
Complexity of Parallel QR Factorization

M. COSNARD AND Y. ROBERT

Laboratory TIM 3, UniversitC de Grenoble, France

Abstract. An optimal algorithm to perform the parallel QR decomposition of a dense matrix of size N
is proposed. It is deduced that the complexity of such a decomposition is asymptotically 2N, when an
unlimited number of processors is available.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical
Algorithms and Problems-computations on matrices; G. 1 .O [Numerical Analysis]: General-barallel
algorithms; G. 1.3 [Numerical Analysis]: Numerical Linear Algebra-linear systems

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Givens triangularization, SIMD and MIMD computers

1. Introduction
Solving dense systems of linear equations on parallel computers has been studied
by various authors. On traditional architectures, as well as on systolic networks
(see [11, [3], [5], and [6] among others for this last approach), most parallel
algorithms are variations of well-known direct sequential methods. We refer the
reader to the survey papers of Heller [4] and Sameh [8, 91. It is now generally
admitted that the best available method is the QR decomposition using square-
root-free Givens transformations for reasons of stability and simplicity.

In [lo] Sameh and Kuck propose a parallel scheme of computation for such a
decomposition. They consider a single instruction, multiple data (SIMD) computer
with O(N*) processors, where N is the size of the matrix to be decomposed. Their
algorithm takes 2N - 3 steps, each step being the time necessary to achieve a set
of independent Givens transformations. It is based on a clever parallelization of
the sequential algorithm and, since the total number of transformations does not
exceed iV(N - 1)/2, it is as stable as the sequential one. A slight modification of
their method produces an algorithm that uses the same number of processors but
takes 2(N - 1) - Llog NJ ’ steps. This seems to be the best known upper bound for
the complexity of the QR decomposition of a dense matrix.

Our goal is to pursue the work of Sameh and Kuck. We first present an optimal
algorithm (there is not a unique one) generating at most LNI2.l rotations simulta-
neously and study the complexity of this algorithm. Our main result is an expression

’ Throughout ihis paper, log n denotes Logan, and Lul is the greatest integer lower than or equal to u.

Authors’ address: CNRS, Laboratory TIM3, Institute IMAG, Universite de Grenoble, BP 68, 38402
Saint Martin d’Heres Cedex, France.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1986 ACM 0004-541 l/86/1000-0712SOO.75

Journal ofthe Association for Computing Machinery, Vol. 33. No. 4, October 1986, pp. 712-723.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F6490.214102&domain=pdf&date_stamp=1986-08-10

Complexity of parallel QR-Factorization 713

of the asymptotic complexity as N goes to infinity: Let TN be the number of steps
required by an optimal algorithm; we have

TN=2N-o(N),

where o(N)/N tends to zero as N goes to infinity.
The optimal algorithm we propose is a greedy-type method that removes as

many elements as possible for each step, and its numerical results indicate a slight
improvement in speed over Sameh and Kuck’s modified scheme. However, it is
not very tractable on a parallel computer because of the complicated calculation
of the indices. With respect to this fact, we conclude that the Sameh and Kuck
algorithm, although not the fastest but asymptotically optimal (according to the
result of complexity we give), is the best one.

2. Setting of the Problem
In the following, A is a square real matrix of size N. The problem is to obtaip the
orthogonal factorization of A, A = QR (Q orthogonal and R upper triangular). We
consider a single-instruction, multiple data computer (SIMD, [2]) with an unlimited
number of available processors.

Let us recall that a Givens transformation is a plane rotation that combines two
rows of A in order to annihilate one element. In the sequential algorithm the
elements may be annihilated one at a time by column starting from the bottom.
Hence each step of the computation uses only two rows of A. In order to parallelize
this reduction, the basic idea is to annihilate more than one element at a time
combining various rows, but in such a way that previously introduced zeros are
not destroyed.

We assume that a Givens rotation can be realized in one step and do not allow
duplication of rows. Since a rotation alters both rows, at most LN/2J rotations in
one column can be performed at the same time. Various reduction schemes are
possible. In order to represent such a scheme, we use the following notation (see
[lo]): We denote each element annihilated in the kth step by the integer k.

