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Abstract 

Developing the next generation of large-scale software systems will change the patterns of work in 
system development organizations. We therefore expect the major systems engineering problems to be 
solved will require organizational solutions that accomodate advanced software development tools, 
flexible manufacturing techniques for system life cycle engineering, and knowledge-intensive strategies 
for managing large system development projects. Over the past seven years, we have created an 
experimental organizational environment for developing large software systems that allow us to encounter 
these problems, and find effective solutions or interventions. We call this organizational environment the 
System Factory. We have developed and evolved the System Factory through seven generations of 
graduate student staff, totaling more than 500 in number. In this report, we describe what the System 
Factory is, the problems we have investigated, the results and example products of this research, 
potential future applications of the System Factory approach, and finally our experiences in transferring 
this technology. 
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Angeles, CA 
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1. I n t r o d u c t i o n  
The System Factory project is concerned with exploring alternative ways and means for meeting the 

challenge of large-scale software system engineering (LSSE) in the 1990's. The System Factory 
approach consists of applying recent results in software engineering, knowledge-based systems 
technology; computer-aided manufacturing, and organizational analysis of computing work to the 
problems of engineering large-scale computing systems. In particular, these latter results outline many 
organizational problems in system development, as well as strategies for mitigating them that go beyond 
what existing engineering activities alone can accomplish. 

Through seven years fo work in the System Factory project, we have produced and documented a 
variety of results and products. These outcomes include both technological and organizational artifacts, 
and numerous research contributions. We have produced an inventory of reusable software components 
that we can reconfigure into different application systems or environments [39, 20, 41] [31, 8, 44, 45]. 
Each of these components has a record of formal specifications and narrative descriptions that 
characterize its development life cycle. We have produced a set of techniques for engineering the life 
cycle of software applications and environments [32, 46]. These techniques primarily address how to 
articulate and transform software system specifications into concrete source code realizations, whether 
employing existing software components, or through prototyping entirely new application systems. We 
have produced and continue to refine a set of strategies for managing LSSE projects that can be 
specialized to specific organizational and technological arrangements [26, 51, 42] [43, 49, 3]. These 
strategies employ policies for project management that we have observed realize substantial 
improvement in software productivity and quality. We are also continuing our investigation to develop a 
paradigm for flexible manufacture of large software systems [12], and articulating a knowledge base of 
software technology transfer know-how [38, 48] based upon our research into effective transfer and 
transition practices. 

Our simultaneous focus on system engineering activities, and the organizational patterns and 
processes in which they occur, is the unique aspect of our approach. It also represents, in our view, the 
best opportunity for realizing substantial improvements in software productivity, quality and long-term 
software cost reduction. We believe that our research results and products increasingly substantiate this. 

Since the SF project exists within an academic setting, we have been able to work with large software 
development staffs of 30-70 MS and PhD graduate computer science students. 2 We started in 1981 with 
a basic time-shared computer system, a staff of 50+ students, and the initial SF concept. Over the last 
seven years, we have iteratively developed, used, and evolved the SF into its present form through seven 
development cycles. Thus, we also have produced more than 500 software engineers who have become 
skilled with contemporary tools, techniques, and management strategies useful in LSSE projects [47]. 

In this report, we first provide some background on the System Factory approach to LSSE. Section 2 
serves to identify our view of some of the outstanding problems of LSSE. Section 3 next describes the 
emergence of the System Factory project over the past seven years. Section 4 describes the results 
emerging from the System Factory approach to LSSE over the last seven years. This includes a brief 
description of selected automated tools, development techniques, and setting-independent project 
management strategies we have produced and refined. In particular, we describe an ensemble of SF tool 
components that represent a reconfigurable computer-aided software engineering environment (CASEE) 
that operates on a network of hetereogeneous processors. In Section 5, we briefly suggest how the SF 
approach could be applied in the future to develop an automated environment for the design and 
evolution of a next-generation multiprocessor system. Section 6 describes our experiences in transferring 
System Factory technology locally and externally. Finally, we conclude in Section 7 with some reflections 

2Available staff are typically group into 6-12 subcontracting teams consisting of 4-6 students. SF staff are expected to commit 
10-12 hours per week to project activities, although they sometimes end up spending much more time. Because of our geographical 
setting, most SF students are actually software professionals from system development firms including AT&T, Hughes, TRW, 
Aerospace Corp., JPL, etc. working part-time toward a graduate degree in computer science. As such, some teams primarily work 
eff-campus, :since all teams must rely upon networked access (Arpanet, USC-LAN, uucp/bltnet, and kermit-based telephone) to SF 
processors for electronic mail, file transfer, remote legin, software development, and interactive consultations. 
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on the SF approach to LSSE. 

2. Outstanding Problems in Large-Scale Software Engineering 
Developing large software systems in a highly productive, high quality, and cost-effective manner will 

be a major challenge in the 1990's for all large high technology, engineering, and manufacturing firms. 
We believe that new or improved tools for computer-aided software engineering by themselves are not 
the most effective strategy for meeting this challenge. Instead, we hold that improved software 
productivity, quality, and long-term cost reduction must integrate advanced software technologies with 
techniques for their use by large changing staffs who will be trained and managed within specific 
organizational settings [51,42, 20, 45, 12, 50, 49, 3]. 

Large-scale software systems (LSS) typically represent a substantial collection of programs that total 
between 25K-500K lines of source code. These systems are developed by teams of 10-200 or more 
programmers, intended to be used for many years, and maintained by generations of new staff. 3 LSS 
therefore represent dynamic open systems that are never completely understood in detail by any 
individual, as well as other problematic challenges [19]. 

LSS development projects are people and resource intensive. The time, skill, and commitment of 
software developers and managers are critical resources that a development organization must effectively 
mobilize and sustain. Organizing system development activities with available staff and resources is a 
precarious endeavor. Incremental reorganization of these activities is ongoing in response to staff 
turnover, changing system requirements, acquisition of new system upgrades, shifting occupational or 
career advancement contingencies, ineffective system development methods, shifting budget and 
schedule constraints, and other changing circumstances. When project organization cannot effectively be 
matched to the tasks needed for system development, then costly problems such as work slippages, 
errorful systems, or mis-timed system logic can appear. Subsequently, the problems of producing large 
computing systems wil___/primarily b_..e organizational. These problems will center around how to organize 
available staff and development resources in an organizational setting to engineer software products 
throughout their life cycle, and in ways that seek to achieve high rates of productivity while mitigating 
against the introduction of errors. As such, solutions must also be of an organizational character if they 
are to be most effective. 

Our objective is to bring together a set of automated software engineering tools, flexible software 
development techniques, and project management strategies together with a large staff and computing 
resources into an experimental organizational form we call the System Factory. Within the System 
Factory, we develop LSS in ways that allow us to encounter the various organizational problems that 
emerge, and endeavor to find effective solutions. In particular, we have focussed our attention to the 
following problems of LSSE that include how to: 

• Construct computer-aided software engineering environments that can be configured to 
support all or part of the system life cycle; 

• Specify reusable software concepts, artifacts, and programs; 

• Manage and train staff subject to frequent turnover; c 

° Support the evolution of multi-version software product families; 

• Support exploratory development for rapidly prototyping emerging software concepts or 
technological innovations; 

• Integrate an open system of tools, techniques, management strategies, staff skills, and other 
resources to support LSSE work in different organizational settings. 

