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Abstract : PAC is a computer algebra system, based on MIMD type parallelism. It uses parallelism as a 
tool for processing problems wich are too complex for a sequential treatment. Basic fundamentals of the 
system are firstly discussed. Then, different problems are studied, particularly the implementation of 

infinite-precision arithmetic, the solution of linear systems and of Diophantine equations, the parallelization 
of Buchberger's algorithm for Grtbner bases. 

A prototype of PAC is implemented on the Floating Point System hypercube Tesseract 20 (16 nodes), and 
different timing results obtained on this machine are given. 
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I / I N T R O D U C T I O N  

1.1 / G e n e r a l  P r e s e n t a t i o n  o f  P A C  

We are mainly interested in the parallelization of mathematical Computer Algebra algorithms : that is why 

the symbolic part is performed by a classical system ( CAS ) w i c h  is installed on a host machine. This 

system may call parallel algorithms developped on a MIMD machine, directly connected to the host. 

Conversions between the different formats - on host and on the parallel machine - are performed by an 

interface. PAC may be also considered as an algebraic (soft) co-processor, associated to a Computer 
Algebra host system. 
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Figure I. 1 • General Overview of PAC 

The first aim of PAC system is also to allow implementation of parallel algorithms, solving usual 

Computer Algebra problems on a MIMD machine, considering the parallel machine as a peculiar device 
specialized in algebraic operations processing. 

In the following, we will describe : 

* H : the host computer 

* CAS : the host Computer Algebra System 

* P : the parallel machine connected to H 

Within the framework of the laboratory and of this study, H is a gVax II and P is the MIMD computer 

FPS Tesseract 20 ( 16 processors ) [11][14]. 

This approach may be generalized : P may be considered as a big device accessible by any Computer 

Algebra System - on a work station - via a network. P would be used for large tasks that cannot be 
sequentially solved. The interface is then seen as a symbofic server. 
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1.2 / Different application domains of PAC 

Our study concerns essentially three different types of problems : 
* Arithmetic and linear algebra classical problems : diophantine equations, linear systems 

resolution .... 
* Standard basis problems, and mainly the implementation of a parallel algorithm to fred the Grtbner 

basis associated to a boolean polynomials family ( with applications in circuits formal proof). 

* The design of a specific machine dedicated to process algebra problems : most of the operations 

performed by a computer algebra system shouldbe efficiently processed with a dedicated architecture. 

Implementation of a 
C.A.S. dedicated to 

] process "big" problems 
in parallel 

Implarnentation 
of a prototype : 

TPAC on I~S-T20 

Study of parallel comple- 
-xity of certain problems 
of Computer Algebra: 

- Linear Al~bra 
I -Arithr~Uc 

- Grobner basis 

tt 
Experimental studies on PPS-T20 

What should be a 
paraUel machine 
dedicated to 
Computer Algebra ? 

- Expected perforrnar~:es 
for such a rt~chine 

- Specifications ' 

- Use of recent studies 
( VI..SI polynfimieur ) 

II / ARITHMETIC 

II.1 / General  Presentation 

Structures chosen for objects - possibly recursive - representation, have to respect parallel constraints. 

Mainly, storage has to be such that communicate basic objects is easy. Saad has prooved [30] that the 

easiest structure to communicate is an array - with an hypercube topology - .  That is why we have chosen 

to store integers and rafionnals in special arrays (b locks )  - managing memory with special routines- 

[2][25][28]. 
Different basic objects fields have been implemented, allowing : 

* arithmetic operations on llq, ~ or Q 

* arithmetic operations on ~ IX] or © [X] 

* calculations on boolean polynomials 

II.2 / Arithmetic  on IIq, Z or II~ 

Implementa t ion  
One of the major advantage of PAC is its portability : that is why all routines are written in C language. 