The following scheme has been proposed by Sameh and Kuck. The total number
of steps is equal to 2N - 3:

1:
13 1;
12 14 1;
11 13 15 1;
10 12 14 16 1;
9 11 13 15 17 1;
8 10 12 14 16 18 2;
7 9 11 13 15 17 19 2;
6 8 10 12 14 16 18 20 ;2
5 7 9 11 13 15 17 19 21 2;
4 6 8 10 12 14 16 18 20 22 2;
3 5 7 9 11 13 15 17 19 21 23 2;
2 4 6 8 10 12 14 16 18 20 22 24 2;
1 3 5 7 9 11 13 15 17 19 21 23 25 2; *

714 M. COSNARD AND Y. ROBERT

A slight modification of the preceding scheme (see below) produces an algorithm
that requires only 2(N - 1) - LlogN1 steps (for N = 15 we obtain 25):

1*1
10 1;
9 12 1;
8 11 13 1!+5
7 10 12 14 1;
6 9 11 13 15 1;
5 8 10 12 14 16 1;
4 7 9 11 13 15 17 1;
3 6 8 10 12 14 16 18 ;O
2 5 7 9 11 13 15 17 19 2;
1 4 6 8 10 12 14 16 18 20 2;.
1 3 5 7 9 11 13 15 17 19 21 2>
1 2 4 6 8 10 12 14 16 18 20 22 2:
1 2 3 5 7 9 11 13 15 17 19 21 23 2; *

However, this is not the best possible scheme. For N = 15 we can obtain
T,v = 24:

1; *
3 6 *
358 *
2 5 7 10 *
247 912 *
246 91114*
2 4 6 8 10 13 16 *
1 3 5 8 10 12 15 18 *
1 3 5 7 9 11 14 17 19 *
1 3 5 7 9 11 13 16 18 20 *
134 6 8 10 12 15 17 19 21 *
124 6 8 10 12 14 16 18 20 22 :
1 2 4 5 7 9 11 13 15 17 19 21 23 *
123 5 6 8 10 12 14 16 18 20 22 24 *

3. Reduction to a Particular Class of Parallel Algorithms
In this section we show that it is not worthwhile to annihilate an element that will
be destroyed later on. Moreover, we prove that the elements can be annihilated
from left to right and from bottom to top.

We begin by providing some notation and definitions: (i, j, k), i # j, denotes the
rotation in plane (i, j) that annihilates the element in position (i, k). Id(i, j) and
Perm(i, j) denote the rotations in plane (i, j) that correspond, respectively, to the
identity and permutation of rows i and j. Since we deal with general matrices, it is
assumed that rotation (i, j, k) cannot zero more than one element in row i and
cannot zero any element in row j (this assumption is implicit in [lo]). A parallel
algorithm M of length T is represented by A4 = (M(l), . . . , M(T)), where,
for t 5 T, M(t) is a set of r(t) independent rotations. We set A(0) = A and

Complexity of Parallel QR-Factorization 715

for 1 I t I T, A(t) is the matrix obtained by applying in parallel the rotations
in M(t) to A(t - 1). The total number of rotations of the algorithm A4 is
R = r(1) + ... + r(T). For short we use the notation (M, T, R). Finally, M is said
to be a T-algorithm if A(T) is upper triangular.

PROPOSITION 1. Let (AI, T, R) be a T-algorithm. There exists a T-algorithm
(M#, T, N(N - 1)/2) that annihilates the elements in the following order: the
element in position (i, j) is not annihilated before the element in position (k, m) if
and only if(k = i and m <j) or (m = j and k > i).

PROOF. This proof is divided into four parts:

Step 1. First, we construct (M’, T, R), which annihilates the elements in any
row from left to right.

Let us call p(1, t), . . . , p(N, t) the number of annihilated elements of A(t) in
rowsl,...,N.

We construct M’ and the sequence A’(t) (recall that A ‘(0) = A ’ and for
1 I t 5 T, A’(t) is obtained by applying in parallel the rotations in M’(t) to
A ‘(t - 1)) by induction on t so that A’(t) has p’(1, t), . . . , p’(N, t) zeros with the
following properties:

-p’(i, t) L p(i, t); i = 1, . . . , N,
-the first p ‘(i, t) elements of row i in A ‘(t) are zeros.