In our experience, each of these problems of LSSE are continually encountered by individual software 

3In the U.S., most LSS staff stay on a job typicaUy 12-30 months. LSS that exist for,three years or more usually must survive one 
or more cycles of complete staff turnover. 
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engineers, software engineering work groups, and interacting networks of software teams working on LSS 
projects. Since each must confront the problems and find solutions, then such solutions must be 
coordinated across all work units to be most effective. The System Factory project thus serves as an 
appropriate experimental laboratory for studying these problems and affecting solutions or interventions. 

The following section describes the history of the SF project. 

3. Genesis and History of the System Factory Project 
The SF is an investigation into LSSE with large staff in an academic setting begun in 1981. At that 

time, few studies of software engineering project courses or LSSE projects had been published. But a 
growing number of studies of the evolution of new computing technologies and large computing systems 
in complex organizational settings were available [23, 24, 25, 38, 26]. These studies indicated that the 
development and use of large systems was plagued by a background of recurring dilemmas that 
diminished the potential benefits, decreased productivity, and raised the cost of system development and 
use. These studies found that the structure and function of computing systems was inextricably bound (or 
"webbed") to the organizational settings where they were produced and consumed, and to the jobs, 
careers, and circumstantial interests of the people who animated them. This meant that if we were to 
engage in a LSSE project, we needed to investigate not only the role of new software tools and 
techniques, but also how the project's setting would interact with the system products being developed, 
how they would be developed, and who would be doing the development work. As such, if the interaction 
was benign, then the new software technology might be most effective. On the other hand, if the 
interaction was substantial, then we could expect to encounter problematic situations that could decrease 
development staff productivity, reduce product quality, or otherwise raise the cost of LSSE. 

The ideal candidate for such a study would therefore be a multi-year, LSSE project that would require a 
complex organization of people and computing resources situated within some larger institutional context. 
A long-term project would assure a dynamic project organization in terms of staff turnover and innovations 
in local computing facilities. A LSSE project would inherently require a large staff, extensive use of 
available computing resources, schedules, production plans, administrative controls, and software 
engineering tools and techniques. The larger institutional context would create a marketplace of 
occupational and career contingencies for project staff, of external administrative units to manage base 
computing facilities and provide support staff, of extramural research and development funds, and of 
computing system vendors to provide upgrades to local computing facilities. Finally, the LSS system to 
be developed should be unfamiliar to allow us to experience the uncertainty in the final shape of things to 
come, so that we could try, fail, learn, and manage as we go. The SF would therefore be an experiment 
that represents a complex, real-world LSSE project based in an academic setting. 

3.1. Initial Condit ions of the SF 
Our objective was to mobilize available staff and computing resources to develop a language- 

independent software engineering environment (LISEE)[39] within schedule, budget, and computing 
resource constraints. The LISEE would initially be the LSS software we would develop in the SF. 4 If 
successful, we could in principle then employ the LISEE tool ensemble in other LSSE projects. 

In January 1981, we started with a development staff of 57 graduate software engineering students 
who elected to take a 15-week semester course in LSSE. These students were competent small-scale 
Pascal programmers possessing an undergraduate degree in computer science or the equivalent, but 
generally assumed to lack prior skills in LSSE. Students were expected to commit 10-12 hours per week 
to this course. Since this was a course televised from USC to local industrial settings, this meant there 
was a partial geographic distribution of students in 5 different remote TV centers in addition to the majority 
of in-house students. There was a visible ethnic diversity of students represented by at least 10 different 
cultural or national backgrounds. At least one-third of the students spoke English as a second language. 

4This LISEE eventually evolved into the SF's current software engineering environment described in a latter section. 
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All software development was to be performed on a centralized, time-shared DECsystem-10 mainframe 
system with minimal programming support environment. There was a firm schedule for software delivery 
(end of the semester deadline is absolute) and budget (no discretionary funds available) in place. We 
then started with a modestly articulated model of software engineering technology (as of 1981) as found 
through a comprehensive literature review and reading list 12 pages long, with about 200 citations, 
prepared by the author. 

Following a number of introductory lectures, we provided the staff with the software technology reading 
list partitioned into general reference materials and potential LISEE components. This initiated the 
beginning of the project. Next, we randomly assigned small number of students to review selected 
reference materials and become knowledgeable about one domain of software tools pertinent to the 
LISEE. Example domains included structure-oriented editors, testing systems, database management 
systems, user interfaces, etc. [39]. We then provided the staff with initial development requirements in 
the form of a conceptual LISEE architecture. This architecture served as the basis for dividing project staff 
into project teams of 2-7 cooperating students. Ten teams were established, five in-house and one at 
each remote site. Each team was then responsible for developing one component tool of the LISEE. We 
followed by providing the staff with techniques for developing the LISEE. These techniques addressed the 
the conventional stages of the system life cycle: requirements analysis, functional specification, 
architectural design, detailed design, implementation and integration, testing, user documentation, and 
maintenance. Basic background in these techniques was derived from examples available in the literature 
at that time (cf. [42]). Last, we provided the staff with background lectures on the organizational problems 
and strategies of LSSE as derived and transformed from the previously cited studies of the consumption 
of computing systems in complex settings. 

Actual LISEE development was scheduled for eight weeks, following seven weeks of introductory 
lectures and background preparation (readings, class discussions, homework assignments, exams, and 
informal out-of-class discussions). The project's development was scheduled to reiterate the techniques, 
problems, and strategies for performing one system development life cycle stage each week, while staff 
performed that life cycle activity [42]. Thus we could use class time to discuss problems that different 
teams encountered as examples during that system development life cycle stage. Of course, we did not 
know if this was reasonable or if it would work overall. But we were there to learn through success or 
failure. After the project's eight week development, all ten components of the LISEE were prototyped, 
demonstrated, documented, and delivered by the staff of then 53 graduate students. 

3.2. Outcomes and Implications of the Initial SF Experience 
Version 1 of the LISEE represented 30K+ lines of Pascal code operating on a TOPS-10 based 

DECsystem-10 mainframe. The tools developed ranged in size from roughly 1500 to 4000 lines of code. 
All LISEE components were demonstrated to be operational, although there was variation in the quality 
and amount of system development work completed by the different SF teams. Each LISEE tool provided 
an operational interface or stub for interconnecting to at least one other component in the LISEE 
architecture. This LISEE was clearly not production-quality, but our objective in the SF experiment was to 
demonstrate that a LSS system of the complexity of a LISEE could be prototyped by a large staff in an 
academic setting in a relatively short time. 