Obviously, to increase the speed of some basic routines ( like arithmetic calculations in ilq), some modules 

have been rewritten in assembly language for Inmos T414 transputer. We have chosen to store data in 

array : this allows a good efficiency in data communication between processors ( [28] [30] ). But, then, to 

allocate places in memory is sometimes very long, as merge or compaction of memory is necessary. To 

manage memory on each node, we use the C primitives mal loc  and f ree .  
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Integers are represented by decomposition in 232 basis. This computation basis has been chosen because 

of the existence of an extended arithmetic on each transputer. However, it is possible to use other basis. 
Conversions in 109 basis are made by the user interface. 

Rationals are stored in array - as the c o n c a t e n a t i o n  - of two integers. 

Algorithms 
Addition, subtraction, multiplication and division are performed by classical carry-save algorithms ([21]). 

GCD is computed using Lehmer algorithm for large integers. A version of this algorithm computes 
Bezout algorithm to perform modular lifting. 

Rational arithmetic is built on integer arithmetic. 

Performances 
It's very difficult to have a good evaluation of efficiency of arithmetic operations, as there is no other 
infinite precision arithmetic system implemented on transputers. We chose to compare PAC performances 

to Maclisp. We use the version of Maclisp implented on Bull-DPS 8 (Multics system). We compare times 
of compiled (C) and interpreted (I) Lisp programs. 

Those diagrams show that we obtain the same order as Maclisp for complexity, with a certain factor of 

proportion (~ 2 ). This remark is right for all arithmetic operations, except for division - this operation 

has not been yet optimized in assembly language-. But, comparisons time in Pac is very often constant ( 
comparing the sizes and first words of both integers is often sufficient ). 

In fact, as the following diagrams prove it, this proportion factor comes essentially from the different 
capacities of the two machines : the T414 Transputer is based on a RISC architecture, while DPS8 is a 
CISC. For instance, it is impossible to use registers with the T414. 

1 0 0 0  

+ PAC 

5 0 0 '  +Lisp 

0 ' Si_~ (32b words) 
0 I0 20 30 40 50 

(PAC Time) / (MacIL~p T ~ )  

7 *  

6 "  

4 

3 

2 z 

1 - • - | - 

1 0  2 0  

Addition 

_ L  L = 

• - ° - • 

3 0  4 0  .50  

4OOOO 

Tnne (~) 

2 0 0 0 0  * L i s p  

0 . , - , - , . , . , S i z o ( 3 2 b w o r d s )  

0 10 2 0  3 0  4 0  . 5 0  

( P A C  T ~ )  / ( M a d i s p  T m ~ )  

5 "  

4 "  

- • - , - | - , - • 

1 0  2 0  3 0  4 0  5 0  

Multiplication 

19 



80(]0" 

60(]0" 

4000, 

2000" 

rim, (~,) 

PAC 

L~ 
0 . ; 1 , . , . , . , ~ (32.1, w ~ )  

0 10  2 0  30  40  50  

6 ~ "  

6,0. 

5.8" 

5.6" 

5A" 

52,  • , , , • 

10 20 30 40 50 

rmae (l.n) 

15000 , ~  

10000' 

5000' 

O' 
0 1 0  2,0 3 0  4 0  5 0  

Division 

GCD PAC 

GCD Lisp 

Size (32b words) 

(PAC T, me) I (MacSsp T, me) 

2,6' 

2.2.. 

2,0' 

1.8 . . . . . . . .  ' - . 

0 10 20 30 40 50 

Greatest Common Divisor 

II.3 / Arithmetic on ~ [X] : Parallel Multiplication of Univariate Polynomials 

Let 
n m 

P = ~ p i  Xei and Q = ~ q j X  fj 
i=0 j=O 

If we consider the product as a sum of n+l polynomials: 
11 m 13 m 

Pi Xei * ~ qj Xfj = ~ ( ~  Pi qj Xei + ~) 
i=0 j=0 i=0 j=0 

The implemented algorithm is a mere decomposition of the n sums. If the number of processors is p, each 
processor has to compute about n/p sums; then, by a lifting process, the results are summed two by two. 
We give some examples allowing for the comparison between communication and computation costs. 

