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1. Introduction 
Solving dense systems of linear equations on parallel computers has been studied 
by various authors. On traditional architectures, as well as on systolic networks 
(see [ 11, [3], [5], and [6] among others for this last approach), most parallel 
algorithms are variations of well-known direct sequential methods. We refer the 
reader to the survey papers of Heller [4] and Sameh [8, 91. It is now generally 
admitted that the best available method is the QR decomposition using square- 
root-free Givens transformations for reasons of stability and simplicity. 

In [lo] Sameh and Kuck propose a parallel scheme of computation for such a 
decomposition. They consider a single instruction, multiple data (SIMD) computer 
with O(N*) processors, where N is the size of the matrix to be decomposed. Their 
algorithm takes 2N - 3 steps, each step being the time necessary to achieve a set 
of independent Givens transformations. It is based on a clever parallelization of 
the sequential algorithm and, since the total number of transformations does not 
exceed iV(N - 1)/2, it is as stable as the sequential one. A slight modification of 
their method produces an algorithm that uses the same number of processors but 
takes 2(N - 1) - Llog NJ ’ steps. This seems to be the best known upper bound for 
the complexity of the QR decomposition of a dense matrix. 

Our goal is to pursue the work of Sameh and Kuck. We first present an optimal 
algorithm (there is not a unique one) generating at most LNI2.l rotations simulta- 
neously and study the complexity of this algorithm. Our main result is an expression 

’ Throughout ihis paper, log n denotes Logan, and Lul is the greatest integer lower than or equal to u. 
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of the asymptotic complexity as N goes to infinity: Let TN be the number of steps 
required by an optimal algorithm; we have 

TN=2N-o(N), 

where o(N)/N tends to zero as N goes to infinity. 
The optimal algorithm we propose is a greedy-type method that removes as 

many elements as possible for each step, and its numerical results indicate a slight 
improvement in speed over Sameh and Kuck’s modified scheme. However, it is 
not very tractable on a parallel computer because of the complicated calculation 
of the indices. With respect to this fact, we conclude that the Sameh and Kuck 
algorithm, although not the fastest but asymptotically optimal (according to the 
result of complexity we give), is the best one. 

2. Setting of the Problem 
In the following, A is a square real matrix of size N. The problem is to obtaip the 
orthogonal factorization of A, A = QR (Q orthogonal and R upper triangular). We 
consider a single-instruction, multiple data computer (SIMD, [2]) with an unlimited 
number of available processors. 

Let us recall that a Givens transformation is a plane rotation that combines two 
rows of A in order to annihilate one element. In the sequential algorithm the 
elements may be annihilated one at a time by column starting from the bottom. 
Hence each step of the computation uses only two rows of A. In order to parallelize 
this reduction, the basic idea is to annihilate more than one element at a time 
combining various rows, but in such a way that previously introduced zeros are 
not destroyed. 

We assume that a Givens rotation can be realized in one step and do not allow 
duplication of rows. Since a rotation alters both rows, at most LN/2J rotations in 
one column can be performed at the same time. Various reduction schemes are 
possible. In order to represent such a scheme, we use the following notation (see 
[lo]): We denote each element annihilated in the kth step by the integer k. 

The following scheme has been proposed by Sameh and Kuck. The total number 
of steps is equal to 2N - 3: 

1: 
13 1; 
12 14 1; 
11 13 15 1; 
10 12 14 16 1; 
9 11 13 15 17 1; 
8 10 12 14 16 18 2; 
7 9 11 13 15 17 19 2; 
6 8 10 12 14 16 18 20 ;2 
5 7 9 11 13 15 17 19 21 2; 
4 6 8 10 12 14 16 18 20 22 2; 
3 5 7 9 11 13 15 17 19 21 23 2; 
2 4 6 8 10 12 14 16 18 20 22 24 2; 
1 3 5 7 9 11 13 15 17 19 21 23 25 2; * 
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A slight modification of the preceding scheme (see below) produces an algorithm 
that requires only 2(N - 1) - LlogN1 steps (for N = 15 we obtain 25): 

