
RECAL-A New Efficient Algorithm for the Exact
Analysis of Multiple-Chain Closed Queuing Networks

A. E. CONWAY AND N. D. GEORGANAS

University of Ottawa, Ottawa, Canada

Abstract. RECAL, a Recursion by Chain Algorithm for computing the mean performance measures of
product-form multiple-chain closed queuing networks, is presented. It is based on a new recursive
expression that relates the normalization constant of a network with r closed routing chains to those of
a set of networks having (r - 1) chains. It relies on the artifice of breaking down each chain into
constituent subchains that each have a population of one. The time and space requirements of the
algorithm are shown to be polynomial in the number of chains. When the network contains many
routing chains, the proposed algorithm is substantially more efficient than the convolution or mean
value analysis algorithms. The algorithm, therefore, extends the range of queuing networks that can be
analyzed efficiently by exact means.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems-
network operating systems; D.4.4 [Operating Systems]: Communications Management--network
communication; D.4.8 [Operating Systems]: Performance-modeling and prediction; queuing theory;
stochastic analysis

General Terms: Algorithms, Performance, Theory, Verification

Additional Key Words and Phrases: Closed queuing networks, dynamic scaling, exact analysis, multiple
chains, normalization constants, product-form solution, recursion by chain

1. Introduction

Multiple-chain closed queuing networks, which have a product-form [I] state
probability distribution, are widely used models of, for example, computer systems
[11, 191 and computer communication networks [lo]. The principal computational
difficulty associated with these networks is that a simple closed-form expression
for the normalization constant of the distribution is not known. In general, a direct
determination of the normalization constant by straightforward summation is
computationally intractable. Hence, the network performance measures cannot be
computed by simply summing probabilities over an appropriate set of states. As a
result, much effort has been directed to the development of efficient methods for
analyzing multiple-chain networks.

This research was supported in part by the Natural Sciences and Engineering Research Council of
Canada (NSERC) under grant A8450, by a University of Ottawa research scholarship, and by an
NSERC postgraduate scholarship.
Authors’ present addresses: A. E. Conway, Department of Electrical Engineering, McGill University,
3480 University Street, Montreal, P.Q., Canada H3A 2A7; N. D. Georganas, Department of Electrical
Engineering, University of Ottawa, 770 King Edward, Ottawa, Ontario, Canada KIN 6N5.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1986 ACM 0004-541 l/86/1000-0768 $00.75

Journal ofthe Association for Computing Machinery, Vol. 33, No. 4, October 1986, pp. 768-791

http://crossmark.crossref.org/dialog/?doi=10.1145%2F6490.6495&domain=pdf&date_stamp=1986-08-10

RECAL-Recursion by Chain Algorithm 769

There now exist several efficient algorithms. The best known ones are the
convolution algorithm and mean value analysis (MVA). The convolution algorithm
was first proposed by Buzen [3] for single-chain networks and subsequently
extended by Reiser and Kobayashi [171 for multiple chains. The convolution
algorithm is an efficient means of obtaining the normalization constant. Most
performance measures of interest, such as mean queue lengths, server utilizations,
mean waiting times, and nodal throughputs, are readily computed using the
normalization constant and certain intermediate results obtained in the convolu-
tion algorithm. This is termed the normalization constant approach. Another
efficient algorithm is MVA [181, which is based on the so-called Arrival Theorem
[121. In this algorithm the performance measures are obtained directly, without
recourse to normalization constants, but only first moment information is obtained.
A major difficulty with both of these algorithms is that the time and space
requirements increase exponentially with the number of chains. Other existing
algorithms, such as LBANC and CCNC [5, 11, 191, also share this difficulty. As a
result, the exact determination of performance measures has, in general, been
limited to networks with a relatively small number of chains.

The analysis of queuing networks with many chains requires the use of specialized
exact algorithms, analytical approximation techniques, or heuristic methods. The
tree convolution algorithm [9] can obtain exact results for networks in which there
are many chains by taking advantage of sparsity or locality properties of the routing.
It is particularly useful for the analysis of window flow-controlled computer
communication networks [lo]. A powerful analytical approximation technique for
networks of a large size is discussed in [141 and [151. Heuristic methods are
presented in [4], [111, [163, and [181.

In this paper we present RECAL, a Recursion by Chain Algorithm for the exact
analysis of product-form multiple-chain closed queuing networks. It is based on a
new recursive expression that relates the normalization constant of a network with
r closed routing chains to those of a set of networks having (r - 1) chains. RECAL
may therefore be classified as a new normalization constant approach. For obtain-
ing the normalization constant of multiple-chain closed queuing networks, the new
recursion has a time and space growth that is different from that of the recursions
used in the convolution and MVA algorithms. We introduce the artifice of breaking
down each chain into subchains that each have a population of one. The main
idea of employing this artifice is the following. With each chain made to have a
population of one, the recursion by chain expression is greatly simplified. The
artifice alters the state space and hence the normalization constant of the network
under consideration but leaves the performance characteristics (i.e., nodal through-
puts, server utilizations, waiting times, queue lengths) unchanged. As a result, this
simplified version of the recursion, which yields the normalization constant for the
artificial network, may nevertheless be used to carry out an exact analysis of the
original network.

The time and space requirements for obtaining the mean performance measures
of all the routing chains in a network using RECAL is polynomial in the number
of chains. When there are many routing chains in the network, RECAL is
substantially more efficient than the hitherto adopted methods of analyzing queuing
networks. In other situations, such as when the number of routing chains is small,
it is, in general, less efficient. RECAL, therefore, extends the range of queuing
networks that can be analyzed efficiently by exact means.

RECAL is general in the sense that it may accommodate the situation in which
all service centers are overlapped by all chains. Hence, we do not exploit sparsity

770 A. E. CONWAY AND N. D. GEORGANAS

or locality properties of the routing. Rather, the computational savings can be
attributed to the definition of the recursion itself. When there is sparsity or locality,
however, the computational requirements dictated by the mathematical definition
of the recursion are indeed diminished, but in this paper we only concern ourselves
with the algorithm in its general form.

