so-called denotational bruckets.
‘] [Id]] ’ denotes the meaning of the assignment’s first subcomponent, and
‘] [Expr]] ’ of its second subcomponent. The meaning of an identifier is the
identifier itself (i.e., its character representation); the meaning of an expression
is a function from states to values. Thus the meaning of an assignment is a
function which takes as its argument a state and returns a new state: This is the
same as the argument state, except that the target value of the identifer denoted
by ‘] [Id]] ’ is changed to the value, resulting from the application of the function
denoted by ‘] [Expr]] ’ to the old state.

Note that our definition method does not require the definition of explicit
evaluation or interpretation functions as opposed to, for example, META-IV,
MELA [3], or SIS. In SIS [28], the above would read as follows:
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

The PSG System l 571

WITH cc(cmd0) (s): S =
CASE cmd0

. . .

/bar ‘I:=” expr] + LET n = ee(exp)(s) IN update(var, n)(s)

. . .

ESAC
where ‘cc’ is the command evaluation function and ‘ee’ the expression evaluation
function; the abstract syntax tree is passed as a parameter to the evaluation
functions (‘cmdo’, ‘exp’, and ‘var’ in the above example), and this parameter
passing has to be specified explicitly by the language definer.

Actually, a semantics definition in SIS is a higher order function, mapping an
abstract syntax tree to its corresponding semantic function. Execution of a
program in SIS is done by expensive, successive applications: first the complete
semantics definition is applied to the program’s abstract syntax tree and then
the resulting function is applied to the input value(s) to obtain the output
value(s). Both applications are handled by the same complex interpreter and
their evaluation is interleaved. The PSG semantics definition serves, on the
contrary, as a specification of a (simple) compiler, translating an abstract syntax
tree to a term of a functional language. For example, the generated compiler for
LOOP will translate the command ‘x := 5’ to the following term (ignoring any
optimizations done by the compiler):

LAM st. MAPADD st, [X + (LAM St.5 st)]

Note that the representation of the semantic functions corresponding to the
assignment’s subcomponents (e.g., ‘ 1 [Expr] I’) are not part of the functional
language, substitution of the actual semantic functions is performed by the
compiler.

The current version of the semantics definition language consists of four parts:
the domain definitions, the definition of auxiliary functions, the semantic func-
tions for each syntactic construct, and a third part describing the meaning of
each executable fragment.

5.2 Fragment Compilation and Execution

Execution of fragments is based on a three-step process: generation of the
language-specific compiler by the PSG generator, compilation of the fragment to
a term of the functional language by the generated compiler, and execution of the
compiled fragment by the PSG interpreter. Compilation of a fragment is per-
formed by a top-down processing of its abstract syntax tree. The meaning
functions specified in the language definition can be considered as code templates
where the variables enclosed in denotational brackets serve as placeholders.
Starting with the term that represents the meaning of the fragment,, the occur-
rences of all placeholders are replaced subsequently by their appropriate terms.
Going back to the previous example (the command fragment ‘x := 5’), compilation
proceeds as follows:

I [Cm4 I - ANSWER (I [Cm4 I 1 I)
=+ ANSWER (LAM st.MAPADD st, [I [Id] I + (I [Expr] I st)] [1)
+ ANSWER (LAM st.MAPADD st, [X + (LAM St.5 st)] [1)

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

572 l R. Bahlke and G. Snelting

Since the compiled terms are never used during editing, compilation is deferred
until the fragment is to be executed, thus avoiding the overhead of incremental
compilation. The generated compilers are however able to perform incremental
compilation, but only in cases where the abstract syntax tree is modified by
refinement steps. Incremental compilation is essential to allow the execution of
incomplete fragments, thus giving the user the possibility of interleaving fragment
editing with fragment execution. If placeholders (i.e., representations of
unexpanded tree nodes) or fragment leaves (i.e., references to other fragments)
occur in the abstract syntax tree, the compiler generates a special term containing
a reference to the abstract syntax tree, which serves as a code stub. During
execution, if control flow reaches such a code stub, execution is suspended. If the
suspension is due to an unexpanded tree node, the PSG editor is invoked to allow
the refinement of the specific unexpanded tree. Note that the editor is invoked
in a special read-only mode to prevent the user from changing other parts of the
executed fragment. In the other case, where the code stub points to a fragment
leaf, the referenced fragment is loaded from the fragment library (if the fragment
is not found in the library, a dummy fragment of the appropriate type is created).
That part of the abstract syntax tree that has been changed as a result of the
modification is incrementally compiled, the resulting term replaces the code stub
and execution continues.

