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Abstract. RECAL, a Recursion by Chain Algorithm for computing the mean performance measures of 
product-form multiple-chain closed queuing networks, is presented. It is based on a new recursive 
expression that relates the normalization constant of a network with r closed routing chains to those of 
a set of networks having (r - 1) chains. It relies on the artifice of breaking down each chain into 
constituent subchains that each have a population of one. The time and space requirements of the 
algorithm are shown to be polynomial in the number of chains. When the network contains many 
routing chains, the proposed algorithm is substantially more efficient than the convolution or mean 
value analysis algorithms. The algorithm, therefore, extends the range of queuing networks that can be 
analyzed efficiently by exact means. 
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1. Introduction 

Multiple-chain closed queuing networks, which have a product-form [I] state 
probability distribution, are widely used models of, for example, computer systems 
[ 11, 191 and computer communication networks [ lo]. The principal computational 
difficulty associated with these networks is that a simple closed-form expression 
for the normalization constant of the distribution is not known. In general, a direct 
determination of the normalization constant by straightforward summation is 
computationally intractable. Hence, the network performance measures cannot be 
computed by simply summing probabilities over an appropriate set of states. As a 
result, much effort has been directed to the development of efficient methods for 
analyzing multiple-chain networks. 
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There now exist several efficient algorithms. The best known ones are the 
convolution algorithm and mean value analysis (MVA). The convolution algorithm 
was first proposed by Buzen [3] for single-chain networks and subsequently 
extended by Reiser and Kobayashi [ 171 for multiple chains. The convolution 
algorithm is an efficient means of obtaining the normalization constant. Most 
performance measures of interest, such as mean queue lengths, server utilizations, 
mean waiting times, and nodal throughputs, are readily computed using the 
normalization constant and certain intermediate results obtained in the convolu- 
tion algorithm. This is termed the normalization constant approach. Another 
efficient algorithm is MVA [ 181, which is based on the so-called Arrival Theorem 
[ 121. In this algorithm the performance measures are obtained directly, without 
recourse to normalization constants, but only first moment information is obtained. 
A major difficulty with both of these algorithms is that the time and space 
requirements increase exponentially with the number of chains. Other existing 
algorithms, such as LBANC and CCNC [5, 11, 191, also share this difficulty. As a 
result, the exact determination of performance measures has, in general, been 
limited to networks with a relatively small number of chains. 

The analysis of queuing networks with many chains requires the use of specialized 
exact algorithms, analytical approximation techniques, or heuristic methods. The 
tree convolution algorithm [9] can obtain exact results for networks in which there 
are many chains by taking advantage of sparsity or locality properties of the routing. 
It is particularly useful for the analysis of window flow-controlled computer 
communication networks [ lo]. A powerful analytical approximation technique for 
networks of a large size is discussed in [ 141 and [ 151. Heuristic methods are 
presented in [4], [ 111, [ 163, and [ 181. 

In this paper we present RECAL, a Recursion by Chain Algorithm for the exact 
analysis of product-form multiple-chain closed queuing networks. It is based on a 
new recursive expression that relates the normalization constant of a network with 
r closed routing chains to those of a set of networks having (r - 1) chains. RECAL 
may therefore be classified as a new normalization constant approach. For obtain- 
ing the normalization constant of multiple-chain closed queuing networks, the new 
recursion has a time and space growth that is different from that of the recursions 
used in the convolution and MVA algorithms. We introduce the artifice of breaking 
down each chain into subchains that each have a population of one. The main 
idea of employing this artifice is the following. With each chain made to have a 
population of one, the recursion by chain expression is greatly simplified. The 
artifice alters the state space and hence the normalization constant of the network 
under consideration but leaves the performance characteristics (i.e., nodal through- 
puts, server utilizations, waiting times, queue lengths) unchanged. As a result, this 
simplified version of the recursion, which yields the normalization constant for the 
artificial network, may nevertheless be used to carry out an exact analysis of the 
original network. 

The time and space requirements for obtaining the mean performance measures 
of all the routing chains in a network using RECAL is polynomial in the number 
of chains. When there are many routing chains in the network, RECAL is 
substantially more efficient than the hitherto adopted methods of analyzing queuing 
networks. In other situations, such as when the number of routing chains is small, 
it is, in general, less efficient. RECAL, therefore, extends the range of queuing 
networks that can be analyzed efficiently by exact means. 

RECAL is general in the sense that it may accommodate the situation in which 
all service centers are overlapped by all chains. Hence, we do not exploit sparsity 
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or locality properties of the routing. Rather, the computational savings can be 
attributed to the definition of the recursion itself. When there is sparsity or locality, 
however, the computational requirements dictated by the mathematical definition 
of the recursion are indeed diminished, but in this paper we only concern ourselves 
with the algorithm in its general form. 

The paper is organized as follows. In the following section we define the class of 
queuing networks to be considered. For simplicity, we initially assume constant- 
speed servers at the service centers. In Section 3 we present certain new results, 
which form the basis for the proposed algorithm. The algorithm is then developed 
in Section 4. The computational complexity of the algorithm is derived in Section 
5. In Section 6 we compare this complexity with that of the convolution and MVA 
algorithms and demonstrate the situations in which the proposed algorithm is 
useful. In Section 7 we extend the algorithm to accommodate the situation in 
which there are state-dependent servers. In Section 8, we discuss how one may 
handle mixed networks [l] with constant speed or limited queue-dependent servers 
[ 11, sect. 3.6. l] and networks in which there is customer-class switching [ 11. Finally, 
in Section 9 we present a simple dynamic scaling procedure, which can be 
incorporated easily within the framework of RECAL, to reduce the possibility of 
exceeding the floating-point range of a machine. 

