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The PSG programming system generator developed at the Technical University of Darmstadt 
produces interactive, language-specific programming environments from formal language definitions. 
All language-dependent parts of the environment are generated from an entirely nonprocedural 
specification of the language’s syntax, context conditions, and dynamic semantics. The generated 
environment consists of a language-based editor, supporting systematic program development by 
named program fragments, an interpreter, and a fragment library system. The major component of 
the environment is a full-screen editor, which allows both structure and text editing. In structure 
mode the editor guarantees prevention of both syntactic and semantic errors, whereas in textual 
mode it guarantees their immediate recognition. PSG editors employ a novel algorithm for incremental 
semantic analysis which is based on unification. The algorithm will immediately detect semantic 
errors even in incomplete program fragments. The dynamic semantics of the language are defined in 
denotational style using a functional language based on the lambda calculus. Program fragments are 
compiled to terms of the functional language which are executed by an interpreter. The PSG generator 
has been used to produce environments for Pascal, ALGOL 60, MODULA-2, and the formal language 
definition language itself. 
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Other Rewriting Systems-grammar types, parsing; 1.2.3 [Artificial Intelligence]: Deduction and 
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1. INTRODUCTION 

The Programming System Generator, PSG, developed at the Technical Univer- 
sity of Darmstadt generates language-dependent interactive programming 
environments from formal language definitions. From a formal definition of a 
language’s syntax, context conditions, denotational semantics, and additional 
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information it produces an integrated software development environment. One 
of the major components of a PSG environment is a powerful hybrid editor which 
allows structure-oriented editing as well as text editing. In structure mode, the 
editor guarantees prevention of both syntactic and semantic errors, whereas in 
textual mode it guarantees their immediate recognition. The editor is generated 
from the language’s syntax and context conditions. Furthermore, a PSG environ- 
ment includes an interpreter which is generated from the language’s denotational 
semantics. A language-independent library system is also part of the PSG 
environment. 

The basic units for editing and executing are called fragments, which are 
internally represented as abstract syntax trees. A fragment is an arbitrary pati 
of a program, for example, a statement, a procedure declaration, or an entire 
program. Fragments may be incomplete, that is, subcomponents may be missing. 
Missing subcomponents are called placeholders. Bottom-up system development 
is provided by combining fragments, while the fragments themselves are 
constructed top-down. 

The editor supports two editing modes, which are fully integrated and may be 
mixed freely by the user. In textual mode, the editor behaves like a normal screen- 
oriented text editor with the usual facilities to enter, modify, delete, and search 
text. Incremental syntactic and semantic analyses are invoked by keystroke. If 
the input was error-free, the text will be pretty-printed according to the format- 
ting rules of the language definition, and editing may proceed. If any syntactic 
or semantic errors are detected, an error message will be displayed by a menu- 
driven error-recovery routine. The earliest possible detection of both syntactic 
and semantic errors is guaranteed: As soon as a fragment cannot be embedded 
into a syntactically and semantically correct program, it will be classified as 
erroneous. For semantic errors this works even if declarations of, for instance, 
variables or types are still missing or incomplete. In structured mode, programs 
are developed in menu-driven refinement or modification steps. The menus are 
generated according to the abstract syntax of the language. The usual structure- 
oriented commands are offered to the user, such as refinement of a structure, 
selection from alternatives of a syntactic class, modification, insertion and 
deletion of substructures, zooming of substructures, copying of substructures, 
and so on. However, the menus are filtered dynamically by the context analysis 
such that only those menu items producing syntactically and semantically correct 
refinements or modifications after their selection will be offered to the user. 
Thus, in structured input mode, neither syntactic nor semantic errors can occur. 

Although PSG editors guarantee the immediate detection of errors, users are 
not forced to correct errors on the spot. The editor is fault-tolerant and accepts 
syntactically or semantically incorrect fragments; erroneous parts of the fragment 
are displayed in a special font. In addition users may retrieve the context 
information that has already been derived. For example, they might ask the 
system’which variables are already declared, which are still undeclared, what 
possible types the undeclared variables may possess and so on.’ The user interface 
of the PSG editors is described in detail in [8]. 

’ In our philosophy, declaration before use is not required. An undeclared variable is considered a 
semantic error as soon as the last placeholder offering the possibility of declaring that variable has 
been deleted. 
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Like all other system components, the interpreter is able to handle arbitrary 
incomplete fragments. As long as control flow in the interpreted fragment does 
not touch any syntactically incomplete structure, the fragment can be interpreted 
without difficulty. If control flow encounters a placeholder, the editor will be 
invoked, asking the user to enter the missing parts of the fragment. Additionally, 
the language definer may force the interpreter to ask the user for values of 
uninitialized variables or missing expressions, for instance. 

A language-independent fragment library system, which stores fragments as 
abstract syntax trees, is also part of a generated environment. Reading, writing, 
and rewriting of fragments is performed automatically by the environment if 
necessary. Deletion of fragments requires an explicit user command. The PSG 
editor offers the facility of redirecting input to external text files. Furthermore, 
fragments may be written in pretty-printed style onto external files. 

2. THE PSG LANGUAGE DEFINITION 

One of the most important goals in the development of PSG was the definition 
of a formal language definition language, covering the whole spectrum of a 
language’s syntax, context conditions, and dynamic semantics. Thus the language 
definer working with PSG is offered a formal, nonprocedural definition language. 
This is in striking contrast to most existing environment generators, which 
frequently support only the formal definition of the syntactic aspects of a 
language. It is common practice to use an abstract syntax for the generation of 
structure-oriented editors, together with a format syntax describing unparsing 
schemes for abstract syntax trees. If the editor incorporates a facility for proc- 
essing textual input, a context-free grammar serves as input to a parser generator 
(actually, many systems use the YACC [21] parser generator). For the description 
of the static and dynamic semantics of a language, most environment generators 
are based either on the attribute grammar approach or on the action routines 
approach. In both cases, attribute evaluation functions or action routines have 
to be coded in a procedural programming language. In these approaches no 
distinction is usually made between static and dynamic semantics, both have to 
be defined using the same metalanguage. 

The ALOE generator of the GANDALF system [24, 251 uses action routines 
written in GC, a dialect of C. To integrate an execution tool, the language definer 
must either produce a new code generator or modify an existing one. However, 
V. Ambriola and C. Montangero [3] report on the possibility of integrating an 
automatically derived interpreter into a GANDALF environment. A new model 
for action routines [14] has recently been developed. The PECAN system [30] 
uses a statement-oriented language to code action routines; separate specifica- 
tions detailing the uses of symbols, data types, and expressions of the language 
also have to be given. Using the Synthesizer Generator [33], which is based on 
attribute grammars, the language definer has to write a specification in the 
synthesizer specification language, SSL. The first version of SSL [31] used the 
language C for coding attribute evaluation functions, the current version of the 
generator [34] supports the definition of semantic equations and functions within 
SSL. The MENTOR specification language, METAL [22], supports the 
generation of environments for syntax-directed editing and manipulation of 
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programs; a formalism to specify type-checking will be integrated in a future 
version [12, 131. 

A PSG language definition consists of three major parts, structured as follows: 

(1) Syntax of the language 
1.1 Lexical structure 
1.2 Abstract syntax 
1.3 Concrete syntax 
1.4 Format syntax 
1.5 Titles and menus 

(2) Context conditions of the language 
2.1 Scope and visibility rules 
2.2 Data attribute grammar 
2.3 Format syntax of the data attributes 
2.4 Basic context relations 

(3) Dynamic semantics of the language 
3.1 Domain definitions 
3.2 Auxiliary functions 
3.3 Meaning of executable fragments 
3.4 Meaning functions 

As the core of any language definition, the syntax part is mandatory, whereas 
the others are optional. If the context conditions are missing, only a context-free 
editor will be generated, if the dynamic semantics definition is missing, an 
environment without an execution tool will be generated. 

3. THE DEFINITION OF THE SYNTAX 

The syntax definition part starts with the definition of the lexical structure of 
the language. The language definer has to specify the reserved words and the 
delimiters (special symbols):* 

while + ‘WHILE’; 
do + ‘DO’; 
if 4 ‘IF’; 
then + ‘THEN’; 
else + ‘ELSE’; 

sem --* ‘ ; ‘; 
ass 3 ‘ := ‘; 
SIP 3 ‘ [ ‘; 

4 ‘ ] ‘; 
2 4‘ ‘. 

