
Removing the Emphasis on Coding in a
Course on Software E@wering

Linda Rising’
Department of Computer Science

Indiana University-Purdue University at Ft. Wayne
Ft. Wayne, IN 46805

and
Magnavox Electronic Systems Compauy

Ft. Wayne, IN 46808

ABSTRACT

‘lltete has been considerable interest in a one-semester
course in software engineering [Bullard88, Carver87,
Gibbs87]. Faculty members of departments of computer
science are introducing courses that involve team
projects, in an effort to provide students some
experience with large programs , However, software
professionals are still concerned that most computer
science graduates have little understanding of what is
involved in the development of large, complex systems.
Too often, code alone is regarded as the primary
product without proper consideration of the necessary
standards and procedures of the controlling disciplines.
This paper describes a course that shifted the emphasis
from coding by having students perform supporting
activities and maintenance on a large A& project.

management, and technical reviews. This course is like
many reported in the literature; each student is involved
in the requirements, design, coding and testing phases.
Since it must be completed by the end of the semester,
the project cannot be too large and the focus ultimately
becomes coding.

INTRODUCTION

Although it does occupy 95% of a student’s
programming time, coding accounts for less than 25%
of the effort for a large government project with
significant document requirements, independent
verification and validation, and other ancillary tasks
[Jones86]. In addition, it becomes painfully obvious to
anyone who writes long-lived software that correctness
is a moving target. Boehm points out [Boehm81] that
many of the characteristics of good software are in
conflict with each other and that trying to achieve them
all is impossible. Programmers are smart people who
will wok hard to achieve desired goals. Trying to
write programs that are correct usually means sacrificing
modifiability, readability, maintainability, etc.

In addition to serving as assistant professor in the
Department of Computer Science at Indiana-Purdue at
Ft. Wayne (JPFW), the author also works as a
consultant for Magnavox Electronic Systems Company,
a company that has been involved for the last several
years in the development of a large Ada project. The
opportunity to see some of the problems encountered
has resulted in an increased emphasis on software
engineering principles in all the author’s courses. In
addition, a senior-level course, CIS 474 Topics in
Soiiware Engineering, was iutroduced in Spring 1988.

lPFW offers a large project course for sophomores.
The students work in groups of three or four and have
a chance to see some of the problems that arise when
working in a team but little or no time is spent on
important topics such as cost estimation, formal
requirements, quality assurance, configuration
Permission to copy without fee all or pan of this material is granted provided
that the copies are not made or distributed For direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear.
and notice is given that copying is by permission of the Association For
Computing Machinery. To copy otherwise. or to republish, requires a fee and/
or specific permission.

It is important that students understand that all those
“abilities” am more important than correctness alone,
since most software must be modified, read, etc., to
produce code that is, at best, only temporarily correct.
Unfortunately, courses in computer science emphasize,
by default, code and correctness. An instructor does not
have time to reinforce notions of good design, style, and
documentation when grading programming projects. As
a result, student programs are graded only on
correctness, run against a bank of test cases. What
students learn from this is that correct code is the only
important component of good software. software
engineering ideas presented in class should be reinforced
when student work is graded. At JPFW, an attempt has
been made to solve this problem by developing
department standards for program grading that are
enforced in all classes [Rising87].

The interest in software engineering has come about
because of what has come to be called the “software
crisis.” Typically behind schedule and over budget,
many software projects ate so inadequate that they are

0 1989 ACM 0-S9791-29S-5/S9~ooO2/0185 $1.50

1
The author is currently a graduate student at Arizona State University. c

185

http://crossmark.crossref.org/dialog/?doi=10.1145%2F65294.71212&domain=pdf&date_stamp=1989-02-01

never used. As reported by DeMarco mmarco82]:

“15% of all software projects never deliver
anything; that is, they fail utterly to achieve their
established goals.

Overruns of one hundred to two hundred percent
are common in software projects.”

This is costly and wastetul of resources.
imperative that better methods be used.

It is

One response to the software crisis, ou the part of the
Department of Defense, has been the founding of the
Software Engineering Institute (SEI) to “bring the ablest
professional minds and the most effective technology to
bear on rapid improvement of the quality of operational
software in mission-critical computer systems.” Ok of
the activities of the SEI is the sponsoring of Faculty
Development Workshops where curriculum modules are
presented. A curriculum module presents a topic in
software engineering and consists of au outline, brief
descriptions of important component areas within the
topic, an annotated bibliography, and suggestions for
teaching. The modules can be tailored to individual
needs in a university or industrial training setting. The
author has attended three of these workshops and
wanted to include as many of the modules as possible
into the new course.

A resource available to the author through Magnavox is
the Ada Repository. It contains reusable software
components and tools. Several of these were chosen for
use in the course. One, au Ada style checker, had been
modified by the author for use at Magnavox. The ease
with which this modification had been performed
determined that the correction aud possible modification
of this program would be the project for the course.