At time 1, if (i, j, k) belongs to M(l), let (i, j, 1) belong to M’(1). The preceding
induction hypothesis is clearly satisfied for A ‘(1). We assume that M’(t) has been
constructed so that A’(t) has the required properties. Because the rotations in
M(t + 1) act on disjoint pairs of rows, we can consider each pair separately.
Let (i, j, k) belong to M(t + 1). We must construct an operation in M’(t + 1) that
preserves the induction properties.

There are two cases:

-If a new zero is required in row i of A ‘(t), we use a rotation to introduce it or a
permutation to bring it up from row j.

-If row i of A ‘(t) already has enough zeros, we do nothing (identity).

What is actually done is determined by an analysis of cases, to which we now
proceed.

Assume that the induction hypothesis is valid at time t. If (i, j, k) belongs to
M(t + l), discuss the following cases:

(a) The positions of the zeros in rows i and j of A(t) are the same. Thus
P(i, 0 = z&L 0.

(al) p’(i, t) = p’(j, t) = p(i, t).

Replace (i, j, k) in M(t + 1) by (i, j, p’(i, t) + 1) in M’(t + 1).

(0 P’U, 0 > P(i, 0

Replace (i, j, k) in M(t + 1) by Id(i, j) in M’(t + 1).

W N, 0 = p(i, 0 and p’(A 0 > z-0, 0.

Replace (i, j, k) in M(t + 1) by Perm(i, j) in M’(t + 1).

716 M. COSNARD AND Y. ROBERT

(b) The positions of the zeros in rows i and j of A(t) are not the same.
Thus p(j, t + 1) I p(j, t).

(bl) p(i, t + 1) I p(i, t)

Replace (i, j, k) in M(t + 1) by Id(i, j) in M’(t + 1).

(b2) p(i, t + 1) = p(i, t) + 1.

Thus the set of the indices of the zeros in row i of A(t) is strictly included into
the one of row j, which implies

pci, t + 1) = p(i, 0 < pti, 0.
-p’(i, t) 2 p(i, t) + 1.

Replace (i, j, k) in M(t + 1) by Id(i, j) in M’(t + 1).
-p’(i, t) = p(i, t).

Replace (i, j, k) in M(t + 1) by Perm(i, j) in M’(t + 1).

Clearly, the induction hypothesis is satisfied at time t + 1. Since M is a
T-algorithm, M’ is a T-algorithm too.

Step 2. A rotation that strictly increases the number of zeros is called
efficient. Since no zero is destroyed in M’, the number of efficient rotations in
M’ is N(N - 1)/2. We now show the existence of an algorithm (M”, T,
N(N - 1)/2) that annihilates the elements from left to right and such that
P”A “(7) is upper triangular for some permutation matrix P”.

At each time step t we introduce a permutation s(t) of the rows of the matrix:

--s(O) is the identity.
-Assume s(t) and A”(t) are defined:

-If (i, j, k) is an efficient rotation of M’(t + l), then (s(t)(i), s(t)(j), k) is a
rotation of Mb(t + 1).

-If Id(i, j) is an element of M’(t + I), then M” performs no rotation in plane
(i,j) at time t + 1.

-If Perm(i, j) is an element of M’(t + I), then set

s(t + 1) = s(t) 0 trans(i, j),

where trans(i, j) is the permutation that exchanges i and j.

Let P” be the permutation matrix associated with s(n. Clearly, P”A “(T) is lower
triangular.

Step 3. We derive from (M”, T, N(N - 1)/2) an algorithm (M”‘, T,
N(N - 1)/2) by the following equivalence:

(i,.L 4 E M”(t) w W’W, KJ’W), k) E M”‘(t), 1stsT.

Clearly, M” is an algorithm that reduces A to an upper triangular matrix by using
N(N - 1)/2 rotations and annihilating the elements from left to right.