1P --* 6 i :; 

rp + ‘ ) ‘; 
. . . 

’ In the following, all language definition examples refer to the definition of a Pascal subset called 
MIDIPAS [5], unless otherwise stated. 
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The classes of identifiers (Id) and constants (Int, Real, String) are predefined in 
PSG. Language-dependent tables are generated from the lexical definition to be 
used by the scanner and the unparser. 

The abstract syntax defines the structure of the abstract syntax trees, which 
serve as the internal representation of any fragment in a PSG environment. 
Abstract syntax is specified by a collection of class and constructor rules. Sets of 
syntactic alternatives are described by class rules: 

CLASS type = integer, real, bool, arraytype, recordtype, typeid, 
CLASS stat = assign, withstat, whilestat, forstat, ifthen, 

callstat, repeatstat, readlnstat, readstat, 
writelnstat, writestat, compound, casestat; 

CLASS var = Id, indref, recref; 
CLASS expr = var, constant, add, sub, mult, idiv, rdiv, not, 

andexpr, orexpr, equ, It, gt; 
CLASS constant = Int, Real, true, false, Id; 
. . . 

Constructor rules are either node or list rules: 

NODE arraytype :: indrangelist type; 
LIST indrangelist = indrange+; 
NODE indrange :: constant constant; 
. . . 
NODE indref :: var exprlist; 
NODE recref :: var Id; 
. . . 
NODE assign :: var expr; 
NODE compound :: statlist; 
LIST statlist = stat+; 
NODE ifthen :: expr stat [stat]; 
NODE callstat :: Id [actplist]; 
. . . 

Node rules define syntactic entities with a fixed number of subcomponents, which 
may be of different syntactic types. Subcomponents enclosed in ‘[’ and ‘I’ are 
optional (e.g., the parameterlist of a procedure call may be omitted). List rules 
define syntactic entities with a variable number of subcomponents of the same 
syntactic type. 

Missing subcomponents of a node are called placeholders; they represent 
pending refinements. Placeholders for sublists may be moved, deleted, or inserted 
freely within a list. 

The structure-oriented commands and menus offered to the user are generated 
according to the abstract syntax. For example, a menu of refinement or modifi- 
cation possibilities is associated with each placeholder. However, this menu is 
dynamically filtered with respect to context conditions (see below). 

The concrete syntax defines the transformation from the textual representation 
of fragments (i.e., character strings) to abstract syntax trees. It is based on 
a context-free grammar augmented by transformation rules describing the 
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construction of the abstract syntax tree. Thus the concrete syntax is actually a 
string-to-tree transformation grammar: 

statlist ::= LIST stat + - sem; 
stat :: = NODE var, ass, expr + assign 

1 NODE while, expr, do, stat * whilestat 
1 NODE if, expr, then, stat, elseopt + ifthen 
1 NODE repeat, statlist, until, expr + repeatstat 
. . . , 

elseopt ::= [else, stat]; 
var ::= Id, varl; 
Jar1 ::= var2, varl 

1 EMPTY; 
var2 ::= UPDATENODE slp, exprlist, srp + indref 

I UPDATENODE dot, Id =+ recref; 
. . . 

The list and node rules of concrete syntax resemble the corresponding rules of 
abstract syntax. List rules may specify a separator symbol (a semicolon separates 
the elements of a statement list); the right-hand side of node rules contains 
nonterminal as well as terminal symbols. Since top-down parsing is used in the 
PSG system, concrete syntax is restricted to LL( 1) grammars. The above example 
illustrates left-factorization in order to avoid LL(1) conflicts in the definition of 
var. The usual left-recursive definition of variables is not top-down parsable: 

var ::= Id 
1 NODE var, slp, exprlist, srp * indref 
1 NODE var, dot, Id + recref; 

It must be transformed by left-factorization of the nonterminal “var” into 
LL(l)-form, which involves the transformation of node rules to so-called 
updatenode rules. As usual, parsing proceeds from left to right, construction of 
the abstract syntax tree is done parallel to parsing. The parser should be able to 
process any incomplete input entered in textual mode. So the parser has to accept 
arbitrary valid prefixes of any input conforming to the syntactic category of a 
given placeholder and to construct the corresponding (possibly incomplete) 
abstract syntax tree. Thus, tree construction has to be done top-down, since 
bottom-up tree construction will not lead to satisfactory and unambiguous results 
in connection with incomplete input texts. Building abstract syntax trees bottom- 
up, tree nodes are constructed after the recognition of the complete right-hand 
side of a nonterminal (i.e., when the right-hand side is reduced to the nonter- 
minal). Building trees top-down, nodes are constructed before the processing of 
the right-hand side (i.e., directly after the prediction of the right-hand side). The 
tree construction process specified by the left-factorized nonterminal “var” in 
the above example is illustrated by the following: Consider ‘ab :=’ to be an input 
for a statement placeholder. Starting with the statement rule and recognizing 
the identifier ‘a’, an assignment node is constructed, and a pointer to its first 
subcomponent (a placeholder for variable) is passed to the nonterminal “var”. 
The right-hand side of the rule for var constructs an identifier node (with value 
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 4, October 1966. 



The PSG System l 553 

‘a’) by refining the placeholder for variable. A pointer to the identifier node is 
passed to the nontermianl “varl” (note that the abstract syntax tree for the 
statement so far constructed is ‘a :=. (expr)‘): After prediction of the first 
alternative for “varl”, the same pointer is passed to the nonterminal “var2”. 
Using the lookahead ‘.‘, the second rule for “var2” is predicted and the up-to- 
now constructed tree is changed according to the updatenode rule. The current 
tree pointer refers to the identifier node; this node is replaced in the abstract 
syntax tree by a record-reference node whose first subcomponent is the just- 
replaced identifier node. After the change of the abstract syntax tree invoked by 
the updatenode rule, the abstract syntax tree looks as follows: ‘a. (Id) := (expr]‘. 

If any syntax errors are detected in the input text during parsing, a recovery 
routine will compute a menu comprising all local correction possibilities, which is 
then presented to the user. Alternatively, users may switch to global recovery 
mode, where they may correct the input by editing in textual mode or simply 
accept the correct part of the input. 

The format syntax is a tree-to-string transformation grammar used to construct 
the external textual representation of an abstract tree: 

arraytype + array slp indrangelist srp of type[2]; 
assign 4 ! var ass expr; 
repeatstat + ! repeat statlist[2] ! until expr; 
ifthen + ! if expr then stat[2] (stat[2] ---) ! else, ); 
equ + CLASS (expr=equ,lt,gt -+ lp,rp) eq CLASS (expr=equ,lt,gt + lp,rp); 

Pretty-printing information, like insertion of newlines (‘!‘) and indentation of 
substructures (‘[. .I’), is part of the format definition. Conditional formatting, 
depending either on the existence of optional substructures or on the type of 
substructure, is supported. The first kind is illustrated by the else-part of the 
if-then-statement (if it exists, it is prefixed with a newline and the keyword 
‘ELSE’), the second kind by the equal expression. Here the conditional format 
rule is used to put left and right parentheses around the node’s subexpressions if 
and only if they are relational expressions (note that parentheses are discarded 
during parsing and that operator precedences are reflected by the structure of 
the abstract syntax tree). 

In the last part of the syntax definition, titles and menu texts have to be 
specified; these are used to generate the textual representation of placeholders 
and menu items. 