2. The Queuing Network 

We are concerned here with the analysis of multiple-chain closed queuing networks 
of the product-form type, which have been considered in [ 11. There are N service 
centers and R closed routing chains. We are only concerned with cases in which 
R > 1. The service discipline at the centers may be FCFS, LCFSPR, PS, or IS, as 
in [ 11. The routing of customers belonging to chain r is specified by a transition 
probability matrix with a left eigenvector (visit ratio vector), associated with 
eigenvalue 1, given by (ei,, . . . T eN,). The mean service requirement for a chain r 
customer at center i is tire We mitially assume constant-speed servers. At centers 
with a FCFS discipline it is required that the service time distribution be exponential 
with mean tir = ti for 1 I r 5 R. The population of chain r is K,. We denote the 
queuing network described above as Jf. 

An aggregate system state of J is ntR) where ncR) = (n’P), . . . , n!$)), n$RR’ = 
(nil, . . . . niR) and nir is the number of customers at center i belonging to chain r. 
The space of feasible aggregate system states for Jlr is YtR), where 

p(R) = 
{ 

The marginal state probability distribution for ncR) E YcR) is [l] 

where 

Pr(dR)) = G-’ ,g fi(niR)), (2.1) 

J(n!“)) = I 
if center i is FCFS, LCFSPR, or PS, 

if center i is IS, 

Wir = ti#?i,, 
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and the normalization constant is, by definition, 
N 

Since the cardinality of the set PtR) is generally large, the computation of G by 
direct summation is not feasible. In the following section we develop a new 
approach toward computing G efficiently. 

3. Preliminary Results 
In this section we present certain new relationships among the normalization 
constants of multiple-chain closed queuing networks and new expressions for the 
mean performance measures in terms of these normalization constants. They 
provide the mathematical basis for the algorithm developed in the succeeding 
section. 

Consider a multiple-chain closed queuing network, like Jy, but with state- 
dependent servers at those service centers that do not have an IS service discipline. 
Let the service rate function for center i be ui(n); that is, when there are n customers 
at center i the server accomplishes work at the rate ui(n). Let ui(n) = n/(n + Ci), 
where ci is a nonnegative integer. The physical interpretation is that there are Ci 
customers at node i that cycle around continuously, at node i, and consume, on 
average, a fraction 1 - ui(n) of the server capacity when the population of node i 
is n. Denote the normalization constant for such a network with state-dependent 
servers as GR(c) where c = (cl, . . . , CN). An explicit expression for GR(c) is given 
in Appendix A. Clearly GR(O) = G since, if c = 0, then ui(n) = 1. We have the 
following results. 

THEOREM 1. GR(O) is given recursively by 

WJ = ,C, g& OG-I@, + 0, fir 1 5 r 5 R, vr E .A, 
I 

where 

VI = (Ulr, . . . , UNr), 

1 = t/l, . . . , INI, 

CisM, $j Uir= i KS} if O=rlR-1, 
i=l s=r+ I 

if r=R, 

z = 
-i 

11 li L 0 for 1 I i 5 N, fl: 1, = K, , 
i=l I- 

N 

grtvr, 1) = II hr(vn I), 
i=l 

hrtvr, 1) = 
IY center i is FCFS, LCFSPR, or PS, 

if center i is IS, 

and the initial conditions are G&,) = 1 for all vo E & 
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PROOF. The proof is contained in Appendix A. Cl 

Theorem 1 gives a new recursive expression for computing the normalization 
constant G = GR(0). In effect, the normalization constant G,(v,) of a network with 
r chains is decomposed into a sum of normalization constants for networks having 
(r - 1) chains and in which the customers of chain r are fixed at the nodes and 
cannot depart. The number of networks involved in this sum is the number of 
distinct ways K, customers of chain r may be distributed over N nodes. In our 
algorithm, however, to compute the mean performance measures, we do not use 
Theorem 1, but rather a simplified version of it (Corollary 1 below), which results 
when the population of all chains is one. (We do not pursue the option of developing 
an algorithm based directly on Theorem 1 since we have been unable to obtain 
simple expressions for the mean performance measures in terms of the normali- 
zation constants that arise in the recursion of Theorem 1. We have, however, 
formulated an efficient algorithm, which is based directly on Theorem 1, to 
compute the normalization constant G = G&O), which may be of interest in itself. 
This is presented in [6]. The time requirement of this algorithm is not significantly 
different from the one to be presented here, and the space requirement is, in 
general, considerably higher.) 

COROLLARY 1. If K, = 1 for 1 5 r 5 R, then GR(O) is given recursively by 

Gr(vr) = g (1 + UirJi)WirGr-1(Vr + Ii), for 1 5 r I ‘R, vr E s,, 
i=l 

where li is a unit vector pointing in the ith direction, 

6i= i 
{ 

if center i is FCFS, LCFSPR, or PS, 
if center i is IS, 

and the initial conditions are GO(VO) = 1 for all vo E 90, where now 

A= VoIuio3OfOrl 5ilN; i uio=R 
i=l 

PROOF. The Corollary follows directly from Theorem 1 when K, = 1 for 
l<rsR. 0 

THEOREM 2 

Pr(nR = k) = GR(O)-‘GR-l(k) fi bi(ki), 
i=l 

where 

k=(k,,...,b), 

and 
Wki 

JR if center i is FCFS, LCFSPR, or PS, 
hi(k) = ~9 

ki! if center i is IS. 