The paper is organized as follows. In the following section we define the class of
queuing networks to be considered. For simplicity, we initially assume constant-
speed servers at the service centers. In Section 3 we present certain new results,
which form the basis for the proposed algorithm. The algorithm is then developed
in Section 4. The computational complexity of the algorithm is derived in Section
5. In Section 6 we compare this complexity with that of the convolution and MVA
algorithms and demonstrate the situations in which the proposed algorithm is
useful. In Section 7 we extend the algorithm to accommodate the situation in
which there are state-dependent servers. In Section 8, we discuss how one may
handle mixed networks [l] with constant speed or limited queue-dependent servers
[11, sect. 3.6. l] and networks in which there is customer-class switching [11. Finally,
in Section 9 we present a simple dynamic scaling procedure, which can be
incorporated easily within the framework of RECAL, to reduce the possibility of
exceeding the floating-point range of a machine.

2. The Queuing Network

We are concerned here with the analysis of multiple-chain closed queuing networks
of the product-form type, which have been considered in [11. There are N service
centers and R closed routing chains. We are only concerned with cases in which
R > 1. The service discipline at the centers may be FCFS, LCFSPR, PS, or IS, as
in [11. The routing of customers belonging to chain r is specified by a transition
probability matrix with a left eigenvector (visit ratio vector), associated with
eigenvalue 1, given by (ei,, . . . T eN,). The mean service requirement for a chain r
customer at center i is tire We mitially assume constant-speed servers. At centers
with a FCFS discipline it is required that the service time distribution be exponential
with mean tir = ti for 1 I r 5 R. The population of chain r is K,. We denote the
queuing network described above as Jf.

An aggregate system state of J is ntR) where ncR) = (n’P), . . . , n!$)), n$RR’ =
(nil, niR) and nir is the number of customers at center i belonging to chain r.
The space of feasible aggregate system states for Jlr is YtR), where

p(R) =
{

The marginal state probability distribution for ncR) E YcR) is [l]

where

Pr(dR)) = G-’ ,g fi(niR)), (2.1)

J(n!“)) = I
if center i is FCFS, LCFSPR, or PS,

if center i is IS,

Wir = ti#?i,,

RECAL-Recursion by Chain Algorithm 771

and the normalization constant is, by definition,
N

Since the cardinality of the set PtR) is generally large, the computation of G by
direct summation is not feasible. In the following section we develop a new
approach toward computing G efficiently.

3. Preliminary Results
In this section we present certain new relationships among the normalization
constants of multiple-chain closed queuing networks and new expressions for the
mean performance measures in terms of these normalization constants. They
provide the mathematical basis for the algorithm developed in the succeeding
section.

Consider a multiple-chain closed queuing network, like Jy, but with state-
dependent servers at those service centers that do not have an IS service discipline.
Let the service rate function for center i be ui(n); that is, when there are n customers
at center i the server accomplishes work at the rate ui(n). Let ui(n) = n/(n + Ci),
where ci is a nonnegative integer. The physical interpretation is that there are Ci
customers at node i that cycle around continuously, at node i, and consume, on
average, a fraction 1 - ui(n) of the server capacity when the population of node i
is n. Denote the normalization constant for such a network with state-dependent
servers as GR(c) where c = (cl, . . . , CN). An explicit expression for GR(c) is given
in Appendix A. Clearly GR(O) = G since, if c = 0, then ui(n) = 1. We have the
following results.

THEOREM 1. GR(O) is given recursively by

WJ = ,C, g& OG-I@, + 0, fir 1 5 r 5 R, vr E .A,
I

where

VI = (Ulr, . . . , UNr),

1 = t/l, . . . , INI,

CisM, $j Uir= i KS} if O=rlR-1,
i=l s=r+ I

if r=R,

z =
-i

11 li L 0 for 1 I i 5 N, fl: 1, = K, ,
i=l I-

N

grtvr, 1) = II hr(vn I),
i=l

hrtvr, 1) =
IY center i is FCFS, LCFSPR, or PS,

if center i is IS,

and the initial conditions are G&,) = 1 for all vo E &

772 A. E.CONWAY AND N. D.GEORGANAS

PROOF. The proof is contained in Appendix A. Cl

Theorem 1 gives a new recursive expression for computing the normalization
constant G = GR(0). In effect, the normalization constant G,(v,) of a network with
r chains is decomposed into a sum of normalization constants for networks having
(r - 1) chains and in which the customers of chain r are fixed at the nodes and
cannot depart. The number of networks involved in this sum is the number of
distinct ways K, customers of chain r may be distributed over N nodes. In our
algorithm, however, to compute the mean performance measures, we do not use
Theorem 1, but rather a simplified version of it (Corollary 1 below), which results
when the population of all chains is one. (We do not pursue the option of developing
an algorithm based directly on Theorem 1 since we have been unable to obtain
simple expressions for the mean performance measures in terms of the normali-
zation constants that arise in the recursion of Theorem 1. We have, however,
formulated an efficient algorithm, which is based directly on Theorem 1, to
compute the normalization constant G = G&O), which may be of interest in itself.
This is presented in [6]. The time requirement of this algorithm is not significantly
different from the one to be presented here, and the space requirement is, in
general, considerably higher.)

COROLLARY 1. If K, = 1 for 1 5 r 5 R, then GR(O) is given recursively by

Gr(vr) = g (1 + UirJi)WirGr-1(Vr + Ii), for 1 5 r I ‘R, vr E s,,
i=l

where li is a unit vector pointing in the ith direction,

6i= i
{

if center i is FCFS, LCFSPR, or PS,
if center i is IS,

and the initial conditions are GO(VO) = 1 for all vo E 90, where now

A= VoIuio3OfOrl 5ilN; i uio=R
i=l

PROOF. The Corollary follows directly from Theorem 1 when K, = 1 for
l<rsR. 0

THEOREM 2

Pr(nR = k) = GR(O)-‘GR-l(k) fi bi(ki),
i=l

where

k=(k,,...,b),

and
Wki

JR if center i is FCFS, LCFSPR, or PS,
hi(k) = ~9

ki! if center i is IS.