Step 4. We construct an algorithm M# that has the same properties as M”
and annihilates the elements from bottom to top. Let E”‘(i, t) be the set of rows of
A “‘(t) that have exactly i zeros, for 1 5 i I N and 1 I t I T. We show by induction
that E#(i, t) and E”‘(i, t) have the same number of elements for all i and t:

-At time 1, M” performs k(0, 1) rotations using 2k(O, 1) rows of the matrix to
annihilate k(0, 1) elements in column 1. Then M# will annihilate the lowest

Complexity of Parallel QR-Factorization 717

k(0, 1) elements of column 1, using for instance the last 2k(O, 1) rows of the
matrix

-If at time t + 1 M” performs k(i, t) rotations using 2k(i, t) rows of E”(i, t) to
annihilate k(i, t) elements in column i + 1, then M# will annihilate the k(i, t)
elements of column i + 1 located in the last k(i, t) rows of E#(i, t), using, for
instance, the last 2k(i, t) rows of E#(i, t). Cl

As a consequence, M# is an algorithm that satisfies the conditions of
Proposition 1.

4. An Optimal Algorithm
In what follows we consider algorithms that use N(N - 1)/2 Givens rotations and
that annihilate an element aik only if a;h = 0 for all h < k. Moreover, the elements
in a given column will be annihilated from bottom to top.

Let us now introduce some notation and definitions. A column (of an annihila-
tion scheme) of length n is a sequence of n integers:

a = a;1 . . . a?

where power means concatenation with the following restrictions:

al 2 0; ai+1 > ai, llisq-1;
ni>O, isisq; nl + a.. +n,=n.

We define on the set of columns of length n the classical partial ordering of R”:

X 5 y W (X; 5 yi, 1 I i I n).

The s-truncate (1 5 s I n) of a is a column of length s composed of the s first
elements of a and is denoted as.

b = &“I . . . bp is called an iterate of a, or b = iter(a), if

(i) b is a column of length n - 1.
(ii) al + 1 5 b,.

(iii) -al + 1 % b, 5 a2 =$ ml 5 Ln,/2J;
-a&] + 1 sbhsak
4 mh 5 t(ti?, + . -. + n&I - ml - -. - - mhe1)/2J

2<k%qand 1 shsp(mO=O);
-a,+] 5 b,, * rnh 5 L(n - ml - . . . - mhT1)/2J.

Consider now an algorithm that reduces A. We associate with it the triangular
array U = (ui,j), where Ui,j is the step at which a,,+]+ is annihilated: ur,] = 1 means
that a,,.l is annihilated at step 1 (examples are given in Section 2).

We have the following relations:

UI.1 2 1; Ui-1,j I Ui,j; Uij < %,j+ 1 *

Moreover the preceding considerations imply that the number of elements in
column j + 1 that can be annihilated at step t + 1 is less than or equal to the half
of the difference between the number of elements in column j and in column
j + 1 annihilated at step t. We derive from this the following definition:

Definition 1. A triangular array U is a scheme of computation if

uj = ul,j ’ * . UN-j,j

is such that Uj = iter(Uj-I), 1 I j I N, with Uo = ON.

718 M.COSNARDANDY.ROBERT

Let us now introduce a special type of iterated column for a “greedy” computa-
tion scheme.

Definition and Proposition 2. Let a be an iterated column of length n:
a = a;1 . . . a?.

The sequence b = &, . . . bp defined as follows is an iterated column of a.

We give the value of bi, mi and show that b m,+.‘+mi is a column of length
ml + ... + mi, which is an iterate of the column a”,+“‘+“‘+,.

Construction of b, and ml

-If nl = 1, then b, = a2 + 1 and m, = L(n, + n2)/21.
-If n, > 1, then b, = al + 1 and ml = Ln,/2J.

Clearly, b”, is iterated from a”,+‘.

Construction of bi and mi

We assume that b,, . . . 3 bi-, and m,, . . . , mi-, are known and, moreover, that
b”,+. .+mi-,

is an iterated column of

a m,+. . .+m+,+I

We also assume that ml + . . . + mi-, < N - 1.

(i) If there exists k such that a,&., + 1 5 bi-, 5 ak, then

ri-1 = (n, + . *. + nk-,) - (ml + - - - •+ mi-1) 2 1.

(il) If bi-, < ak and ri-, > 1, then bi = bi-, + 1, and mi = Lri-,/2J;
(i2) eke bi = ak •k 1, TYZi = L(nk i- ri-t)/z)J.