5.3 The Interpreter

Since the functional language is based on lambda calculus, the core of the
interpreter consists of the reduction rules of lambda calculus. Reductions are
implemented using closures and environments (as in the SECD machine [23]).
Function abstractions as well as unreduced function arguments (due to the call-
by-need evaluation strategy) are represented by closures, a pair of a term and an
associated environment. Environments store bindings of the variables (reduced
or unreduced) to terms represented by closures. Reduced terms are represented
by closures with an empty environment.

The following evaluation function eval implements the reduction rules for a
restricted set of terms:

(Domain Definitions]
Closure = Term X Env
Env = [Var + Closure]
Term = .z (Variable1

1 Xx. T (Abstraction)
I Tl(T2) {Application)

eval: Closure 4 Closure

eval((Xz. T, E)) = (Xx. T, E)
evaU(r, E)) = eval(E(x))
eval((Tl(T2), E)) = eval(apply(eval((Tl, E)), (T2, E)))

where apply((Xx. T1, El), cl) = (Tl, El + [x ---, cl])

Obviously, eval uses a call-by-name reduction strategy instead of the intended
call-by-need strategy. With call-by-need, things are getting a bit more compli-
cated, since the evaluation of variables has side effects on the environment.
In the call-by-need evaluation function, evaln, which is the core of the imple-
mentation of the interpreter, we model the environment as a state to allow side

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

The PSG System l 573

effects on the environment:

NClosure = Term x Lot
State = [Lot + Var x NClosure X Lot]
Lot = “unspecified set of labels”

evaln: NClosure X State + NClosure X State

evaln((Xx. T, l), S) = ((Xx. T, l), S)
evaln((x, Z), S) = let lot = search(x, 1, S) in

let (x’, cl, 1’) = S(loc) in
if is-reduced(c1) then

(Cl, S)
else

let (cl’, S’) = evaln(c1, S) in
(cl’, S’ + [lot + (x, cl’, I’)]

where search(x, 1, S) = let (x’, cl’, 1’) = S(1) in
ifx=x’then

else
search& I’, S)

where is-reduced(c1) = “true, if cl is a reduced closure”
evaln((Tl(T2), I), S) = evaln(applyn(evaln((Tl,1), S), (T&Z)))

where applyn(((Xx. T, l), S), cl) = let 1’ = new-lot in
((T, l’), S + Ll’ + (x, cl, 01)

where new-lot = “returns a new, unused location”

Since direct interpretation of terms is rather inefficient, terms may be compiled
to a machine-oriented language (for more details see [6] and [NJ]).

6. EXPERIENCE WITH PSG

Until now, environments have been generated for ALGOL 60, Pascal,
MODULA-2, C, LISP, the language-definition language itself, and some experi-
mental specification languages. The language definition environment has been
used extensively, not only by the members of the project team but also by
students. The Pascal environment was used to implement other parts of the PSG
system, as well as in some introductory courses on programming.

Our experience with PSG has shown that all language dependent parts of an
environment can be formally described and automatically generated, at least for
languages of a complexity not greater than that of Pascal or MODULA-2. The
use of a formal-language definition language has many advantages:

-PSG language definitions are safe, since all inconsistencies in a definition are
detected at generation time.

-Considering the power and complexity of the generated environments, PSG
language definitions are very short. Typically, they vary in size between 240
lines for an ALGOL 60 environment, without context conditions and seman-
tics, and 3600 lines for a MODULA-2 environment, including specification of
context conditions and denotational semantics.

-The expressive power of the language-definition language allows concentration
on the relevant aspects of a language definition. The language definer does not
have to deal with minor details such as the organization of symbol tables,
and so on.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

574 l R. Bahlke and G. Snelting

-The modular design of the language-definition language improves readability
and reliability. It allows the independent definition of the syntactic, context-
dependent, and semantic aspects of a language, once the abstract syntax has
been defined.

-A formal language-definition language in conjunction with a generator allows
rapid prototyping of new languages. In a language design lab, language defini-
tions are easily modified and tested.

As a consequence, the amount of human effort required to generate an environ-
ment is small: Having some initial knowledge of the PSG system, it is possible
to specify and debug a definition for an ALGOL-like language without context
conditions and semantics within two weeks. The MODULA-2 language definition
including context conditions and denotational semantics was written as part of
a diploma thesis within eight months. Thus, the use of a formal language-
definition language allows the quick generation of correct, reliable, and powerful
programming environments.