Each team submitted project team documentation that recorded their work completed in each system 
life cycle stage. There were eight chapters to each team's documentation, one chapter per life cycle 
stage. On average, each team delivered 50-100 pages of system life cycle documentation per person. 
That is not to suggest that every person produced that volume of documentation, but rather that a two- 
person team might produce 150 page project document, while a five person team might produce a 300 
page project document. In total, about 3000 pages of LISEE development life cycle documentation were 
delivered. 

Overall, the general feeling among all project participants was that the project was a success, and that 
most students valued the software tools and project documentation they developed. For a number of 
students, this was the most substantial and best engineered piece of software they had yet developed, 
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and the largest group project in which they had ever participated. 

3.3. SF Iterations: 1982-1987+ 
Although the initial SF project was successful, maybe we were just lucky or misleading ourselves. That 

is, could the experiment be replicated with an entirely different staff and produce comparable results? In 
order to answer this question, we decided to repeat the experiment with the same objectives but with 
entirely new staff and same computing environment. However, this time a smaller staff of 30 
undergraduate students was employed using same computing facilities as before, and same development 
techniques and project management stretegies followed. Roughly comparable results were produced in 
terms of a smaller, less ambitious LISEE and related documentation. 5 This repetition of the SF 
experiment indicated to us that the SF concept was sufficiently viable for further experimentation, 
refinement, and development. Since then, we have repeated the SF experiment in an iterative manner, 
incorporating new refinements, insights, and technological enhancements. Some highlights follow. 

In the next iteration, we chose to utilize the first generation SF documentation and software as 
prototype available for reuse if desired by team members. We revised the basic LISEE architecture, the 
functional capabilities of its tools, the software life cycle development techniques, and the project 
management strategies to better accomodate defiencies observed in the initial iteration. Each 
subsequent iteration would also give rise to a revised set of tools and architecture, techniques, and 
strategies. ~; Also, the computing environment was upgraded to TOPS-20 operating system on the same 
computer system. This was not our decision, but it happened in our work setting, thus we had to transition 
to it in order to continue. 

Next iteration, we were given another opportunity to migrate to a new computing environment, this time 
to a VAX-VMS system. We also decided to migrate the LISEE from Pascal to C, and to expand the scope 
of the LISEEE to support experiments in VLSI circuit design [40, 20, 41]. However, as our experience, 
teaching materials, and software tools expanded, we came to find the seven week introduction, and eight 
week development schedule too confining. The choice we opted to implement was to expand the one 
semester course into a two semester, academic year length course. This would allow us to take more 
time and explore at greater levels of detail, the tools, techniques, and strategies we were putting into 
practice. This also would be a good time to again migrate, revise, and redevelop the LISEE (now called 
simply a SEE) in C to a VAX-750 running Unix 4.2bsd [44]. This migration then represented the next 
iteration. Finally, for the current iteration, the SF was expanded to utilize a loosely coupled network of 
heterogeneous computers. The SEE was continued in C and C++ on two VAX-Unix 4.3bsd systems and 
two SUN-3, workstations all on a common LAN, as well as migrated to operate on a separate network of 
AT&T 3B2 and 3B20 computers 7 all running Unix System V. A TI Explorer Lisp Machine was made 
available, as were a number of IBM-PCs running MS-DOS. These latter machines were used for 
prototyping next generation knowledge-based SF tools, document preparation, development of small 
program modules, and remote file transfer. 

In sum, we refined and redeveloped the SF's tools, techniques, and strategies through seven 
iterations. In the course, we provided hands-on training with the development, use, and evolution of the 
SF's technologies for more than 500 graduate students in total over the seven year period. We now turn 
to describe the SF approach as it now stands in terms of the SEE, software life cycle development 
techniques;, and project management strategies we employ. 

sOf course this is not a true replication of the original experiment. But we felt this case study experiment was a close 
approximation of the first, and therefore comparable. 

eFor example, the original LISEE required a relational data base management system to be used as a central archive of project 
related information. Development of a RDBMS was then started and continued until the SF migrated to a Unix 4.2bsd environment, 
where we were able to use the existing Ingres RDBMS, a system more capable than ours. Continuing development our the original 
SF RDBMS was then halted, and another new software tool was added to the SEE for ongoing development. 

7These computers have since been decommissioned and replaced with a network of SUN-3 workstations. 
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The next section describes selected results we have produced in tackling these problems in the SF 
approach to LSSE. 

4. The System Factory Approach: Product, Process, and Setting 
Central to the SF approach to software engineering is a joint focus on three key determinants of the 

outcomes of LSSE: the products developed, the process through which the products are developed, and 
the production setting where the process creating the products occurs. The SF's products embody a 
technological structure and function. 8 The software production process, whether organized according to 
a "waterfall model" or prototyping-incremental development system life cycle must be planned, staffed, 
directed, scheduled, budgeted, and controlled to accomodate smooth production of the intended 
technological products by available staff. Formal software development techniques may be used to 
further structure this process. The production process therefore serves to structure the flow and 
transformation of organizational resources into technological products and work arrangements. 9 Finally, 
the production setting provides the staff and resources that are mobilized according to organizational 
policies, procedures, histories, incentives, and pressures in its marketplace to animate the process of 
product manufacture. In particular, we find the organizational and technological arrangements that 
support software production often have a profound affect in shaping how software development occurs. 
For example, the base computing environment used in the SF was changed seven times (once each 
annual project cycle) primarily due to actions of the university's computing facility through their attempt to 
provide modern computing services that are easier to sustain and operate. However, we find that many 
researchers seem to ignore the importance of how idiosyncratic features of each setting uniquely 
influence how computing resources are consumed, how software systems are produced, and what 
products are produced. 

Clearly there has been increasing attention directed in the software community as to whether LSSE 
depends more upon the nature of the product or the process. However, little attention is directed at the 
organizational setting where a particular group of people must work together using available resources to 
develop software system products according to some formal or ad hoc development process. Academic 
computer science departments, computer system manufacturers, aerospace contractors, banks and 
insurance companies, and national scientific laboratories represent some of the places where LSSE 
occurs. Clearly there are differences across and within such settings in terms of the kinds of software 
applications developed, development tools employed, computers and operating systems utilized, 
programming languages primarily used, professional background and skill level of the software 
developers, budget and development schedule constraints, and so forth. As such, we find the influence 
of the organizational setting on the products produced, the process through which they are produced, and 
the joint influence of each on the other is fundamental [26, 42]. In our view, overlooking these patterns of 
influence is thus a fundamental mistake in attempting to understand how LSSE occurs. 

This section therefore describes selected products, production process techniques, and project 
management strategies used in the SF. After this, we describe a potential future application of SF 
technology. We then describe our experiences in transferring these SF technologies to other 
organizational settings. 

8The SF's products include programs, documentation, software development techniques and analyses, application-domain 
knowledge, routines for SF use and evolution, strategies for managing LSSE, and people trained and skilled in LSSE. In addition, a 
number of research publications have been produced, presented, and disseminated. 