PROOF. The proof is contained in Appendix B. Cl

RECAL-Recursion by Chain Algorithm 773

Theorem 2 gives a new expression for the marginal distribution with respect to
a particular chain R.

THEOREM 3

(a) If KR = 1 and there are no IS centers in the network, then

GRml(()) = $ GR-l(l’)
,=, N+K- 1

where

(b) Zf x is an IS center, then GR-I(O) = G~-l(l~).

PROOF. The proofs are contained in Appendix C. Cl

We now give some results concerning the mean performance measures for chain
R when & = 1. We denote the throughput, utilization, mean queue length (node
population), and mean waiting time (queuing + service) of chain r customers at
node i by Ti,, Uil, Qir, and I+$,, respectively.

COROLLARY 2. If KR= 1, then

TiR =

I
if

there are no IS centers
in the network,

there are IS centers
and x is any one of them,

UiR = tiR TiR 3

QiR = GR(0)-lGR-l(li)WiRv

PROOF. It is well known [2, 11, 191 that, in terms of the notation adopted here,
when KR = 1, TiR = f?iRGR-i(o)/GR(o). The expressions for TiR then follow from
Theorem 3. The expression for QiR follows directly from its definition and Theorem
2. The expressions for UiR and WiR are well known and based on Little’s
result [131. Cl

4. The Recursion by Chain Algorithm-RECAL

The new algorithm for multiple-chain networks is based directly on Corollaries 1
and 2 and the introduction of the artifice of breaking down each chain r, with K,
customers, into K, identical subchains, with one customer each. The basic idea of
employing this artifice is to create an artificial network in which K, = i for all
chains so that we may apply the simpler recursion of Corollary 1 and obtain the
mean performance measures using Corollary 2. The artificial network has, in
general, a different state space and normalization constant from the original
network, but we may nevertheless employ the artifice and obtain the correct values
for the performance measures since it in no way alters the physical characteristics
of the original network.

774 A. E. CONWAY AND N. D. GEORGANAS

Let the network created from Jlr, by breaking down each chain, be denoted by
YV”. (We use a dot (“) to differentiate the notation associated with X0.) The total
population K” of JV” is K” = xEI K,. The number of chains R” in JV” is, by the
definition of X’, K”, and the population of chain r is c = 1 for 1 I r 4 K9 Let
the customers in JV” be enumerated as 1, 2, . . . , K ‘, and let the chain to which
customer k belongs in Jy be r(k). We then have, using Corollary 1, that G:.(O) is
given recursively by

G.Z(v/J = i (1 + Ui,di)Wir(k)GLI(V/c + li) (4.1)
i=l

for 1 I k I K’, vk E Si, where 9; = (Vk 1 uik 2 0 for 1 I i 5 N, VCI uik =
K” - k}. The initial conditions are G$(vo) = 1 for all vo E Si.

Hence, by breaking down each chain in JV into constituent subchains we can
apply Corollary 1 and circumvent, in particular, the need to compute the terms
gr(v,, I), which appear in the expression of Theorem 1. We note that, in general,
Gf(0) # GR(0) since, in general, 90(p) # YtR). Hence, we are no longer able to
compute the normalization constant G = GR(0), which is supposed to be of central
interest. Nevertheless, using Corollary 2, we may write

TTR. =

if there are no IS centers
,=I G>(O)(N+ K”- 1) in the network,

if there are IS centers
and x is any one of them,

Qh. = G~.(O)-'GZ-I(li)Wi,(R'),

The above expressions give the mean performance measures with respect to a
single customer who belongs to chain r(R”) in X. The normalization constants in
eq. (4.2) are obtained in the computation of GZ(0) using eq. (4.1). The key point
remaining in the algorithm is that all customers who belong to a particular chain
in J are statistically indistinguishable in equilibrium, so we finally have for the
network JV

(4.3)

Hence, we are able to obtain the mean performance measures for a particular
chain r(R’) using eq. (4. I), even though the value for G itself is never obtained.

The mean performance measures for chains other than r(R”) may be obtained
by reenumerating the customers in JV” so that r(R”) is changed to another chain
for which one wishes to compute performance measures using eqs. (4.1)-(4.3).
More specifically, suppose that the customers in JV” are initially enumerated so
that the initial assignment of the customers in JV” to chains in JV is r(‘)(k), as

RECAL-Recursion by Chain Algorithm 775

TABLE I. ASSIGNMENTS OF THE CUSTOMERS IN 1” TO THE CHAINS IN N.

Customer number in N”
Assignment of customer k to chains in NCR)

(Id r”‘(k) r(‘)(k) r@)(k) r@+‘)(k) P-‘)(k) rcR)(k)

K’
K”- 1
K”-2

K”-R+3
K”-R-+2
K”-R+ 1

K’-R

1 +C!‘z,‘(K,- 1) R
CS’ Wr - 1) R-l

K, -I- K2 - 1
K, -I- Kz - 2

4
K, - 1

1

1 2 S s+ 1 R-l R
2 3 s+ 1 s+2 R R-l
3 4 s+2 s+3 R-2 R-2

. . R
R S

s- 1 s-l

R-2 R-l 3 3 3 3
R-l R 2 2 2 2

R I 1 1 1 1

R

3
2

2
1

1

same as r(‘)(k)

illustrated in Table I and given by

r(‘)(k) =

-1 for llk5K,-l,
i-l

i for l+C(K,-l)skci:(K,-I),
r=l r=l

2sisR,

R-k+l+$(K,-1) for 1+ 2 (K,- l)lk5K”.
r=1 r=l

(4.4)

Having arrived at G;.(O) using eq. (4. l), we may compute the mean performance
measures for chain 1 in JV using eqs. (4.2) and (4.3). We then reenumerate the
customers in No to obtain a new assignment of the customers in Jy ” to chains in
N. Let the new assignment be r(*)(k), as illustrated in Table I and given by

r(‘)(k) for 1 5 k 5 $ (K, - 11,
r=l

P(k) = 1 for k = 1 + 5 (Kr - l),
r=l

r(‘)(k) + 1 for 2+ i (Kr- l)sksK’.
r=1

776 A. E. CONWAY AND N. D. GEORGANAS

The mean performance measures for chain 2 in M may then be obtained after
G:.(O) has been recomputed. In general then, after having computed the perform-
ance’ measures for chain s in N, we reenumerate the customers in No so that

1

r(‘)(k) for Iskss-l+ ;(&-I),
r=l

++‘)(k) = s for k = s + i (Kr - l), (4.5) r=l

r’“‘(k) + 1 for s+ 1 + 5 (K,- l)sksK”.
r=l

We then recompute G&(O) and obtain the measures for chain (s + 1). This
procedure of reassignment and recomputation of G;.(O) is rendered efficient by
storing G~-,(v,-,) for all v,-r’E SZ-r, where

x = s + g (Kr - l),
r=l

so that in the determination of the performance measures for chain (s + 1) in N
we need not reevaluate eq. (4.1) for all 1 I k 5 K” but on/y for x 5 k I K”.