(ii) If bi-, > a,, then bi = bi-, + 1,
and mi = Ln - (m, + . . * + mi-,)/2A.

It is clear that in either (i) or (ii), b ml+...+‘% is an iterated column ofaml+...+*i+‘.
We use the notation b = optiter(a) in order to denote the preceding iterated

column.

PROPOSITION 3

(i) Let a, be a column of length n and c,,-, = iter(a,) an iterated column of a,.
Then

b,-, = optiter(a,) 5 iter(a,J = G-I.

(ii) Let a,, and n b t c e wo columns of length n such that a,, I c,. Then

optiter(a,) 5 optiter(cJ.

PROOF

(i) From the preceding construction and the definition of the iterated column, we
have that

b;rn~...+“i < C;??T...+mj - 3 15iSp.

Hence b,-, I c,,-~.
(ii) Follows from the same argument. El

Complexity of Parallel QR-Factorization

In order to illustrate Propositions 2 and 3, consider the following example:
a = l3 34 42 5 c = l3 32 44

optiter(a) = 2 3 4* 5’ 6 7 5 optite<c) = 2 3 4 5’ 6 7,
iter(a) = 2 3 4 6 7’ 8 9 L optiter(a).

719

Dejinition 3. We call V the scheme of computation associated with optiter:

I$ = ON, Vi = optiter(K-l), IrilN-1.

We say that a scheme of computation U is better than another one U’ if
UN-, 5 VA-,.

Clearly UN-~ is the number of steps in order to achieve the reduction using
the scheme of computation U. Hence, U is better than U’ if it uses fewer steps
than U’.

THEOREM 1. Let N be given. V is an optimal scheme of computation

vu, VN-, 5 UN-,.

PROOF. Proposition 1 implies that UO = ON; Vi = iter(Ui-I), 1 I i I N - 1.
Clearly, VO 5 UO. Assume that Vi-1 I Ui-, . Then, applying Proposition 3,

Vj = optiter(vi-,) I optiter(Ui-1) I iter(Ui-,) = Ui.

Hence V&l I UN-~.
Thus the optimal number of steps to achieve a QR reduction using plane rotations

is V.-l, and V is optimal. Note that the optimal scheme is not unique:

; * ;
2 5 * 4 ;

v=2 4 7 * u=3 5 ; * N=7. Cl
1368: 2468s
13579 * 13579 *
1246810* 1 2 4 6 8 10 *

5. Bounds for the Complexity

In this section we concentrate on the evaluation of the complexity of V, that is,
TN = VN-, . We do not succeed in obtaining a simple formula for TN. However, we
give the asymptotic complexity of the optimal scheme. Let us begin by some
remarks and experiments.

LEMMA 1
(i) T2= 1 andNr2, TN+ 1 I TN+, I TN+~.

(ii) N - 1 I TN 5 2N - 3.

PROOF

(i) Let V be the optimal scheme for N + 1. Let U be the scheme obtained by
deleting the last row and column of V. U is a scheme of computation for N and
TN I UN-l. From the construction of U we obtain that

U N-1 I VN - 1 = TN+, - 1.

720 M. COSNARD AND Y. ROBERT

Now let I/ be the optimal scheme for N, and let U be the scheme obtained by
adding a diagonal to V:

UN+ I -j,j = VN-jJ + 1, UI,N = v],‘,L’ + 2.

U is a scheme of computation for N + 1 and TN+, 5 UN = TN + 2, which concludes
the proof.

(ii) Follows directly from (i). Cl

Only part (ii) of the lemma is of importance in what follows; moreover,
it can be obtained directly (the lower bound follows from the need to perform
N(N - 1)/2 rotations with at most LN/2J rotations per step, and the upper bound
follows from the scheme by Sameh and Kuck). However, part (i) points out the
main difficulty in the study of the time complexity of the greedy algorithm:
determining when TN+, - TN is equal to 1 or 2.

The table below shows TN for some values of N. Clearly, N - 1 is not a realistic
lower bound, but 2N - 3 is not so bad: for instance, with N = 4096, TN = 8129,
whereas 2n - 3 = 8189.