4. INCREMENTAL SEMANTIC ANALYSIS WITHIN PSG EDITORS 

The context analysis of PSG has been of special interest because classical 
concepts like attributed grammars do not work very well if arbitrary incomplete 
fragments have to be analyzed. Consider the following incomplete Pascal 
procedure fragment: 

PROCEDURE procl (VAR parl: typel; par2: type2); 
BEGIN 

parl[parl[par2 + 513 := (Expression]; 
(Statementlist] 

END; 
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Although the types of ‘parl’ and ‘par2’ are undeclared within that fragment, the 
context analysis must derive immediately that ‘pad has type “integer” (or a 
subrange thereof), that ‘parl’ is a one-dimensional array with index and com- 
ponent type “integer”, and that the still missing right-hand side of the assignment 
must also be compatible with “integer”. If a user refines the missing expression 
of the assignment to the real constant ‘3.14’, a semantic error must immediately 
be reported. In addition, the menu for the right-hand-side placeholder must be 
filtered in such a way that the menu items for all noninteger expressions will not 
be displayed. In MIDIPAS, the unfiltered menu for expressions consists of the 
following items: 

‘Variable’ ‘Constant‘ ‘Addition’ 
‘Subtraction’ ‘Multiplication’ ‘Integer Division’ 
‘Real-Division’ ‘Not’ ‘And 
‘Or’ ‘Equal’ ‘Less’ ‘Greater’ 

The actual menu for the assignment’s right-hand-side expression will be reduced 
by the context analysis to the following items: 

‘Variable’ ‘Constant’ ‘Addition’ 
‘Subtraction’ ‘Multiplication’ ‘Integer Division’ 

After selecting the second item, only the two items ‘Integer-Constant’ and 
‘Identifier’ will appear in the menu for constants, as opposed to the complete 
menu: 

‘Integer-Constant’ ‘Real-Constant’ 
‘TRUE’ ‘FALSE’ ‘Identifier’ 

Considering this example, the context analysis must fulfill several requirements 
in our setting: 

-The context analysis must be able to analyze arbitrary incomplete fragments. 
-The context analysis must guarantee the immediate detection of semantic 

errors even in incomplete fragments. 
-For efficient use in an interactive programming environment, the context 

analysis must work in an incremental manner. 
-Since PSG is a generating system, the context analysis must be generated from 

a formal specification of the language’s context conditions. 

Since the classical methods first collect the type information of variables from 
the declarations and then use this information to type-check expressions, these 
methods do not work in the above example because the declarations of ‘typel’ 
and ‘type2’ are not part of the fragment. Even incremental attribute-evaluation 
algorithms [20, 31, 321 are unable to derive type information in incomplete 
program fragments if attribute grammars are defined as usual (one can, however, 
do type inference with attribute grammars, see below). 

4.1 The Concept of Context Relations 

The concept of context relations has been developed to overcome difficulties with 
the more classical approaches. The basic idea is as follows: A fragment is correct 
if it is a correct program or if it can be embedded into a correct program. As usual, 
we want to use attributes for purposes of context analysis. However, in incomplete 
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fragments, a unique assignment of attribute values to tree nodes does not 
generally exist, since important information (e.g., variable declarations) may be 
missing. 

Because of this defect we explicitly pass over from attribute values to sets of 
still-possible attribute values. The basic idea is as follows: An arbitrary correct 
fragment can be embedded into a (usually infinite) set of correct and complete 
programs. These programs can be attributed, yielding a set of attribute assign- 
ments to tree nodes. The restriction of all these assignments onto the fragment 
in question results in a set of attribute assignments for the fragment, which 
represents exactly the context information corresponding to the fragment. 
Instead of using several attributes for a tree node, we use at most one attribute 
for each node, which, however, may be structured. As attribute values are 
associated with tree nodes, a collection of attribute assignments can then be seen 
as a relation in the sense of relational database theory: the columns of such a 
relation are labelled with the tree nodes, tuple elements are attribute values, and 
each tuple represents a possible attribute assignment for the fragment. Such a 
relation is called a context relation. A context relation associated with a fragment 
contains exactly the still-possible attribute assignments of the fragment. If the 
fragment is complete and correct, the relation will contain exactly one tuple, as 
there is only one possible attribute assignment for complete programs. In case of 
a semantic error, the relation will become empty, because no correct assignment 
of attribute values to tree nodes exists. Note that a context relation may be of 
infinite size, if the set of underlying attribute values is infinite. 

Formally, let A be the set of possible attribute values of the language, N the 
nodes of a fragment F. The context relation CR(F) associated with F is a set of 
mappings 

(t: N+ A]. 

The set of all context relations is denoted by CR. 
During editing, a fragment is produced step-by-step by composing a bigger tree 

from smaller trees: subtree placeholders (unexpanded nonterminals) will be 
replaced by subtrees, or subtrees of a fragment will be deleted and replaced by 
subtree placeholders. As a basis for incremental analysis, we therefore need an 
operation that computes the relation of a fragment from the relations of its 
components. Actually, this operation is just the natural join of relations (as 
known from database theory, see [l]). If a placeholder X in a fragment F is 
replaced by a fragment G, thus giving a new fragment H, we have 

CR(H) = CR(G) w CR(F). 

This property is generally valid for all languages that do not allow the definition 
of overloaded or polymorphic objects. Overloaded built-in constants or functions 
do not destroy the property, but for user-defined objects we have to assume that 
they have at most one final type or attribute. The examples given later will clarify 
this fact. 

There must of course be some relations to start with. These so-called basic 
relations have to be specified by the language definer for all terminals and all 
constructors of the abstract syntax of the language. Once these basic relations 
have been defined, all fragments may be analyzed by joining the basic relations 
of their components. Examples of basic relations are given later. 
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4.2 The Representation of Context Relations 

As context relations are usually infinite, we have to construct a finite represen- 
tation. The basic idea is to use a grammar: The set of all attribute values is 
described by an abstract syntax, a so-called data attribute grummur (DAG), 
where the structure of the attributes of the language is defined. The DAG 
has to be specified by the language definer. For MIDIPAS, typical DAG rules 
look like this: 

CLASS attribute = expr-attr, proc-attr, type, parmlist-attr, . . . ; 
NODE expr-attr :: type class cconstval; 
CLASS type = simple-type, array-type, record-type, . . . ; 
CLASS simple-type = arithmetic, ordinal; 
CLASS arithmetic = integer, real; 
CLASS ordinal = integer, boolean; 
NODE array-type :: ordinal type; 
CLASS class = cprog, cproc, ctype, ccomp; 
CLASS ccomp = cvars, cconst, cexpr; 
CLASS cvars = controlvar, non-controlvar; 
CLASS non-controlvar = cvariable, cppdescr, csel; 
. . . 

This MIDIPAS example specifies that an attribute of a syntactic object is either 
an expression attribute, a procedure attribute, a type attribute, or a parameterlist 
attribute. An expression attribute has three subcomponents, namely the type of 
the expression, its object-class, and a constant value (used only for constant 
expressions). A type may be a simple type, an array type, or a record type; a 
simple type is either arithmetic or ordinal, where arithmetic is integer or real 
and ordinal is integer or boolean. An array type attribute has two subcomponents: 
the ordinal index type and the component type of the array. Possible object- 
classes are programs, procedures, types, and computational objects, where the 
latter comprises variables, constants, or expressions; a variable may be either a 
control variable or a noncontrol variable. A noncontrol variable is either a 
variable, a procedure parameter, or a field selector. 

Since attribute classes may contain subclasses, a DAG also includes the concept 
of a subtype or inheritance in a natural way: “integer” is also an ordinal type, 
and each ordinal type is a simple type, each simple type is a type. DAG symbols 
not occuring on the left-hand side of a rule are considered to be terminals. Note 
that classes need not be disjoint: “integer” is an arithmetic type as well as an 
ordinal type. 

A DAG describes a many-sorted free algebra with subsorts (that is, an order- 
sorted algebra [16]) as follows: Each symbol of the DAG gives rise to a sort. The 
terminal symbols are considered as nullary constants of their own sort, and the 
left-hand sides of node rules are considered as nonnullary function symbols with 
arity according to the DAG. The terms freely generated by all terminal symbols 
are exactly the possible attribute values, denoted by A(DAG). As an abstract 
syntax also describes a set of trees, A(DAG) can also be seen as the tree language 
generated from the DAG. The terms freely generated by the terminal symbols 
and the class names (which also are considered nullary constants) are just the 
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incomplete derivation trees (sentential forms) generated by the DAG; they are 
called attribute forms and are denoted by AF(DAG). Thus, an attribute form may 
contain nonterminal leaves. As usual, we also use the notion of derivation: for 
x, y E AF(DAG) we write x 4 y iffy can be derived from x by substituting an 
attribute form of the correct sort for a nonterminal leaf. In this case we also 
consider the sort associated with y to be a subsort of the sort associated with x. 
An attribute form can be used to represent an infinite set of attributes, namely, 
all those attributes that can be derived from it. 

As usual, we add variables: The algebra freely generated by the terminals, class 
symbols, and an infinite set of sorted variables is called the algebra of attribute 
forms with uariubles, and denoted by AFV(DAG). The sort of a variable u is 
denoted by sort(u), and for x E AFV(DAG) we denote the variables in x: by 
vars(r). 