We now summarize the algorithm that has been developed.

RECAL: A recursion by chain algorithm for computing mean performance measures.
Step 1: Initialize Gi(v,) = 1 for all v. E SZ.
Step 2: Enumerate the customers in Jy” so that the assignment of customers in Jy” to chains

in Jy is r(‘)(k), given by eq. (4.4), for 1 s k 5 K”.
Step 3: Compute and store G]t(v,) for all v, E S:, where x = K” - R, using eq. (4.1).
Step 4: For each chain s in Jy, 1 5 s 5 R:

(a) Determine G>(O) using eq. (4.1) and the stored values of Gz(v,), v, E 2:.
(b) Compute the mean performance measures for chain s using G&(O), G>.-,(lJ

for 1 5 i 5 N, eqs. (4.2) and (4.3). Stop ifs = R.
(c) Reenumerate the customers in Jo so that the assignment of customers in M’”

to chains in JY is r @+‘)(k), as defined by eq. (4.5).
(d) Increment x by 1.
(e) Compute and store GZ.(vJ for all v, E SI using eq. (4.1) and the stored values

of G:-,(v,-,), v,-1 E sL.

5. Computational Complexity

In this section we determine the time and space requirements of the algorithm. We
derive the number of operations (additions and multiplications) and the storage
space (number of elements) required. For simplicity we assume that there are no
IS centers in the network. When there are IS centers, however, the computations
are simplified slightly, since 6i = 0 when i is an IS center.

5.1 TIME REQUIREMENT. Let us begin by evaluating the number of opera-
tions involved in step 3. The evaluation of the summation in eq. (4.1) requires
(4N - 1) operations. The number of operations to obtain GY(v,) for all v1 E ~7 is

(AN - 1) (“‘,‘“; ‘),

the combinatorial term being the cardinality of 9 ;. The total number of operations
to obtain G:(v,) for all v, E s:, where x = K” - R, is, therefore,

K.-R

3, (4N-I) (5.1)

RECAL-Recursion by Chain Algorithm 777

With s = 1, the number of operations to carry out step 4(a) is

K”-i+N-1
-

i=K’-R+I

In step 4(b) we require (N + 2) operations to compute TOR. using eq. (4.2)
(assuming that there are no IS centers in the network and that the constant
(N + K” - 1) has been precomputed). We then require six more operations to
obtain Z;.r(R’) 9 Uir(R’) 3 Qir(R’), and wir(R’) using eqs. (4.2) and (4.3). The number of
operations involved in step 4(b) is, therefore, (N + 8). We loop on step 4 R times,
so that the total number of operations consumed in step 4(b) is

R(N + 8).

With s = 1, the number of operations to carry out step 4(e) is

(5.2)

R-l+N-1
*

In general, the number of operations required in step 4(a) is

“‘-;;y- (5.3)
i=K’-R+s

and the number of operations involved in step 4(e) is

(4N - 1) R-s+N- 1

The total number of operations required by the algorithm is, using eqs.
(5.1)-(5.4),

which simplifies to

(4N- l)((K.+;- ‘)+(R;;; ‘)

+(R+;- ‘)- l)+R(N+8). (5.5)

Now suppose that K, = K for 1 5 r 5 R. Then K” = KR. If we consider K and N
fixed, then eq. (5.5) is a polynomial in R of degree (N + 1). When R is large,
eq. (5.5) is on the order of

4N - ’ RN+’
(N + l)! .

778 A. E. CONWAY AND N. D. GEORGANAS

TABLE II. EXAMPLE OF THE

MAPPING M,(d) (N = 3, K” = 3,
x = 0)

d K(d)

300 1
210 2
120 3
030 4
201 5
111 6
021 7
102 8
012 9
003 10

If we now consider R and K fixed, then eq. (5.5) is a polynomial in N of degree
(KR). When N is large, eq. (5.5) is on the order of

8NR
(R - l)!

if K=l,

4NKR
(KR - l)!

if K>l.

5.2. SPACE REQUIREMENT. The space requirement is dictated by the maxi-
mum storage space that is required at any one time in the implementation of eq.
(4.1). It is assumed, for the sake of simplicity in implementation, that we compute
GE(vk) for all vk E Si before incrementing k.

Suppose that G ;-l(vk-l) has been computed and stored for all vk-1 E 9 t I.
Furthermore, suppose that the value for G tl(vk-l) is held in an array at location
M,-I(v&I), where M,(d) is a mapping that gives increasing VahIeS of the storage
location index to vectors d, which give increasing values for the sum

; di(K” - x)i-‘. (5.6)
i=l

Such a mapping has been introduced in [7, sect. 4.21. The domain of M,(d) is
Y:,andtherangeis(1,2,...,(~-;t??-’)), the combinatorial term being the
cardinality of the set S;. An example mapping is given in Table II.