COURSE DESCIUI’TIOlV

The course, CIS 474 Topics in Software Engineering,
had au enrollment of nine seniors who were assigned
roles following the guidelines in Tomayko’s
[Tomayko87C] report on a one-semester course iu
software engineering:

Principal Architect: Bears primary responsibility for the
creation of the software product. Primary
responsibilities ill&de writing the requirements
document, advising on overall design, and supervising
implementation and testing. Also calls and conducts
change control board meetings.

Project Administrator: Responsible for resource
tracking. Primary responsibilities include cost analysis,
investigation and use of a manpower tool, aud cost
control. Develops form for weekly resource reports.
Collects data and issues weekly cost/labor consumption

reports and a final report. Also serves on change
control board.

Configuration Manager: Responsible for change control.
Primary responsibilities include writing the configuration
management plan, developing forms for change requests
and discrepancy reports, tracking change requests and
discrepaucy reports, aud preparing product releases.

Quality Assurance Manager: Responsible for the overall
quality of the released product. Primary responsibilities
include preparing the quality assurance plan, call@ and
conducting reviews, aud evaluating documents. Will
investigate and use McCabe’s Metrics tool.

Tester: Responsible for creation and execution of test
plans to verify and validate the software, includiug
tracing requirements. Will investigate and use testing
tools.

Designer: Responsible for producing design documents
for the product. Will investigate and use Excelerator to
prepare preliminary and detailed design documents.

Implementor: Responsible for developing coding
standards, implementing the changes in designated
modules, and writing the user interface. will conduct
code reviews.

Document Spedlist: Responsible for the development
of documentation standards and the user manual. Will
assist in the development of the user interface and the
preparation of uniformly formatted documents.

Each student was given some reference material to read
to become familiar with the role he/she was to play in
the class. Those students who were respousibk for
preparing documents were given copies of the IEEE
standards for that document [IEEE841 as well as the
sample documents iucluded in Tomayko’s support
materials lTomayko87C]. The lectures were scheduled
to cover topics necessary for meeting scheduled
milestones. In addition, outside speakers on most topics
were invited to talk about their duties.

Originally, the goal for the class had been to modify the
style checker so that the style being checked was that
of the department at lPPW. Midway through the
semester, it became apparent that this was too
ambitious. Since the author had previously modified the
style checker and knew that (at least) three errors
existed in the code, these errors were reported
individually to provide experience in trackiug, correcting
and testing.

Tlms, the focus of the course was truly removed from
code aud emphasized the controlling disciplines.

186

One of the most important topics covered in the class
was technical reviews. Initially this is a dif6cult
concept for students, since, in all other classes, they are
not encouraged to work together or to examine one
another’s work, and never spend class time involved in
the activity. An introductory lecture was given on
technical reviews, using the material in the SRI
curriculum module [Collofello87]. Some instructors feel
that they must be present to direct student reviews. The
author agrees with those who say that “first-line
managers” hamper the review process. Reviewers care
more about what the “boss” will think than about doing
a careful review. The author attended the first review
to ruinforce points from the lecture, but the Quality
Assurance Manager directed all subsequent reviews. A
report summarizing the final decision reached in each
review was submitted but did not include the Action
List. The students were not graded on the number of
errors found or the number of times their work required
review, but were graded on their preparation for the
review. Peer evaluations done at the end of the
semester reported whether each team member felt that
the others had been active participants in the review
process. Not only were students leaming about the
review process but since all plans, standards, and reports
wee reviewed, preparing for the review gave each
student a chance to study all of the documents.

Another important topic was Configuration Management
(CM). An SE9 module, Ilromayko87A], and support
material, (Tomayko87B], were used to present an
introductory lecture. The CM Manager prepared a CM
Plan which outlined the following process for treating
errors in the program. Team members reported all
problems with the style checker to the Change Control
Board (CCB) by submitting a Discrepancy Report (DR)
or Change Report (CR). The CCB met and
approved/rejected the discrepancy/change. The
implementors received a copy of the DR/CR and
repaired the problem. After code review and separate
compilation, the changed module was sent to the CM
Manager, who reconfigured the style checker and
reported the location of the new version to the tester.
The use of Ada allowed individual modules to be
compiled without allowing the implementors access to
the rest of the system. The tester first tested the
change and then did regression testing, successful
testing was reported to the CM Manager who signed the
DR/CR as repaired and submitted it to the CCB. The
new release was reported to the entire group using
system mail. The size of the style checker (62 files,
787 blocks, approximately 15,000 lines of code) made
good CM necessary. The students saw clearly how
serious problems could arise in version control with a
large team and lack of standards and proceduxes for
CM.

