
Network Expert Diagnostic System
for Real-time Control

Terry L. Janssen

CSC Technology Center
Computer Sciences Corporation

3160 Fairview Park Drive
Falls Church, VA 22046

ABSTRACT

Data communications networks are controlled by network
management systems that are responsible for performance
and fault management. This paper presents an expert system
capable of performing fault and performance management
through different levels of autonomous control. A blackboard
architecture design provides for processing of multiple lines
of machine reasoning and planning: the set of all unresolved
events is used to generate hypotheses of network state through
event correlation and ancillary network information; support-
ing network data provides evidence that supports orrefutes the
hypotheses; conclusions are drawn from the hypotheses;
plans of corrective action are built, executed, and monitored
to attempt improvement to a "normal" network state.

1. INTRODUCTION

Computer networks are controlled by network management
systems that are responsible for performance and fault man-
agement. They perform these functions by monitoring events
and giving commands to various network devices such as
terminals and host computers (along with their embedded
communications capabilities) located on the networks. The
"current state" of the network, on both the global and device
levels, is monitored through event messages sent from the
devices. Events range from device specific-faults to exces-
sive protocol errors caused by multiple device interactions.

As data communications networks have become larger and
more complex, the knowledge required to maintain them at
acceptable levels of performance has likewise increased in
complexity. This problem is compounded by networks of
varying architectures linked through gateways and multiple

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Asociation for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

© 1989 ACM 0-89791-320-5/89/0006/0207 $1.50

vendors, network hardware (Boyd, et a11987). Thus, network
management is both complex and expensive, and network
problems are often misdiagnosed, leading to excessive down-
time.

Artificial intelligence has been applied to network manage-
mentin a variety of areas. Generally, these efforts fall into one
of the following categories: expert advisors that assist a
network operator in performing network fault management,
and expert managers that directly perform the network fault
management functions. Cronk, et al (1988), provides a recent
summary of some expert systems in the first category.

The success of expert systems in the first category may be
accounted for by the success of expert diagnosis systems in re-
lated problem domains. Several expert systems provide fault
diagnosis of electronics circuits (Bandler, eta11985; Cantone,
et al 1984; Merry, 1983; Laffey,et al 1984; Fredman, 1985),
and central processing units (Gikes, et al 1986). ACE, a very
successful expert system for diagnosing failures in telephone
cables, correlates network fault indicators with customer
trouble reports by off-line batch processing of historical data
(Bernstein, et al 1988). Ganesan, et al (1988) developed an
expert system on the front end of a network management
system to allow the network operator to interact with a
network management system using natural language, text and
graphics.

The second category, expert manager systems, has been
widely discussed as the next major evolutionary step in
network mangement (Bernstein,et a11988; Ward, et al 1985).

The ultimate goal of an expert manager in a data communica-
tions network is self-healing of failures and performance
anomalies; when self-healing is not possible, an expert man-
ager should automatically create a trouble report. Sutter, et al
(1988), has suggested an approach to designing expert sys-
tems for real-time self-correcting networks.

Expert manager systems have not had the same degree of
success as have expert advisor systems. One contributing
factor has been that network management systems have not
yet provided the capability for an expert system to access a

207

http://crossmark.crossref.org/dialog/?doi=10.1145%2F66617.66644&domain=pdf&date_stamp=1989-06-06

wide range of network data and statistics in multiple vendor
and protocol environments. Also, network management sys-
tems have not provided for direct expert system issuance of
tests and commands on-line to the network, and for operator
control of which tests and commands the expert system should
perform autonomously. Most network management systems
in operation today do not have a network database including
device information, network configuration and statistics.
Such data is required for an expert manager system; without
this information it appears that event correlation alone pro-
vides the greatest promise for on-line automated fault diagno-
sis in large data communications networks. Correlation of
events within a data communications network has been sug-
gested as a means of eliminating unnecessary diagnostic effort
(Boyd, 1988).