1*1 
10 1; 
9 12 1; 
8 11 13 1!+5 
7 10 12 14 1; 
6 9 11 13 15 1; 
5 8 10 12 14 16 1; 
4 7 9 11 13 15 17 1; 
3 6 8 10 12 14 16 18 ;O 
2 5 7 9 11 13 15 17 19 2; 
1 4 6 8 10 12 14 16 18 20 2;. 
1 3 5 7 9 11 13 15 17 19 21 2> 
1 2 4 6 8 10 12 14 16 18 20 22 2: 
1 2 3 5 7 9 11 13 15 17 19 21 23 2; * 

However, this is not the best possible scheme. For N = 15 we can obtain 
T,v = 24: 

1; * 
3 6 * 
358 * 
2 5 7 10 * 
247 912 * 
246 91114* 
2 4 6 8 10 13 16 * 
1 3 5 8 10 12 15 18 * 
1 3 5 7 9 11 14 17 19 * 
1 3 5 7 9 11 13 16 18 20 * 
134 6 8 10 12 15 17 19 21 * 
124 6 8 10 12 14 16 18 20 22 : 
1 2 4 5 7 9 11 13 15 17 19 21 23 * 
123 5 6 8 10 12 14 16 18 20 22 24 * 

3. Reduction to a Particular Class of Parallel Algorithms 
In this section we show that it is not worthwhile to annihilate an element that will 
be destroyed later on. Moreover, we prove that the elements can be annihilated 
from left to right and from bottom to top. 

We begin by providing some notation and definitions: (i, j, k), i # j, denotes the 
rotation in plane (i, j) that annihilates the element in position (i, k). Id(i, j) and 
Perm(i, j) denote the rotations in plane (i, j) that correspond, respectively, to the 
identity and permutation of rows i and j. Since we deal with general matrices, it is 
assumed that rotation (i, j, k) cannot zero more than one element in row i and 
cannot zero any element in row j (this assumption is implicit in [lo]). A parallel 
algorithm M of length T is represented by A4 = (M(l), . . . , M(T)), where, 
for t 5 T, M(t) is a set of r(t) independent rotations. We set A(0) = A and 



Complexity of Parallel QR-Factorization 715 

for 1 I t I T, A(t) is the matrix obtained by applying in parallel the rotations 
in M(t) to A(t - 1). The total number of rotations of the algorithm A4 is 
R = r(1) + ... + r(T). For short we use the notation (M, T, R). Finally, M is said 
to be a T-algorithm if A(T) is upper triangular. 

PROPOSITION 1. Let (AI, T, R) be a T-algorithm. There exists a T-algorithm 
(M#, T, N(N - 1)/2) that annihilates the elements in the following order: the 
element in position (i, j) is not annihilated before the element in position (k, m) if 
and only if(k = i and m <j) or (m = j and k > i). 

PROOF. This proof is divided into four parts: 

Step 1. First, we construct (M’, T, R), which annihilates the elements in any 
row from left to right. 

Let us call p( 1, t), . . . , p(N, t) the number of annihilated elements of A(t) in 
rowsl,...,N. 

We construct M’ and the sequence A’(t) (recall that A ‘(0) = A ’ and for 
1 I t 5 T, A’(t) is obtained by applying in parallel the rotations in M’(t) to 
A ‘(t - 1)) by induction on t so that A’(t) has p’( 1, t), . . . , p’(N, t) zeros with the 
following properties: 

-p’(i, t) L p(i, t); i = 1, . . . , N, 
-the first p ‘(i, t) elements of row i in A ‘(t) are zeros. 

