
C O M P U T E R ALGEBRA

ON MIMD MACHINE 1

Jean-Louis ROCH, Pascale SENECHAUD

Fran~oise SIEBERT-ROCH, Gilles VILLARD

Algorithrnique Parall~le et Calcul Formel, Laboratoire TIM3
Institut National Polytechnique de Grenoble

38031 GRENOBLE Cedex FRANCE

Abstract : PAC is a computer algebra system, based on MIMD type parallelism. It uses parallelism as a
tool for processing problems wich are too complex for a sequential treatment. Basic fundamentals of the
system are firstly discussed. Then, different problems are studied, particularly the implementation of

infinite-precision arithmetic, the solution of linear systems and of Diophantine equations, the parallelization
of Buchberger's algorithm for Grtbner bases.

A prototype of PAC is implemented on the Floating Point System hypercube Tesseract 20 (16 nodes), and
different timing results obtained on this machine are given.

1This work is partially supported by the PRC Math~matiques et Informatique and by the Greco Calcul Formel of French

Centre Nationnal de la Recherche Scientifique.

16

I / I N T R O D U C T I O N

1.1 / G e n e r a l P r e s e n t a t i o n o f P A C

We are mainly interested in the parallelization of mathematical Computer Algebra algorithms : that is why

the symbolic part is performed by a classical system (CAS) w i c h is installed on a host machine. This

system may call parallel algorithms developped on a MIMD machine, directly connected to the host.

Conversions between the different formats - on host and on the parallel machine - are performed by an

interface. PAC may be also considered as an algebraic (soft) co-processor, associated to a Computer
Algebra host system.

MACHINE
HOTE • INTERFACE

WtIIL • cla,tkaL
¢*m),acr A3/cb~ $~'stcz

(¢AS)

I
INTERFACE [
32 <-> CAS

|

I
i

I.. i a i D

Net~'ork

r woRK
--I/ /I]L Jt

~.~!ii]!]ii!]!ii]iiiiii~iii]iiiiiiiii]ii]![i]~N I

Figure I. 1 • General Overview of PAC

The first aim of PAC system is also to allow implementation of parallel algorithms, solving usual

Computer Algebra problems on a MIMD machine, considering the parallel machine as a peculiar device
specialized in algebraic operations processing.

In the following, we will describe :

* H : the host computer

* CAS : the host Computer Algebra System

* P : the parallel machine connected to H

Within the framework of the laboratory and of this study, H is a gVax II and P is the MIMD computer

FPS Tesseract 20 (16 processors) [11][14].

This approach may be generalized : P may be considered as a big device accessible by any Computer

Algebra System - on a work station - via a network. P would be used for large tasks that cannot be
sequentially solved. The interface is then seen as a symbofic server.

1 7

1.2 / Different application domains of PAC

Our study concerns essentially three different types of problems :
* Arithmetic and linear algebra classical problems : diophantine equations, linear systems

resolution
* Standard basis problems, and mainly the implementation of a parallel algorithm to fred the Grtbner

basis associated to a boolean polynomials family (with applications in circuits formal proof).

* The design of a specific machine dedicated to process algebra problems : most of the operations

performed by a computer algebra system shouldbe efficiently processed with a dedicated architecture.

Implementation of a
C.A.S. dedicated to

] process "big" problems
in parallel

Implarnentation
of a prototype :

TPAC on I~S-T20

Study of parallel comple-
-xity of certain problems
of Computer Algebra:

- Linear Al~bra
I -Arithr~Uc

- Grobner basis

tt
Experimental studies on PPS-T20

What should be a
paraUel machine
dedicated to
Computer Algebra ?

- Expected perforrnar~:es
for such a rt~chine

- Specifications '

- Use of recent studies
(VI..SI polynfimieur)

II / ARITHMETIC

II.1 / General Presentation

Structures chosen for objects - possibly recursive - representation, have to respect parallel constraints.