An almost identical scheme has recently been proposed by Ait-Kaci and Nasr 
in order to extend PROLOG with inheritance concepts [2]. They propose terms 
of an order-sorted algebra as the basic PROLOG structure instead of the standard 
type-free terms; this can shorten the resolution process considerably. 

We now define the notion of attribute form relations: Given a fragment F, an 
attribute-form relation describing F is a finite set of mappings from the tree 
nodes N of F to attribute forms with variables. In addition, each mapping has an 
environment attached, which gives values for the instantiated variables of tuple 
components. Of course, these values must have correct sorts with respect to the 
sort structure induced by the DAG. The set of all attribute-form relations is 
denoted by AFR. An attribute form relation r E AFR represents a possibly 
infinite context relation R [r] E CR as follows: 

t E R[r] iff there is (t ‘, e ‘) E r and there is a mapping 
e: vars(t’) + A(DAG) 
such that for all s E dam(t) 
e*(t’(s)) & t(s) 
and for all u E vars(t’): e’(u) 2. e(u) 

where e* is the homomorphic extension of e to attribute forms. 
At this point, we give some examples. Consider the following MIDIPAS 

fragments: 
(1) a[(expressionl)] := (expression2) 
(2) 4k + 51 
(3) k AND j 

with corresponding abstract syntax trees: 

(an incomplete assignment) 
(a variable) 
(an expression) 

a 

/Y a + 

/A 
k 5 

k j 

For simplicity, we do not distinguish between a subrange type and its base 
type, and we assume that within an assignment both sides must have the same 
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type or that the left-hand side has type “real” and the right-hand side has type 
“integer” (these simplifications are not essential). Therefore, in fragment one, 
we do not know the component type of the array, but it is clear that the still- 
missing index must be of ordinal type. Furthermore, the still-missing right-hand 
side of the assignment must either have the same type as the component type of 
array ‘a’, or ‘u’ has component type “real” and the right-hand side has type 
“integer”. In the second fragment, ‘k’ and the index type of ‘a’ must be compatible 
with “integer”. Note that even though the addition in MIDIPAS is overloaded, 
‘k’ cannot be “real”, as it is used within an array index. The fragment itself has 
the same type as the component type of array ‘a’. In the third fragment, ‘It’, ‘j’, 
and the fragment itself must have type “boolean”. 

These inferences are valid regardless of the programs into which the fragments 
can be hypothetically embedded, and can be done without looking at any decla- 
rations-but more cannot be said. We now describe the possible attribute 
assignments to fragment nodes by attribute-form relations. For readability, we 
ignore the object-class and constval component of attributes and simply con- 
centrate on the types of the objects involved. The attribute-form relations 
corresponding to the fragments are 

(1) 

U 

array-type(ORDINAL, TYPE) 
array-type(ORDINAL, real) 

(2) 
U 

array-type(integer, TYPE) 

(expressionl} ] [ ] ] (expression2) 

ORDINAL I TYPE I TYPE 
ORDINAL ] real ] integer 

[II k I + I 5 
TYPE ] integer ] integer ] integer 

(3) 
k ] and ] j 

boolean ] boolean ] boolean 

The column labels of these relations are the nodes of the corresponding 
fragments that possess an attribute. Tuple components are attribute forms with 
variables. The first relation has two tuples. The first tuple contains the variables 
“ORDINAL” and “TYPE”, which are (similar to PROLOG) written in upper- 
case letters. For simplicity, the names of the variables also indicate their sort (if 
necessary, indices will be used to distinguish several variables of the same sort). 
Thus the first tuple states that ‘u’ may be an array of unknown index and 
component type and that the still-missing index expression is of the same ordinal 
type; the right-hand side must be of the same type as the array-component type. 
The second tuple states that alternatively ‘u’ may have component type real and 
the right-hand-side type integer; again the variable “ORDINAL” describes that 
the unknown index type must be the same as the type of the still-missing index. 
Note that the scope of a variable is always the tuple it occurs in. The first two 
relations represent infinite context relations, whereas the third relation repre- 
sents a one-tuple context relation (which is accidentally identical with the 
basic relation for the logical ‘and’ operator). Note that still-possible attribute 
assignments different from those represented by the given relations do not exist 
for our fragments, regardless of global context. 
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The most important part of the context condition definition is the specification 
of the basic relations, which must be specified for each terminal and each node 
rule of the abstract syntax. A basic relation is simply an attribute-form relation, 
which defines a (possibly infinite) set of attribute assignments to the components 
of a node rule or a terminal, respectively. Thus the basic relations describe the 
context conditions local to a given abstract syntax rule. The basic relation for an 
assignment consists of two tuples, which use the variable “TYPE”: 

assign: 
NIL 
MK-expr-attr(TYPE, non-controlvar, cconstval) 
MK-expr-attr(TYPE, ccomp, cconstval) 

1 NIL 
MK-expr-attr(rea1, non-controlvar, cconstval) 
MK-expr-attr(integer, ccomp, cconstval); 

which says that in an assignment, either 

-the left-hand side is a noncontrol variable of a certain “TYPE”, and the right- 
hand side is an expression of the same “TYPE”; or 

-the left-hand side is a real variable, and the right-hand side is an integer 
expression. 

The assignment operator itself has no attribute; this is indicated by the null 
attribute “NIL”. In contrast to the notation used above, this example shows how 
relations within a PSG specification actually look: each line contains one tuple 
component, the position of tuple components corresponds to the position of 
symbols in the abstract syntax rule referred to, and tuples are separated by ‘ ] ‘. 
The basic relation for an integer constant 

Int: 
MK-expr-attr(integer, cconst, LEXID(Int)); 

says that a syntactic integer constant has type integer, is a constant, and has a 
constant value copied from the abstract syntax tree (this is specified by the built- 
in LEXID function). 

The tuples occuring in an attribute-form relation can be seen as special terms 
in our order-sorted attribute algebra: for i E N, introduce new function symbols 
tupi with arity i. A tuple can then be written as a term tupi (xi, . . . , xi), where 
the xi)s are the tuple components, and the argument position of an Xj corresponds 
to the column label of an attribute-form relation column. 

4.3 Unification as a Device for Modeling the Join 

It is necessary to construct an operation for attribute-form relations that exactly 
represents the join. This operation is unification in our many-sorted algebra with 
subsorts. Unification in order-sorted algebras works similarly to the classical 
Robinson unification [37]. However, as we have subsorts and nondisjoint sorts, 
in order to unify two variables of different sorts, it is necessary to find a sort 
that describes exactly the intersection of the original sorts. Therefore, we require 
for two sorts that their intersection is either empty or again a sort, which is 
equivalent to 

(AF(DAG); a) is an upper semilattice. 
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Thus unification has to compute suprema in this lattice from time to time. For 
our sample DAG, if we have a variable of sort “ordinal” and a variable of sort 
“arithmetic”, their unification is a variable of sort “integer”. Of course, the 
unification of a variable of sort “array-type” and another variable of sort “real” 
fails, as “real” and “array-type” are disjoint sorts. 

It is not a restriction that the type structure has to be a semilattice. Every 
partial order can be embedded into a semilattice, and if the type system of the 
language to be defined does not have a partial ordering at all, one can use the 
flat semilattice. 

The unification algorithm is sketched below. 

function unify (tl, t2: AFV(DAG); env: ENV): AFV(DAG) x ENV; 
{Unifies two terms tl, t2 of the order-sorted attribute algebra in a given environment 
env; an environment is a mapping of variables of tl and t2 to attribute terms. Output 
is a result term as well as a new environment. If unification fails, the result is nil. ) 

begin 
if tl is a constant then 

if t2 is a constant then 
begin 

s := sort(t1) A sort(t2); 
ifs = nil then 

unify := nil 
else 

unify := (“a new constant of sort sn, env) 
end 

else if t2 is a variable then 
unify := unify(t2, tl, env) 

else if tl and t2 are compound terms with identical fnnctors, 
t1 = f(hl, . . . , hn), 
t2 = f(tzl, . . . , tzn) then 

begin 
i := 1; 
repeat 

(Ui, newenv) := Unify(tli, tzi, env); 
i:=i+ 1; 
env := newenv 

until i = n Or Ui = nil; 
if oi = nil then 

unify := nil 
else 

unify := (f(a,, . . . , a,), newenv) 
end 

else if tl is an uninstantiated variable and not occurs (tl, t2) then 
begin 

s := sort(t1) A sort(t2); 
ifs = nil then 

unify := nil 
else 

unify := (tl, env+[tl + t2]) 
end 

else if tl is an instantiated variable then 
unify := unify(env(tl), t2, env) 

else if t2 is a Variable then 
unify := unify(t2, tl, env) 

else 
unify := nil 

end; 
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Note that from a theoretical point of view it is not essential to include 
nondisjoint DAG classes. The special case “classes must be disjoint” is theoreti- 
cally sufficient and leads to a subsort ordering which has tree structure rather 
than being an upper semilattice. From a practical point of view, however, it is 
essential that relations contain as few tuples as possible. Therefore, any attribute 
subset relevant in a language should be represented by a DAG class rather than 
by different tuples within a relation. Considering the above, including nondisjoint 
DAG classes is essential for performance. 