At time 1, if (i, j, k) belongs to M(l), let (i, j, 1) belong to M’( 1). The preceding 
induction hypothesis is clearly satisfied for A ‘( 1). We assume that M’(t) has been 
constructed so that A’(t) has the required properties. Because the rotations in 
M(t + 1) act on disjoint pairs of rows, we can consider each pair separately. 
Let (i, j, k) belong to M(t + 1). We must construct an operation in M’(t + 1) that 
preserves the induction properties. 

There are two cases: 

-If a new zero is required in row i of A ‘(t), we use a rotation to introduce it or a 
permutation to bring it up from row j. 

-If row i of A ‘(t) already has enough zeros, we do nothing (identity). 

What is actually done is determined by an analysis of cases, to which we now 
proceed. 

Assume that the induction hypothesis is valid at time t. If (i, j, k) belongs to 
M(t + l), discuss the following cases: 

(a) The positions of the zeros in rows i and j of A(t) are the same. Thus 
P(i, 0 = z&L 0. 

(al) p’(i, t) = p’( j, t) = p(i, t). 

Replace (i, j, k) in M(t + 1) by (i, j, p’(i, t) + 1) in M’(t + 1). 

(0 P’U, 0 > P(i, 0 

Replace (i, j, k) in M(t + 1) by Id(i, j) in M’(t + 1). 

W N, 0 = p(i, 0 and p’(A 0 > z-0, 0. 

Replace (i, j, k) in M(t + 1) by Perm(i, j) in M’(t + 1). 
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(b) The positions of the zeros in rows i and j of A(t) are not the same. 
Thus p(j, t + 1) I p(j, t). 

(bl) p(i, t + 1) I p(i, t) 

Replace (i, j, k) in M(t + 1) by Id(i, j) in M’(t + 1). 

(b2) p(i, t + 1) = p(i, t) + 1. 

Thus the set of the indices of the zeros in row i of A(t) is strictly included into 
the one of row j, which implies 

pci, t + 1) = p(i, 0 < pti, 0. 
-p’(i, t) 2 p(i, t) + 1. 

Replace (i, j, k) in M(t + 1) by Id(i, j) in M’(t + 1). 
-p’(i, t) = p(i, t). 

Replace (i, j, k) in M(t + 1) by Perm(i, j) in M’(t + 1). 

Clearly, the induction hypothesis is satisfied at time t + 1. Since M is a 
T-algorithm, M’ is a T-algorithm too. 

Step 2. A rotation that strictly increases the number of zeros is called 
efficient. Since no zero is destroyed in M’, the number of efficient rotations in 
M’ is N(N - 1)/2. We now show the existence of an algorithm (M”, T, 
N(N - 1)/2) that annihilates the elements from left to right and such that 
P”A “( 7) is upper triangular for some permutation matrix P”. 

At each time step t we introduce a permutation s(t) of the rows of the matrix: 

--s(O) is the identity. 
-Assume s(t) and A”(t) are defined: 

-If (i, j, k) is an efficient rotation of M’(t + l), then (s(t)(i), s(t)(j), k) is a 
rotation of Mb(t + 1). 

-If Id(i, j) is an element of M’(t + I), then M” performs no rotation in plane 
(i,j) at time t + 1. 

-If Perm(i, j) is an element of M’(t + I), then set 

s(t + 1) = s(t) 0 trans(i, j), 

where trans(i, j) is the permutation that exchanges i and j. 

Let P” be the permutation matrix associated with s( n. Clearly, P”A “( T) is lower 
triangular. 

Step 3. We derive from (M”, T, N(N - 1)/2) an algorithm (M”‘, T, 
N(N - 1)/2) by the following equivalence: 

(i,.L 4 E M”(t) w W’W, KJ’W), k) E M”‘(t), 1stsT. 

Clearly, M” is an algorithm that reduces A to an upper triangular matrix by using 
N(N - 1)/2 rotations and annihilating the elements from left to right. 