Mainly, storage has to be such that communicate basic objects is easy. Saad has prooved [30] that the

easiest structure to communicate is an array - with an hypercube topology - . That is why we have chosen

to store integers and rafionnals in special arrays (b locks) - managing memory with special routines-

[2][25][28].
Different basic objects fields have been implemented, allowing :

* arithmetic operations on llq, ~ or Q

* arithmetic operations on ~ IX] or © [X]

* calculations on boolean polynomials

II.2 / Arithmetic on IIq, Z or II~

Implementa t ion
One of the major advantage of PAC is its portability : that is why all routines are written in C language.

Obviously, to increase the speed of some basic routines (like arithmetic calculations in ilq), some modules

have been rewritten in assembly language for Inmos T414 transputer. We have chosen to store data in

array : this allows a good efficiency in data communication between processors ([28] [30]). But, then, to

allocate places in memory is sometimes very long, as merge or compaction of memory is necessary. To

manage memory on each node, we use the C primitives mal loc and f ree .

- 1 8 -

Integers are represented by decomposition in 232 basis. This computation basis has been chosen because

of the existence of an extended arithmetic on each transputer. However, it is possible to use other basis.
Conversions in 109 basis are made by the user interface.

Rationals are stored in array - as the c o n c a t e n a t i o n - of two integers.

Algorithms
Addition, subtraction, multiplication and division are performed by classical carry-save algorithms ([21]).

GCD is computed using Lehmer algorithm for large integers. A version of this algorithm computes
Bezout algorithm to perform modular lifting.

Rational arithmetic is built on integer arithmetic.

Performances
It's very difficult to have a good evaluation of efficiency of arithmetic operations, as there is no other
infinite precision arithmetic system implemented on transputers. We chose to compare PAC performances

to Maclisp. We use the version of Maclisp implented on Bull-DPS 8 (Multics system). We compare times
of compiled (C) and interpreted (I) Lisp programs.

Those diagrams show that we obtain the same order as Maclisp for complexity, with a certain factor of

proportion (~ 2). This remark is right for all arithmetic operations, except for division - this operation

has not been yet optimized in assembly language-. But, comparisons time in Pac is very often constant (
comparing the sizes and first words of both integers is often sufficient).

In fact, as the following diagrams prove it, this proportion factor comes essentially from the different
capacities of the two machines : the T414 Transputer is based on a RISC architecture, while DPS8 is a
CISC. For instance, it is impossible to use registers with the T414.

1 0 0 0

+ PAC

5 0 0 ' +Lisp

0 ' Si_~ (32b words)
0 I0 20 30 40 50

(PAC Time) / (MacIL~p T ~)

7 *

6 "

4

3

2 z

1 - • - | -

1 0 2 0

Addition

_ L L =

• - ° - •

3 0 4 0 .50

4OOOO

Tnne (~)

2 0 0 0 0 * L i s p

0 . , - , - , . , . , S i z o (3 2 b w o r d s)

0 10 2 0 3 0 4 0 . 5 0

(P A C T ~) / (M a d i s p T m ~)

5 "

4 "

- • - , - | - , - •

1 0 2 0 3 0 4 0 5 0

Multiplication

19

80(]0"

60(]0"

4000,

2000"

rim, (~,)

PAC

L~
0 . ; 1 , . , . , . , ~ (32.1, w ~)

0 10 2 0 30 40 50

6 ~ "

6,0.

5.8"

5.6"

5A"

52, • , , , •

10 20 30 40 50

rmae (l.n)

15000 , ~

10000'

5000'

O'
0 1 0 2,0 3 0 4 0 5 0

Division

GCD PAC

GCD Lisp

Size (32b words)

(PAC T, me) I (MacSsp T, me)

2,6'

2.2..

2,0'

1.8 ' - .

0 10 20 30 40 50

Greatest Common Divisor

II.3 / Arithmetic on ~ [X] : Parallel Multiplication of Univariate Polynomials

Let
n m

P = ~ p i Xei and Q = ~ q j X fj
i=0 j=O

If we consider the product as a sum of n+l polynomials:
11 m 13 m

Pi Xei * ~ qj Xfj = ~ (~ Pi qj Xei + ~)
i=0 j=0 i=0 j=0

The implemented algorithm is a mere decomposition of the n sums. If the number of processors is p, each
processor has to compute about n/p sums; then, by a lifting process, the results are summed two by two.
We give some examples allowing for the comparison between communication and computation costs.