THEOREM. If the DAG induces an upper semilattice, tuple-wise unification of 
attribute-form relations represents the natural join exactly: 

R[((t, e) # NIL ] there are (t’, e’) E rl, (t”, e”) E r2, 
(t, e) = unify(t’, tN, e’ + e”))] = R[rl] W R[r2] 

Furthermore, the unification as sketched above will produce a correct and unique 
most-general unifier for many-sorted algebras with semilattice-ordered subsorts. 

PROOF. See [40]. 

Examples. (a) We compose fragments (1) and (2), thus obtaining the fragment: 

a[a[k + 511 := (expression] 

We have to unify tuple components in corresponding columns of our two 
relations. In the example, the column for ‘a’ in relation (1) has to be matched 
against the corresponding column for ‘a’ in relation (2), and the column for 
‘(expressionl)’ in relation (1) has to be matched against the column for ‘[ 1’ in 
relation (2). Note that in general the scope and visibility rules of the language in 
question must be obeyed when determining which columns match (see below). 

Unifying the attributes “array&pe(ORDINAL, TYPE)” and “array- 
type(integer, TYPE)” results in a new sort for “ORDINAL”, namely “integer”, 
as integer is a subsort of “ordinal”. Furthermore, the two “TYPE” variables are 
unified. Next, considering the columns for ‘(expressionl)’ in relation (1) and ‘[ 1’ 
in relation (2), we have to unify the variables “ORDINAL” and “TYPE”. 
But “ORDINAL” has already been substituted for by “integer”. Therefore, 
“TYPE” also changes its sort and becomes “integer” (note that in our setting for 
a variable “to change sort” and “to get a new value” are somewhat equivalent). 
Now the second tuple of the first relation must be considered. Here we unify 
“array-type(ORDINAL, real)” and “array-type(integer, TYPE)“, resulting in a 
new sort for “ORDINAL”, namely “integer”, and a new sort for “TYPE”, namely 
“real”. Next, “ORDINAL” and “TYPE” have to be unified, however, because the 
constants “integer” and “real” are not unifiable, (the intersection of the corre- 
sponding sorts is empty), the whole unification fails. Thus we obtain a new 
relation consisting of one tuple: 

a I 1 1 I [ 1 I k I + I 5 I Iexpression 
array-type(integer, integer) 1 integer 1 integer 1 integer l integer 1 integer l integer 

that is, we have inferred that the still missing right-hand side of the assignment, 
as well as the index and component type of array ‘a’, must be of type integer. 
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(b) We compose our newly derived fragment and our original fragment (3) to 
form the assignment: 

a[a[k + 511 := k AND j. 

Here we have to unify the attributes for ‘(expression)’ in fragment (1) and the 
‘and’ node in fragment (3), as well as the attributes for ‘k’. However, unification 
of “integer” and “boolean” fails at once. We therefore obtain the empty relation: 

a II II[ II k I + 15 bdli 
111111 I’ 

indicating a semantic error: type conflict in an assignment. This example illus- 
trates how the method guarantees immediate detection of semantic errors even 
in incomplete fragments. Furthermore, since the columns and attributes that did 
not match are known, it is also possible to locate semantic errors exactly and to 
produce appropriate error messages. 

In general, the scope and visibility rules of the language in question have to be 
obeyed when determining which columns match. The language definer has 
therefore to specify these rules for identifiers as part of the context-condition 
specifications. This information is used to determine whether the different 
occurrences of the lexically same identifier in a fragment denote the same abstract 
identifier. If so, their columns in two context relations match, and the attribute 
terms in these columns have to be unified. 

In the current implementation, the scope analysis specification language is 
rather simple-minded. It offers various built-in concepts to the language definer, 
but is not a general mechanism. The concepts that are supported at the moment 
are the block concept and a concept of named-scopes (record concept). A more 
general scheme is currently under development. 

The process of scope and visibility analysis must be done before any relations 
are joined. This analysis computes an equivalence relation on the nodes of the 
abstract syntax tree. Since this is done before the computation of attributes 
actually starts (the join needs the column-matching information first), the anal- 
ysis of user-defined overloading is not possible within the current system. In 
addition to scope rules, overloading resolution requires type information too, 
which, however, has not been computed at the time of scope analysis. It seems 
that for overloading resolution, declarations are actually required. If overloaded 
procedures are declared within a fragment, one can build up a basic relation for 
each overloaded object which contains one tuple for each overloaded variant, and 
then use this relation instead of the standard basic relation for procedure calls. 
Thus context relations can also be used as a natural tool for overloading 
resolution. An experimental implementation of our unification-based semantic 
analysis using the Synthesizer Generator uses this approach [35]. 

4.4 Building in Equational Theories 

The use of sorted variables allows the specification of equality in certain 
(sub)attributes of a tuple together with an indication of admissible substitutions. 
However, for practical purposes this is not enough. We give an example: 
MODULA-2 allows the use of constant expressions within constant declarations. 
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For purposes of semantic analysis, it is important to evaluate these constant 
expressions: The fragment 

CONST a = 3; 
b=a-3; 

VAR X: ARRAY [a..b] OF (type) 

is obviously incorrect. Expression evaluation within semantic analysis based on 
unification is equivalent to unification in algebras with nonempty equational 
theory. The unification algorithm in our example must know that 3 - 3 = 0 and 
3 I 0 = false. Arbitrarily complicated examples such as this may be constructed. 
However, in his well-known paper [29], Plotkin showed that finite most-general 
unifiers for algebras with nonempty equational theory in general do not exist. 
There are equational theories where finite unifiers exist; but we do not want to 
force the language definer to look for a correct unification algorithm for his 
specific langauge. 

Since the general problem is not solvable, we have developed an extension of 
our unification in order to be able to handle arbitrary equational theories-which 
works correctly with almost any input in the sense of open problem 8 in [38]. 
The basic idea is as follows: 

We extend our attribute algebra with sorts and terms for which an interpreter 
is assumed to exist, that is, we mark certain attribute forms as evaluable. In our 
example we introduce integer values and arithmetic and assume that an inter- 
preter for arithmetic and relational expressions exists which, for instance, can 
determine that 3 - 3 = 0. Thus, if we assume that constants are described by 
their type and value: 

NODE const-attr :: simple-type value 

CLASS value = Int-value, Real-value, Bool-value 

where Int-value, and so on, are assumed to be predefined DAG classes. The basic 
relation for constant addition in MODULA-2 might look as follows: 

const-add: 
MK-const-attr(ARITHMETIC, VALUE1 + VALUEB) 

MK-const-attr(ARITHMETIC, VALUEl) 
MK-const-attr(ARITHMETIC, VALUEB); 

During analysis, unification and evaluation are interleaved. The system keeps 
track of unevaluated expressions. Once the necessary arguments of as yet une- 
valuated expressions are known (this might be a consequence of unification), the 
expressions are evaluated at once. This is known as data-driven evaluation: 
Unevaluated expressions are waiting as demons; they are always evaluated as 
soon as possible. Thus, unification calls evaluation if possible; however, the 
results of evaluation must again be considered for unification: evaluation calls 
unification if necessary. This concept does not work in every case: there may be 
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unevaluated expressions that in case of evaluation would cause subsequent 
unifications to fail-they, however, never get evaluated. As an example consider: 

CONST a = (constant expression); 
b=a-3; 

VAR x: ARRAY [a . . b] OF (type) 

This fragment is already incorrect, but that will not be detected until the 
‘(constant expression)’ placeholder is replaced by a constant or complete constant 
expression. Fortunately this does not happen very often, and as mentioned above, 
something better will probably not exist for arbitrary equational theories. 