PROOF. The proof is contained in Appendix B. Cl 
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Theorem 2 gives a new expression for the marginal distribution with respect to 
a particular chain R. 

THEOREM 3 

(a) If KR = 1 and there are no IS centers in the network, then 

GRml(()) = $ GR-l(l’) 
,=, N+K- 1 

where 

(b) Zf x is an IS center, then GR-I(O) = G~-l(l~). 

PROOF. The proofs are contained in Appendix C. Cl 

We now give some results concerning the mean performance measures for chain 
R when & = 1. We denote the throughput, utilization, mean queue length (node 
population), and mean waiting time (queuing + service) of chain r customers at 
node i by Ti,, Uil, Qir, and I+$,, respectively. 

COROLLARY 2. If KR= 1, then 

TiR = 

I 
if 

there are no IS centers 
in the network, 

there are IS centers 
and x is any one of them, 

UiR = tiR TiR 3 

QiR = GR(0)-lGR-l(li)WiRv 

PROOF. It is well known [2, 11, 191 that, in terms of the notation adopted here, 
when KR = 1, TiR = f?iRGR-i(o)/GR(o). The expressions for TiR then follow from 
Theorem 3. The expression for QiR follows directly from its definition and Theorem 
2. The expressions for UiR and WiR are well known and based on Little’s 
result [ 131. Cl 

4. The Recursion by Chain Algorithm-RECAL 

The new algorithm for multiple-chain networks is based directly on Corollaries 1 
and 2 and the introduction of the artifice of breaking down each chain r, with K, 
customers, into K, identical subchains, with one customer each. The basic idea of 
employing this artifice is to create an artificial network in which K, = i for all 
chains so that we may apply the simpler recursion of Corollary 1 and obtain the 
mean performance measures using Corollary 2. The artificial network has, in 
general, a different state space and normalization constant from the original 
network, but we may nevertheless employ the artifice and obtain the correct values 
for the performance measures since it in no way alters the physical characteristics 
of the original network. 
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Let the network created from Jlr, by breaking down each chain, be denoted by 
YV”. (We use a dot (“) to differentiate the notation associated with X0.) The total 
population K” of JV” is K” = xEI K,. The number of chains R” in JV” is, by the 
definition of X’, K”, and the population of chain r is c = 1 for 1 I r 4 K9 Let 
the customers in JV” be enumerated as 1, 2, . . . , K ‘, and let the chain to which 
customer k belongs in Jy be r(k). We then have, using Corollary 1, that G:.(O) is 
given recursively by 

G.Z(v/J = i (1 + Ui,di)Wir(k)GLI(V/c + li) (4.1) 
i=l 

for 1 I k I K’, vk E Si, where 9; = (Vk 1 uik 2 0 for 1 I i 5 N, VCI uik = 
K” - k}. The initial conditions are G$(vo) = 1 for all vo E Si. 

Hence, by breaking down each chain in JV into constituent subchains we can 
apply Corollary 1 and circumvent, in particular, the need to compute the terms 
gr(v,, I), which appear in the expression of Theorem 1. We note that, in general, 
Gf(0) # GR(0) since, in general, 90(p) # YtR). Hence, we are no longer able to 
compute the normalization constant G = GR(0), which is supposed to be of central 
interest. Nevertheless, using Corollary 2, we may write 

TTR. = 

if there are no IS centers 
,=I G>(O)(N+ K”- 1) in the network, 

if there are IS centers 
and x is any one of them, 

Qh. = G~.(O)-'GZ-I(li)Wi,(R'), 

The above expressions give the mean performance measures with respect to a 
single customer who belongs to chain r(R”) in X. The normalization constants in 
eq. (4.2) are obtained in the computation of GZ(0) using eq. (4.1). The key point 
remaining in the algorithm is that all customers who belong to a particular chain 
in J are statistically indistinguishable in equilibrium, so we finally have for the 
network JV 

(4.3) 

Hence, we are able to obtain the mean performance measures for a particular 
chain r(R’) using eq. (4. I), even though the value for G itself is never obtained. 

The mean performance measures for chains other than r(R”) may be obtained 
by reenumerating the customers in JV” so that r(R”) is changed to another chain 
for which one wishes to compute performance measures using eqs. (4.1)-(4.3). 
More specifically, suppose that the customers in JV” are initially enumerated so 
that the initial assignment of the customers in JV” to chains in JV is r(‘)(k), as 
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TABLE I. ASSIGNMENTS OF THE CUSTOMERS IN 1” TO THE CHAINS IN N. 