P0 = (x + 10!) ^ 20 P3 = (xa + x3 + x2 + x + 1) ^ 5

Pi =Po ^ 2 P4 = P3 ^ 2

P2 = (x + 1) ^20 Ps= P3 ^ 3

Po*Po
P,*po
;o-P,
P2* P2
P3*%

..%* %
i P+*

0 ! 1 2 3 ' 4

6673 4101 2864 2595 2693

-- 21639 12825 8883 7881

-- 21194 13499 11787 11778

2949 1824 1360 1324 1465

35363 17834 11349 9774 9804

35801 17007 9208 6337 5570

34325 14460 7610 5300 4833

Time in ms against hypercube dimension

20

For examples 2 and 3, on one processor, the coefficients size leads to memory overflow. From a certain

number of processors, communication cost becomes too expensive with respect to the arithmetic costs; to

obtain good performances, the calculus to perform has to be consequent in each processor.

It appears that for a sufficient number of processors it is more efficient to multiply the highest degree

polynomial by the other one (more communication time) [see ex. 2-3 and 5-6].

I I I / L I N E A R A L G E B R A

Some of the basic algebraic computation algorithms (such as Gaussian elimination over GF(p) presented

below) can be easily developed from the corresponding parallel numerical algorithms, just doing little

modifications. But most of them need totally new approaches. Even if an important amount of theoretic

work has been done the implementation of those algorithms leads to new problems :

- the chosen architecture and a high grained parallelism model do not correspond to theoretic models

using not bounded numbers of processors,

- in v iew of an implementat ion we have to take in account the constraints associated to the

communicat ions, which cost can be a major loss of time; for Gaussian elimination over GF(p) the

communication cost represent from 1/10 to 1/3 of the total cost. So, implementing parallel algorithms, the

main work will consist in minimizing the communication cost using as much as possible the inherent

parallelism of the algorithms.

The first implemented algorithm concern the resolution of linear Diophantine equations and so the

computation of n integers' gcd. We then present Gaussian elimination over GF(p) and the resolution of

linear systems over integers. The first obtained results show that important sized problems (which would

ask for days of computations on a simple sequential machine) have been successfully treated. This will

permit us to consider more complex problems such as normal forms of matrices (Hermite's normal form)

and reduction in lattices.

III .1 / L i n e a r D i o p h a n t i n e E q u a t i o n s

We present here an algorithm described by W.A.Blankinship [5] determining the GCD d of n positive

integers a 1, a 2 a n and giving a solution x 1, x2, ..., x n for the associated Diophantine equation:

d = a 1 x 1 + a 2x 2 + ... + a nx n.
Let the equation"

with al , a 2

divides b.

(1) al Xl + a2 x2 + ... + a n x n = b
a n , b integers. This equation has an integral solution if and only if the ai's GCD

Theorem •

Let d be the GCD of the a i (i = 1 n). Let us assume that b = c d where c is a positive integer.Let x 0 e

~ n be a particular solution of (1). It exists n - 1 independent solutions of the homogeneous equation

Sl, s2 Sn-1 • ~ n and the general solution x • ~ n of (1) is (see [32]):

(2) x = (x 0 * c) + ~lSl + ~2s2 + ... + ~n_lSn.1 with ~'1, ~2 ~n-1 ~ ~

21

ALGORITHM DESCRIPTION

1 0... i]
Let D = (dij)(i = 1to n, j =1 to n+l)be the matrix n x (n + 1) [a z 0 1

* *

a~O ..0

The algorithm of W.A. Blankinship consist in performing elementary transformations on D rows until the

first column contains no more than one non-zero coefficient. Let r and r' two rows of non zero leading

coefficients . Let us assume that the two leading coefficients r I and r 1' are such that r I > r 1' > 0 ; the
elementary row transformation applied is (see [20]) :

u lil[x x v r
-r'l rl r' = x x x

go goJ L j 1
The only non-zero first column coefficient which is obtained after these operations is the ai's gcd, and his

right coefficients constitute a particular solution of the equation (see [24]). The n-1 others rows gives n-1

independant solutions for the homogeneous equation.