Note that extending unification by data-driven evaluation is also considered a 
useful extension of PROLOG. We consider this approach to be an alternative to 
narrowing algorithms [36]. 

The interpreter used in the current implementation is able to handle 
arithmetic, relational, and boolean operators as well as operations on lists. 
The concept itself, however, can be used with a full-scale interpreter for a 
functional language. Therefore, in addition to the unification mechanism, arbi- 
trarily complicated functions may be evaluated during the analysis. 

4.5 The Incremental Analysis Algorithms 

We have, seen that unification, interleaved with evaluation, gives a useful basis 
for incremental semantic analysis. Conceptually, it would be sufficient to store 
with each fragment one big global relation which contains all the attributes of 
the fragment. During editing this relation must then be modified after each 
editing step. If, for example, an unexpanded nonterminal is replaced by a new 
subtree, it would be sufficient to analyze the new subtree by joining the basic 
relations of its components, and then to use one join to update the global relation. 
This scheme, however, is not very appropriate, because it might require a 
complete reanalysis of fragments after subtree deletions. It is far better to 
distribute the global relation within the syntax tree: Some fragment nodes have 
a local relation attached, which describes part of the subtree subordinate to that 
node. In a local relation attached to node X, it is not necessary to include columns 
for attributes of objects that, according to the scope rules of the language, are 
not visible at X. For example, consider the MIDIPAS fragment: 

(1) PROCEDURE p (x: t); 
(2) VAR a: t2; 
(3) PROCEDURE q; 

it; 
VAR b: REAL; 

BEGIN 
(6) b := 5 

END; 
(7) BEGIN 
(8) a[x] := (expression]; 

(statements) 
END; 

If we assume that each statement, declaration, procedure, and program has a 
local relation attached, the local relations for this fragment have columns for the 
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following syntactic objects: 

(1) p, n, t, a, t2, q, (expression} 
(2) a, t2 
(3) q, b 
(4) b, REAL 
(5) b 
(6) b, 5 
(7) a, x, (expression) 
(8) a, [ 1, X, (expression) 

In order to see that no more information is needed, consider the local variable 
‘b’: since its declaration is complete, ‘b’ cannot influence relations outside ‘q’. 
Semantic information about ‘q’ is part of the attributes of ‘q’, nothing else is 
needed outside ‘q’. As a consequence, the complete bottom-up analysis of a 
fragment can use a variant of the join, which does not copy all columns of the 
second relation and is therefore more efficient: given a position in the tree, the 
join will determine via scope analysis which columns of its second argument are 
actually needed at that position. The join operation is sketched below: 

function join(r1, ~2: AFR, x: tree-node): AFR, 
(Joins two context relations by unifying corresponding tuple components. x is used to 
check which columns of ~2 have to be included in the result) 

begin 
F := empty-relation; 
for all tuples tl in rl do 

for all tuples t2 in ~2 do 
begin 

e := env(t1) + env(t2); 
t := empty-tuple; 
for all components cl of tl do 

for all components c2 of t2 do 
if cl and c2 have to be matched then 

begin 
(c, el) := unify(c1, c2, e); 
e := el; 
if c = nil then 

t := nil 
else 

add c as a tuple component to t 
end 

else 
begin 

add cl as a tuple component to t; 
if c2 is needed at x then 

add c2 as a tuple component to t 
end, 

if t # nil then 
add tuple t with environment e to relation F 

end, 
join := r 

end; 

The data-driven evaluation of expressions is not shown in this algorithm. 
After an editing step there is usually only a small number of local relations to 

be updated, which is far more efficient than to update a single global relation. 
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Only local relations attached to fragment nodes on the path from the modified 
subtree to the fragment root must be considered, since local relations describe 
local semantic information and are therefore independent from siblings or parents 
of the tree node they are attached to. After a subtree insertion these relations 
have to be joined with the relation of the new subtree (which has to be analyzed 
first). After a subtree deletion these relations must be recomputed from basic 
relations and other local relations which are not affected by the subtree deletion 
and therefore need not be recomputed. The analysis can often be stopped after 
considering just one or two local relations: as soon as a local relation on the path 
from the modification point to the fragment root does not change, updating 
of local relations may be aborted. A sketch of the analysis algorithms is given 
below: 

function complete-analysis(t: fragment): AFR, 
(Complete bottom-up analysis of a fragment] 
if t is a terminal leaf then 

complete-analysis := basicrelation 
else 

begin 
r := basicrelation( 
for all sons s oft, s not a placeholder do 

r := join(r, complete-analysis(s), t); 
if t has a local relation then 

relation(t) := r; 
complete-analysis := r 

end, 

function partial-analysis(t: fragment): AFR; 
(Analyzes t, using local relations that might be attached to nodes of t) 
if t is a terminal leaf then 

partial-analysis := basicrelation 
else 

begin 
r := basicrelation( 
for all sons s of t, s not a placeholder do 

ifs has a local relation attached then 
r := join(r, relation(s), t) 

else 
r := join(r, partial-analysis(s), t); 

partial-analysis := r 
end, 

procedure analyze-refinement(t: fragment; x tree-node; n: fragment); 
{Analysis of replacing placeholder x in fragment f by fragment n) 
begin 

r := complete-analysis(n); 
s := x; 
repeat 

s := parent(s); 
ifs has a local relation attached then 

relation(s) := join(relation(s), r, s); 
until relation(s) did not change or s = root oft 

end, 
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procedure analyze-deletion(t: fragment; x: tree-node); 
(Analysis for deleting the subtree starting at x from fragment t) 
begin 

s := x; 
repeat 

s := parent(s); 
ifs has a local relation attached then 

relation(s) := partial-analysis(s) 
until relation(s) did not change or s = root oft 

end; 

The complete analysis of a fragment of size n requires O(n) unifications. In an 
incremental setting, however, where local relations have to be computed and 
updated, the complete analysis of a fragment of size n requires O(n * In n) 
unifications, whereas the incremental analysis after one editing step requires 
typically O(ln n) unifications. On a SIEMENS 7551 (a machine comparable to 
a VAX 780), the complete analysis of a 90-line MIDIPAS program needs 
1.4 CPU seconds, whereas deletion of a statement requires 0.4 seconds and 
reinsertion of that statement needs 0.1 seconds. These results, however, are 
correct only if the number of tuples within relations is bounded. This is usually 
the case; one can, however, give examples where combinatorial explosion 
occurs. In such a situation the method becomes unusable. It depends on 
the language definition whether the number of tuples in local relations is always 
bounded or not. 

The incremental analysis algorithms can be further improved by splitting up 
local relations into several smaller relations. The idea is as follows: A relation 
needs columns only for those tree nodes whose attributes are mutually dependent 
owing to variables within tuples. Thus a local relation may be split up in such a 
way that each subrelation has columns for mutually dependent nodes only; 
attributes in different subrelations are independent. After a modification of the 
tree, only the affected subrelations of local relations have to be considered, which 
reduces the complexity of incremental analysis. In order to see how combinatorial 
explosion can be avoided, consider the fragment: 

BEGIN 
a := b; 
c := d; 
e := f 

END; 

Its local relation has 6 columns, 8 tuples, and 48 attributes. However, since the 
attributes of (a, b], (c, dj, and (e, f) are independent, it can be split up into three 
subrelations with two columns and two tuples each, resulting in 12 attributes. 
Thus, dynamic analysis of attribute dependencies together with the concept of 
splitting local relations may result in a substantial performance improvement 
and reduced memory requirements. 

During editing the context relations are primarily used to detect semantic 
errors. Of course, relations associated with fragments can also be used as symbol 
tables. Within a PSG environment the user may always have a look at the still- 
possible attributes of syntactic objects. Note that relational analysis does not 
require any objects to be declared, scope analysis will however detect missing 
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declarations as soon as the last possibility of declaring that object has been 
deleted and there is no possibility of declaring that object outside the fragment 
in question. If any semantic error is detected, the user is not forced to correct it 
immediately. The method is fault-tolerant: inconsistent parts of a fragment are 
displayed in a different font, but editing may continue. The analysis algorithms 
simply ignore empty local relations. 