9Elsewhere we refer this transformation of organizational resources into technology-based work arrangements as "packaging", 
and the ensemble of products a "computing package" [25, 38, 26]. 
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4.1. SF Product: A Computer-Aided Software Engineering Environment 
The SF'.~; CASEE represents a reconfigurable emsemble of software tool components. It is designed to 

support the computer-aided engineering of VLSl or software systems throughout their life cycle 
[20, 40, 41, 44]. However, our focus in this report is limited to large software systems. The SF's CASEE 

represents a LSS consisting of more than 250K source code statements and 5K pages of processable 
documentation. It is designed to process the family of languages that describe each life cycle activity. 
For instance, one way this is realized is by generating and configuring a set of language-directed tools 
that can evaluate language-based system descriptions for consistency and completeness. Another way 
is to generate and configure a set of tool components to serve as the base for specifying, rapidly 
prototyping, and validating particular application systems. Accordingly, we built the CASEE on top of, and 
integrated with, available operating system environments (Unix 4.3bsd, Unix System V, MS-DOS, and 
Lisp) that operate on our network of processors. The CASEE tools constitute the System Factory's 
production infrastructure of software machinery used for fabricating and analyzing software system 
descriptions, as portrayed in Figure 4-1. 

What follows is a brief description of the System Factory CASEE tools that we are investigating: 

Language-directed editor generator, utilizes formal language specifications to produce a language- 
specific editing environment that detects syntax errors and inconsistencies in type declarations and 
construct usage at keystroke entry time. Lanugage-directed editors for software specification, design, 
coding, and animation languages have been generated and put into to use in the SF. It also constructs 
an abstract syntax tree and symbol table that can be used as inputs to the testing system and Gist 
specification processor. We have used this tool to rapidly construct a facility for generating formal system 
specifications from table-structured input of narrative system requirements. This was done by 
restructuring LDEG to accept object-oriented (semantic network) specifications, thus becoming a kind of 
knowledge-directed editing environment [57]. 

Flow analyzer and testing system: performs static control flow and dynamic data flow analysis of 
source code descriptions, produces augmented source programs with probes for execution monitoring 
and debugging, and provides a rule-based mechanism for generating test cases for software modules 
interfaced to a debugger. This tool supports validation of a software application's performance 
requirements. We intend to integrate this testing system with the CMS to support a knowledge-based 
tester of multi-version system configurations. 

Configuration management system: (CMS) provides automated mechanisms for controlling multi- 
version system descriptions (e.g., specifications and source code implementations), through use of a 
module interface and interconnection definition language (NuMIL) and compiler [31,30]. The NuMIL 
language and processing environment are used to specify the architectural configuration of new 
applications, or used to generate such a specification for existing applications. These specifications 
coupled to their source code implementations provide an appropriate medium for maintaining large 
evolving software applications [31,30]. This system is currently being extended to support the design 
and configuration management of distributed, real-time multi-processor systems. A new facility has been 
designed to help coordinate and communicate to staff the modification of configured system components 
for large development projects [21,53]. We intend to further extend this system to incorporate 
mechanisms for reasoning about alterations made to the structure and function of software system 
configurations. 

Window-based user interface and command processor, provides a window-based command/shell 
processor,, mail handler, and display manager that other tools or application systems can use as their 
"front end." We are currently incorporating an additional mechanism for creating active display devices 
(real-time gauges and digimeters). 

Gist specification analyzer and simulator, provides a basic facility for constructing, analyzing, and 
functionally simulating system specifications written in the Gist specification language [1,8, 46]. We 
intend to extend this facility to support mechanisms for explaining the behavior of operational system 
specifications. These mechanisms are being developed in conjunction with the FSD environment at 
USC/ISt [2]. 
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Figure 4-1: The System Factory SEE 
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Document integration facility: (DIF) provides a facility for creating and maintaining a multi-version 
electronic encyclopedia of system documentation hypertext [58, 27, 15]. This enables us to interrelate 
and trace textual/graphic system documentation across all system life cycle activities that can be 
uniformly queried, browsed, revised, and archived. Life cycle product descriptions for all SF CASEE tools 
are currently included in the DIF database archive. We intend to extend DIF by integrating it with the 
CMS to document multi-version system configurations, with SAG and PPSS to support electronic project 
management documents, and VIZ to create animated documents that visualize system features in-the'- 
large and in-the-small. 

Spreadsheet application generator. (SAG) provides a special-purpose environment for specifying and 
rapidly generating interactive spreadsheet-like application programs. SAG has been used, for example, 
to develop a modest decision support system (PEST) for developing software cost models and calculating 
computer system acquistion costs. SAG is interfaced to a relational data base management system so 
that it can utilize data bases created by other tools (e.g., PPSS). We are currently experimenting with 
techniques for generating rule-based spreadsheet applications [10], as well as non-rectangular, n- 
dimensional, distributed, and dynamically reconfigurable spreadsheet applications. Potential applications 
of this kind include simulation of dynamic systems, cellular automata, distributed intelligent system shells, 
and emulation of reconfigurable supercomputer system architectures [18, 52]. 

Project planning and schedufing system: (PPSS) provides a rule-driven data base system for planning 
project schedules, work breakdown structures, task precedence networks and diagrams, and their 
interdependence (cf. [14]). These mechanisms can be employed to establish and assess the impact of 
changing requirements on a development project's budget, schedule, and production plan. We are 
currently integrating the services of this system into those provided by the PMSS. 

Knowledge-based project management support system: (PMSS) a knowledge-based software process 
support system (cf. [37]) that incorporates an operational model of the software life cycle processes 
embodied in KBSF development techniques and project management strategies [12, 50]. PMSS is a kind 
of intelligent system that represents, simulates, and reasons about the software development process. 
The initial demonstration version of PMSS was implemented by manually transforming Gist specifications 
of selected software development subprocesses into an OPS5 rule-based system. However, the current 
version of PMSS is being constructed using the Knowledge Craft 1° expert system development 
environment. 

System prototyping and dynamic visualization system: (VIZ) a visual programming, system prototyping, 
and diagram building facility [13] that supports the visual specification and script-based animation of 
2D/3D software system descriptions [36, 28]. We are currently extending this system by integrating it with 
the CMS to produce multi-dimensional (2D/3D color graphics) layouts of static and dynamic 
configurations of multi-version systems, and system components. (These layouts resemble the complex 
circuit diagrams used to design, animate, debug, and document VLSI circuits.) 

Unix (lex, yacc, ingres, rcs, mm, troff, curses, more, OPS5, emacs,...): many of the language 
development, relational data base management, revision control, and related tools available in the Unix 
operating system serve as a foundation for most of the CASEE tools listed above. 

4.2. SF Production Techniques for Software Life Cycle Engineering 
Many tools in the System Factory CASEE are language-directed. This means we can configure and 

generate a software tool set that can process alternative language-based descriptions for a particular 
system engineering application. 11 It is possible to specialize a family of tools supporting system 
descriptions occurring at each software life cycle stage. Using this approach, system life cycle product 

l~'rademark of Carnegie Group Inc. 