THE PARALLEL ALGORITHM

We try to use the inherent parallelism of the algorithm: gcd (a 1, a 2 a n a2n) = gcd (dl , d2) where

d l = gcd (ap ..., an) and d 2 = gcd = (an+ 1 a2n).

Parallel algorithm:

first step:

choice of a good sequential method on each processor and execution of the process on submatrices.

second step:

lifting process to perform elementary transformation on the rows with non-zero first column coefficient

remaining in each processor.

The size of the manipulated objects increases fastly with the number of a i and can lead to a memory

overflow.

The parallel programming allows a manipulation of smaller matrices and so the total number of operations

performed is less than in sequential.

d i m
P ALGORITHM (on p = 2 processors)

SEQ

o~ = n / p (here p is supposed to be a divisor of n)

The label of processor is proc

Inputs: each processor receives ot positive integers

processor n°proc = (bdim_ 1 b 1, b0) 2 r ece ive s : acz i + 1, as i + 2 act (i+l)

22

w h e r e i = (b 0, b I bdim_l) 2 and consti tutes the matr ix : D i =

PAR.
On each processor do

SEQ

[.110...i]
atxi + 2 0 1

o . o

i_act(i+l) 0 0

Per fo rm sequential a lgor i thm o n D i . W e obtain one r o w : L = [d i, lil, . . . , lic t]

w h e r e d i = gcd(ae~ i + 1, act i+2 act(i+ 1))"

for k := d im downto 1 do :

o~= 2 0~

I f (2 k 2 0c-X) > proc >_) then

Send row L to p rocessor (bdim_ 1 b k b 1, b0) 2

else {proc < 2 (k-l)}

Le t R be a n/2(k-a)+l d imens ion vector. Receive R = [di,, 0 0, li, 1 li,et]

w h e r e [di,, li,1, li, t] is the row send by p rocessor (bdim_ 1, . . . , b k b 1, b0) 2.

n

Let S = [d i, lil lic t , 0 , 0] be a (2T t+ i) d imens ion vec tor (S comple ted with n/2 k zeros).

Perform transformation between S and R. I f (R[1] = 0) then L := S else L:= R.

endif
Outputs: A solution of the equat ion is obta ined in processor O.

TIME
[MS

;00-

400-

~00-

200.

I00-

50-

16 PROCESSORS

' ' & ' d 64 128 2 512 1 24

NUMBER OF COEFFICIENTS

Figure III. 1

23

Let us notice that, provided that the transformed rows S or R are preserved, we can construct the general

solution. The non stored coefficients are all zeros.

THOUSANDS OF
OPERATIONS PER
SECOND

I000

16

500 -

250 -

2

125 -

I

PROCESSORS

128 256 5 2 1024

NUMB ER OF COEFFICIENTS

Figure 1II.2

On one node the tests have been performed for problems of size lower than 256 (we have to precise that

the infinite-precision arithmetic was not yet available for those tests : the sizes of the coefficients was

bounded by 231_ 1). The figure III. 1 represents time in ms against number of coefficients and number of

processors. Here the parallelism allows an important computation time saving.
The total number of manipulated data and the total number of performed operations decrease when the

number of processors increases. These last remarks explain the time reductions obtained, for most cases a

factor higher than two when the number of processors is only doubled.
The figure III.2 gives the performances obtained, in thousands of operations per second. For several

processors the curves let appear communication time interferences.

III .2 / L I N E A R S Y S T E M S

III .2 .1 / G a u s s i a n e l i m i n a t i o n over GF(p) :

The numerical parallel algorithms for Gaussian elimination can easily be adapted to the GF(p) fields

arithmetic. The main problem is to minimize the communication costs required when a null pivot is
encountered. The detail of the implemented algorithms, the Broadcast row the Pipeline ring and the
Local pivot ring algorithms can be found in [12] and a detailed presentation of the following results in

[34]. Those algorithms can be implemented simply using the integer arithmetic of the Transputer, but the

performances have been increased by developing a GF(p) arithmetic on the Vector Processing Unit.
The quantity usually considered to compare different parallel algorithms is the efficiency : the ratio of the

24

sequential execution time to the product of the parallel execution time by the number of processors. This
definition not expresses that the number of operations does not depend on the number of processors. This
hypothesis will not always be practically verified.

