
Further Comments on Implementation of General Semaphores

C. Samuel Hsieh

Department of Computer Science
Vanderbilt University

Nashville, TN 37235, U.S.A.
(615) 343-4404

1. Semantics of Two Previous Implementations

Two different implementations of general semaphores in terms of binary semaphores have been
presented in recent issues of Operating Systems Review by Hemmendinger[1] and by Keams [2]. Both
implementations use an integer to simulate a general semaphore. The integer and other data shared by the
P and V operations are protected in critical sections guarded by a binary semaphore mutex. The two imple-
mentations differ in the invariants that their executions satisfy. We precisely distinguish the semantics of
the two implementations below.

Using Habermann's notation [3], we define the following quantities for formally describing the state
of synchronization in a general semaphore:

C(s): initial value of a general semaphore s.

nw(s): how many times P(s) was executed.

ns(s): how many times V(s) was executed.

np(s): how many times P(s) was passed, i.e., how many times a process was enabled to continue
with the instruction following P(s).

Upon every exit from a critical section protected by mutex, the state of synchronization in
Hemmendinger's conslruction satisfies the following invariant relation:

(1) np(s) = rain(nw(s), C(s) + ns(s))

which is exactly the invariant relation that Habermann used to define the effect of executing the primitives
wait and and signal [3]. On the other hand, the invariant satisfied by Kearns' implementation upon every
exit from a critical section is

(2) np(s) < min(nw(s), C(s) + ns(s))

which is a somewhat weaker condition than (1). This difference arises from the circumstance described
below. When there are processes blocked on s (i.e., np(s) < nw(s)) and a V(s) is executed, Keams' imple-
mentation releases mutex before a blocked process is awakened and completes its P operation, thus allow-
ing ns(s) to be incremented (possibly several times) without incrementing np(s); on the other hand,
Hemmendinger's implementation does not release mutex until a logically blocked process is awakened and
completes its P operation and, thus, an increment of ns(s) is always followed by an increment in np(s)
before other changes can be made to the quantities used in the invariant.

9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F65762.65764&domain=pdf&date_stamp=1989-01-03

- 2 -

2. An Efficient and Concise Algorithm

Since semaphores were informally described by Dijsktra[4], several versions of semaphores have
appeared in the literature. Whether (1) corresponds to the semantics of a general semaphore better than (2),
or vice versa, can be a question subject to much debate. If (2) is an acceptable invariant, the following is an
efficient and concise algorithm for implementing a general semaphore in terms of binary semaphores.

type
semaphore = record

mutex -- 1, delay = 0; (*binary semaphores*)
n = 0 (*integer to simulate general semaphore*)
end record;

Procedure V(var s: semaphore)
begin
PB(s.mutex);
s.n := s.n + 1;
if s.n = 1 then VB(s.delay);
VB(s.mutex)
end;

Procedure P(s:semaphore);
begin
PB(s.delay);
PB(s.mutex);
s.n := s.n - 1;
if s.n > 0'then VB(s.delay);
VB(s.mutex)
end;

Correctness of the algorithm can be established by noting that s.delay is set to 1 (open) when s.n > 0,
and is set to 0 (closed) when s.n = 0. Thus, a P operation will block on s.delay until s.n > 0. Like Kearns'
algorithm [2], this algorithm satisfies the invariant (2), but uses fewer shared variables, and requires fewer
context switches. Executing a P operation can cause up to three context switches in Kearns' algorithm,
whereas the above algorithm requires at most two context switches to complete a P operation.

References

1. D. Hemmendinger, "A Correct Implementation of General Semaphores," ACM OSR 22(3) (July 1988)
pp. 42-43.

2. P. Kearns, "A Correct and Unrestrictive Implementation of General Semaphores," ACM OSR 22(4) pp.
46-48.

3. A.N. Habermann, "Synchronization of Communicating Processes," Comm. ACM, vol. 15 no.3 (March
1972), pp. 171-176.

4. E.W. Dijkstra, "Cooperating Sequential Processes," in Programming Languages (F. Genuys, ed.),
Academic Press, 1968, pp.43-112.

10