11For example, this suggests that it is possible to generate a tool set that can check/enforce local software quality assurance 
standards (e.g., follows certain design rules) when encoded in the (attributed) language specification used for tool initialization. 
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descriptions such as software requirements, functional specifications, architectural configuration 
specifications, detailed module specifications, user-system dialogues, executable source codes, test case 
specifications, maintenance procedures, and structured diagrams can be processed as long as they can 
be described via the LR(1) language specification formalisms we use. Subsequently, these kinds of 
language-based descriptions are also amenable to automated manipulation supporting system evolution 
[31, 30]. 

Thus a central facet of the SF techniques for engineering software systems throughout their life cycle is 
to specify each stage of development in a formal, processable language. Processing tools can then be 
configured in ways that check the consistency and completeness of a given specification, and thereby 
reinforce the the specification technique appropriate to each stage of system development. In addition, 
such SF techniques must incorporate strategies for incrementally developing software descriptions in 
ways that utilize available processing tools. 

For instance, consider the intermediate stage of system development where a software system's 
architectural configuration must be specified. A technique for specifying the architectural configuration (or 
structure) of a LSS requires identifying a network of operational modules that progressively transform 
imported objects into exportable data resources. The portals through which imports and exports move 
are the module interfaces. But structural specification first requires partioning the system's functional 
specifications into realizable functional components. Accordingly, we must choose between alternative 
partitions of software components, depending on whether such components are readily available 
(reusable) or must be built. The selected partition then circumscribes decisions for allocating computing 
resources and staff to module development. As such, the structural system specification defines the 
boundaries for distributing concurrent computation across the system, as well as dividing the detailed 
design and coding work among available development staff. Thus, if the division of work changes (due to 
staff turnover for example), then the system's configuration may evolve, and vice versa. 

Since LSS configurations inevitably evolve over time, then there is need to describe the evolving 
system architecture in a form whose consistency and completeness can be checked and maintained. 
Further, in LSSE projects, dispersed groups of developers may specify, code, test, and modify different 
modules asynchronously. This means that a given module might exist in a number of different but related 
versions at any time. It also indicates that insuring configuration integrity is a major problem in LSSE 
project coordination. Similarly, the upward-compatibility of a modified module or subsystem with respect 
to the rest of the system (and related component families) must be checked for consistency [32]. 
Subsequently, LSSE projects can benefit from a system architecture specification processor, module 
interconnection and interface definition language, and configuration diagram visualizer for managing 
families of multi-version modules. The module interconnection language is the medium for specifing 
system architectural design and configuration [33]. However, we require a MIL that can represent families 
of multi-version modules and subsystems. In our case, we developed and employ NuMIL, a MIL designed 
with these requirements in mind [30]. An example in the following figure shows a NuMIL specification of a 
family of subsystems with different processor versions, each composed of different versions of two 
common modules. 

Overall, these processing requirements represent what the SF CASEE configuration management 
system provides [31,32, 30], as portrayed in the last figure. Clearly, such a CMS benefits by 
incorporating UNIX utilities such as make, sccs / rcs .  A relational database management system (e.g., 
Ingres, Unify, or Oracle) allows system developers to store, browse, and query information about families 
of configured system components, and to control concurrent access to these components. However, such 
RDBMs require a separate object-oriented interface to properly map the descriptions of configured 
system components into a relational format [30]. 

4.3. Strategies for Managing Large Software Projects in the SF 
How do we manage a large engineering team to develop, use, and evolve a LSS system? That of 

course is the question we face. But we believe we have a unique approach to investigating this important 
question. 
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subsystem S is 

p_rovide a,b; 
require c,d; 
configurations 
/ * * *  Subsys~m S has two configu~ons IBM-PC and VAX * * * /  

IBM-PC = { M 1 : version I, M 2 : version 2 ;} 
VAX = { M 2 : version l, M 1 : version 2 :} 

end 

module M 1 is 
provide a, foo; 
require d, b; 
implementations { 
/* M 1 has two versions */ 

version version 1 { 
realization x.c; 

provide 
int a; 
short foo; 
require b(), d;} 

version version 2 { 
realization y.c; 

provide 
float a; 
int foo; 
require b(), d;}} 

end 

module M 2 is 
provide b; 
require c, foo; 
implementations { 
/* M 2 has two versions */ 

version version 1 { 
realization m.c; 

provide 
int b(s,t) char *s, 
require c, foo;} 

version version 2 { 
realization n.c; 

provide 
int b(m,n) char *m, 
require c, foo; }} 

end 

*t; 

*n; 

Figure 4-2: Example NuMIL Specification 

Since the late 1970's, we have been conducting in-depth field studies of large system development 
12 projects in both industrial and academic settings. Through careful comparative analysis of many 

engineering projects, we are systematically identifying problems of organizing and managing these 
projects as well as the strategies used to handle these problems. Rather than describe the analysis and 
the problems, we instead outline five strategies for managing large software engineering projects. 13 We 
also intend that some of these strategies might evoke an awareness of similiarity to readers who have 
observed or practiced such strategies without seeing them made explicit. 

4.3.1. Focus on the coordination of development work and workers 
One set of concepts found useful for effective project organization emphasize the importance of 

establishing a socially proactive, democratic workplace [4] intended to encourage computer-supported 
cooperative work [6, 16, 17, 50, 3]. Accordingly, the particular concepts to follow include: 

• provide avenues for both system developers and eventual users to participate in the 
decisions determining the system's features, purpose, and modes of use; 

• openly share strategic information regarding the purpose, intended uses, and expected 
outcomes with participants developing and using the system; 

• proviide for a fair sharing of the benefits between participants ansing from both the 
development and use of a new system; 

12This includes a sustained effort at studying the dynamics of the System Factory project itself. 

13The reeder interested in the studies, analyses, and problems should consult [26, 51,42, 43] [50, 16, 17, 3]. 
[22.] for an introduction to the problems in a similar setting. 

Also consider 
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Figure 4-3: The SF Config. Mgmt. System 

• guarantee participants will not be penalized for speaking out or criticizing proposed directions 
for local system development efforts; 

• since there may be disputes between (or among) system developers, managers, and users, 
provide an organizational mechanism for a fair settling of those disputes; 

• encourage a participatory, democratic awareness among system developers, managers, and 
users so that they will be committed to accomplish the best job possible with available 
resources, and to work through (or around) the problems that arise in developing systems. 

• continually seek to provide new tools and techniques that facilitate the conceptualization and 
collaboration of system development activities by a large staff working in a complex 
organizational setting. 

These concepts thus provide a basis for the other strategies for organizing system development work 
that follow. 

4.3.2. Design project organization to facilitate commitment 
Everyone will be responsible for managing some portion of overall work activities. Since project 

managers will be responsible for coordinating work and resources within the local computing 
infrastructure, they need to know about bottlenecks and other troublesome conditions. Maintaining a 
high-level of software production requires the commitment of staff and resources to achieve it. Continuity 
of staff commitment to project and co]leagial objectives is more important than mangerial control over 
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these staff [38, 26]. Management control in large projects is distributed and more subject to contention. 
Project staff who must be coerced into performing undesired tasks cannot be expected to perform those 
tasks with high productivity and care. Maintaining staff commitment requires regularly assessing the 
conditions that bind their commitment to work including desired resource availability, local (dis)incentives, 
and career opportunities. Such an assessment emerges when staff participate in deciding how to realize 
project objectives. The regularity of assessment depends on the perceived stability or uncertainty of local 
project management conditions. Unexpected circumstances will always emerge and give rise to 
destabilizing conditions. However, strong commitment will often provide staff members idiosyncratic 
motivation to accommodate local contingencies until the prevailing order is re-established, unless their 
commitment is sufficiently weakened. TM But if their commitment to project objectives is strong, so that 
their perceived investment (or stake) in project activities is clear, then they can build on their investment 
by discovering new ways to perform their work [3]. 