In order to perform dynamic context-sensitive menu filtering, it suffices to 
check for each menu item whether its selection would result in an empty local 
relation. This is done by testing whether the join of the basic relation of a menu 
item and the local relation containing its attributes will become empty, which is 
easier than actually computing the join. Note that since a tree node may possess 
columns in more than one local relation, the one nearest to the fragment root 
has to be used, as it contains the most precise information. In order to avoid 
unnecessary searching, all tree nodes have a pointer attached to their “outermost” 
local relation. 

Dynamic context-sensitive menu filtering is one of the most important features 
of the PSG editor. No other programming environment known to the authors 
provides an equally powerful method to prevent semantic errors in structured 
input mode. The guarantee that programs are correct at every stage of their 
development and the prevention of syntactic and semantic errors in structured 
input mode has turned out to be very helpful, particularly for beginners. 

4.6 Comparison with Related Work 

Several techniques for incremental semantic analysis in language-specific editors 
have been developed. The most well-known concepts are probably semantic 
action routines in GANDALF and incremental attribute evaluation within the 
Synthesizer Generator; there are also variations on the attribute grammar theme 
(e.g., [20]). It is possible to implement our concept using these techniques. In 
fact, context relations and unification have been experimentally implemented 
using the Synthesizer Generator [35]. However, the concept of inferring sets of 
still-possible attributes within incomplete fragments seems to be new. All the 
known language-independent concepts have always obeyed the classical scheme: 
first inspect the declarations, then use the collected information for the analysis 
of statements. It was a direct consequence of the PSG fragment concept that we 
had to do it another way. 

The Milner-style analysis [27] of type-free lambda calculus expressions (in- 
cluding a let construct) computes the most general polymorphic type of a given 
lambda term. It also uses unification, and is in some sense similar to our scheme: 
Milner’s notion of a most-general polymorphic type corresponds to our notion of 
sets of still-possible attributes of a fragment. However, the original approach is 
language-dependent and is not incremental. 

Meertens extended Milner’s approach with incremental algorithms [26]. He 
used the incremental polymorphic type inference algorithms within an editor for 
the language B. The incremental analysis concepts are similar to our algorithms. 
His scheme, however, is also a language-specific concept. 

More recently, the MENTOR group has developed a generator for semantic 
analysis, which is based on inference rules and unification [12]. The context 
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conditions are specified in a special language for inference rules, called TYPOL, 
and then translated into PROLOG programs, which are executed during editing. 
Their scheme, however, is not fully incremental, since the necessity for change 
propagation is not checked dynamically. After a program modification, all infer- 
ence rules that depend statically (that is, are program-independent) on the 
modification are reconsidered. 

Finally, let us discuss some limitations of the relational approach. The concept 
has been developed for the semantic analysis of Pascal-like languages, primarily. 
It can, however, be used for other purposes. For example, we have generated a 
proof editor for propositional calculus, where the semantic analysis checks proofs 
for correctness [40]. The main restrictions of the current specification language 
can be found in the scope analysis. As mentioned above, the current version is 
not very flexible and cannot be used to specify certain complicated language 
features (e.g., module interfaces in Ada). Also, the algorithm cannot analyze 
polymorphism since it assumes that every object has just one final type. In 
order to analyze polymorphisms (as in Milner’s algorithm), a careful and 
language-specific analysis of variable bindings is necessary; this cannot be 
specified within PSG. 

From a practical viewpoint, the problem of combinatorial explosion is more 
difficult. If the language has many constructs that are overloaded, the number of 
tuples within local relations tends to increase quickly. There are two techniques 
for coping with this problem. The first is to decrease the number of local relations. 
Each local relation thus describes a bigger part of the abstract tree, and therefore 
contains more information, that is, fewer tuples. Incremental behavior will 
however not benefit from such a change. The second technique is to replace basic 
relations with more than one tuple by basic relations with only one tuple and 
additional functional dependencies, as described in Section 4.4. This is always 
possible, but, since expression evaluation may be delayed, immediate error 
detection can no longer be guaranteed-a semantic error may not be detected 
until the declarations of the objects involved are complete. 

5. SEMANTICS DEFINITION AND FRAGMENT EXECUTION 

5.1 The Denotational Semantics Definition 

In the PSG system, denotation& semantics [41,42] are used to define the dynamic 
semantics of a language. As usual, the language definer must specify a semuntic 
function for each syntactic construct, defining the meaning of that construct 
within a semantic domain, depending on the meaning of its subcomponents. 
Semantic functions are written in a functional language based on a type-free 
lambda calculus. This language supports the basic data types integer, real, 
boolean, string, and identifier, the structured high-level data types list/tuple 
and map, and higher-order functionals of arbitrary rank. The common operations 
on these data types are supported as well as function application, control 
constructs (if-then-else, McCarthy conditional), various combinators for list 
applications (similar to, e.g., mapcar in InterLisp), and the usual let and letrec 
constructs, where the latter allows the definition of recursive functions and 
recursive maps. The definition language has been inspired by the applicative 
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parts of META-IV [9, lo]. Function application evaluates its arguments call-by- 
need, whereas the elements of the structured data types are evaluated call-by- 
value. It is possible, however, to specify that selected range elements of maps be 
evaluated call-by-need. Call-by-need (i.e., delayed parameter evaluation) has been 
chosen because it combines the advantages of both call-by-value and call-by- 
name: Arguments are evaluated only once as in call-by-value, but only when 
needed, as in call-by-name, so unnecessary computations of function arguments 
which are never used are avoided. Call-by-need is a correct implementation of 
recursion, allowing nonstrict functions [43]. Actually, the PSG environment 
forces a call-by-need strategy, since the evaluation of some language constructs 
may have visible side effects within the environment (note that the language 
itself is side-effect-free). For example, the answer construct behaves like the 
identity function, but within the PSG programming environment its argument 
will be output interactively on the screen. However, a simple strictness analysis 
is performed to find those parameters of functions that are evaluated in all calls 
of the function. Strict parameters are evaluated call-by-value to avoid the 
unnecessary overhead of building closures. More complex strictness analysis 
algorithms are described in [ll] and [19]. 

Syntactic domains correspond to the abstract syntax; semantic domains are 
explicitly specified in the semantics definition. Domain definitions are used to 
type-check semantic functions. The semantics definition specifies a direct map- 
ping from syntactic objects (the constructs of the abstract syntax) to their 
denotations (i.e., semantic objects). Consider as an illustrative example the 
semantics of the assignment command in the (very elementary) language LOOP 
[42]. The relevant parts of the domain definition are given first: 

State = [Id + Int]; 

i ICmd] ] : State + State; 
] [Expr] ] : State + Int; 

iAbstract Syntax: NODE Assignment :: Id Expr;) 
Assignment: LAM st. MAPADD st, [ ] [Id] ] + ( ] [Expr] ] St)]; 

The meaning of any LOOP command is a function from states to states. A state 
defines a mapping from variables (i.e., identifiers) to their current values, which 
are integers. The symbols ‘ ] [’ and ‘1 ] ’ are the so-called denotational bruckets. 
‘ ] [Id] ] ’ denotes the meaning of the assignment’s first subcomponent, and 
‘ ] [Expr] ] ’ of its second subcomponent. The meaning of an identifier is the 
identifier itself (i.e., its character representation); the meaning of an expression 
is a function from states to values. Thus the meaning of an assignment is a 
function which takes as its argument a state and returns a new state: This is the 
same as the argument state, except that the target value of the identifer denoted 
by ‘ ] [Id] ] ’ is changed to the value, resulting from the application of the function 
denoted by ‘ ] [Expr] ] ’ to the old state. 

Note that our definition method does not require the definition of explicit 
evaluation or interpretation functions as opposed to, for example, META-IV, 
MELA [3], or SIS. In SIS [28], the above would read as follows: 
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WITH cc(cmd0) (s): S = 
CASE cmd0 

. . . 

/bar ‘I:=” expr] + LET n = ee(exp)(s) IN update(var, n)(s) 

. . . 

ESAC 
where ‘cc’ is the command evaluation function and ‘ee’ the expression evaluation 
function; the abstract syntax tree is passed as a parameter to the evaluation 
functions (‘cmdo’, ‘exp’, and ‘var’ in the above example), and this parameter 
passing has to be specified explicitly by the language definer. 