EXECUTION TIME USING ONE PROCESSOR

PARALLEL EXECUTION TIME

2 5 -

2 PROCESSORS

22't.3

21.7

9.34

3.6

t

256

MATRIX SIZE

Figure III.3 : Local Pivots Algorithm,
Speed-up, modulo 7 calculus,

A(i,j) = 0 ifj > i and 9097 otherwise.

20

10

MILLION OF OPERATIONS
PER SECOND TEST 3

• 45 MFLOPS, 19 MOPS

| I I I I I

64 128 256 512 768

MATRIX SIZE

Figure III.4 : Performances, Millions of operations per second,
Test 1 : figure 1 matrix, pipeline ring algorithm,

Test 2 : figure 1 matrix, broadcast row algorithm,
Test 3 : random matrix (rood 22307), local pivot algorithm.

2 5 "-

II.2.2 / L i n e a r systems over integers

E x e c u t i o n t i m e s in s e c o n d s

4000

A lot of algorithms provide the exact rational or integer solutions of a linear system. Solution can be

obtained by a direct resolution; an alternative to reduce the intermediary coefficients swell is to use

reductions modulo and p-adic expansions.

3000

2000

Execution

3OOO0

Dir~.t /
P - a d ~

1000 .___.__.__...------
0 B o u n d s o n t h e

' - ' ' ' ' e n t r i e s
10 ° 101 102 103 104 10 s 106

Figure 111.5 • Execution times v.s. the sizes of the entries,

for a 128"128 matrix (16 processors).

Two similar algorithms have been given in [Dix] and [GK]. These methods using p-adic expansions seem
to be superior, in the case of large matrices (suitable to be treated on a powerful parallel machine), to

methods using the Chinese Remainder theorem.

20000

lo000

0

0

Matrix
[] ' ~ ' ' ' ' s i z e

50 lo0 150 200 250

times in seconds

For a fixed size of matrix, the number of performed operations during the local pivots algorithm will

depend on the entry matrix and on the number of processors (see [10] or [34]) : we show on figure III.3

below some measurements of speed-up : the ratio is greater than the number of processors. Figure III.4
shows us that 19 Mops (Millions of operations per second, +, * and mod) can be reached. Equivalently,

45 M_Flops (floating point operations) are produced (the modulo needs five floating point operations).

Figure III.6 • Executions times of the direct resolution, (entries bounded by 100).

We compare here, a direct implementation of the resolution (corresponding to the Bareiss' fraction free
algorithm given in [Bar] and parallelized in [RSSV]) and the implementation of the p-adic resolution

26

(which parallelization can be found in [Vi]). We have tested our parallel implementations to calculate the
solutions of problems involving matrices with k-digit random elements, with values of k from 2 to 6. So

within a factor at most 4/3 (in fact the one-step cost over the two-step cost [1]) we are in a context
analogous to the one used for timing results given in [2, table HI). As previously we can measure the
efficiency of the algorithms.The hypothesis that the real cost of an algorithm is solely due to arithmetics

and communications may no longer be verified in practice : an important extra--cost arises in algebraic
computations, the variable-length arithmetic implies a memory management cost (which depends on the

size of the available memory). The memory is more saturated during the sequential execution than the
parallel one : this could lead to very surprising speed-up greater than the number of used processors.

Execution times in seconds

6000

4000

2000

0 I1 -- I 1 I

0 100 200 300

Matrix
size

Figure III.7 : Execution times of the p-adic resolution (entries bounded by 100).

It is interseting to see on the figure III.5 the execution times versus the number of digits of the entries.