P0 = (x + 10! ) ^ 20 P3 = (xa + x3 + x2 + x + 1 ) ^ 5 

Pi =Po ^ 2  P4 = P3 ^ 2  

P2 = (x  + 1 )  ^20  Ps=  P3 ^ 3  

Po*Po 
P,*po 
;o-P, 
P2* P2 
P3*% 

..%* % 
i P+* 

0 ! 1 2 3 ' 4 

6673 4101 2864 2595 2693 

-- 21639 12825 8883 7881 

-- 21194 13499 11787 11778 

2949 1824 1360 1324 1465 

35363 17834 11349 9774 9804 

35801 17007 9208 6337 5570 

34325 14460 7610 5300 4833 

Time in ms against hypercube dimension 
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For examples 2 and 3, on one processor, the coefficients size leads to memory overflow. From a certain 

number of processors, communication cost becomes too expensive with respect to the arithmetic costs; to 

obtain good performances, the calculus to perform has to be consequent in each processor. 

It appears that for a sufficient number of processors it is more efficient to multiply the highest degree 

polynomial by the other one (more communication time) [see ex. 2-3 and 5-6]. 

I I I  / L I N E A R  A L G E B R A  

Some of the basic algebraic computation algorithms (such as Gaussian elimination over GF(p) presented 

below) can be easily developed from the corresponding parallel numerical algorithms, just doing little 

modifications. But most of them need totally new approaches. Even if an important amount of theoretic 

work has been done the implementation of those algorithms leads to new problems : 

- the chosen architecture and a high grained parallelism model do not correspond to theoretic models 

using not bounded numbers of processors, 

- in v iew of an implementat ion we have to take in account the constraints associated to the 

communicat ions,  which cost can be a major loss of time; for Gaussian elimination over GF(p) the 

communication cost represent from 1/10 to 1/3 of the total cost. So, implementing parallel algorithms, the 

main work will consist in minimizing the communication cost using as much as possible the inherent 

parallelism of the algorithms. 

The first implemented algorithm concern the resolution of  linear Diophantine equations and so the 

computation of n integers' gcd. We then present Gaussian elimination over GF(p) and the resolution of 

linear systems over integers. The first obtained results show that important sized problems (which would 

ask for days of computations on a simple sequential machine) have been successfully treated. This will 

permit us to consider more complex problems such as normal forms of matrices (Hermite's normal form) 

and reduction in lattices. 

III .1 / L i n e a r  D i o p h a n t i n e  E q u a t i o n s  

We present here an algorithm described by W.A.Blankinship [5] determining the GCD d of n positive 

integers a 1, a 2 . . . . .  a n and giving a solution x 1, x2, ...,  x n for the associated Diophantine equation: 

d = a 1 x 1 + a 2x  2 + ... + a nx  n. 
Let the equation" 

with al ,  a 2 . . . .  

divides b. 

(1) al Xl + a2 x2 + ... + a n x n = b  
a n , b integers. This equation has an integral solution if and only if the ai's GCD 

Theorem • 

Let d be the GCD of the a i (i = 1 . . . .  n). Let us assume that b = c d where c is a positive integer.Let x 0 e 

~ n  be a particular solution of  (1). It exists n - 1 independent solutions of  the homogeneous equation 

Sl, s2 . . . . .  Sn-1 • ~ n  and the general solution x • ~ n  of (1) is (see [32]): 

(2) x = ( x 0 * c ) + ~lSl + ~2s2 + ... + ~n_lSn.1 with ~'1, ~2 ..... ~n-1 ~ ~ 
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ALGORITHM DESCRIPTION 

1 0... i] 
Let D = (dij)(i = 1to n, j =1 to n+l)be the matrix n x ( n +  1) [ a z 0 1  

* *  

a~O ..0 

The algorithm of W.A. Blankinship consist in performing elementary transformations on D rows until the 

first column contains no more than one non-zero coefficient. Let r and r' two rows of non zero leading 

coefficients . Let us assume that the two leading coefficients r I and r 1' are  such that r I > r 1' > 0 ; the 
elementary row transformation applied is (see [20]) : 

u lil[ x x v  r 
-r'l rl r' = x x x 

go goJ L j 1 
The only non-zero first column coefficient which is obtained after these operations is the ai's gcd, and his 

right coefficients constitute a particular solution of the equation (see [24]). The n-1 others rows gives n-1 

independant solutions for the homogeneous equation. 