Actually, a semantics definition in SIS is a higher order function, mapping an 
abstract syntax tree to its corresponding semantic function. Execution of a 
program in SIS is done by expensive, successive applications: first the complete 
semantics definition is applied to the program’s abstract syntax tree and then 
the resulting function is applied to the input value(s) to obtain the output 
value(s). Both applications are handled by the same complex interpreter and 
their evaluation is interleaved. The PSG semantics definition serves, on the 
contrary, as a specification of a (simple) compiler, translating an abstract syntax 
tree to a term of a functional language. For example, the generated compiler for 
LOOP will translate the command ‘x := 5’ to the following term (ignoring any 
optimizations done by the compiler): 

LAM st. MAPADD st, [X + (LAM St.5 st)] 

Note that the representation of the semantic functions corresponding to the 
assignment’s subcomponents (e.g., ‘ 1 [Expr] I’) are not part of the functional 
language, substitution of the actual semantic functions is performed by the 
compiler. 

The current version of the semantics definition language consists of four parts: 
the domain definitions, the definition of auxiliary functions, the semantic func- 
tions for each syntactic construct, and a third part describing the meaning of 
each executable fragment. 

5.2 Fragment Compilation and Execution 

Execution of fragments is based on a three-step process: generation of the 
language-specific compiler by the PSG generator, compilation of the fragment to 
a term of the functional language by the generated compiler, and execution of the 
compiled fragment by the PSG interpreter. Compilation of a fragment is per- 
formed by a top-down processing of its abstract syntax tree. The meaning 
functions specified in the language definition can be considered as code templates 
where the variables enclosed in denotational brackets serve as placeholders. 
Starting with the term that represents the meaning of the fragment,, the occur- 
rences of all placeholders are replaced subsequently by their appropriate terms. 
Going back to the previous example (the command fragment ‘x := 5’), compilation 
proceeds as follows: 

I [Cm4 I - ANSWER ( I [Cm4 I 1 I) 
=+ ANSWER (LAM st.MAPADD st, [ I [Id] I + ( I [Expr] I st)] [ 1) 
+ ANSWER (LAM st.MAPADD st, [X + (LAM St.5 st)] [ 1) 
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Since the compiled terms are never used during editing, compilation is deferred 
until the fragment is to be executed, thus avoiding the overhead of incremental 
compilation. The generated compilers are however able to perform incremental 
compilation, but only in cases where the abstract syntax tree is modified by 
refinement steps. Incremental compilation is essential to allow the execution of 
incomplete fragments, thus giving the user the possibility of interleaving fragment 
editing with fragment execution. If placeholders (i.e., representations of 
unexpanded tree nodes) or fragment leaves (i.e., references to other fragments) 
occur in the abstract syntax tree, the compiler generates a special term containing 
a reference to the abstract syntax tree, which serves as a code stub. During 
execution, if control flow reaches such a code stub, execution is suspended. If the 
suspension is due to an unexpanded tree node, the PSG editor is invoked to allow 
the refinement of the specific unexpanded tree. Note that the editor is invoked 
in a special read-only mode to prevent the user from changing other parts of the 
executed fragment. In the other case, where the code stub points to a fragment 
leaf, the referenced fragment is loaded from the fragment library (if the fragment 
is not found in the library, a dummy fragment of the appropriate type is created). 
That part of the abstract syntax tree that has been changed as a result of the 
modification is incrementally compiled, the resulting term replaces the code stub 
and execution continues. 

5.3 The Interpreter 

Since the functional language is based on lambda calculus, the core of the 
interpreter consists of the reduction rules of lambda calculus. Reductions are 
implemented using closures and environments (as in the SECD machine [23]). 
Function abstractions as well as unreduced function arguments (due to the call- 
by-need evaluation strategy) are represented by closures, a pair of a term and an 
associated environment. Environments store bindings of the variables (reduced 
or unreduced) to terms represented by closures. Reduced terms are represented 
by closures with an empty environment. 

The following evaluation function eval implements the reduction rules for a 
restricted set of terms: 

(Domain Definitions] 
Closure = Term X Env 
Env = [Var + Closure] 
Term = .z (Variable1 

1 Xx. T (Abstraction) 
I Tl(T2) {Application) 

eval: Closure 4 Closure 

eval((Xz. T, E)) = (Xx. T, E) 
evaU(r, E)) = eval(E(x)) 
eval(( Tl(T2), E)) = eval(apply(eval(( Tl, E)), (T2, E))) 

where apply(( Xx. T1, El), cl) = (Tl, El + [x ---, cl]) 

Obviously, eval uses a call-by-name reduction strategy instead of the intended 
call-by-need strategy. With call-by-need, things are getting a bit more compli- 
cated, since the evaluation of variables has side effects on the environment. 
In the call-by-need evaluation function, evaln, which is the core of the imple- 
mentation of the interpreter, we model the environment as a state to allow side 
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effects on the environment: 

NClosure = Term x Lot 
State = [Lot + Var x NClosure X Lot] 
Lot = “unspecified set of labels” 

evaln: NClosure X State + NClosure X State 

evaln((Xx. T, l), S) = ((Xx. T, l), S) 
evaln((x, Z), S) = let lot = search(x, 1, S) in 

let (x’, cl, 1’) = S(loc) in 
if is-reduced(c1) then 

(Cl, S) 
else 

let (cl’, S’) = evaln(c1, S) in 
(cl’, S’ + [lot + (x, cl’, I’)] 

where search(x, 1, S) = let (x’, cl’, 1’) = S(1) in 
ifx=x’then 

else 
search& I’, S) 

where is-reduced(c1) = “true, if cl is a reduced closure” 
evaln((Tl(T2), I), S) = evaln(applyn(evaln((Tl,1), S), (T&Z))) 

where applyn( ( (Xx. T, l), S ), cl) = let 1’ = new-lot in 
((T, l’), S + Ll’ + (x, cl, 01) 

where new-lot = “returns a new, unused location” 

Since direct interpretation of terms is rather inefficient, terms may be compiled 
to a machine-oriented language (for more details see [6] and [NJ]). 

6. EXPERIENCE WITH PSG 

Until now, environments have been generated for ALGOL 60, Pascal, 
MODULA-2, C, LISP, the language-definition language itself, and some experi- 
mental specification languages. The language definition environment has been 
used extensively, not only by the members of the project team but also by 
students. The Pascal environment was used to implement other parts of the PSG 
system, as well as in some introductory courses on programming. 

Our experience with PSG has shown that all language dependent parts of an 
environment can be formally described and automatically generated, at least for 
languages of a complexity not greater than that of Pascal or MODULA-2. The 
use of a formal-language definition language has many advantages: 

-PSG language definitions are safe, since all inconsistencies in a definition are 
detected at generation time. 

-Considering the power and complexity of the generated environments, PSG 
language definitions are very short. Typically, they vary in size between 240 
lines for an ALGOL 60 environment, without context conditions and seman- 
tics, and 3600 lines for a MODULA-2 environment, including specification of 
context conditions and denotational semantics. 

-The expressive power of the language-definition language allows concentration 
on the relevant aspects of a language definition. The language definer does not 
have to deal with minor details such as the organization of symbol tables, 
and so on. 
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-The modular design of the language-definition language improves readability 
and reliability. It allows the independent definition of the syntactic, context- 
dependent, and semantic aspects of a language, once the abstract syntax has 
been defined. 

-A formal language-definition language in conjunction with a generator allows 
rapid prototyping of new languages. In a language design lab, language defini- 
tions are easily modified and tested. 

As a consequence, the amount of human effort required to generate an environ- 
ment is small: Having some initial knowledge of the PSG system, it is possible 
to specify and debug a definition for an ALGOL-like language without context 
conditions and semantics within two weeks. The MODULA-2 language definition 
including context conditions and denotational semantics was written as part of 
a diploma thesis within eight months. Thus, the use of a formal language- 
definition language allows the quick generation of correct, reliable, and powerful 
programming environments. 

7. FINAL REMARKS 

Work on the PSG system started in 1980; the first design considerations were 
published in 1978 [17]. A prototype of the PSG system, colloquially known as 
the BLKS system [4], has been in operation since late 1981. It combined early 
versions of the editor’s context-free component and the interpreter. The complete 
PSG system implemented in Pascal on Siemens BS2000 machines has been 
running since 1983. In order to utilize modern personal workstations and hard- 
ware with raster graphics and pointing devices, we redesigned the user interface 
completely. Retargetting PSG to UNIX workstations (PERQ under PNX, 
CADMUS under MUNIX) is in progress; the PERQ version is almost complete. 
Recently, PSG has been chosen as the basis for the program constructor of the 
SUPRENUM supercomputer [ 151. 
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