Assuming we use a classical multiple-precision arithmetic, we recall here the theoretic sequential
arithmetic costs : O(nSB 2) for Bareiss' algorithm [3], where B is a bound on the number of digits of the
entries; and O(n3Blog2n) for the p--adic method. On the two last figures (III.6 and III.7) we present the
execution times of the two resolutions. It appears as forecasted by the complexity studies, that the p--adic
resolution is much better than the direct resolution.

IV / G R O B N E R B A S E S

IV.1 / Genera l Presenta t ion : the Parallel A lgor i thm

The definition and the way to compute a Grrbner basis is supposed to be known. None of the following
notions will be developped: Critical pair, Spolynomial, normalisation. We want to parallelize the

Buchberger 's algorithm [6]. A parallel algorithm is presented.We have determinated the independant

tasks of the sequential algorithm and the proposed algorithm adds recursively adequate polynomials to the
set of input polynomials. The fact that we work with boolean polynomials involves particular choices in

the order of the variables, and simplifies the basic operations.

where F 2 is the field 77/27'7 and where (x12+ We work in F 2 [X 1 Xn] / (X12+ Xl Xn2+ Xn)

X 1 Xn2+ Xn) is the ideal generated by the polynomials X12+ X 1 Xn2+ X n.

So we have the following properties:

--27 -

i) xi2 = x i for all i in { 1 n}.

ii) x i + x i = 0 for all i in { 1 n].
We assume to have at one's disposal a parallel machine with n processors, each having a local memory.

The processors can be connected in order to form a ring. The algorithm presented below has been

implemented on the hupercube FPS T20 of the TIM 3 laboratory.

IV. 1.1 Computation of Spolynomials

The computation of the Spolynomials may be done in parallel since they are independant. If we have m

polynomials in input and n (n is even) processors at one's disposal, with m >_ n., we distributate the m

polynomials among the processors' memories in the foUowing way:

m = q n +r (0 _ < r < q)

(n - r) processors contain q polynomials

the r remaining processors contain q+lpolynomials.

The main problem when computing the Spolynomials that is all the polynomials must meet each other.

i) In a first step, we compute in parallel, the Spolynomials associated to the polynomials contained in

the memory of each processor. Let us suppose that k is the number of these polynomials

In a processor:

Beginning with FP = { Pl, P2 Pk } we compute C12 CiK, C23 C2k Ck-lk where Cij is
the Spolynomial associated to Pi and pj.

ii)The subsets of input polynomials contained in each processor circulate along the ring which allows

us to compute all the Spolynomial associated to the m input polynomials.

Let FP i be the collection of k polynomials contained in the i th processor of the ring. During the first step

we have computed, in each processor, the Spolynomials associated to these polynomials. We shall note

FC i the collection of Spolynomials obtained in the i th processor of the ring. We proceed as follow:

i) The collection FP i is transferred from the processor i to the processor i+l .

ii) The Spolynomials FCi,i+ 1 f r o m F P i and FPi+ 1 are computed in each processor.

iii) F C i and FCi, i+ 1 are concatenated in parallel.

These three steps are then repeated until we have computed m (m-l)/2 Spolynornials associated to the m

input polynomials. With four processors this manipulation may be represented in the following way :

First iteration:

i th processor of the ring (i ~e 1):

- FP i ----)FC i

- send FP i
- receive FPi-1

- (FPi, PPi-1) = ~ FCi,i-1

- 2 8 -

On a ring:

@@
1

@ @
And so on, until having computed all the Spolynomials associated to the m input polynomials.

IV.1.2 / The normalization:

All the Spolynomials obtained must be normalized with respect to the input polynomials. The process is
the same as during the computation of the Spolynornials. Each processor contains two collections of
polynomials: the collection of its k input polynomials, and a collection of Spolynomials, resulting from the
former steps.

The Spolynomials circulate along the ring and are normalized with respect to the given polynomials as
soon as they meet them in the processors.
Then, the processors work in parallel to reduce the Spolynomials they receive with respect to the
collection of the input polynomials they contain respectively.
The execution of this step is finished when all the Spolynomials are in normal form. The processors stop
the computation simultaneously.