Step 4. We construct an algorithm M# that has the same properties as M” 
and annihilates the elements from bottom to top. Let E”‘(i, t) be the set of rows of 
A “‘(t) that have exactly i zeros, for 1 5 i I N and 1 I t I T. We show by induction 
that E#(i, t) and E”‘(i, t) have the same number of elements for all i and t: 

-At time 1, M” performs k(0, 1) rotations using 2k(O, 1) rows of the matrix to 
annihilate k(0, 1) elements in column 1. Then M# will annihilate the lowest 
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k(0, 1) elements of column 1, using for instance the last 2k(O, 1) rows of the 
matrix 

-If at time t + 1 M” performs k(i, t) rotations using 2k(i, t) rows of E”(i, t) to 
annihilate k(i, t) elements in column i + 1, then M# will annihilate the k(i, t) 
elements of column i + 1 located in the last k(i, t) rows of E#(i, t), using, for 
instance, the last 2k(i, t) rows of E#(i, t). Cl 

As a consequence, M# is an algorithm that satisfies the conditions of 
Proposition 1. 

4. An Optimal Algorithm 
In what follows we consider algorithms that use N(N - 1)/2 Givens rotations and 
that annihilate an element aik only if a;h = 0 for all h < k. Moreover, the elements 
in a given column will be annihilated from bottom to top. 

Let us now introduce some notation and definitions. A column (of an annihila- 
tion scheme) of length n is a sequence of n integers: 

a = a;1 . . . a? 

where power means concatenation with the following restrictions: 

al 2 0; ai+1 > ai, llisq-1; 
ni>O, isisq; nl + a.. +n,=n. 

We define on the set of columns of length n the classical partial ordering of R”: 

X 5 y W (X; 5 yi, 1 I i I n). 

The s-truncate (1 5 s I n) of a is a column of length s composed of the s first 
elements of a and is denoted as. 

b = &“I . . . bp is called an iterate of a, or b = iter(a), if 

(i) b is a column of length n - 1. 
(ii) al + 1 5 b,. 

(iii) -al + 1 % b, 5 a2 =$ ml 5 Ln,/2J; 
-a&] + 1 sbhsak 
4 mh 5 t(ti?, + . -. + n&I - ml - -. - - mhe1)/2J 

2<k%qand 1 shsp(mO=O); 
-a,+] 5 b,, * rnh 5 L(n - ml - . . . - mhT1)/2J. 

Consider now an algorithm that reduces A. We associate with it the triangular 
array U = (ui,j), where Ui,j is the step at which a,,+]+ is annihilated: ur,] = 1 means 
that a,,.l is annihilated at step 1 (examples are given in Section 2). 

We have the following relations: 

UI.1 2 1; Ui-1,j I Ui,j; Uij < %,j+ 1 * 

Moreover the preceding considerations imply that the number of elements in 
column j + 1 that can be annihilated at step t + 1 is less than or equal to the half 
of the difference between the number of elements in column j and in column 
j + 1 annihilated at step t. We derive from this the following definition: 

Definition 1. A triangular array U is a scheme of computation if 

uj = ul,j ’ * . UN-j,j 

is such that Uj = iter(Uj-I), 1 I j I N, with Uo = ON. 
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Let us now introduce a special type of iterated column for a “greedy” computa- 
tion scheme. 

Definition and Proposition 2. Let a be an iterated column of length n: 
a = a;1 . . . a?. 

The sequence b = &, . . . bp defined as follows is an iterated column of a. 

We give the value of bi, mi and show that b m,+.‘+mi is a column of length 
ml + ... + mi, which is an iterate of the column a”,+“‘+“‘+,. 

Construction of b, and ml 

-If nl = 1, then b, = a2 + 1 and m, = L(n, + n2)/21. 
-If n, > 1, then b, = al + 1 and ml = Ln,/2J. 

Clearly, b”, is iterated from a”,+‘. 