If we now compute the values of Gi(vk), vk E Si, in the order that gives
increasing values for the sum

then a useful consequence is that, after having computed G ;(vk) using eq. (4. l), we
may store the result at location &(vk) of the Sume array that was used to store
Gt, (v&l) for all v&l E 9 k, . We illustrate this mechanism in Figure 1. This
storage procedure may be adopted since the value of GLi(vk-J at location bfk(vk)

is never required, after G@k) has been computed, for any of the computations of
G;(r), where y is any vector such that y E S; and Mk(y) > Mk(vk). This point is
proved in Appendix D. As a result, the required storage space to implement eq.
(4.1) is only the cardinality of SE and not the sum of the cardinalities of St and
9 7. The cardinality of 9 E is (K’ Z!‘T ‘). In addition, step 3 requires a storage space

RECAL-Recursion by Chain Algorithm

100 010

1 2

1 2 3 4 5 6

000

k=2 G;(lOO) G;(OlO) Gi(001)
I

100 010 001

1 2 3

G; (x1 >

11

Ml($)

FIG. 1. Illustration of the implementation of eq. (4. I) (N = 3, K’ = 2): --+ pointer to storage location
of G;(vJ; -P-, elements needed in the computation of G;(v,J.

equal to the cardinality of Sk.-, which is (R $!!r ‘). The values obtained in step
4(e) may be stored in the same storage space used for step 3. The total required
storage space for the algorithm is then

(5.7)

With K, = K for 1 5 r 5 R and with N and K considered fixed, eq. (5.7) is a
polynomial in R of degree (N - 1). When R is large, eq. (5.7) is on the order of

K
,;‘; ,: RN-‘.

If we now consider R and K fixed, then eq. (5.7) is a polynomial in N of degree
(KR). When N is large, eq. (5.7) is on the order of

2NR
R!

if K=l,

wR

(KR)!
if K>I.

780

6. Comparisons in Complexity

A. E. CONWAY AND N. D. GEORGANAS

In this section we compare the time and space requirements of RECAL with those
of the convolution and MVA algorithms.

If we use the version of the convolution algorithm [2] that applies to networks
with constant speed servers, as is the case here, the total number of operations to
arrive at G is

2R(N - 1) i (Kr + l),
r=l

and the required storage space, in number of elements, is

2 ij K + 1).

(6.1)

(6.2)

The MVA algorithm has approximately the same time requirement as eq. (6.1)
[181 and the required storage space is [2]

N fi (K,+ 1). (6.3)
r=1

We show in Appendix E that no computational advantage can be obtained in the
convolution or MVA algorithms by breaking down the chains in N into subchains.

In the previous section we have seen that with N and K considered fixed, the
time and space requirements of RECAL are polynomial in R. Hence, if R is
sufficiently large, the time and space requirements given by eqs. (5.5) and (5.7),
respectively, will be less than those given by eqs. (6.1) and (6.2) or (6.3).

We see from eqs. (5.7), (6.2), and (6.3) that RECAL has a smaller space
requirement than either convolution or MVA when

From eqs. (5.5) and (6.1) we see that RECAL has a smaller time requirement when

(4N - 1)
((

C:=, K,;N- l)+(R;T; 1)

+(,,,- ‘)- l)+R(N+@<ZR(N- 1)&K.+ 1).

In Figure 2 we compare, for the purposes of illustration, the number of opera-
tions given by eq. (5.5) with those given by eq. (6.1) in the case in which N = 4 and
K, = K for 1 5 r I R, for various values of K and R. In Figure 3 we compare the
storage requirements given by eq. (5.7) with those given by eq. (6.2) in the case in
which N = 4. In Figure 4 we determine, for various values of K, the region in the
space of queuing networks (N x R) in which the number of operations required by
RECAL (eq. (5.5)) is less than that required with convolution (eq. (6.1)). In Figure
5 we determine the region in which the storage space requirement of RECAL (eq.
(5.7)) is less than that of convolution (eq. (6.2)). In Figures 6 and 7 we give,
respectively, several isotime and isostorage curves in the space (N x R) for RECAL
and convolution in the case in which K = 3. We see from Figures 2-7 that RECAL
is useful when there are many chains in the network. We finally note that, when
N = 2, the storage requirement of RECAL, given by eq. (5.7), is linear in R.

RECAL-Recursion by Chain Algorithm
I

7-

,3

Chains (RI

FIG. 2. Comparison of the number of operations in RECAL and convolu-
tion, for N = 4 and K = 1, 3, and 6 (the values for K are indicated at the ends
of the curves): -, convolution; ---, RECAL.

IO3

6 3 I

2 4 6 6 IO 12 I4 I6 I6 20

Chains (RI

FIG. 3. Comparison of the storage space requirements in RECAL and
convolution, for N = 4 and K = 1, 3, and 6 (the values for K are indicated at
the ends of the curves): d, convolution; ---, RECAL.

7. Extensions for State-Dependent Service Centers
In the previous sections we have assumed, for the sake of simplicity in presentation,
that the servers at the service centers operate at a constant speed. In this section
we extend RECAL to accommodate the situation in which there may be state-
dependent service rates. An attractive feature of RECAL is that this extension may
be made with little additional complexity. In the convolution and MVA algorithms
such an extension is not so trivial [2, 11, 191.

Consider a queuing network of type Jy, but with state-dependent servers at the
service centers. Let the service rate function for center i depend on the total number

782 A. E. CONWAY AND N. D. GEORGANAS

convolution

22

20

18

16

14

12

10

2

2 4 6 8 10 12

Nodes (N)

FIG. 4. Regions in the space (N x R) in which the time requirement (number of
operations) of RECAL is less than convolution, for K = 1, 3,6, and 12 (on or above the
curves the time requirement of RECAL is less than convolution).

of customers at center i and be denoted by &(n). At IS centers, with the definition
of fi’(ni? that has been adopted in Section 2, we have pi(n) = 1. With state-
dependent servers, for n CR) E p(R) the marginal state distribution for the network ,
is PI,

(7.1)

Without loss of generality we need not explicitly consider the more general
situation, which has been considered in [11, in which there may be different service
rate functions, @i,(n), for each chain r.

Using eq. 7.1, and the same line of reasoning used in the proof of Theorem 1
(Appendix A), we may show that GR(0) is given by the same recursive formula that
appears in Theorem 1 but with

hi,(V,, 1) = ’ t. uir
()

W$

lr nk, @i(b + U(r) ’
(7.2)

if center i is FCFS, LCFSPR, or PS. The quantity G,(v,) in Theorem 1 is now the
normalization constant for a network of type N, but with servers that have state-
dependent service rate functions ui(n) = @i(n + uir)n/(n + Vii).