4.3.3. Identify the incentives that motivate project participants 
Why are software developers as productive as they are? This may seem to be an odd question, since 

many people are fond of asking how do we make software developers more productive. But we find that 
to answer the latter, you must first be able to answer the former. In particular, we find that what motivates 
software developers to be as productive as they can be is often idiosyncratic and circumstantial [38, 26]. 
What motivates developers today, may not motivate them equally well tomorrow. For example, in working 
with a student staff in the SF, one might assume that they seek to be very productive to insure earning a 
high grade. This seems true for some staff, but not all. Some students seek to gain first-hand experience 
and research skill in the development and use of state-of-the-art software tools. Other students hope for 
advancement or promotion in their job, based on their acquisition of certain new technical skills, such as 
LSSE. Still other students have an entreprenuerial spirit, and hope to identify new software or services 
through their participation that they could eventually develop and profit from in the private sector. Finally, 
many students are motivated by more than one of these situations. In sum, near-term rewards such as a 
high grade may provide an incentive for certain staff, while other staff are primarily concerned with long- 
term professional, occupational, or financial opportunities. Therefore, in the SF, we seek to regularly 
assess and cultivate the incentives that might provide intrinsic motives for each staff participant to be 
highly productive and quality conscious. 

4.3.4. Develop new software technology as a package 
LSS systems are more than a simple collection of many programs and source code files. Every large 

software system assumes some configuration of hardware, telecommunications facilities, software base, 
documentation, time, money, skills, organizational units, management attention, and other resources for 
its productive development or use [24]. This "package" of computing resources outlines a set of 
requirements that must be met by participants working within the local computing infrastructure. Each 
package must fit transferred, inserted, and transitioned into an idiosyncratic local setting. As such, users 
need to know what resource requirements are built into a new technology in order to assess both the 
costs and ease with which it can be transferred into existing computing arrangements. However, as a 
new technology is transferred and assimilated into ongoing organizational routines, the local computing 
infrastructure will be altered to reflect its repackaging. Historical trends in software engineering indicate 
that this repackaging is done to make the work activities more productive and routine. However, these 
trends also indicate a finer division and specialization of labor among participants as well as increase the 
number of resources to be coordinated. Accordingly, an important cost of using new software 
technologies intended to make the work activities more productive is increased demands for attention to 
detail, coordination, and routine. This is a form of work management that individual participants must 
increasingly perform. Thus, in developing a new software systems, tools, or engineering methodology, a 
strategy for managing its life cycle in its target setting must explicitly be built into its package to facilitate 
its transfer, insertion and transition [38]. 

14The building of strong commitment for some ("signing up"), and the weakening of commitment for others ("burning out") is a key 
element in what gives a new system its soul [22]. 



ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 1 Jan 1989 Page 75 

4.3.5. Organize the SF to Support Flexible Software Manufacturing 
New forms of manufacturing supported by flexible manufacturing systems (FMS) and computer 

integrated manufacturing systems utilize interchangeable (reusable) components, standardization, 
automated production processes in order to build products in an increasingly efficient manner [35, 34]. 
FMS also require production staffs who must be reasonably well organized, managed, and coordinated as 
well as committed to producing high-quality products. Further, these forms of manufacturing are more 
amenable to higher levels of knowledge-based automation [14], and represent alternative forms for 
organizing software production. 

A FMS consists of production workstations connected by an automated workpart-handling system 
[34, 35]. A flexible software manufacturing system (FSMS) would also. A FSMS can process various 

different part types using production process planning and group (part/component family) technology 
principles [7']. A FSMS supports (1) the specification, design, and fabrication of component families, (2) 
asynchronous introduction of components into the production process, (3) reduced manufacturing lead- 
time, (4) reduced work-in-progress inventory, (5) increased workstation utilization, and (6) redirected skill 
enrichment, is Skill requirements with a FSMS can then shift toward loading/unloading raw/finished 
components, changing tool and workstation configurations, diagnosing and repairing errant component 
processing or tool functionality, reprogramming (i.e., specifying new) production process sequences, and 
sustaining and evolving the computing resource environment. 

We are currently exploring alternative ways of organizing our software production process, where the 
SF CASEE serves as the flexible base of reconfigurable production machinery and component-handling 
system. The production resources currently in the System Factory consist of a emerging collection of 
knowledge-based software system specifications, a staff of 30-70 graduate student developers available 
for up to nine months at a time, the CASEE components, and a network of DEC VAX-750 (Unix 4.3bsd), 
AT&T 3B20 (Unix System V), IBM PC (MS-DOS), SUN (Unix 4.3bsd) and TI Explorer (Lisp) processors. 
The knowledge bases describe in formal or narrative languages, the operational and non-operational 
requirements of 20 of the most common software system families is and complete system life cycle 
descriptions for the CASEE tools. The FSMS production process planning, scheduling, and management 
system (PMSS) is, however, still very experimental and currently being redeveloped [50]. 

This FSMS approach still requires more refinement. As such, we must continue to identify what kinds of 
work, organizational, and resource arrangements are fundamental to the development and use of a 
flexible software manufacturing system. 

4.4. Understanding and Articulating Software Management Strategies 
What these five strategies describe are inherently organizational approaches to more effectively deal 

with the problems of large-scale software engineering project management. These strategies are quite 
different than those derived from a traditional software engineering project management approach 
[11, 55, 5, 21]. Elsewhere, we identify a dozen additional strategies for handling other problems in 

organizing and managing system engineering projects with large staffs [26, 51, 42, 43, 3]. However, as 
we continue to investigate and apply these strategies, we expect that they will be refined, yet kept 
practical. This is one of the goals of our research. But to reach it, we must be able to codify our emerging 
knowledge base of project management strategies, preconditions, and consequences to allow this 
research to continue over a long-term period with changing engineering teams. 