N3456 7 8 9 10 14 15 16 17 18
TN 3 4 6 8 10 11 13 15 23 24 26 28 30

N 20 32 40 50 64 128 256 512 1024 2048 4096
TN 34 56 72 91 118 243 495 1000 2015 4051 8129

We now discuss the asymptotic complexity of the parallel QR factorization. We
want to prove that

TN = 2N - U(N).

Consider the optimal scheme of computation V and let XJ be the number of
times that j + r - 1 appears in column r. From the definition of V, we deduce that

X? = N; xi” = 0, j> 1;

x’ = cj=, x1-1 - xj:; x;
J

L 2 1
, j, r > 0.

It is worth noting that some X: can be equal to zero. The preceding formulas
define a set of recurrence relations acting on N. In order to evaluate the X; that
this scheme defines, we introduce the associated real scheme:

Yf = N; Yj” = 0, j> 1;
y’ = c-j=, r;-’ - 2:::; Y;

J 2 9 j, r > 0.

Let us finally define partial sums of X’s and Y’s as

s; = i x;,
j=l

T;; = i Y;.
j=l

Si is the number of elements in column r that are less than or equal to r + k - 1.
Call K(N) the first nonzero index in column N - 1, that is

xN-I = 1.
K(N) ’ x?’ = 0 J 3 j < K(N).

This is equivalent to A$$,!,-, = 0 and S&,!, = 1.

Complexity of Parallel QR-Factorization 721

The total number of steps required to achieve the QR reduction is then
N - 2 + K(N). We want to show that this total number of steps is asymptotically
equivalent to 2N. We thus have to prove that

From the preceding section we have K(N) I N so that lim sup,~++~ K(N)/N I 1.
In order to prove that liminfn++- K(N)/N L 1, we first show that S; I TL, then
that lim~++,Tfi$v = 0, e > 0, and finally that lim,+,Sfir:,, = 0.

LEMMA 2. Given k and r: S; I T;.

PROOF. By definition,

S;, = Ti, = 0 for all r L 0,
S;=c=N forall kr 1.

Therefore, by induction

s;; = s[l-, + xi
= S;;-, + L&Si-’ - SL-,)J
5 s;;-, + ;(sy - &,)
= $<s;-, + si-‘)
I $(Tk-, + Tp)
= T;-, + ;(Tk--’ - T;;-,)
= T;;-, + Y;;
= Tim,. 0

It should be noted that even though the sums satisfy the above inequality, this
does not hold for individual quantities Yj and A’;.

We deduce that K’(N) s K(N), where for the real scheme K’(N) is such that
TN-’ _ < 1 I TN-’ K’(N) I K'(N)*

LEMMA 3

PROOF. First of all we have the boundary conditions

yj’ = N . 2-j and y’; = N . 2-‘.

From the definition of Yi, we deduce that for j, r I 2, we have

Yi’ = YJ-, + ;(Yj’-’ - Y&J = f(Y,l-’ + Y,-,),

which leads easily to the result (this formula is similar to the one for combinations
with repetition [7]). 0

LEMMA 4. There exists E > 0 such that for any positive number e < E

limlv-+, S&-Je,NJ = 0.

722 M. COSNARD AND Y. ROBERT

PROOF. We set L(1 - e)Nl = (1 - a)N; thus Q - l/N 5 e I a. Since from
Lemma 3

yN-’ < y!-’
J - J+l 3

1 sjsN-2,

we have

SNZ’ (, o)N 5 Tfi-fi)N 5 (1 - a)N - Yin;&.

Hence, we have to study

where

f(N) = (1 c a)N . ;; - ‘IN - 3 . 2-@-4N+2 . Na

-a)N- 1

We write firstf(N) as

f(N) = ;; 1 3; . 212-a)N . g(N),
(>

where g(N) is a rational fraction of N of degree 2.2
Now, using Stirling’s formula,

L = limN++rn j@V’/‘) . [(2 - 47 1 - 4-“77’2~@-“‘IN,

where h is a rational fraction of N’12 of degree 3. Let
A = (2 _ &-7(1 _ 4-(I-q-w)

(2-a)
(l-u) . -(l-0)

We evaluate In A

lnA=(2-u).ln l-: -(I-u).ln(l-a)
()

= (2 -a). -;
[

- g + O(u3) 1
2

- (1 -a), [-a - 5 - O(u3) 1
= - $ + O(u3).