THE PARALLEL ALGORITHM 

We try to use the inherent parallelism of the algorithm: gcd (a 1, a 2 . . . . .  a n . . . . .  a2n ) = gcd (dl ,  d2) where 

d l =  gcd (ap ..., an) and d 2 = gcd = (an+ 1 . . . . .  a2n ). 

Parallel algorithm: 

first step: 

choice of a good sequential method on each processor and execution of  the process on submatrices. 

second step: 

lifting process to perform elementary transformation on the rows with non-zero first column coefficient 

remaining in each processor. 

The size of the manipulated objects increases fastly with the number of a i and can lead to a memory 

overflow. 

The parallel programming allows a manipulation of smaller matrices and so the total number of operations 

performed is less than in sequential. 

d i m  
P ALGORITHM (on p = 2 processors) 

SEQ 

o~ = n / p (here p is supposed to be a divisor of n) 

The label of processor is proc 

Inputs: each processor receives ot positive integers 

processor n°proc = (bdim_ 1 . . . . .  b 1, b0) 2 r ece ive s  : acz i + 1, as  i + 2 . . . . .  act (i+l) 

22 



w h e r e  i = (b 0, b I . . . . .  bdim_l) 2 and consti tutes the matr ix  : D i = 

PAR. 
On each processor  do 

SEQ 

[.110...i] 
atxi + 2 0 1 

o . o  

i_act(i+l) 0 0 

Per fo rm sequential  a lgor i thm o n  D i . W e  obtain one  r o w  : L = [d i, lil, . . . ,  lic t] 

w h e r e  d i =  gcd(ae~ i + 1, act i+2 . . . . .  act(i+ 1) )" 

for k := d im downto  1 do : 

o~= 2 0~ 

I f  (2 k 2 0c-X) > proc  >_ ) then 

Send row L to p rocessor  (bdim_ 1 . . . . .  b k . . . . .  b 1, b0) 2 

else {proc < 2 (k-l)} 

Le t  R be a n/2(k-a)+l d imens ion  vector.  Receive R = [di,, 0 . . . . .  0, li, 1 . . . . .  li,et] 

w h e r e  [di,, li,1, . . . .  li, t ] is the row send by p rocessor  (bdim_ 1, . . . , b  k . . . . .  b 1, b0) 2. 

n 

Let  S = [d i, lil . . . . .  lic t ,  0 . . . .  , 0 ]  be a ( 2T t+ i )  d imens ion  vec tor  (S comple ted  with n/2 k zeros). 

Perform transformation between S and R. I f  (R[1] = 0) then L := S else L:= R. 

endif 
Outputs:  A solution of  the equat ion is obta ined in processor  O. 

TIME 
[MS 

;00- 

400- 

~00- 

200. 

I00- 

50- 

16 PROCESSORS 

' ' & ' d 64 128 2 512 1 24 

NUMBER OF COEFFICIENTS 

Figure  III. 1 
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Let us notice that, provided that the transformed rows S or R are preserved, we can construct the general 

solution. The non stored coefficients are all zeros. 

THOUSANDS OF 
OPERATIONS PER 
SECOND 

I000 

16 

500 - 

250 - 

2 

125 - 

I 

PROCESSORS 

128 256 5 2 1024 

NUMB ER OF COEFFICIENTS 

Figure 1II.2 

On one node the tests have been performed for problems of size lower than 256 (we have to precise that 

the infinite-precision arithmetic was not yet available for those tests : the sizes of the coefficients was 

bounded by 231_ 1). The figure III. 1 represents time in ms against number of coefficients and number of 

processors. Here the parallelism allows an important computation time saving. 
The total number of manipulated data and the total number of performed operations decrease when the 

number of processors increases. These last remarks explain the time reductions obtained, for most cases a 

factor higher than two when the number of processors is only doubled. 
The figure III.2 gives the performances obtained, in thousands of operations per second. For several 

processors the curves let appear communication time interferences. 