Accordingly, we recently began an effort to codify our knowledge of the software production process, 

lSAs Burbridge observes, the introduction of group technology in manufacturing accomodates an alternative division of labor that 
can enrich the skills of manufacturing specialists, and thereby enable their increased effectiveness and satisfaction with their work 
[71. 

lSThis information was articulated and analyzed from over 400 reference materials by students participating in the System 
Factory project [47]. We intend to use this knowledge of the software families to articulate reusable specifications of these system 
families in Gist [1,46]. 
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the System Factory development techniques, and the strategies for managing software development 
projects into a knowledge base system (PMSS), using GIST as our knowledge specification language 
[50], and Knowledge Craft as our implementation environment. Our intent is that when this knowledge 

base is viewed as an operational specification of the software production process, we will have an 
important new medium for communicating, simulating [1,9], visualizing (cf. ViZ), and explaining 
[54] knowledge of how to organize the development of LSS in ways sensitive to local organizational 

dynamics and system engineering practices. Putting this knowledge into a computational form will allow 
us to evolve and evaluate the knowledge base as we acquire new information about software projects 
conducted in different organizational settings. This will enable us to create a comparative "corporate 
memory" of the process of LSS development. Also, as we have observed elsewhere, such a knowledge 
base provides a foundation for simulations of cause-effect relationships due to the adoption of potential 
software productivity aids, and other forms of software technology transfer [49, 48]. We intend to put this 
knowledge base and delivery mechanism into practice within the System Factory. 

5. Potential Future Applications 
One way to convey for potential of the SF approach to LSSE is to describe how it could be applied to 

next-generation system development project. Since what might constitute a next-generation system is 
vague and speculative, consider the following hypothetical scenario: Suppose our task is to R&D a new 
kind of computing system, involving multiple processing elements, with each processing element being 
constructed from wafer-scale or some other ULSI circuit technology. In addition, such a multiprocessor 
engine, while compatible with existing operating system mechanisms, must support selected software 
applications and software development tools. These requirements therefore imply that a large-scale 
development effort is required, involving 50-60 hardware and software engineers. 

In developing the hardware circuit components, we face a number of tasks. Wafer-scale circuits must 
be manufactured using materials and fabrication recipes different from those currently in use. This 
implies we must conduct materials or fabrication process simulations, to make sure the circuits produced 
will posses.,; the expected device physics and electrical properties. We thus choose use SAG to rapidly 
contruct a process simulation program to help articulate electrical circuit properties, as has been 
suggested elsewhere[18]. Next, since we will be designing high-complexity circuits, we require an 
ensemble of CAD tools. 

in developing complex circuits, we must be able to specifying alternative versions of circuit behavior, 
stucture, and cell logic design. From our viewpoint, we can use Gist to specify circuits input-output 
behavioral requirements, at varying levels of details and specificity. All the while, we can evaluate circuit 
specifications for consistency and completeness, as well as simulate their developing functionality, albeit 
slowly. This allows for early testing and validation of circuit design behavior before fabrication. 

As circuit functionality begins to densify, we then start to partition and configure circuit functionality so 
that control, data flow, and timing signals can circulate appropriately. To insure this, the partitioned 
functional (,-ells and their interfaces are carefully placed, then interconnected in NuMIL specifications. 
Since these specifications are still symbolic, they maintain sufficient elasticity to allow (or encourage) 
creative cell logic design. However, since many circuit designers are skilled in graphic logic design, they 
should be able to interactively visualize (Cf. VlZ) emerging circuit or cell design with graphic elements or 
icons. Nonetheless, as long as the graphic and textual descriptions of circuit specification share a 
common semantic interpretation (via the same intermediate representation), then either descriptions will 
be suitable for evaluation by CASEE specification processors. 

In concert with recent developments in CAD research, we decide to employ the VHSIC hardware 
description language (VHDL)[29] for "silicon programming." Subsequently, we then generate a VHDL- 
directed editing, testing, and compilation environment using CASEE tools (cf. [20, 41]). These tools are 
specialized in such a way that the editor detects circuit design rule violations as flow graph errors in a 
VHDL description. Design rule checking can therefore be performed essentially at VHDL code 
keystroking time, well before compilation and layout. Similarly, the VHDL compiler's code generator must 
be specialized to emit low-level codes corresponding to circuit mask geometry layout. The VHDL testing 
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system also outputs a version of a circuit's program that can be tested before or after fabrication, for 
validating individual and assembled cells logic, structure, and behavior. In addition, a circuit configuration 
management system would be specialized to store and maintaine the integrity of these evolving, multi- 
version circuit descriptions. Finally, since evolutionary changes in circuit behavior, structure, or logic 
design will occur, then their language-based descriptions can be processed by the appropriate CASEE 
tools to determine where potential inconsistencies may occur. In turn, this should help reduce the costs of 
circuit design maintenance. 

In parallel to circuit component development, system processor and software architecture require 
exploration. Since an exotic multiprocessor architecture is sought, then a rule-based SAG is employed to 
configure alternative processor interconnection schemes according to locally developed hueristics. Each 
processing element corresponds to a cell in the processor interconnection spreadsheet. Simulations of 
intercell message traffic and processing load can now be performed. In order to get better simulation 
results, cell processors can actually execute prototypical software modules developed in parallel to the 
hardware and circuit design. Further, in order to achieve adequate simulation turnaround and throughput, 
cell processes are migrated from an initial single processor, to a network of processors that now use the 
spreadsheet as a message routing and analysis blackboard interface. 

We must also address how to organize the staff of system development specialists. Based upon our 
prior studies of CAD-VLSI work [51], we know that problems of system consistency and integration can 
emerge in the development organization. These problems give managers headaches. System 
components whose development falls behind schedule may have logic flow or timing errors since staff 
must work under increasing pressure and competing demands for their attention. Tools and techniques 
that support circuit, software, and system configuration management must be put in place, monitored, and 
coordinated. The complexity of this task suggests that a knowledge-based project planning, scheduling, 
and management system be employed to aid in project coordination. However, project staff must be 
committed to routine use of the PMSS during development. Therefore, project managers and staff are 
provided regular access to this project management support system, and can query/update project 
milestones, relative progress, and potential development problems. 

Thus, the SF can be specialized to support the parallel development of a multiprocessor system 
employing new circuit and prototypical software components, all in a manner that accoodates an 
integrated organizational approach. 

6. Experiences in SF Technology Transfer 
Some people hold that the primary purpose of a school of science, engineering, or information 

technology is technology transfer. Such transfer nominally occurs via educated students who take their 
newly acquired academic scholarship to their workplace, and then apply this knowledge to practical 
problems. We consider this the baseline for software technology transfer. But the successful practice of 
the software technology transfer (STT) on a larger scale requires understanding much more than this [48]. 
Subsequently, we use this section to describe some of our experiences in STT. 

We observe two different modes of S'I-I" through the SF project: intraorganizational and 
interorganizationaL Within the SF project, the value of internal STT is taught and practiced. This 
happens in three ways. First, project teams are given access to the prior year team project deliverables. 
Students are encouraged to reuse and incorporate the prior project life cycle products (e.g., subsystem 
functional specifications and source implementation) into their own, with shared products duly 
acknowledged. Many project teams choose to do this and therefore are able to deliver more substantial 
and more capable products. Second, since project teams are focussed primarily on their respective tools 
or subsystems to engineer, all team members are required to conduct project specification and design 
reviews for some other project component. This gives the student staff an opportunity to evaluate and 
compare their deliverables, and provide orchestrated quality assurance reviews. This also gives the 
students a chance to learn more about other parts of SF products and processes. Third, students are 
directed to use different SEE components to support the development of their deliverables. Thus, 
students become users of advanced prototype software engineering tools, and can evaluate the tools' 
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strengths and weaknesses when applied to in a large project setting. 