Construction of bi and mi 

We assume that b,, . . . 3 bi-, and m,, . . . , mi-, are known and, moreover, that 
b”,+. .+mi-, 

is an iterated column of 

a m,+. . .+m+,+I 

We also assume that ml + . . . + mi-, < N - 1. 

(i) If there exists k such that a,&., + 1 5 bi-, 5 ak, then 

ri-1 = (n, + . *. + nk-,) - (ml + - - - •+ mi-1) 2 1. 

(il) If bi-, < ak and ri-, > 1, then bi = bi-, + 1, and mi = Lri-,/2J; 
(i2) eke bi = ak •k 1, TYZi = L(nk i- ri-t)/z)J. 

(ii) If bi-, > a,, then bi = bi-, + 1, 
and mi = Ln - (m, + . . * + mi-,)/2A. 

It is clear that in either (i) or (ii), b ml+...+‘% is an iterated column ofaml+...+*i+‘. 
We use the notation b = optiter(a) in order to denote the preceding iterated 

column. 

PROPOSITION 3 

(i) Let a, be a column of length n and c,,-, = iter(a,) an iterated column of a,. 
Then 

b,-, = optiter(a,) 5 iter(a,J = G-I. 

(ii) Let a,, and n b t c e wo columns of length n such that a,, I c,. Then 

optiter(a,) 5 optiter(cJ. 

PROOF 

(i) From the preceding construction and the definition of the iterated column, we 
have that 

b;rn~...+“i < C;??T...+mj - 3 15iSp. 

Hence b,-, I c,,-~. 
(ii) Follows from the same argument. El 



Complexity of Parallel QR-Factorization 

In order to illustrate Propositions 2 and 3, consider the following example: 
a = l3 34 42 5 c = l3 32 44 

optiter(a) = 2 3 4* 5’ 6 7 5 optite<c) = 2 3 4 5’ 6 7, 
iter(a) = 2 3 4 6 7’ 8 9 L optiter(a). 

719 

Dejinition 3. We call V the scheme of computation associated with optiter: 

I$ = ON, Vi = optiter( K-l), IrilN-1. 

We say that a scheme of computation U is better than another one U’ if 
UN-, 5 VA-,. 

Clearly UN-~ is the number of steps in order to achieve the reduction using 
the scheme of computation U. Hence, U is better than U’ if it uses fewer steps 
than U’. 

THEOREM 1. Let N be given. V is an optimal scheme of computation 

vu, VN-, 5 UN-,. 

PROOF. Proposition 1 implies that UO = ON; Vi = iter(Ui-I), 1 I i I N - 1. 
Clearly, VO 5 UO. Assume that Vi-1 I Ui-, . Then, applying Proposition 3, 

Vj = optiter( vi-,) I optiter(Ui-1) I iter( Ui-,) = Ui. 

Hence V&l I UN-~. 
Thus the optimal number of steps to achieve a QR reduction using plane rotations 

is V.-l, and V is optimal. Note that the optimal scheme is not unique: 

; * ; 
2 5 * 4 ; 

v=2 4 7 * u=3 5 ; * N=7. Cl 
1368: 2468s 
13579 * 13579 * 
1246810* 1 2 4 6 8 10 * 

5. Bounds for the Complexity 

In this section we concentrate on the evaluation of the complexity of V, that is, 
TN = VN-, . We do not succeed in obtaining a simple formula for TN. However, we 
give the asymptotic complexity of the optimal scheme. Let us begin by some 
remarks and experiments. 

LEMMA 1 
(i) T2= 1 andNr2, TN+ 1 I TN+, I TN+~. 

(ii) N - 1 I TN 5 2N - 3. 

PROOF 

(i) Let V be the optimal scheme for N + 1. Let U be the scheme obtained by 
deleting the last row and column of V. U is a scheme of computation for N and 
TN I UN-l. From the construction of U we obtain that 

U N-1 I VN - 1 = TN+, - 1. 
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Now let I/ be the optimal scheme for N, and let U be the scheme obtained by 
adding a diagonal to V: 

UN+ I -j,j = VN-jJ + 1, UI,N = v],‘,L’ + 2. 