III .2 / L I N E A R  S Y S T E M S  

III .2 .1  / G a u s s i a n  e l i m i n a t i o n  over  GF(p)  : 

The numerical parallel algorithms for Gaussian elimination can easily be adapted to the GF(p) fields 

arithmetic. The main problem is to minimize the communication costs required when a null pivot is 
encountered. The detail of the implemented algorithms, the Broadcast row the Pipeline ring and the 
Local pivot ring algorithms can be found in [12] and a detailed presentation of the following results in 

[34]. Those algorithms can be implemented simply using the integer arithmetic of the Transputer, but the 

performances have been increased by developing a GF(p) arithmetic on the Vector Processing Unit. 
The quantity usually considered to compare different parallel algorithms is the efficiency : the ratio of the 
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sequential execution time to the product of  the parallel execution time by the number of  processors. This 
definition not expresses that the number of operations does not depend on the number of processors. This 
hypothesis will not always be practically verified. 

EXECUTION TIME USING ONE PROCESSOR 

PARALLEL EXECUTION TIME 

2 5 -  

2 PROCESSORS 

22't.3 

21.7 

9.34 

3.6 

t 

256 

MATRIX SIZE 

Figure III.3 : Local Pivots Algorithm, 
Speed-up, modulo 7 calculus, 

A(i,j) = 0 ifj  > i and 9097 otherwise. 

20 

10 

MILLION OF OPERATIONS 
PER SECOND TEST 3 

• 45 MFLOPS, 19 MOPS 

| I I I I I 

64 128 256 512 768 

MATRIX SIZE 

Figure III.4 : Performances, Millions of  operations per second, 
Test 1 : figure 1 matrix, pipeline ring algorithm, 

Test 2 : figure 1 matrix, broadcast row algorithm, 
Test 3 : random matrix (rood 22307), local pivot algorithm. 
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II.2.2 / L i n e a r  systems over  integers 

E x e c u t i o n  t i m e s  in s e c o n d s  

4000 

A lot of algorithms provide the exact rational or integer solutions of a linear system. Solution can be 

obtained by a direct resolution; an alternative to reduce the intermediary coefficients swell is to use 

reductions modulo and p-adic expansions. 

3000 

2000 

Execution 

3OOO0 

Dir~.t / 
P - a d ~  

1000 .___.__.__...------ 
0 B o u n d s  o n  t h e  

' - ' ' ' ' e n t r i e s  
10 ° 101 102 103 104 10 s 106 

Figure 111.5 • Execution times v.s. the sizes of the entries, 

for a 128"128 matrix (16 processors). 

Two similar algorithms have been given in [Dix] and [GK]. These methods using p-adic expansions seem 
to be superior, in the case of large matrices (suitable to be treated on a powerful parallel machine), to 

methods using the Chinese Remainder theorem. 

20000 

lo000 

0 

0 

Matrix 
[ ]  ' ~ ' ' ' ' s i z e  

50 lo0 150 200 250 

times in seconds 

For a fixed size of matrix, the number of performed operations during the local pivots algorithm will 

depend on the entry matrix and on the number of processors (see [10] or [34]) : we show on figure III.3 

below some measurements of speed-up : the ratio is greater than the number of processors. Figure III.4 
shows us that 19 Mops (Millions of operations per second, +, * and mod) can be reached. Equivalently, 

45 M_Flops (floating point operations) are produced (the modulo needs five floating point operations). 

Figure III.6 • Executions times of the direct resolution, (entries bounded by 100). 