Our research focuses on the development of an operator-
independent, intelligent event processing capability for diag-
nosis and control. This capability is accomplished by integrat-
ing the development of a machine reasoning component into
a network management system. Integration has been accom-
plished by consolidating this effort with the Integrated Net-
work Management Control (INMC) system, another CSC
Independent Research and Development effort. INMC pro-
vides a unified network management protocol and the net-
work management functions for (1) access to events and sta-
tistics from the network, (2) performance of on-line network
tests, and (3) issuance of commands to control devices on the
network. INMC is an implementation of a network manager
that uses the Common Management Information Service and
Common Management Information Protocol developed by
the International Standards Organization (ISO #9595/2, ISO
#9596/2). The network management functions are being
implemented in the C language on a MicroVAX. Networks
from multiple vendors conforming to IEEE 802.3, OSI, and
other protocols, either standalone or connected by gateways,
are targeted for management by the INMC.

Our research and development effort has led to a total design
for an expert system and INMC as an integrated system. The
expert system, i.e., the Network Expert Diagnostic System for
Real-time Control (NEDS/RC), is targeted at performing
most of the fault management functions of a human operator:
near real-time event correlation and processing, diagnosis,
and on-line network control for restoring a network state to
"normal."

2. EVENT PROCESSING FOR FAULT DIAGNOSIS AND
CONTROL.

This section defines the fault diagnosis and control problem in
terms of sets of object and their inter-relationships. An event
is an indication of a fault. An event is either active, meaning
that it is being processed, or inactive, meaning that it has been
processed and is no longer an indicator of the current network
state.

Let E be the set of active events:

E = {el, e 2 el} where i is the number of events, i>_1.

As events arrive they are added to the set; when resolved they
are removed. For every event there exists at least one
hypothesis h such that h is a plausible explanation of that
event. Let H be the set of hypotheses:

H = {h 1, h 2 h.} wherej is the number of hypotheses, j>_l.

A hypothesis states that a specific failure or performance
anomaly has occurred. Hypotheses are generated by event
correlation and inference from ancillary network information.
When possible a hypothesis states the specific point in the
network where the failure or performance anomaly has oc-
curred. The set of hypotheses suggest a set of plausible,
unique states that may or may not represent the state of the
network. Hypotheses are not redundant: only one hypothesis
exists for a given plausible network state, and one or more
events in set E is an indication of a specific hypothesis in set
H.

Hypotheses are supported or refuted by evidence gathered by
hypothesis testing. Tests can provide statistical or physical
evidence. A database of network data provides traffic and
error measurements for each level of protocol and of each
network and subnetwork. Statistical tests are performed by
utilizing network data. Physical tests are performed by
sending messages to one or more devices on the network and
executing a physical device test. Supporting evidence is
sought for each hypothesis in set H by searching for a test t that
can provide that evidence. Let T be the set of tests:

T = {t 1, t z tk} where k is the number of tests, k>0.

Each test in T provides support for one or more hypothesis in
H, as measured by degree of confidence. Degree of confi-
dence is a measurement of the likelihood that the conclusion
is true. If the degree of confidence surpasses a threshold level
of confidence (set by a parameter), the hypothesis that it
supports is considered true. For every hypothesis in H with
supporting evidence greater than the threshold of confidence,
a conclusion is created and added to the set of conclusions C:

C = {c a, c 2 c,,} where m is the number of conclusions, m>l.

A conclusion is a belief that a particular fault has occurred.
Each event in E (the driving force of this event processing
system) has at least one conclusion in C. The likelihood that
a conclusion c accurately models network state is measured by
the degree of confidence in the hypothesis from which it origi-
nated. When possible, a conclusion points to a specific point
in one of the networks or subnetworks where the failure or per-
formance anomaly is believed to have occurred. For any event
e, if no hypothesis h exists with a degree of confidence above
the acceptable threshold of confidence, a default conclusion

208

is formed: the conclusion that the cause of the event is
unknown (and the creation of a trouble report is required).

