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1. Semantics of Two Previous Implementations 

Two different implementations of general semaphores in terms of binary semaphores have been 
presented in recent issues of Operating Systems Review by Hemmendinger[1] and by Keams [2]. Both 
implementations use an integer to simulate a general semaphore. The integer and other data shared by the 
P and V operations are protected in critical sections guarded by a binary semaphore mutex. The two imple- 
mentations differ in the invariants that their executions satisfy. We precisely distinguish the semantics of 
the two implementations below. 

Using Habermann's notation [3], we define the following quantities for formally describing the state 
of synchronization in a general semaphore: 

C(s): initial value of a general semaphore s. 

nw(s): how many times P(s) was executed. 

ns(s): how many times V(s) was executed. 

np(s): how many times P(s) was passed, i.e., how many times a process was enabled to continue 
with the instruction following P(s). 

Upon every exit from a critical section protected by mutex, the state of synchronization in 
Hemmendinger's conslruction satisfies the following invariant relation: 

(1) np(s) = rain(nw(s), C(s) + ns(s) ) 

which is exactly the invariant relation that Habermann used to define the effect of executing the primitives 
wait and and signal [3]. On the other hand, the invariant satisfied by Kearns' implementation upon every 
exit from a critical section is 

(2) np(s) < min(nw(s), C(s) + ns(s) ) 

which is a somewhat weaker condition than (1). This difference arises from the circumstance described 
below. When there are processes blocked on s (i.e., np(s) < nw(s) ) and a V(s) is executed, Keams' imple- 
mentation releases mutex before a blocked process is awakened and completes its P operation, thus allow- 
ing ns(s) to be incremented (possibly several times) without incrementing np(s); on the other hand, 
Hemmendinger's implementation does not release mutex until a logically blocked process is awakened and 
completes its P operation and, thus, an increment of ns(s) is always followed by an increment in np(s) 
before other changes can be made to the quantities used in the invariant. 
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2. An Efficient and Concise Algorithm 

Since semaphores were informally described by Dijsktra[4], several versions of semaphores have 
appeared in the literature. Whether (1) corresponds to the semantics of a general semaphore better than (2), 
or vice versa, can be a question subject to much debate. If (2) is an acceptable invariant, the following is an 
efficient and concise algorithm for implementing a general semaphore in terms of binary semaphores. 

type 
semaphore = record 

mutex -- 1, delay = 0; (*binary semaphores*) 
n = 0 (*integer to simulate general semaphore*) 
end record; 

Procedure V(var s: semaphore) 
begin 
PB(s.mutex); 
s.n := s.n + 1; 
if s.n = 1 then VB(s.delay); 
VB(s.mutex) 
end; 

Procedure P(s:semaphore); 
begin 
PB(s.delay); 
PB(s.mutex); 
s.n := s.n - 1; 
if s.n > 0'then VB(s.delay); 
VB(s.mutex) 
end; 

Correctness of the algorithm can be established by noting that s.delay is set to 1 (open) when s.n > 0, 
and is set to 0 (closed) when s.n = 0. Thus, a P operation will block on s.delay until s.n > 0. Like Kearns' 
algorithm [2], this algorithm satisfies the invariant (2), but uses fewer shared variables, and requires fewer 
context switches. Executing a P operation can cause up to three context switches in Kearns' algorithm, 
whereas the above algorithm requires at most two context switches to complete a P operation. 
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