Moving SF products, production techniques, or project management strategies into other organizational 
settings takes the preceding STT efforts further. Interorganizational S'I-I" occurs in a number of ways. 
First, all students who complete their project deliverables are encouraged to share them with other team 
members and to take to their workplace. 17 Thus, students can take parts of the SF away with them to 
their workplace. 

Second, some entreprenuerial students have elected to use their project deliverables as the basis for 
developing commercial software products. They seem confident in their own technical ability and in the 
capabilities of the prototypes products they have delivered as part of their coursework. The personal 
computer software arena seems to be a favorite area these budding entreprenuers seek to find a niche 
for their eventual product. However, the emerging computer-aided software engineering (CASE) 
marketplace is gaining more attention. Many of the student start-up firms remain relatively small and last 
less than two years. On the other hand, others seem to survive and grow. But such experiences are part 
of process of real-world continuing education in STT for these students. 

Third, as witnessed through this report, researchers participating in the SF project (such as the author) 
regularly produce research publications, conference presentations, and academic/industrial research 
colloquia for peer group consumption. A growing number of research publications are co-authored by 
students writing about the products of their completed coursework in the SF. Students can thus pursue 
the option of diffusing their knowledge and technological concepts through research publications, thereby 
adding value to both the educational experiences and professional status. 

Next, as; the SF project continues to push both the state of the practice and the state of the art in LSSE, 
various industrial organizations actively seek access to SF products, production processes, and project 
management strategies. These technologies are diffused through consulting contracts, contract research, 
and licensing arrangements. As might be expected, consulting arrangements facilitate the transfer of 
expertise 'through on-site short courses, project or proposal reviews, and product/process designs via 
research reports or technical memoranda. Contract research represents a greater level of commitment 
from an industrial firm, usually in the form of an IR+D subcontract. We restrict our involvement to 
undertakings directed at basic software engineering research problems rather than commercial products. 
Accordingly, we deliver our research results in the forms of technical reports or prototype systems. For 
example, for one contractor, we delivered a prototype system specification generator that accepts 
structured English requirements and paraphrases them into an operational specification language. In 
another case, we are actively exploring advanced techniques for specifying and documenting distributed, 
real-time multi-processing systems. Since we use the SF project to produce these technologies, we also 
then incorporate these products into subsequent SF configurations. Last, technology licensing 
agreements represent the direct acquisition of SF deliverables through the university for commercial 
purposes. Here we find interest not only in acquiring prototype software implementations, but also (or 
sometimes only) interest in acquiring rights to software specifications or designs, since these are viewed 
as being technologies reusable in many potential applications. 

Clearly, all of the the preceding channels for diffusing SF technologies into other organizational settings 
do not complete the S'TT process [48]. The successful transition and prolonged use of the concepts, 
artifacts, and packages we produce may take years. However, we do note that most of our industrial 
sponsors seek sustained relations that get reiterated, and we continue to be approached by more firms 
interested in gaining access to SF technology and student staff. 

17Such exchanges require an agreement not to further disseminate, license, or market other people's work or university resources 
without prior written agreement. Thus, the agreement is intended to have the form of an extended loan of borrowed property, but not 
an entitled claim to ownership or exclusivity. 
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7. Conclusions 
Developing the next generation of large-scale software systems will change the patterns of work of 

system development organizations. We therefore expect the major system engineering problems to be 
solved will require organizational solutions that accomodate advanced software development tools, 
flexible manufacturing techniques for system life cycle engineering, and strategies for managing large 
system development projects. Through the System Factory project, we have created an experimental 
organizational environment for developing large software systems that allows us to encounter these 
problems and find effective solutions. The SF approach also gives us a base of experience for 
considering how it might be applied in the future. 

The SF emerged over a seven year development effort. This effort produced a series of successive 
environments that served as prototypes for subsequent versions, see [39, 20, 41,44, 12] and above. 
Some SF CASEE components such as the language-directed editor generator were developed through 
five complete development life cycles, while others such as the knowledge-based project management 
support system have passed through fewer prototyping cycles. As such, the SF CASEE is conceived to 
exploit common reusable software tool components, cyclic prototyping, and multi-stage development 
techniques. Similarly, the SF software life cycle engineering techniques and project management 
strategies have been prototyped, put into practice, and refined. This approach to continually emerging 
system development also leads us to value redundant functionality across different SF technologies. This 
allowed us to undertake LSS development efforts that would inevitably encounter outstanding problems in 
LSSE project organization, but with opportunities for their resolution. As such, it is an effective approach 
to improve total staff productivity and skill level, as well as provide alternative means for achieving desired 
LSSE products or services. 

The System Factory approach to LSSE is directed to exploring alternative organizational forms of 
software manufacture and evolution. In our view, software manufacture should be set up, staffed, and 
managed as an organizational unit that merges the flow of production resources (e.g., reusable software 
component families) through a large-scale production process and software development infrastructure. 
In turn, these organizational technologies should structure the work of software developers to produce 
software application systems, descriptions, and environments in a productive, cost-effective, and high- 
quality manner. Subsequently, we speculate that if this research is continues to be successful, it should 
be possible to specify or develop turn-key system factories for other high technology applications as 
another product of our research. 

The SF project provides a hands-on learning, research and development experience in LSSE for all 
project participants. We have demonstrated the large-scale software engineering project coursework can 
prototype complex full-scale systems in a relatively short time. Our early experiments in developing a 
computer-aided software engineering environment demonstrate this. Similarly, we were able to integrate 
and operationalize a diverse collection of reusable software tools and life cycle engineering techniques. A 
LSSE effort such as the SF project immediately gives project participants insights into the importance 
identifying and practicing many different project management strategies. This happens as soon as 
participants find that the most difficult LSSE problems to solve are primarily organizational, rather than 
technical. Last, although seemingly ignored in most software engineering coursework, we find that 
software technology transfer can be taught and practiced by all LSS project participants. As such, we 
believe that other software engineering researchers and educators should consider adopting reiterated 
and sustained project courses such as the SF project. 

Developing LSSE projects is possible but by no means limited to the types of tools, packages, or 
software engineering environments developed in the SF. For example, domains amenable to LSS 
development include graphic programming environments, production of "feature-length" computer 
animated movies, reconfigurable user interface management systems, group design of application- 
specific VLSI processors, interactive CD ROM-based undergraduate CS curriculum courseware, system 
factories for computer integrated manufacturing, environments and simulators for developing integrated 
multi-sensory intelligent systems, and so forth. 

Many universities are becoming equipt to conduct LSS development projects due to extensive 
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institutional commitments to create computerized campuses [56]. Most of these universities will seek: a 
heterogeneous, open system network of computing resources distributed across many institutional 
locations. "lhis increasing diversity of computing environments will lead to a greater spanning of multiple 
organizational units in order to successful complete LSSE projects. In our view, the trailblazers best 
positioned to capitalize on such opportunities will be faculty and researchers in the area of large-scale 
software engineering. 
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