7. FINAL REMARKS

Work on the PSG system started in 1980; the first design considerations were
published in 1978 [17]. A prototype of the PSG system, colloquially known as
the BLKS system [4], has been in operation since late 1981. It combined early
versions of the editor’s context-free component and the interpreter. The complete
PSG system implemented in Pascal on Siemens BS2000 machines has been
running since 1983. In order to utilize modern personal workstations and hard-
ware with raster graphics and pointing devices, we redesigned the user interface
completely. Retargetting PSG to UNIX workstations (PERQ under PNX,
CADMUS under MUNIX) is in progress; the PERQ version is almost complete.
Recently, PSG has been chosen as the basis for the program constructor of the
SUPRENUM supercomputer [151.

ACKNOWLEDGMENTS

The authors would like to acknowledge the work of all persons involved in the
PSG project. Special thanks are due to W. Henhapl and T. Letschert, without
whose inspiring ideas the development of PSG would not have been possible.

M. Hunkel, T. Reps, and the referees provided valuable comments on earlier
versions of this paper.

REFERENCES

1. AHO, A. V., BEERI, C., AND ULLMAN, J. D. The theory of joins in relational databases. ACM
Trans. Database Syst. 4,3 (1979), 297-314.

2. AIT-KACI, H., AND NASR, R. Logic and inheritance. In Conference Record of the 23th ACM
Symposium on Principles of Programming Languages (St. Petersburg, Fla., Jan. 1986), ACM,
New York, 219-228.

3. AIUBRIOLA, V., AND MONTANGERO, C. Automatic generation of execution tools in a GANDALF
environment. J. Syst. Softw. 5,2 (May 1985), 155-171.

4. BAHLKE, R., AND LETSCHERT, T. The BLKS system: Towards the generation of programming
environments. In Proceedings 3. GI-Fachgesprtich Compiler-Compiler (Munich, Mar. 1982),
W. Henhapl, Ed., 153-173.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

The PSG System l 575

5. BAHLKE, R., AND SNELTING, G. Programmiersystemgenerator-Arbeitsbericht 1984, Rep.
PU2R2/84, TH Darmstadt, Feb. 1984.

6. BAHLKE, R, AND LETSCHERT, T. Ausfiihrbare Denotationale Semantik. In Proceedings 4.
GI-Fachgespriich Implementierung von Programmiersprachen (Zurich, Mar. 1984), H. Ganzinger,
Ed., 3-19.

7. BAHLKE, R., AND SNELTING, G. The PSG programming system generator. ACM SIGPLAN
Not. 20,7 (July 1985), 28-33.

8. BAHLKE, R., AND SNELTING, G. Context-sensitive editing with PSG environments. In Proceed-
ings of the Znternational Workshop on Advanced Programming Environments: Lecture Notes in
Computer Science. Springer Verlag, New York (to appear June 1986).

9. BJORNER, D., AND JONES, C. B. (Eds.) The Vienna Development Method: The Metalanguage.
Lecture Notes in Computer Science, 61. Springer Verlag, New York, 1978.

10. BJBRNER, D., AND JONES, C. B. Formal Specification and Software Development. Prentice-Hall,
Englewood Cliffs, N.J., 1982.

11. CLACK, C., AND PEYTON JONES, S. L. Strictness analysis-a practical approach. In Lecture
Notes in Computer Science, 201. Springer Verlag, New York, 1985,35-49.

12. DESPEYROUX, T. Executable specification of static semantics. In Lecture Notes in Computer
Science, 173. Springer Verlag, New York, 1984, 215-233.

13. DONZEAU-GOUGE, V., KAHN, G., LANG, B., AND MBL~sE, B. Document structure and modu-
larity in MENTOR. ACM SZGPLAN Not. 19,5 (May 1984), 141-148.

14. ELLISON, R. J., AND STAUDT, B. J. The evolution of the GANDALF system. J. Syst. Softw. 5,
2 (May 1985), 107-119.

15. GILOI, W. K., AND M~~HLENBEIN, H. Rationale and concepts for the SUPRENUM supercom-
puter architecture. Internal Rep., Gesellschaft fur Mathematik und Datenverarbeitung, 1985.

16. GOGUEN, J. A. Order-sorted algebras: Exception and error sorts, coercions and overloaded
operators. Semantics and Theory of Computation Rep. 14, UCLA, 1978.

17. HENHAPL, W. Von der Compiler-Generierung xu der Programmiersystemgenerierung. In Pro-
ceedings 1. GZ-Fachgesprcich Compibr-Compiler (Berlin, Sept. 1978), 160-169.