Customer number in N” 
Assignment of customer k to chains in NCR) 

(Id r”‘(k) r(‘)(k) r@)(k) r@+‘)(k) P-‘)(k) rcR)( k) 

K’ 
K”- 1 
K”-2 

K”-R+3 
K”-R-+2 
K”-R+ 1 

K’-R 

1 +C!‘z,‘(K,- 1) R 
CS’ Wr - 1) R-l 

K, -I- K2 - 1 
K, -I- Kz - 2 

4 
K, - 1 

1 

1 2 S s+ 1 R-l R 
2 3 s+ 1 s+2 R R-l 
3 4 s+2 s+3 R-2 R-2 

. . R 
R S 

s- 1 s-l 

R-2 R-l 3 3 3 3 
R-l R 2 2 2 2 

R I 1 1 1 1 

R 

3 
2 

2 
1 

1 

same as r(‘)(k) 

illustrated in Table I and given by 

r(‘)(k) = 

-1 for llk5K,-l, 
i-l 

i for l+C(K,-l)skci:(K,-I), 
r=l r=l 

2sisR, 

R-k+l+$(K,-1) for 1+ 2 (K,- l)lk5K”. 
r=1 r=l 

(4.4) 

Having arrived at G;.(O) using eq. (4. l), we may compute the mean performance 
measures for chain 1 in JV using eqs. (4.2) and (4.3). We then reenumerate the 
customers in No to obtain a new assignment of the customers in Jy ” to chains in 
N. Let the new assignment be r(*)(k), as illustrated in Table I and given by 

r(‘)(k) for 1 5 k 5 $ (K, - 11, 
r=l 

P(k) = 1 for k = 1 + 5 (Kr - l), 
r=l 

r(‘)(k) + 1 for 2+ i (Kr- l)sksK’. 
r=1 
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The mean performance measures for chain 2 in M may then be obtained after 
G:.(O) has been recomputed. In general then, after having computed the perform- 
ance’ measures for chain s in N, we reenumerate the customers in No so that 

1 

r(‘)(k) for Iskss-l+ ;(&-I), 
r=l 

++‘)(k) = s for k = s + i (Kr - l), (4.5) r=l 

r’“‘(k) + 1 for s+ 1 + 5 (K,- l)sksK”. 
r=l 

We then recompute G&(O) and obtain the measures for chain (s + 1). This 
procedure of reassignment and recomputation of G;.(O) is rendered efficient by 
storing G~-,(v,-,) for all v,-r’E SZ-r, where 

x = s + g (Kr - l), 
r=l 

so that in the determination of the performance measures for chain (s + 1) in N 
we need not reevaluate eq. (4.1) for all 1 I k 5 K” but on/y for x 5 k I K”. 

We now summarize the algorithm that has been developed. 

RECAL: A recursion by chain algorithm for computing mean performance measures. 
Step 1: Initialize Gi(v,) = 1 for all v. E SZ. 
Step 2: Enumerate the customers in Jy” so that the assignment of customers in Jy” to chains 

in Jy is r(‘)(k), given by eq. (4.4), for 1 s k 5 K”. 
Step 3: Compute and store G]t(v,) for all v, E S:, where x = K” - R, using eq. (4.1). 
Step 4: For each chain s in Jy, 1 5 s 5 R: 

(a) Determine G>(O) using eq. (4.1) and the stored values of Gz(v,), v, E 2:. 
(b) Compute the mean performance measures for chain s using G&(O), G>.-,(lJ 

for 1 5 i 5 N, eqs. (4.2) and (4.3). Stop ifs = R. 
(c) Reenumerate the customers in Jo so that the assignment of customers in M’” 

to chains in JY is r @+‘)(k), as defined by eq. (4.5). 
(d) Increment x by 1. 
(e) Compute and store GZ.(vJ for all v, E SI using eq. (4.1) and the stored values 

of G:-,(v,-,), v,-1 E sL. 

5. Computational Complexity 

In this section we determine the time and space requirements of the algorithm. We 
derive the number of operations (additions and multiplications) and the storage 
space (number of elements) required. For simplicity we assume that there are no 
IS centers in the network. When there are IS centers, however, the computations 
are simplified slightly, since 6i = 0 when i is an IS center. 

5.1 TIME REQUIREMENT. Let us begin by evaluating the number of opera- 
tions involved in step 3. The evaluation of the summation in eq. (4.1) requires 
(4N - 1) operations. The number of operations to obtain GY(v,) for all v1 E ~7 is 

(AN - 1) (“‘,‘“; ‘), 

the combinatorial term being the cardinality of 9 ;. The total number of operations 
to obtain G:(v,) for all v, E s:, where x = K” - R, is, therefore, 

K.-R 

3, (4N-I) (5.1) 
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With s = 1, the number of operations to carry out step 4(a) is 

K”-i+N-1 
- 

i=K’-R+I 

In step 4(b) we require (N + 2) operations to compute TOR. using eq. (4.2) 
(assuming that there are no IS centers in the network and that the constant 
(N + K” - 1) has been precomputed). We then require six more operations to 
obtain Z;.r(R’) 9 Uir(R’) 3 Qir(R’), and wir(R’) using eqs. (4.2) and (4.3). The number of 
operations involved in step 4(b) is, therefore, (N + 8). We loop on step 4 R times, 
so that the total number of operations consumed in step 4(b) is 

R(N + 8). 