Therefore there exists E’ > 0 such that A c 1 for any u I E’. Since a 5 e + l/N,
we may choose E = E ‘/2 to ensure that

VecE, limN-+rn @&NJ = 0.

Now let e < E. From the above lemma, there exists N(e) such that

K(N) > L(l - e)NI for N I N(e).

Therefore

lim inf,V++“N - JW) > 1 .

2 The degree is the difference between the degrees of the numerator and the denominator.

Complexity of Parallel QR-Factorization

We have proved the following theorem:

THEOREM 2. lirnN-+, TN/2N = 1, and hence TN = 2N - o(N).

6. Concluding Remarks

723

The QR-factorization is the most currently used algorithm to solve linear problems
in various fields of scientific computation. The O(N*) transformations required to
achieve the factorization motivate its parallelization. In this paper we have shown
that Sameh and Kuck’s scheme is the best possible, from both points of view:

-Practically, No significant improvement of the time of computation can be
obtained without a prohibitive amount of complexity.

-Asymptotically, It is optimal.

Note Added in Proof: The article by J. J. Modi and M. R. B. Clarke, “An
alternative Givens ordering,” Numerische Mathematik 43 (1984), 83-90, has been
pointed out to us by the referees during the second revision of our paper. The
authors introduce the greedy algorithm to triangularize a rectangular matrix A of
size M x N, with M Z+ N. The proofs we give in Section 3 and 4 may be
straightforwardly extended to rectangular matrices. Hence the greedy method is
optimal for any rectangular matrix, not only in the class of “Givens sequences”
(i.e., “any sequence of Givens rotations in which zeros once created are preserved,”
as was conjectured by Modi and Clarke), but more generally for the class of all
possible parallel algorithms based on Givens rotations. Furthermore, when
M > N, Modi and Clarke show that the number of parallel steps is asymptotically
log M + (N - 1) 1oglogM: Their time analysis for the greedy algorithm can now
be viewed as a result of complexity.

ACKNOWLEDGMENTS. We are greatly indebted to the referees for pointing out that
the proof of Proposition 1 was not complete, for their careful reading of the paper,
and for their helpful suggestions, which greatly improved the quality of the original
manuscript.

REFERENCES

1. AHMED, H. M., DELOSME, J. M., AND MORF, M. Highly concurrent computing structures for
matrix arithmetic and signal processing. Computer Magazine (Jan. 1982), pp. 65-82.

2. FLYNN, M. J. Very high-speed computing systems. Proc. IEEE 54 (1966), 1901-1909.
3. GENTLEMAN, W. M., AND KUNG, H. T. Matrix triangularization by systolic arrays. Proc. SPIE

298, Real time signal processing 4 (Aug. 1981), 19-26.
4. HELLER, D. A survey of parallel algorithms in numerical linear algebra. SIAM Rev. 20 (l978),

740-777.
5. HELLER, D., AND IPSEN, I. Systolic networks for orthogonal equivalence transformations and their

applications. In Proceedings of the 1982 Conference on Advanced Research in VLSI. MIT,
Cambridge, Mass., 1982, pp. 113-122.

6. KUNG, H. T., AND LEISERSON, C. E. Systolic arrays for (VLSI). In Sparse Matrix Proceedings
197&I. Duff and G. W. Stewart, Eds. SIAM, Philadelphia, Pa., 1979, pp. 256-282.

7. RIORDAN, J. An Introduction to Combinatorial Analysis. Wiley, New York, 1958.
8. SAMEH, A. Numerical parallel algorithms-A survey. In High-Speed Computer and Algorithm

Organization, D. Kuck, D. Iawrie, and A. Sameh, Eds. Academic Press, Orlando, Fla., 1977,
207-228.

9. SAMEH, A. An overview of parallel algorithms. Bull. EDF Cl (1983) 129-134.
IO. SAMEH, A., AND KUCK, D. On stable parallel linear system solvers. J. ACM 25, 1 (1978), 8 I-91.

RECEIVED JULY 1983; REVISED DECEMBER 1985; ACCEPTED JANUARY 1986

Journal of the Association for Computing Machinery, Vol. 33, No. 4, October 1986.