A third important topic covered in the course was
Quality Assurance (QA). Again, there was an
introductory lectum using an SEI curriculum module
[Bmwn87]. The QA Manager had as her primary
responsibilities preparing the QA Plan and conducting
technical reviews. The QA Manager also evaluated
each module in the program initially using a McCabe’s
Metric tool and after each modification checked to see
that the complexity of the changed module did not
increase significantly. An increase would have resulted
in the submission of a DR to the CCB. The
complexity remained the same for all changed modules
in the project.

PAPERS AND SPEAKERS

In addition to the two texts used in the class,
[Fairley85] and @rooks82], the students were required
to mad a collection of papers on several software
engineering topics. Most of these papers reported
results of industrial experiments or observa-tions. These
papers ate listed in the REFERENCRS followed by an
* Each student chose one of these papers and
presented a ten-minute summary during the last week of
the course. To insure that all the students read all the
papers, each presentation was evaluated in a brief
paragraph submitted by each of the other students,

It was made clear to the students that these were not
esoteric or academic subjects but essential and practical
topics. To empha-size this, several speakers from local
industry were invited to make presentations to the class.
These presentations involved problems and solutions of
a very practical nature. The speaker on Design
introduced the somewhat overwhelming problem of
dealing with government standards, especially DODSTD
2167. The speaker on Configuration Management
shared his experiences with control-ling, what had been
at the time, the largest A& project in the world. The
topics covered in class seemed to become more
important when someone who worked in that area
reinforced what had been presented in class. The
speaking dates wen scheduled at the beginning of the
semester and invitations were extended to anyone in the
community. There were always visitors for each
presentation, from the university or local industry.

LESSONS LEARNED

One significant problem during the semester, which had
been anticipated but still proved a severe difficulty was
the number of restrictions on a student account. The
tools were very large, and size and other quotas
imposed on students proved a significant handicap.
Requests to the system manager could not be made by
the students, so often the author would become a
temporary team member, completing a compilation
sequence or solving some system difficulty. It was
sometimes enjoyabk, sharing the students’ perspective

187

but many times it was frustrating to have to deal with
what seemed, in many cases, like arbitrary restrictions
on student accounts.

Readers may have noticed that the class had nine
members but that there were only eight roles. It was
decided to have two implementors since no one who
wanted that job knew Ada This also enabled each to do
code waIkthroughs for the other. However, experience
with the project leads to the conclusion that it would
have been better to have had two designers. The
designer was the only one to prepare two documents,
and with a program of this size, that turned out to be a
mammoth chore. The code walkthroughs could have
been done by any of the three Ada experts in the
course and, in fact, they often served as consultants for
implementation problems.

The department had recently acquired copies of
Excelerator, a software tool to aid in design
documentation. In order to provide some experience
with this tool and hopefully create easily modifiable
design documents, the designer investigated and used
the tool for both design documents. Unfortunately,
Excelerator is best used for structured design and our
designer had some difficulty using it for packages and
dependencies.

This group was too large for maximum effectiveness in
the technical reviews. A group of four or five is
recommended. The final reviews were done in two
simultaneous sessions, each with half the class. Each
individual was more effective in the smaller group,
since he knew his observations were not going to be
made first by the stronger, more vocal members. In
earlier reviews, this caused some to be intimidated to
the point of not participating or to come to the reviews
unptepated. Unfortunately, this wasn’t discovered until
the peer evaluations were read at the end of the course.

Everyone in academia and industry knows that there is
a noticeable variation in ability and enthusiasm within a
group of any size [Sackman68]. This is sometimes not
as evident in a more structured class situation but in a
course like this where the quality of the product
depends a great deal on the energy expended by the
individual team member, it is obvious that what Brooks
calls “hustle” [Brooks821 is an important factor. This
makes grading difficult. How should grades be assigned
to those who do the minimal amount of what must be
done and those who contribute extra effort for the
project? Do they both deserve an A? The students are
aware of this and in their peer evaluations they
mentioned the exceptional contributions of three of the
students on the team, The author’s solution was to try
to duplicate real world conditions and give a “bonus” to
these students by relieving them of preparing the
evaluation of the paper presentations.

The students agreed that they had enjoyed the course
and learned a lot. Some comments ma& during the
semester:

“I really have learned to see The Big Picture.”

“I never realized how much paper is involved in all
thiS.”

“Why can’t they (industry personnel, managers, etc.)
see that this is the way to do things right?”

The need for increased understanding of “how to do it
right” has never been greater. Our class began each
meeting with a student’s reading of one or two accounts
of software disaster firorn issues of ACM SIGSOPT
Software Engineering Notes. It’s clear that instead of
dissipating, the software crisis has gotten worse. As
Brooks said recently in a keynote speech at the SEI
[Gibbs87]:

The peak year in sales for The Mythical Man-
Month was only two years ago. Yet the book was
written in 1975, about an experience in 1963-1965.
The fact that it has the slightest relevance now is a
sad comment on the progress of the discipline.”