With s = 1, the number of operations to carry out step 4(e) is 

(5.2) 

R-l+N-1 
* 

In general, the number of operations required in step 4(a) is 

“‘-;;y- (5.3) 
i=K’-R+s 

and the number of operations involved in step 4(e) is 

(4N - 1) R-s+N- 1 

The total number of operations required by the algorithm is, using eqs. 
(5.1)-(5.4), 

which simplifies to 

(4N- l)((K.+;- ‘)+(R;;; ‘) 

+(R+;- ‘)- l)+R(N+8). (5.5) 

Now suppose that K, = K for 1 5 r 5 R. Then K” = KR. If we consider K and N 
fixed, then eq. (5.5) is a polynomial in R of degree (N + 1). When R is large, 
eq. (5.5) is on the order of 

4N - ’ RN+’ 
(N + l)! . 
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TABLE II. EXAMPLE OF THE 

MAPPING M,(d) (N = 3, K” = 3, 
x = 0) 

d K(d) 

300 1 
210 2 
120 3 
030 4 
201 5 
111 6 
021 7 
102 8 
012 9 
003 10 

If we now consider R and K fixed, then eq. (5.5) is a polynomial in N of degree 
(KR). When N is large, eq. (5.5) is on the order of 

8NR 
(R - l)! 

if K=l, 

4NKR 
(KR - l)! 

if K>l. 

5.2. SPACE REQUIREMENT. The space requirement is dictated by the maxi- 
mum storage space that is required at any one time in the implementation of eq. 
(4.1). It is assumed, for the sake of simplicity in implementation, that we compute 
GE(vk) for all vk E Si before incrementing k. 

Suppose that G ;-l(vk-l) has been computed and stored for all vk-1 E 9 t I. 
Furthermore, suppose that the value for G tl(vk-l) is held in an array at location 
M,-I(v&I), where M,(d) is a mapping that gives increasing VahIeS of the storage 
location index to vectors d, which give increasing values for the sum 

; di(K” - x)i-‘. (5.6) 
i=l 

Such a mapping has been introduced in [7, sect. 4.21. The domain of M,(d) is 
Y:,andtherangeis(1,2,...,(~-;t??-’ )), the combinatorial term being the 
cardinality of the set S;. An example mapping is given in Table II. 

If we now compute the values of Gi(vk), vk E Si, in the order that gives 
increasing values for the sum 

then a useful consequence is that, after having computed G ;(vk) using eq. (4. l), we 
may store the result at location &(vk) of the Sume array that was used to store 
Gt, (v&l) for all v&l E 9 k, . We illustrate this mechanism in Figure 1. This 
storage procedure may be adopted since the value of GLi(vk-J at location bfk(vk) 

is never required, after G@k) has been computed, for any of the computations of 
G;(r), where y is any vector such that y E S; and Mk(y) > Mk(vk). This point is 
proved in Appendix D. As a result, the required storage space to implement eq. 
(4.1) is only the cardinality of SE and not the sum of the cardinalities of St and 
9 7. The cardinality of 9 E is ( K’ Z!‘T ‘). In addition, step 3 requires a storage space 
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100 010 

1 2 

1 2 3 4 5 6 

000 

k=2 G;(lOO) G;(OlO) Gi(001) 
I 

100 010 001 

1 2 3 

G; (x1 > 

11 

Ml($) 

FIG. 1. Illustration of the implementation of eq. (4. I) (N = 3, K’ = 2): --+ pointer to storage location 
of G;(vJ; -P-, elements needed in the computation of G;(v,J. 

equal to the cardinality of Sk.-, which is (R $!!r ‘). The values obtained in step 
4(e) may be stored in the same storage space used for step 3. The total required 
storage space for the algorithm is then 

(5.7) 

With K, = K for 1 5 r 5 R and with N and K considered fixed, eq. (5.7) is a 
polynomial in R of degree (N - 1). When R is large, eq. (5.7) is on the order of 

K 
,;‘; ,: RN-‘. 

If we now consider R and K fixed, then eq. (5.7) is a polynomial in N of degree 
(KR). When N is large, eq. (5.7) is on the order of 

2NR 
R! 

if K=l, 

wR 

(KR)! 
if K>I. 
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In this section we compare the time and space requirements of RECAL with those 
of the convolution and MVA algorithms. 

If we use the version of the convolution algorithm [2] that applies to networks 
with constant speed servers, as is the case here, the total number of operations to 
arrive at G is 

2R(N - 1) i (Kr + l), 
r=l 

and the required storage space, in number of elements, is 

2 ij K + 1). 

(6.1) 

(6.2) 

The MVA algorithm has approximately the same time requirement as eq. (6.1) 
[ 181 and the required storage space is [2] 

N fi (K,+ 1). (6.3) 
r=1 

We show in Appendix E that no computational advantage can be obtained in the 
convolution or MVA algorithms by breaking down the chains in N into subchains. 

In the previous section we have seen that with N and K considered fixed, the 
time and space requirements of RECAL are polynomial in R. Hence, if R is 
sufficiently large, the time and space requirements given by eqs. (5.5) and (5.7), 
respectively, will be less than those given by eqs. (6.1) and (6.2) or (6.3). 

We see from eqs. (5.7), (6.2), and (6.3) that RECAL has a smaller space 
requirement than either convolution or MVA when 

From eqs. (5.5) and (6.1) we see that RECAL has a smaller time requirement when 

(4N - 1) 
(( 

C:=, K,;N- l)+(R;T; 1) 

+(,,,- ‘)- l)+R(N+@<ZR(N- 1)&K.+ 1). 