18. HENHAPL, W., AND LETSCHERT, T. VDM in research, development, and education: Local
experiences. In Formal Models in Programming. North-Holland, Amsterdam, 1985, 157-180.

19. HUDAK, P., AND YOUNG, J. Higher-order strictness analysis in untyped lambda calculus. In
Conference Record of the 13th ACM Symposium on Principles of Programming Languages (St.
Petersburg, Fla., Jan. 1986), ACM, New York, 97-109.

20. JOHNSON, G. F., AND FISCHER, C. N. A metalanguage and system for nonlocal incremental
attribute evaluation in language-based editors. In Conference Record of the 12th ACM Symposium
on Principles of Programming Languages (New Orleans, La., Jan. 1985), ACM, New York,
141-151.

21. JOHNSON, S. C. YACC: Yet another compiler-compiler. In UNIX Programmer’s Manual Vol.
2J3, Bell Labs., July 1978.

22. KAHN, G., LANG, B., MEL&E, B., AND MORCOS, E. METAL: A formalism to specify formalisms.
Sci. Comput. Program. 3 (1983), 151-188.

23. LANDIN, P. J. The mechanical evaluation of expressions. Comput. J. 6,4 (1964), 308-320.
24. MEDINA-MORA, R. Syntax-directed editing: Towards integrated programming environments.

Ph.D. thesis, Carnegie-Mellon Univ., Mar. 1982.
25. MEDINA-MORA, R., NOTKIN, D. S., AND ELLISON, R. J. ALOE user’s and implementor’s guide.

Carnegie-Mellon Univ., May 1982.
26. MEERTENS, L. Incremental polymorphic typechecking in B. In Conference Record of the 10th

ACM Symposium on Principles of Programming Languages (Austin, Tex., Jan. 1983), ACM, New
York, 265-275.

27. MILNER, R. A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17,3 (1978),
348-375.

28. MOSSES, P. SIS-Semantics Implementation System, reference manual and user guide. Rep.
DAIMI MD-30, Aarhus Univ., Aug. 1979.

29. PLOTKIN, G. Building in equational theories. Mach. Zntell. 7 (1972), 73-90.
30. REISS, S. An approach to incremental compilation. ACM SZGPLAN Not. 19, 6 (June 1984),

144-151.
31. REPS, T. Generating language-based environments. Rep. TR 82-514, Cornell Univ., Aug. 1982.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

576 9 FL Bahlke and G. Snelting

32. REPS, T., TEITELBAUM, T., AND DEMERS, A. Incremental context-dependent analysis for
language-based editors. ACM Trans. Program. Lung. Syst. 5,3 (July 1983), 449-477.

33. REPS, T., AND TEITELBAUM, T. The Synthesizer Generator. ACM SZGPLAN Not. 19, 5 (May
1984), 42-48.

34. REPS, T., AND TEITELBAUM, T. The Synthesizer Generator Reference Manual. Cornell Univ.,
Aug. 1985.

35. REPS, T., AND SNELTING, G. Context relations implemented with attribute grammars. Cornell
Univ., Jan. 1986.

36. RETY, P., KIRCHNER, C., KIRCHNER, H., AND LESCANNE, P. NARROWER: A new algorithm
for unification and its application to logic programming. In Lecture Notes in Computer Science,
202. Springer Verlag, New York, 1985,139-X7.

37. ROBINSON, J. A. A machine-oriented logic based on the resolution principle. J. ACM 12, 1
(1965), 23-41.

38. SIEKMANN, J. H. Universal unification. In Lecture Notes in Computer Science, 170. Springer
Verlag, New York, 1984, l-42.

39. SNEL~ING, G., AND HENHAPL, W. Unification in many-sorted algebras as a device for incre-
mental semantic analysis. In Conference Record of the 13th ACM Symposium on Principles of
Programming Languages (St. Petersburg, Fla., Jan. 1986), ACM, New York, 229-235.

40. SNELTING, G. Inkrementelle semantische Analyse in unvollstiindigen Programmfragmenten
mit Kontextrelationen. Doctoral thesis, TH Darmstadt, Mar. 1986.

41. STOY, J. E. Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory. The MIT Press, Cambridge, Mass., 1977.

42. TENNENT, R. D. The denotational semantics of programming languages. Commun. ACM 19,8
(Aug. 1976), 437-453.

43. VUILLEMIN, J. Correct and optimal implementations of recursion in a simple programming
language. J. Comput. Syst. Sci. 9 (1974), 332-354.

Received September 1985; revised March and April 1986; accepted April 1986

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1986.