U is a scheme of computation for N + 1 and TN+, 5 UN = TN + 2, which concludes 
the proof. 

(ii) Follows directly from (i). Cl 

Only part (ii) of the lemma is of importance in what follows; moreover, 
it can be obtained directly (the lower bound follows from the need to perform 
N(N - 1)/2 rotations with at most LN/2J rotations per step, and the upper bound 
follows from the scheme by Sameh and Kuck). However, part (i) points out the 
main difficulty in the study of the time complexity of the greedy algorithm: 
determining when TN+, - TN is equal to 1 or 2. 

The table below shows TN for some values of N. Clearly, N - 1 is not a realistic 
lower bound, but 2N - 3 is not so bad: for instance, with N = 4096, TN = 8129, 
whereas 2n - 3 = 8189. 

N3456 7 8 9 10 14 15 16 17 18 
TN 3 4 6 8 10 11 13 15 23 24 26 28 30 

N 20 32 40 50 64 128 256 512 1024 2048 4096 
TN 34 56 72 91 118 243 495 1000 2015 4051 8129 

We now discuss the asymptotic complexity of the parallel QR factorization. We 
want to prove that 

TN = 2N - U(N). 

Consider the optimal scheme of computation V and let XJ be the number of 
times that j + r - 1 appears in column r. From the definition of V, we deduce that 

X? = N; xi” = 0, j> 1; 

x’ = cj=, x1-1 - xj:; x; 
J 

L 2 1 
, j, r > 0. 

It is worth noting that some X: can be equal to zero. The preceding formulas 
define a set of recurrence relations acting on N. In order to evaluate the X; that 
this scheme defines, we introduce the associated real scheme: 

Yf = N; Yj” = 0, j> 1; 
y’ = c-j=, r;-’ - 2:::; Y; 

J 2 9 j, r > 0. 

Let us finally define partial sums of X’s and Y’s as 

s; = i x;, 
j=l 

T;; = i Y;. 
j=l 

Si is the number of elements in column r that are less than or equal to r + k - 1. 
Call K(N) the first nonzero index in column N - 1, that is 

xN-I = 1. 
K(N) ’ x?’ = 0 J 3 j < K(N). 

This is equivalent to A$$,!,-, = 0 and S&,!, = 1. 
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The total number of steps required to achieve the QR reduction is then 
N - 2 + K(N). We want to show that this total number of steps is asymptotically 
equivalent to 2N. We thus have to prove that 

From the preceding section we have K(N) I N so that lim sup,~++~ K(N)/N I 1. 
In order to prove that liminfn++- K(N)/N L 1, we first show that S; I TL, then 
that lim~++,Tfi$v = 0, e > 0, and finally that lim,+,Sfir:,, = 0. 

LEMMA 2. Given k and r: S; I T;. 

PROOF. By definition, 

S;, = Ti, = 0 for all r L 0, 
S;=c=N forall kr 1. 

Therefore, by induction 

s;; = s[l-, + xi 
= S;;-, + L&Si-’ - SL-,)J 
5 s;;-, + ;(sy - &,) 
= $<s;-, + si-‘) 
I $(Tk-, + Tp) 
= T;-, + ;(Tk--’ - T;;-,) 
= T;;-, + Y;; 
= Tim,. 0 

It should be noted that even though the sums satisfy the above inequality, this 
does not hold for individual quantities Yj and A’;. 

We deduce that K’(N) s K(N), where for the real scheme K’(N) is such that 
TN-’ _ < 1 I TN-’ K’(N) I K'(N)* 

LEMMA 3 

PROOF. First of all we have the boundary conditions 

yj’ = N . 2-j and y’; = N . 2-‘. 