IV. 1.3 / The whole algorithm:

When the Spolynomials normalized are computed, in order to obtain a Gr6bner basis, the sequential
algorithm repeats the same computation, substituting, at each iteration, the collection of input
polynomials by the union of this collection with the collection of the Spolynomials normalized computed at
the former step.Therefore, we may repeat, in the parallel algorithm, the step of computation and
normalization of Spolynomials substituting, at each step and in each processor i of the ring, UP i by the
concatenation of FP i and F P C N i. We use this method, but modified, because it generates, at each step
results yet obtained in the former step.

IV.2 / Implementat ion on the FPS T20

IV.2.1 / Choice of a representation for the boolean polynomials:

The choice of the structure to represent the boolean polynomials is justified by the fact that we want to

- 2 9 -

translate the basic operations, such as the sum and the product of boolean polynomials, into a simple

manpulation of that structure. This choice conditions the order on the variables. In a first time we have

represented a boolean polynomial by an array of monomials, and each monomial by an integer. This

integer is build (the integers are written in radix 2, with 32 bits) in the following way:

the monomial 1 is represented by 1

the monomial x i is represented by 2i+ 1

the monomial xix j is represented by 2i+ 2J +1

With this representation, and since the boolean operations are available on the integers, we easily translate

the necessary operations for the computation of a Gr6bner basis.

In order to represent polynomials with more than 32 variables, we now work using large numbers [28].

IV.2.2 / Results

The algorithm reads in input the number of polynomials, the number of processors wanted and the

polynomials.

The following results show the evolution of the computing time of a Gr/3bner basis according to the

number of processors.

The treatment of 32 polynomials with 5 variables gave us the following results:

num. of proc time in sec

1 1.673

2 0.501

4 0.290

8 0.226

16 0.217

The time decreases as the number of polynomials increases. This decreasing is reduced by the delays of

communications, which increase according to the number of processors. The more the computations are

important in front of the communications the more the algorithm is interesting. It is difficult to control the

number of simplifications required by the algorithm and then to know how the cost of communication

grows according to the data. So we are studying an other algorithm where the communication cost does

not depend on the simplifications. Instead of considering the independancy of certain tasks in the

sequential algorithm, we use the following fact:

Let P= (Pl Pk) a set of polynomials. Let P1 = (Pl Pp), P2 = P-P1 and G 1 and G 2 gr/Sbner bases

associated respectively to P1 and P2.

A Grtibner basis of the union the G 1 and G 2 is also a Grtibner basis associated to P.

We do not describe the corresponding algorithm here.

30

REFERENCES

[1] H. Abelson, G. J. Sussman, J. Sussman "Structure & Interpretation of Computer Programs" (p. 491-503) Mc

Graw-HiU Book Company (1985).

[2] A.V. Aho, J.E. Hopcroft, J.D. Ullman "Data Structure & Algorithm" (p. 378-407) Addison-Wesley (1983).

[3] E.H.Bareiss, "Computational Solution of Matrix Problems over an Integral Domain", J. Inst. Math.

Applic. 10 (1972), 68-104.

[4] D. Bayer and M. Stillman "The Design of Macaulay: A System for Computing in AlgebraYc Geometry and

Commutative Algebra." (January 1986).

[5] W.A. Blankinship, A new version of the Euclidean algorithm, Amer. Math. Monthly, vol. 70, N°3, (1967).

[61 B. Buchberger. "A Cdticical Pair / Completion Algorithm for Finited Generated Ideals in Rings". Proc logic

and Machines. Decision Problems and Complexity ed by E. BrOger, G. Hasenjaeger, D. ROdding.Spri"ger

LNCS 171 (1983).

[7] B. Buchberger. "Basic Features and Developpment of the Critical Pair / Completion Procedure". Preprint J.

Kepler University Austria

[8] S.Cabay and T.P.L.Lam, "Congruence Techniques fot the Exact Solution of Integer Systems of Linear

Equations", ACM Trans. Math. Software 3, 386-397 (1977).

[9] J. Chazarain. "The Lady, the tiger and the GrObner Basis". Preprint n°100 University of Nice. Department of

Mathematics.