We compare here, a direct implementation of the resolution (corresponding to the Bareiss' fraction free 
algorithm given in [Bar] and parallelized in [RSSV]) and the implementation of the p-adic resolution 
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(which parallelization can be found in [Vi]). We have tested our parallel implementations to calculate the 
solutions of problems involving matrices with k-digit  random elements, with values of k from 2 to 6. So 

within a factor at most 4/3 (in fact the one-step cost over the two-step cost [1]) we are in a context 
analogous to the one used for timing results given in [2, table HI). As previously we can measure the 
efficiency of the algorithms.The hypothesis that the real cost of an algorithm is solely due to arithmetics 

and communications may no longer be verified in practice : an important extra--cost arises in algebraic 
computations, the variable-length arithmetic implies a memory management cost (which depends on the 

size of  the available memory). The memory is more saturated during the sequential execution than the 
parallel one : this could lead to very surprising speed-up greater than the number of used processors. 

Execution times in seconds 

6000 

4000 

2000 

0 I1 -- I 1 I 

0 100 200 300 

Matrix 
size 

Figure III.7 : Execution times of the p-adic resolution (entries bounded by 100). 

It is interseting to see on the figure III.5 the execution times versus the number of digits of the entries. 

Assuming we use a classical multiple-precision arithmetic, we recall here the theoretic sequential 
arithmetic costs : O(nSB 2) for Bareiss' algorithm [3], where B is a bound on the number of digits of the 
entries; and O(n3Blog2n) for the p--adic method. On the two last figures (III.6 and III.7) we present the 
execution times of the two resolutions. It appears as forecasted by the complexity studies, that the p--adic 
resolution is much better than the direct resolution. 

IV  / G R O B N E R  B A S E S  

IV.1 / Genera l  Presenta t ion  : the Parallel  A lgor i thm 

The definition and the way to compute a Grrbner basis is supposed to be known. None of the following 
notions will be developped: Critical pair, Spolynomial, normalisation. We want to parallelize the 

Buchberger 's  algorithm [6]. A parallel algorithm is presented.We have determinated the independant 

tasks of the sequential algorithm and the proposed algorithm adds recursively adequate polynomials to the 
set of input polynomials. The fact that we work with boolean polynomials involves particular choices in 

the order of the variables, and simplifies the basic operations. 

where F 2 is the field 77/27'7 and where (x12+ We work in F 2 [X 1 . . . . . . .  Xn] / (X12+ Xl ........ Xn2+ Xn ) 

X 1 ..... Xn2+ Xn) is the ideal  generated by the polynomials X12+ X 1 .... Xn2+ X n. 

So we have the following properties: 
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i) xi2 = x i for all i in { 1 ..... n}. 

ii) x i + x i = 0 for all i in { 1 ..... n]. 
We assume to have at one's disposal a parallel machine with n processors, each having a local memory. 

The processors can be connected in order to form a ring. The algorithm presented below has been 

implemented on the hupercube FPS T20 of the TIM 3 laboratory. 

IV. 1.1 Computation of Spolynomials 

The computation of the Spolynomials may be done in parallel since they are independant. If we have m 

polynomials in input and n ( n is even ) processors at one's disposal, with m >_ n., we distributate the m 

polynomials among the processors' memories in the foUowing way: 

m = q n  +r ( 0 _ < r < q )  

(n - r) processors contain q polynomials 

the r remaining processors contain q+lpolynomials. 

The main problem when computing the Spolynomials that is all the polynomials must meet each other. 

i) In a first step, we compute in parallel, the Spolynomials associated to the polynomials contained in 

the memory of each processor. Let us suppose that k is the number of these polynomials 

In a processor: 

Beginning with FP = { Pl, P2 .... .  Pk } we compute C12 ...... CiK, C23 ...... C2k ... . . . .  Ck-lk where Cij is 
the Spolynomial associated to Pi and pj. 

ii)The subsets of input polynomials contained in each processor circulate along the ring which allows 

us to compute all the Spolynomial associated to the m input polynomials. 

Let FP i be the collection of k polynomials contained in the i th processor of the ring. During the first step 

we have computed, in each processor, the Spolynomials associated to these polynomials. We shall note 

FC i the collection of Spolynomials obtained in the i th processor of the ring. We proceed as follow: 

i) The collection FP i is transferred from the processor i to the processor i+l .  

ii) The Spolynomials FCi,i+ 1 f r o m  F P  i and FPi+ 1 are computed in each processor. 

iii) F C  i and FCi, i+ 1 are concatenated in parallel. 