In Figure 2 we compare, for the purposes of illustration, the number of opera- 
tions given by eq. (5.5) with those given by eq. (6.1) in the case in which N = 4 and 
K, = K for 1 5 r I R, for various values of K and R. In Figure 3 we compare the 
storage requirements given by eq. (5.7) with those given by eq. (6.2) in the case in 
which N = 4. In Figure 4 we determine, for various values of K, the region in the 
space of queuing networks (N x R) in which the number of operations required by 
RECAL (eq. (5.5)) is less than that required with convolution (eq. (6.1)). In Figure 
5 we determine the region in which the storage space requirement of RECAL (eq. 
(5.7)) is less than that of convolution (eq. (6.2)). In Figures 6 and 7 we give, 
respectively, several isotime and isostorage curves in the space (N x R) for RECAL 
and convolution in the case in which K = 3. We see from Figures 2-7 that RECAL 
is useful when there are many chains in the network. We finally note that, when 
N = 2, the storage requirement of RECAL, given by eq. (5.7), is linear in R. 
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FIG. 2. Comparison of the number of operations in RECAL and convolu- 
tion, for N = 4 and K = 1, 3, and 6 (the values for K are indicated at the ends 
of the curves): -, convolution; ---, RECAL. 
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FIG. 3. Comparison of the storage space requirements in RECAL and 
convolution, for N = 4 and K = 1, 3, and 6 (the values for K are indicated at 
the ends of the curves): d, convolution; ---, RECAL. 

7. Extensions for State-Dependent Service Centers 
In the previous sections we have assumed, for the sake of simplicity in presentation, 
that the servers at the service centers operate at a constant speed. In this section 
we extend RECAL to accommodate the situation in which there may be state- 
dependent service rates. An attractive feature of RECAL is that this extension may 
be made with little additional complexity. In the convolution and MVA algorithms 
such an extension is not so trivial [2, 11, 191. 

Consider a queuing network of type Jy, but with state-dependent servers at the 
service centers. Let the service rate function for center i depend on the total number 
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convolution 
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FIG. 4. Regions in the space (N x R) in which the time requirement (number of 
operations) of RECAL is less than convolution, for K = 1, 3,6, and 12 (on or above the 
curves the time requirement of RECAL is less than convolution). 

of customers at center i and be denoted by &(n). At IS centers, with the definition 
of fi’(ni? that has been adopted in Section 2, we have pi(n) = 1. With state- 
dependent servers, for n CR) E p(R) the marginal state distribution for the network , 
is PI, 

(7.1) 

Without loss of generality we need not explicitly consider the more general 
situation, which has been considered in [ 11, in which there may be different service 
rate functions, @i,(n), for each chain r. 

Using eq. 7.1, and the same line of reasoning used in the proof of Theorem 1 
(Appendix A), we may show that GR(0) is given by the same recursive formula that 
appears in Theorem 1 but with 

hi,(V,, 1) = ’ t. uir 
( ) 

W$ 

lr nk, @i(b + U(r) ’ 
(7.2) 

if center i is FCFS, LCFSPR, or PS. The quantity G,(v,) in Theorem 1 is now the 
normalization constant for a network of type N, but with servers that have state- 
dependent service rate functions ui(n) = @i(n + uir)n/(n + Vii). 
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FIG. 5. Regions in the space (N x R) in which the space requirement (number of 
elements) of RECAL is less than convolution, for K = 1, 3, 6, and 12 (on or above the 
curves the space requirement of RECAL is less than convolution). 

With these changes, we may then rewrite eq. (4.1) as 

N (1 + Uik&)Wir(k)Gi-l(Vk + Ii) 
G;(h) = x 

i-1 @iBi(l + uik) ’ 
(7.3) 

Comparing eq. (7.3) with eq. (4. l), we see that little additional complexity has been 
introduced to accommodate the situation of state dependency. 

The expression for the marginal distribution with respect to a particular chain 
R, in the case of state dependency, is unchanged from Theorem 2, except that, if 
center i is FCFS, LCFSPR, or PS, then 

AS a result, if & = 1, then QiR = GR(O)-‘GR-l(li)WiR/Pi( ,I) so that 

Under the additional condition that there is at least one IS center in the network 
we have, in the case of state dependency, 

TTr = eiNR-)G k- I (lx) 
G;.(O) ' (7.5) 
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FIG. 6. Curves in the space (N x R) on and above which the time requirement 
(number of operations) is equal to or greater than the number at the end of the 
curve, for K = 3: ---, RECAL, -, convolution. 

where x is any one of the IS centers. This expression for the throughput follows 
from the identity GR-i(O) = GR-,(lJ and the result that, when KR = 1, 
TiR = e,GR- 1 (O)/GR(O), which is known to hold even in the case of state dependency 
[2, p. 7 11. We also have, using Little’s result [ 131, 

If we assume that there is one IS center in the network and that there is state 
dependency at all service centers, then the evaluation of the summation in eq. (7.3) 
requires (5N - 4) operations. The total number of operations required by the 
algorithm to obtain the queue lengths, throughputs, and waiting times is then, 

This result can be derived in a manner analogous to that of eq. (5.5). When there 
is more than one IS center, the number of operations is reduced slightly, since 
6i = 0 when i is an IS center. The required storage space, in the case of state 
dependency, is unchanged from eq. (5.7), except, ofcourse, for the additional space 
required to store the network parameters pi(n), which we ignore. 