In the author’s opinion, this class represents a step in
the right direction to a solution for the software crisis.
The students in this class are now software engineers,
not just programmera. They understand that good
software development is much, much mom than
temporarily correct code.

[Baker721 Baker, F.T., “Chief Programmer Team
Management of Production Programming,” IBM Systems
Journal, vol. 11, no. 1, pp. 56-73, 1972. *

[Boehm81] Boehmb., Software Engineering
Eumomks, Prentice-Hall, 1981.

[Boehm87] Boehm, B., “Industrial Software Metrics Top
10 List,” IEEE software, Sept 87, pp. 84-85.

[Brooks82] Brooks, F.P., The Mythical Man-Month:
Essays on Sophrur Eneincering, Addison-Wesley,
1982.

IBrooks87J Brooks, F.P., “No Silver Bullet: Essence and
Accidents of Software Engineering,” IREEl Computer,
vol. 20, no. 4. pp. 10-19, April 1987. *

188

[Brown87] Brown, B.B., “Assurance of Software
Quality,” SEI-CM-7.

~ullard88] Bullard, C.L., et al, “Anatomy of a Software
Engineering Pmject,” ACM SIGCSE Bulletin, vol. 20,
no. 1, Feb 1988, pp. 129-134.

[Carver871 Carver, D.L., “Recommendations for
Software Engineering Education,” ACM SIGCSE
Bulletin, vol. 19, no. 1, Feb 1987, pp. 228-232.

[Collofello87] Collofello, J.S., “The Software Technical
Review Process.” SEI-CM-3.

[DeMarco82] DeMarco, T., Controlling Software
Projects, Yourdon Press, 1982.

pagan761 Fagan, M., “Design and Code Inspections to
Reduce Errors in Program Development,” IBM Systems
Journal, vol. 15, no. 3, pp. 182-211, July 1976. *

Fairley851 Fairley, R., Software Englntxring
Concepts, McGraw-Hill, 1985.

[Gibbs871 Gibbs, NE. and R. E. Fairley (editors),
Sof’tware Engineering Education: The Educational
N&s of the Software Community, Springer-Verlag,
1987.

@EE84] IEEE Software Engineering Standards,
Wiley-Interscience, 1984.

[Jones861 Jones, T.C., Programming Productivity,
McGraw-Hill, 1986.

~hman80] Lehman, M.M., “Programs, Life Cycles,
and Laws of Software Evolution,” Proc. IEEE, vol. 68,
no. 9, pp. 199-215, Sept. 1980. *

@ieyers78] Meyers, G.J., “A Controlled Experiment in
Program Testing aud Code Walkthroughs/Iuspections,”
Comm. ACM, vol. 21, no. 9, pp. 760-768, Sept. 1978.
*

[pamas85] Pamas, D.L., “Software Aspects of Strategic
Defense Systems,” ACM SIGSOFT Software
Engineering Notes, vol. 10, no. 5, pp. 15-23, Oct. 1985.
*

[parnas86] Pamas, D.L. and P.C. Clements, “A Rational
Design Process: How aud Why to Fake it,” IEEE Trans.
Software Engineering, vol. SE-12, no. 2, pp. 251-257,
Feb. 1986. *

[Saclcmau68] Sackman, H., et al, ‘Exploratory
Experimental Studies Comparing Online and Offline
Progmmmiug Performance,” Comm. ACM, vol. 11,
no.1, pp. 3-11, Jan. 1968. *

[Tomayko87AJ Tomayko, J.E., “Software Configuration
Management,” SEI-CM-4.

[Tomayko87B] Tomayko, J.E. (editor), “Support
Materials for Software Configuration Management,” SEI-
SM-4.

vomayko87C’J Tomayko, J.E., “Teaching a Project-
Intensive Introduction to Software Engineering,”
CMU/SEI-87-TR-20, ESD-TR-87- 17 1.

Curriculum modules or support materials may be
ordered from the Software Engineering Institute:

SE1 Education Program
ATIN Curriculum Request
Carnegie Mellon University
Pittsburgh, PA 15213

Tape copies of the Ada Repository am available on 9
track, 1600 bpi, ANSI formatted magtapes; the charge is
$200 for 3 tapes. A lower price can be negotiated if
tapes am supplied.

Navajo Technology Corporation
Navajo Nation
Box 100
Leupp, AZ 86935
602-686-63791

[Rising871 Rising, L.S., “Teaching Documentation and
Style in Pascal,” ACM SIGCSE Bulletin, vol. 19, no.
3, pp. 8-14, Sept. 1987.

189