RECAL-Recursion by Chain Algorithm 783

22

20

18

16

s 14

if4
*; 12

B
10

8

6

4

2

I I I 1

/* K=l
/I K=3 -

6 8

Nodes (N)

FIG. 5. Regions in the space (N x R) in which the space requirement (number of
elements) of RECAL is less than convolution, for K = 1, 3, 6, and 12 (on or above the
curves the space requirement of RECAL is less than convolution).

With these changes, we may then rewrite eq. (4.1) as

N (1 + Uik&)Wir(k)Gi-l(Vk + Ii)
G;(h) = x

i-1 @iBi(l + uik) ’
(7.3)

Comparing eq. (7.3) with eq. (4. l), we see that little additional complexity has been
introduced to accommodate the situation of state dependency.

The expression for the marginal distribution with respect to a particular chain
R, in the case of state dependency, is unchanged from Theorem 2, except that, if
center i is FCFS, LCFSPR, or PS, then

AS a result, if & = 1, then QiR = GR(O)-‘GR-l(li)WiR/Pi(,I) so that

Under the additional condition that there is at least one IS center in the network
we have, in the case of state dependency,

TTr = eiNR-)G k- I (lx)
G;.(O) ' (7.5)

784 A. E. CONWAY AND N. D. GEORGANAS

24

22

20

18

16
B

- 14
z .d

2 12

10

8

6

4

2

I ’

lo5 I

I’ ‘I ’ 1 I
I

, 10’ ; 109:
\

I I \
I I \
I ; \
I \ \
I
I \ \

\
I

I \ i
I \

I
\ \

I \ \
\

I \

I \ \

I \ \

\ \

\ Y\
109

\ \
\ \

\
\

\ \ \
\ \ l N. _ .- 10’

. . -\
-.---.---

-.- - 4---d,
-. I I 1 1 I 1 I

2 4 6 8 10 12

Nodes (N)

FIG. 6. Curves in the space (N x R) on and above which the time requirement
(number of operations) is equal to or greater than the number at the end of the
curve, for K = 3: ---, RECAL, -, convolution.

where x is any one of the IS centers. This expression for the throughput follows
from the identity GR-i(O) = GR-,(lJ and the result that, when KR = 1,
TiR = e,GR- 1 (O)/GR(O), which is known to hold even in the case of state dependency
[2, p. 7 11. We also have, using Little’s result [131,

If we assume that there is one IS center in the network and that there is state
dependency at all service centers, then the evaluation of the summation in eq. (7.3)
requires (5N - 4) operations. The total number of operations required by the
algorithm to obtain the queue lengths, throughputs, and waiting times is then,

This result can be derived in a manner analogous to that of eq. (5.5). When there
is more than one IS center, the number of operations is reduced slightly, since
6i = 0 when i is an IS center. The required storage space, in the case of state
dependency, is unchanged from eq. (5.7), except, ofcourse, for the additional space
required to store the network parameters pi(n), which we ignore.

We finally mention that it does not appear possible for RECAL to accommodate
state-dependent servers whose service-rate functions are of the form Bi(ny’).

RECAL-Recursion by Chain Algorithm

24 -

lo3 I 5:
i

I lo 10’ I I I 22 -

20

10 -

8 -

6

4 _

I I i 1

i i \
I I \
I I \
i I

I \
! I !
\ I \
\ l \ \ 10’
\ \ \
\ \ \
\ \ \
\ \ \
\ \ l \ , \ 105
\. ,

\ -\
\ \
\ \ -.

-*
\ \

\ -.
l \ lo3 -o-- -

. \ l -. .
\

\ . .
l N -

-.
-0-w -.- - .\

.
l ---•-.

-_ 2 1 1 I I

785

2 4 6 a 10 12

Nodes (N)

FIG. 7. Curves in the space (N x R) on and above which the space requirement
(number of elements) is equal to or greater than the number at the end of the
curve, for K = 3: ---, RECAL, -, convolution.

8. Mixed Networks and Class Switching
RECAL can be used to analyze queuing networks having certain other more
general features than those defined in Sections 2 and 7. It may be used to analyze
the class of stable mixed [I] queuing networks in which there are constant-speed
or limited queue-dependent servers [11, sect. 3.71. This may be done since it is
known that a mixed network can, for the purposes of analysis, be transformed into
a closed network [11, sect. 3.71. We may then obtain all the mean performance
measures for the closed chains in the mixed network, by analyzing this closed
network using RECAL, if in the original mixed network there are constant-speed
servers. If there are limited queue-dependent servers in the mixed network, then
we should use the version of RECAL that applies to networks with state-dependent
servers (Section 7). The mean queue lengths can be obtained using eqs. (7.4) and
(4.3). The throughputs and waiting times can be obtained using eqs. (7.5), (7.6),
and (4.3), assuming that there is at least one IS center in the original mixed
network. The mean queue lengths and waiting times for the open chains can be
obtained readily if in the original mixed queuing network we have constant-speed
servers [11, sect. 3.71. The open-chain throughputs are obtained, as usual, from the
equations of flow.

RECAL can also be used to analyze networks with customer class switching,
since it is well known that the mean performance measures for the individual

786 A. E. CONWAY AND N. D. GEORGANAS

classes can be obtained directly from the measures associated with the closed
routing chains [11, sect. 3.5.41.

9. Dynamic Scaling in RECAL

It is well known that a genuine problem with the convolution algorithm is that the
floating-point range of a machine may be exceeded in the course of computing the
normalization constant G [S]. This problem also exists in RECAL. Lam [S] has
developed a dynamic scaling procedure, which is applicable to the convolution
algorithm, which alleviates the effect of numerical instability. Such scaling proce-
dures can also be incorporated easily within RECAL. For the sake of simplicity we
assume in the following that there are constant-speed servers. The same ideas,
however, carry over to the state-dependent case.