We finally mention that it does not appear possible for RECAL to accommodate 
state-dependent servers whose service-rate functions are of the form Bi(ny’). 
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8. Mixed Networks and Class Switching 
RECAL can be used to analyze queuing networks having certain other more 
general features than those defined in Sections 2 and 7. It may be used to analyze 
the class of stable mixed [I] queuing networks in which there are constant-speed 
or limited queue-dependent servers [ 11, sect. 3.71. This may be done since it is 
known that a mixed network can, for the purposes of analysis, be transformed into 
a closed network [ 11, sect. 3.71. We may then obtain all the mean performance 
measures for the closed chains in the mixed network, by analyzing this closed 
network using RECAL, if in the original mixed network there are constant-speed 
servers. If there are limited queue-dependent servers in the mixed network, then 
we should use the version of RECAL that applies to networks with state-dependent 
servers (Section 7). The mean queue lengths can be obtained using eqs. (7.4) and 
(4.3). The throughputs and waiting times can be obtained using eqs. (7.5), (7.6), 
and (4.3), assuming that there is at least one IS center in the original mixed 
network. The mean queue lengths and waiting times for the open chains can be 
obtained readily if in the original mixed queuing network we have constant-speed 
servers [ 11, sect. 3.71. The open-chain throughputs are obtained, as usual, from the 
equations of flow. 

RECAL can also be used to analyze networks with customer class switching, 
since it is well known that the mean performance measures for the individual 
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classes can be obtained directly from the measures associated with the closed 
routing chains [ 11, sect. 3.5.41. 

9. Dynamic Scaling in RECAL 

It is well known that a genuine problem with the convolution algorithm is that the 
floating-point range of a machine may be exceeded in the course of computing the 
normalization constant G [S]. This problem also exists in RECAL. Lam [S] has 
developed a dynamic scaling procedure, which is applicable to the convolution 
algorithm, which alleviates the effect of numerical instability. Such scaling proce- 
dures can also be incorporated easily within RECAL. For the sake of simplicity we 
assume in the following that there are constant-speed servers. The same ideas, 
however, carry over to the state-dependent case. 

Let SF be a scaling factor. Consider the computation of G%vk), for all vk E Si, 
using eq. (4.1) and the stored values of Gi-i(vk-i), where vkml E 4;-, . According 
to eq. (4.1), we may write 

Hence, the scaling factor may be used as a control variable to reduce the possi- 
bility of encountering an underflow or overflow when computing Gi(vk) for all 
vk E 3;. 

The scaling procedure we propose is the following. We initially (statically) 
scale the quantities wi,, where 1 I i I N and 1 d r I R, so that mini (Wir) = I for 
1 5 r 5 R. The dynamic scaling to be introduced into eq. (4.1) is to scale Wi,(k), for 
1 5 i 5 N, as follows, prior to computing G ,@k) for all vk E 31. If 

min (GI-i(vk-i)) < 1, 
v*-,G-P’k-, 

multiply Wi,(k), for 1 5 i I N, by IOf--*, where { is the smallest exponent of the 
machine, 

c-i = [log10 min IG-dvk-dll, 
V&,ESP-, 

and [x] is the integer portion of x. Otherwise, multiply wir(k), for 1 5 i 5 N, by 10’ 
and then by lo-*. After having computed Gi(vk) for all vk ES,& we then remultiply 
Wir(k), for 1 I i I iV, by 10mf and then by 10” so that, once again, mini { Wir) = 1 for 
1 5 r 5 R. If we are about to commence step 4(b), then we should leave this 
remultiplication until after step 4(b) so that the scaling factor will properly cancel 
out in the computation of the mean performance measures using eqs. (4.2) and 
(4.3). An attractive feature of this dynamic scaling procedure is that there is no 
need to store any scaling factor for future use. 

10. Concluding Remarks 

In this paper we have presented RECAL, a new recursive algorithm for computing 
the mean performance measures of multiple-chain closed queuing networks. It is 
based on certain new relationships that have been derived from among the 
normalization constants of multiple-chain closed queuing networks and relies on 
the artifice of breaking down each chain into constituent subchains. We have 
derived the time and space requirements of the algorithm and have shown that, 
when the chain populations are considered equal, they are polynomial in the 
number of routing chains. The efficiency of RECAL, compared with that of 
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convolution and MVA, becomes pronounced when there are many chains in the 
network. RECAL therefore extends the range of queuing networks that can be 
analyzed efficiently by exact means. 

We conclude by noting that, when there is sparsity or locality in the routing, the 
number of operations involved in the summation of eq. (4.1) is reduced, since the 
sum need only range over those centers i that customer number k may actually 
visit. 

Appendix A 

PR~~F OF THEOREM 1. G,(c) is the normalization constant of a queuing network 
of type N with R = r, as described in Section 2, but with state dependent service 
rate functions ui(n) = n/(n + ci) at those centers that do not have an IS discipline. 
Let the centers be enumerated so that centers 1, . . . , p are the ones with an FCFS, 
LCFSPR, or PS discipline and p + 1, . . . , N are the IS centers. The aggregate 
system state distribution for this system with state dependent service rate functions 
is [l] 

Pr(n”)) = G(c)-’ ,i 
where, by definition, 

But 

where -537 was defined in Theorem 1 and 

Y”‘(1) = (n(‘)l n(‘) E Y(I)’ L?i, = li for I I i 5 NJ , 3 

so that 

Now 
&-“+I, 

E, (a + Ci) = (1 + Ci) * * * (li + CJ(li + C; + 1) * . * (ny-” + li + Ci) 

Hence, 

G,(c) = x fi 
EP, i=l 

a + 1, + Ci) 
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We now see that the sum on the far right is the definition of G,,(c + 1) itself, so 
that 

The initial conditions, Go(c), are normalization constants of networks that contain 
no customers. The only network state is the empty state, and hence Go(c) = 1. 