[10] M.Cosnard and Y.Robert, "Implementing the Null Space Algorithm over GF(p) on a Ring of Processors",

Second international symposium on Computer and Information Sciences, Istanbul (1987).

[11] M.Cosnard, B.Tourancheau, G.Villard, Prtsentation de l'hypercube T20 de FPS, Journtes Architecture C3, Sophia

Anfipolis, Revue Bigre + Globule (1987).

[12] M.Cosnard, B.Tourancheau and G.Villard, "Gaussian Elimination on Message Passing Architectures", Proceedings of

ICS 87, Ath~nes, Lect. Notes Comp. Sc. no 297, Springer Verlag (1988).

[13] J.D.Dixon, "Exact solution of Linear Equations using P-adic Expansions", Numer. Math. 40, 137-141

(1982).

[14] Floating Point Systems, "Programming the FPS T-Series, Release B, Portland Oregon 97223.

[15] G.A.Geist, "Efficient Parallel LU Factorization with Pivoting on a Hypercube Multiprocessor", ORNL

Preprint 6211 (1985).

[16] G.H.Golub and C.F.Van Loan, "Matrix Computation", The John Hopkins Univ. Press (1983).

[17] R.T.Gregory and E.V.Krishnamurthy, "Methods and Applications of Error-Free Computations", Springer

Verlag (1984).

[18] K.Hwang and F.Bfiggs, "Parallel Processing and Computer Architecture", Mc Graw Hill (1984).

[19] S.L.Johnsson and C.T.Ho, "Spanning Graphs for Optimum Broadcasting and Personalized Communication in

Hypercubes", Technical Report 500, Comp. Sc. Dpt.,Yale University (1986).

[20] M.Kaminski, A.Paz, Computing the Hermite normal form on an integral matrix, Technical Report 417, Israel

Institute of Technology (.june 1987).

[21] D.E. Knuth "The Art of Computer Programming Vol. 2 : Semi-Numerical Algorithms" (p. 229-293) Addison-

Wesley Reading Mass (1969).

[22] E.V.Krishnamurthy, T.M.Rao and K.Subramanian, "P-adic Arithmetic Procedures for Exact Matrix

Computations", Proc. Indian Acad. Sci. 82A, 165-175 (1975).

[23] M.McClellan, "The Exact Solution of Systems of Linear Equations with Polynomials Coefficients", Journal

of A.C.M., vol. 20, pp 563-588 (1973).

[24] D.G. Maim, A computer laboratory manual for number theory, student manual, COMPress (1980).

[251 R. Mcenck "Is a Linked List the Best Storage for an Algebra System" Research Report

[26] M.Newman, Integral matrices, Pure and applied mathematics, Academic Press (1973).

[27] E. Regener "Mulfiprecision Integer Division Examples Using Arbitrary Radix" ACM, vol. 10 N ° 3 (1984).

[28] J.L.Roch, P.S6n6chaud, F.Siebert et G.Villard, "Parallel Algebraic Computing", Imag Grenoble, RR-686 I,

(december 1987).

[29] J.L. Roch, P. Senechaud, F. Siebert, G. Villard "Calcul Formel, Parallelisme et Occam" OPPT Ed.T.Muntean

(1987).

[30] Y. Saad, Topological properties of hypercubes, Rese,~ch report YALEU / DCS / RR-389 (1985).

[31] Y.Saad, "Gaussian Elimination on Hypercubes", in Parallel Algorithms and Architectures, Eds.

M.Cosnard & al., North-Holland (1986).

[32] A. Schrijver, Theory of linear and integer programming, John Wiley, Chichester, England (1985).

[33] Q.F.Stout and B.Wager, "Intensive Hypercube Communication : Prearranged Communication in

Link-Bound Machines", CRL-TR-9-87, University of Michigan (1987).

[34] G.Villard, "Parallel General Solution of Rational Linear Systems using P-adic Expansions", Proceedings of

the IFIP WG 10.3 Working Conference on Parallel Processing, Pisa Italy, Elsevier Sc.P. To appear (1988).

[35] S. Watt. "Bounded Parallelism in Computer Algebra". Thesis presented to the University of Waterloo Ontario

(1985).

3 2 - -