Let SF be a scaling factor. Consider the computation of G%vk), for all vk E Si,
using eq. (4.1) and the stored values of Gi-i(vk-i), where vkml E 4;-, . According
to eq. (4.1), we may write

Hence, the scaling factor may be used as a control variable to reduce the possi-
bility of encountering an underflow or overflow when computing Gi(vk) for all
vk E 3;.

The scaling procedure we propose is the following. We initially (statically)
scale the quantities wi,, where 1 I i I N and 1 d r I R, so that mini (Wir) = I for
1 5 r 5 R. The dynamic scaling to be introduced into eq. (4.1) is to scale Wi,(k), for
1 5 i 5 N, as follows, prior to computing G ,@k) for all vk E 31. If

min (GI-i(vk-i)) < 1,
v*-,G-P’k-,

multiply Wi,(k), for 1 5 i I N, by IOf--*, where { is the smallest exponent of the
machine,

c-i = [log10 min IG-dvk-dll,
V&,ESP-,

and [x] is the integer portion of x. Otherwise, multiply wir(k), for 1 5 i 5 N, by 10’
and then by lo-*. After having computed Gi(vk) for all vk ES,& we then remultiply
Wir(k), for 1 I i I iV, by 10mf and then by 10” so that, once again, mini { Wir) = 1 for
1 5 r 5 R. If we are about to commence step 4(b), then we should leave this
remultiplication until after step 4(b) so that the scaling factor will properly cancel
out in the computation of the mean performance measures using eqs. (4.2) and
(4.3). An attractive feature of this dynamic scaling procedure is that there is no
need to store any scaling factor for future use.

10. Concluding Remarks

In this paper we have presented RECAL, a new recursive algorithm for computing
the mean performance measures of multiple-chain closed queuing networks. It is
based on certain new relationships that have been derived from among the
normalization constants of multiple-chain closed queuing networks and relies on
the artifice of breaking down each chain into constituent subchains. We have
derived the time and space requirements of the algorithm and have shown that,
when the chain populations are considered equal, they are polynomial in the
number of routing chains. The efficiency of RECAL, compared with that of

RECAL-Recursion by Chain Algorithm 787

convolution and MVA, becomes pronounced when there are many chains in the
network. RECAL therefore extends the range of queuing networks that can be
analyzed efficiently by exact means.

We conclude by noting that, when there is sparsity or locality in the routing, the
number of operations involved in the summation of eq. (4.1) is reduced, since the
sum need only range over those centers i that customer number k may actually
visit.

Appendix A

PR~~F OF THEOREM 1. G,(c) is the normalization constant of a queuing network
of type N with R = r, as described in Section 2, but with state dependent service
rate functions ui(n) = n/(n + ci) at those centers that do not have an IS discipline.
Let the centers be enumerated so that centers 1, . . . , p are the ones with an FCFS,
LCFSPR, or PS discipline and p + 1, . . . , N are the IS centers. The aggregate
system state distribution for this system with state dependent service rate functions
is [l]

Pr(n”)) = G(c)-’ ,i
where, by definition,

But

where -537 was defined in Theorem 1 and

Y”‘(1) = (n(‘)l n(‘) E Y(I)’ L?i, = li for I I i 5 NJ , 3

so that

Now
&-“+I,

E, (a + Ci) = (1 + Ci) * * * (li + CJ(li + C; + 1) * . * (ny-” + li + Ci)

Hence,

G,(c) = x fi
EP, i=l

a + 1, + Ci)

788 A. E. CONWAY AND N. D. GEORGANAS

We now see that the sum on the far right is the definition of G,,(c + 1) itself, so
that

The initial conditions, Go(c), are normalization constants of networks that contain
no customers. The only network state is the empty state, and hence Go(c) = 1.

The above expressions are valid for any c E F where %Y = {c 1 ci > 0 for
1 I i I NJ. They are therefore valid for c = v,, where v, E Cu;, since Yr C %?. Hence,

where hi,(V,, 1) was defined in Theorem 1.
It now remains to be shown that the domain of G,(v,), in the computation of

GR(O), is

VrIUirLOfOrl SiSN,; vii-= $ KS
S,=

, for OsrsR- 1,
i=l _ s=r+l (AlI

for r=R.

We show this by induction on r.
Clearly, Yj = (0) since we only wish to determine GR(v~) for VR = 0. Now

sothateq.(Al)istrueforr=R- 1.
We now assume that eq. (Al) is true for r = t and show that it is true for

r=t- 1. We have

&.*= u
..,{k!P+1~}=,~ {k!!~v~+lJ)

(v, + 1) 1 Uil L 0 for 1 5 i I N, i Uil = i KS .
i=l S=t+1 I-

A-I=
-I

(~,+l)~~i~~OfOrl~i~N,I,~OfOrl~i~N;~~il= 5 j&;il,=K,
i=l s=t+ I i=l I-

1 (uil+ li) 2 0 for 1 I i 5 N; 5 (Vii + li) = $ KS .
i=l S=f

= (v,+l)
{

Defining a new
(Al). Cl

variable vIvl = (v, + l), we see that this agrees in form with eq.

RECAL-Recursion by Chain Algorithm

Appendix B

189

PROOF OF THEOREM 2. (We use some notation and definitions found in Appen-
dix A.) By definition

Pr(nR = k) = c Pr(ncR’).
.(RkY(R’(k)

Now, using eq. (2.1), we may write

Pr(nlR=k,,...,nNR=kN)

i=l i=p+l ki! “(R)E;“(R)(k) i=l

From the definition of G,(c) in Appendix A we see that the sum on the,far right is
the definition of G,+,(k) itself. Furthermore, G = GR(O), so that

Pr(n,R = h, . . . , nNR = kv) = GR(O)-'GR-,(k) ,i W;; ji+, 2. cl
I*

Appendix C

PROOF OF THEOREM 3a. When there are no IS centers in the network, using the
definition of G,(c) in Appendix A, we may write

GR-I(l,) = 1
,,WI)EdR-I)

(njR-‘) + l)fj (np-“!(y$$).