The above expressions are valid for any c E F where %Y = {c 1 ci > 0 for 
1 I i I NJ. They are therefore valid for c = v,, where v, E Cu;, since Yr C %?. Hence, 

where hi,(V,, 1) was defined in Theorem 1. 
It now remains to be shown that the domain of G,(v,), in the computation of 

GR(O), is 

VrIUirLOfOrl SiSN,; vii-= $ KS 
S,= 

, for OsrsR- 1, 
i=l _ s=r+l (AlI 

for r=R. 

We show this by induction on r. 
Clearly, Yj = (0) since we only wish to determine GR(v~) for VR = 0. Now 

sothateq.(Al)istrueforr=R- 1. 
We now assume that eq. (Al) is true for r = t and show that it is true for 

r=t- 1. We have 

&.*= u 
..,{k!P+1~}=,~ {k!!~v~+lJ) 

(v, + 1) 1 Uil L 0 for 1 5 i I N, i Uil = i KS . 
i=l S=t+1 I- 

A-I= 
-I 

(~,+l)~~i~~OfOrl~i~N,I,~OfOrl~i~N;~~il= 5 j&;il,=K, 
i=l s=t+ I i=l I- 

1 (uil+ li) 2 0 for 1 I i 5 N; 5 (Vii + li) = $ KS . 
i=l S=f 

= (v,+l) 
{ 

Defining a new 
(Al). Cl 

variable vIvl = (v, + l), we see that this agrees in form with eq. 
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189 

PROOF OF THEOREM 2. (We use some notation and definitions found in Appen- 
dix A.) By definition 

Pr(nR = k) = c Pr(ncR’). 
.(RkY(R’(k) 

Now, using eq. (2.1), we may write 

Pr(nlR=k,,...,nNR=kN) 

i=l i=p+l ki! “(R)E;“(R)(k) i=l 

From the definition of G,(c) in Appendix A we see that the sum on the,far right is 
the definition of G,+,(k) itself. Furthermore, G = GR(O), so that 

Pr(n,R = h, . . . , nNR = kv) = GR(O)-'GR-,(k) ,i W;; ji+, 2. cl 
I* 

Appendix C 

PROOF OF THEOREM 3a. When there are no IS centers in the network, using the 
definition of G,(c) in Appendix A, we may write 

GR-I(l,) = 1 
,,WI)EdR-I) 

(njR-‘) + l)fj (np-“!(y$$). 

Therefore 

G,+I(lJ = G,+~(o)E(n(p-I)) + G,+*(O), 

where E( - ) denotes expectation. Hence, when KR = 1, 

i GR-I&) = GR-,(O)(K- 1) + NGR-I(O), 
I=1 

since 

i Et 

R-l 

n$+‘)) = r;, K, = K - 1. 0 
I=’ 

PROOF OF THEOREM 3b. Consider the definition of G,(c) in Appendix A. When 
c = 1, and x is an IS center, we have ci = 0 for all 1 5 i I p, in which case G,(L) 
= G,(O). Hence GR-,(O) = G~-l(l~). Cl 

Appendix D 

We need to show that the value of G Z-,(vk-,) at location Mk(vk) is not required 
in the computation of GE(r), where 7 is any vector such that 7 E 9; and 
MC(Y) > lwb?J. 
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PROOF. As can be seen from eq. (4.1), the computation of G:(r) requires the 
values of Gi-,(r + 1;) for 1 5 i I N. We need to show that the value of GL--I(vk-1) 
at location i%&(vk) is not one of these. Hence, we need to show that &-I(7 + Ii) 
> M&k) for any 1 I i I N and ‘y, such that ‘y E 4;: and i&(T) > M/&k). 

We assume that Mk-,(y + Ii) 5 M&k) and show that this leads to a 
contradiction. 

By the definition of 7, Mk(y) > i&(vk) so that Mk-I(y + li) < hfk(y). Therefore, 
using eq, (5.5), we have 

(&O-k+ l)“+j~,~j(K’-k+ l)j-‘< i ~j(K”-k)j-‘< i rj(K”-k+ i)j-I. 
j=l j-l 

Hence (K” - k + I)‘-’ < 1. Now 1 I k I K” and 1 zz i I N, so there is a 
contradiction. 0 

Appendix E 

Suppose, for the sake of simplicity, that K, = K for 1 I r 5 R. When we break 
down the chains in M, so that each subchain consists of one customer, the number 
of operations to arrive at G” using the convolution algorithm is, according to eq. 
(6.1), 2R/c(N - 1)2’“. Now 

~RK(N- 1)2R” K(2 K)R 

~R(N-I)(K+I)~=(K+~~~’ 

since 2’ z K + 1, Hence no advantage is obtained in the number of operations. 
The storage space required in the convolution algorithm to obtain G” is, using 

eq. (6.2), 2R”+1. Now 

2 Rr+ 1 

2(K+1)R (K+ l)R- ’ 

Hence, no advantage in the storage space is obtained either. 
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