These three steps are then repeated until we have computed m (m-l)/2 Spolynornials associated to the m 

input polynomials. With four processors this manipulation may be represented in the following way : 

First iteration: 

i th processor of the ring (i ~e 1): 

- FP i ----)FC i 

- send FP i 
- receive FPi-1 

- ( FPi, PPi-1) = ~ FCi,i-1 
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On a ring: 

@@ 
1 

@ @ 
And so on, until having computed all the Spolynomials associated to the m input polynomials. 

IV.1.2 / The normalization: 

All the Spolynomials obtained must be normalized with respect to the input polynomials. The process is 
the same as during the computation of the Spolynornials. Each processor contains two collections of 
polynomials: the collection of its k input polynomials, and a collection of Spolynomials, resulting from the 
former steps. 

The Spolynomials circulate along the ring and are normalized with respect to the given polynomials as 
soon as they meet them in the processors. 
Then, the processors work in parallel to reduce the Spolynomials they receive with respect to the 
collection of the input polynomials they contain respectively. 
The execution of this step is finished when all the Spolynomials are in normal form. The processors stop 
the computation simultaneously. 

IV. 1.3 / The whole algorithm: 

When the Spolynomials normalized are computed, in order to obtain a Gr6bner basis, the sequential 
algorithm repeats the same computation, substituting, at each iteration, the collection of input 
polynomials by the union of this collection with the collection of the Spolynomials normalized computed at 
the former step.Therefore, we may repeat, in the parallel algorithm, the step of computation and 
normalization of Spolynomials substituting, at each step and in each processor i of the ring, UP i by the 
concatenation of FP i and F P C N  i. We use this method, but modified, because it generates, at each step 
results yet obtained in the former step. 

IV.2 / Implementat ion on the FPS T20 

IV.2.1 / Choice of a representation for the boolean polynomials: 

The choice of the structure to represent the boolean polynomials is justified by the fact that we want to 
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translate the basic operations, such as the sum and the product of boolean polynomials, into a simple 

manpulation of that structure. This choice conditions the order on the variables. In a first time we have 

represented a boolean polynomial by an array of monomials, and each monomial by an integer. This 

integer is build (the integers are written in radix 2, with 32 bits) in the following way: 

the monomial 1 is represented by 1 

the monomial x i is represented by 2i+ 1 

the monomial xix j is represented by 2i+ 2J +1 

With this representation, and since the boolean operations are available on the integers, we easily translate 

the necessary operations for the computation of a Gr6bner basis. 

In order to represent polynomials with more than 32 variables, we now work using large numbers [28]. 

IV.2.2 / Results 

The algorithm reads in input the number of polynomials, the number of processors wanted and the 

polynomials. 

The following results show the evolution of the computing time of a Gr/3bner basis according to the 

number of processors. 

The treatment of 32 polynomials with 5 variables gave us the following results: 

num. of proc time in sec 

1 1.673 

2 0.501 

4 0.290 

8 0.226 

16 0.217 

The time decreases as the number of polynomials increases. This decreasing is reduced by the delays of 

communications, which increase according to the number of processors. The more the computations are 

important in front of the communications the more the algorithm is interesting. It is difficult to control the 

number of simplifications required by the algorithm and then to know how the cost of communication 

grows according to the data. So we are studying an other algorithm where the communication cost does 

not depend on the simplifications. Instead of considering the independancy of certain tasks in the 

sequential algorithm, we use the following fact: 

Let P= (Pl ...... Pk) a set of polynomials. Let P1 = (Pl .... Pp), P2 = P-P1 and G 1 and G 2 gr/Sbner bases 

associated respectively to P1 and P2. 

A Grtibner basis of the union the G 1 and G 2 is also a Grtibner basis associated to P. 

We do not describe the corresponding algorithm here. 
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