Therefore

G,+I(lJ = G,+~(o)E(n(p-I)) + G,+*(O),

where E(-) denotes expectation. Hence, when KR = 1,

i GR-I&) = GR-,(O)(K- 1) + NGR-I(O),
I=1

since

i Et

R-l

n$+‘)) = r;, K, = K - 1. 0
I=’

PROOF OF THEOREM 3b. Consider the definition of G,(c) in Appendix A. When
c = 1, and x is an IS center, we have ci = 0 for all 1 5 i I p, in which case G,(L)
= G,(O). Hence GR-,(O) = G~-l(l~). Cl

Appendix D

We need to show that the value of G Z-,(vk-,) at location Mk(vk) is not required
in the computation of GE(r), where 7 is any vector such that 7 E 9; and
MC(Y) > lwb?J.

790 A. E. CONWAY AND N. D. GEORGANAS

PROOF. As can be seen from eq. (4.1), the computation of G:(r) requires the
values of Gi-,(r + 1;) for 1 5 i I N. We need to show that the value of GL--I(vk-1)
at location i%&(vk) is not one of these. Hence, we need to show that &-I(7 + Ii)
> M&k) for any 1 I i I N and ‘y, such that ‘y E 4;: and i&(T) > M/&k).

We assume that Mk-,(y + Ii) 5 M&k) and show that this leads to a
contradiction.

By the definition of 7, Mk(y) > i&(vk) so that Mk-I(y + li) < hfk(y). Therefore,
using eq, (5.5), we have

(&O-k+ l)“+j~,~j(K’-k+ l)j-‘< i ~j(K”-k)j-‘< i rj(K”-k+ i)j-I.
j=l j-l

Hence (K” - k + I)‘-’ < 1. Now 1 I k I K” and 1 zz i I N, so there is a
contradiction. 0

Appendix E

Suppose, for the sake of simplicity, that K, = K for 1 I r 5 R. When we break
down the chains in M, so that each subchain consists of one customer, the number
of operations to arrive at G” using the convolution algorithm is, according to eq.
(6.1), 2R/c(N - 1)2’“. Now

~RK(N- 1)2R” K(2 K)R

~R(N-I)(K+I)~=(K+~~~’

since 2’ z K + 1, Hence no advantage is obtained in the number of operations.
The storage space required in the convolution algorithm to obtain G” is, using

eq. (6.2), 2R”+1. Now

2 Rr+ 1

2(K+1)R (K+ l)R- ’

Hence, no advantage in the storage space is obtained either.

ACKNOWLEDGMENTS. The authors are grateful to the anonymous referees and Dr.
D. Potier (France) for several useful suggestions.

REFERENCES

1. BASKEIT, F., CHANDY, K.M., MUNTZ, R.R., AND PALACIOS, F.G. Open, closed, and mixed
networks of queues with different classes of customers. J. ACM 22,2 (Apr. 1975), 248-260.

2. BRUELL, S.C., AND BALBO, G. Computational Algorithmsfor Closed Queueing Networks. Elsevier-
North Holland, New York, 1980.

3. BUZEN, J.P. Computational algorithms for closed queueing networks with exponential servers.
Commun. ACM 16,9 (Sept. 1973), 527-531.

4. CHANDY, K.M., AND NEUSE, D. Linearizer: A heuristic algorithm for queueing network models
of computer systems. Commun. ACM 25,2 (Feb. 1982), 126-133.

5. CHANDY, K.M., AND SAUER, C.H. Computational algorithms for product form queueing networks.
Commun. ACM 23, 10 (Oct. 1980), 573-583.

6. CONWAY, A.E., AND GEORGANAS, N.D. A new method for computing the normalization constant
of multiple chain queueing networks. INFOR 24, 3 (Aug. 1986).

7. COURTOIS, P.J. Decomposability: Queueing and Computer System Applications. Academic Press,
Orlando, Fla., 1977.

8. LAM, S.S. Dynamic scaling and growth behavior of queuing network normalization constants.
J. ACM 29,2 (Apr. 1982), 492-5 13.

9. LAM, S.S., AND LIEN, Y.L. A tree convoluted algorithm for the solution of queueing networks.
Commun. ACM 26,3 (Mar. 1983), 203-215.

RECAL-Recursion by Chain Algorithm 791

10. LAM, S.S., AND WONG, J.W. Queueing network models of packet switching networks. Part 2:
Networks with population size constraints. Perform. Eval. 2, 3 (1982), 16 1 - 180.

I I. LAVENBERG, S.S., ED. Computer Performance Modeling Handbook. Academic Press, Orlando,
Ra. 1983.

12. LAVENBERG, S.S., AND REISER, M. Stationary state probabilities at arrival instants for closed
queueing networks with multiple types of customers. J. Appl. Prob. I7 (Dec. 1980), 1048- 106 1.

13. LITTLE, J.D.C. A proof of the queueing formula L = X W. Oper. Res. 9 (196 1), 383-387.
14. MCKENNA, J., AND MITRA, D. Integral representations and asymptotic expansions for closed

Markovian queueing networks: Normal usage. Bell Syst. Tech. J. 61, 5 (May-June 1982), 66 l-683.
15. MCKENNA, J., AND MITRA, D. Asymptotic expansions and integral representations of moments

of queue lengths in closed Markovian networks. J. ACM 31,2 (Apr. 1984), 346-360.
16. NEUSE, D.M. Approximate analysis of large and general queueing networks. Ph.D. dissertation,

Univ. of Texas, Austin, 1982.
17. REISER, M., AND KOBAYASHI, H. Queueing networks with multiple closed chains: Theory and

computational algorithms. IBMJ. Res. Dev., 19 (May 1975), 283-294.
18. REISER, M., AND LAVENBERG, S.S. Mean-value analysis of closed multichain queuing networks.

J. ACM 27,2 (Apr. 1980), 313-322.
19. SAUER, C.H., AND CHANDY, K.M. Computer Systems Performance modeling. Prentice-Hall,

Englewood Cliffs, N.J., 198 1.

RECEIVED NOVEMBER 1984; REVISED OCTOBER 1985; ACCEPTED OCTOBER 1985

Journal of the Association for Computing Machinery, Vol. 33, No. 4, October 1986.