From the definition of Yi, we deduce that for j, r I 2, we have 

Yi’ = YJ-, + ;(Yj’-’ - Y&J = f(Y,l-’ + Y,-,), 

which leads easily to the result (this formula is similar to the one for combinations 
with repetition [7]). 0 

LEMMA 4. There exists E > 0 such that for any positive number e < E 

limlv-+, S&-Je,NJ = 0. 
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PROOF. We set L( 1 - e)Nl = (1 - a)N; thus Q - l/N 5 e I a. Since from 
Lemma 3 

yN-’ < y!-’ 
J - J+l 3 

1 sjsN-2, 

we have 

SNZ’ (, o)N 5 Tfi-fi)N 5 (1 - a)N - Yin;&. 

Hence, we have to study 

where 

f(N) = (1 c a)N . ;; - ‘IN - 3 . 2-@-4N+2 . Na 

-a)N- 1 

We write firstf(N) as 

f(N) = ;; 1 3; . 212-a)N . g(N), 
( > 

where g(N) is a rational fraction of N of degree 2.2 
Now, using Stirling’s formula, 

L = limN++rn j@V’/‘) . [(2 - 47 1 - 4-“77’2~@-“‘IN, 

where h is a rational fraction of N’12 of degree 3. Let 
A = (2 _ &-7( 1 _ 4-(I-q-w) 

(2-a) 
(l-u) . -(l-0) 

We evaluate In A 

lnA=(2-u).ln l-: -(I-u).ln(l-a) 
( ) 

= (2 -a). -; 
[ 

- g + O(u3) 1 
2 

- (1 -a), [ -a - 5 - O(u3) 1 
= - $ + O(u3). 

Therefore there exists E’ > 0 such that A c 1 for any u I E’. Since a 5 e + l/N, 
we may choose E = E ‘/2 to ensure that 

VecE, limN-+rn @&NJ = 0. 

Now let e < E. From the above lemma, there exists N(e) such that 

K(N) > L(l - e)NI for N I N(e). 

Therefore 

lim inf,V++“N - JW) > 1 . 

2 The degree is the difference between the degrees of the numerator and the denominator. 
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We have proved the following theorem: 

THEOREM 2. lirnN-+, TN/2N = 1, and hence TN = 2N - o(N). 

6. Concluding Remarks 
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The QR-factorization is the most currently used algorithm to solve linear problems 
in various fields of scientific computation. The O(N*) transformations required to 
achieve the factorization motivate its parallelization. In this paper we have shown 
that Sameh and Kuck’s scheme is the best possible, from both points of view: 

-Practically, No significant improvement of the time of computation can be 
obtained without a prohibitive amount of complexity. 

-Asymptotically, It is optimal. 

Note Added in Proof: The article by J. J. Modi and M. R. B. Clarke, “An 
alternative Givens ordering,” Numerische Mathematik 43 (1984), 83-90, has been 
pointed out to us by the referees during the second revision of our paper. The 
authors introduce the greedy algorithm to triangularize a rectangular matrix A of 
size M x N, with M Z+ N. The proofs we give in Section 3 and 4 may be 
straightforwardly extended to rectangular matrices. Hence the greedy method is 
optimal for any rectangular matrix, not only in the class of “Givens sequences” 
(i.e., “any sequence of Givens rotations in which zeros once created are preserved,” 
as was conjectured by Modi and Clarke), but more generally for the class of all 
possible parallel algorithms based on Givens rotations. Furthermore, when 
M > N, Modi and Clarke show that the number of parallel steps is asymptotically 
log M + (N - 1) 1oglogM: Their time analysis for the greedy algorithm can now 
be viewed as a result of complexity. 

ACKNOWLEDGMENTS. We are greatly indebted to the referees for pointing out that 
the proof of Proposition 1 was not complete, for their careful reading of the paper, 
and for their helpful suggestions, which greatly improved the quality of the original 
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