Conclusions need to be acted upon to attempt to restore the
state of the network, i.e., the state of the network that is
believed to exist, to a "normal" network state. Normal is
defined (in the context of this paper) to mean that the state of
the network is consistent with network design and intended
network performance.

Planning is required to restore network state to normal. Aplan
of action for the entire network is actually a set of subplans
refined into a unique set of on-line commands for controlling
devices within the global network. Let S be the set of
subplans:

S = {s 1, s z s} where n is the number of subplans, n_>l.

A subplan is a part of the overall plan of action, and provides
a means to change network state at a specific point in the
network. For every conclusion in C there exists at least one
subplan in S that can potentially improve network state to a
more "normal" state. A subplan s may restore more than one
network failure or anomaly concluded in set C.

Resolution management involves adding new subplans to the
set S and refining the suplans into a total network plan
composed of a string of nonredundant device commands. At
periodic intervals the plan is executed by sending it to the host
network management system for Ixansmission on the network.
The plan includes commands for feedback to monitor for
network state improvement. The management of unique sets
of events, hypotheses, tests, conclusions, and subplans pro-
vides for synchronization of multiple activities for managing
multiple faults and performance anomalies occurring simulta-
neously within the network.

3. LEVELS OF AUTONOMOUS CONTROL

ing network state but require inappropriate amounts of net-
work resource; tests or commands issued by the expert system
may take an excessive amount of time to perform. The first
occurs because of an entry in the knowledge source that is
incorrect or incomplete. The last two occur when the knowl-
edge is correct but not reasonable given current conditions.

Network resource utilization can be measured in terms of
network or device load. Both network utilization and time are
included with knowledge of specific tests and commands
within the expert managers, knowledge sources.

One solution to the problem is to give an expert manager dif-
ferent degrees of autonomous control. Such an approach
allows the operator to set the degree of autonomy that the
expert system can assume. The level of autonomy can be
increased over time as trust in the expert manager increases.
Knowledge of network utilization requirements and estimates
of time requirements to perform tests and commands provide
rule-based constraints on the tests and commands that can be
performed. Before a test or command is issued to the network
it must surpass a threshold level that permits it to be executed
without network operator approval.

This approach provides a continuum of control: control
ranges from total control by a human operator through human
operator override of the expert system's recommendations to
complete autonomy of the expert system.

4. APPROACH

We reviewed commercially available expert system shells at
the beginning of our research effort. None of the evaluated
shells provided a good match for near-real-time processing;
the correlation and processing of multiple events; and mul-
tiple threads of control needed to resolve multiple network
failures and performance anomalies. All are required for au-
tonomous network management.

One major obstacle in development of an expert management
system is maintaining control of the expert system, i.e.,
avoiding inappropriate commands from being issued to one or
more of the networks by the expert system. Expert system
advisors leave decision making and command of network
functions to the discretion of the human operator. Conversely,
expert managers perform commands automonously. Events
provide uncertain information, and the knowledge in a knowl-
edge-based system is often inexact. Consequently, an expert
management system is prone to making wrong inferences and
executing commands that are inappropriate.

Three basic situations in expert management systems man-
date placing control restrictions on the expert system: the
expert manager can perform actions on the network (tests and
commands) that are inappropriate; the expert manager can
perform actions on the network that are appropriate to improv-

Our approach has been to design an expert system to perform
event processing for fault diagnosis and control, as defined
previously (in Section 3). Design of NEDS/RC has resulted
in a new expert system architecture that has evolved from
other blackboard expert systems (Hayes-Roth, 1985; Craig,
1986). The blackboard is a repository of information within
a global memory area. Distinct functions are performed on
objects on the blackboard by independent knowledge-based
processes. The processes manipulate five sets of objects on
the blackboard: (1) objects that correspond to events that
arrive from the network through a network management
system; (2) hypotheses about fault and anomalous states
within the network; (3) tests to support or refute the hypothe-
ses; (4) conclusions formed from hypothesis testing; and (5)
subplans to restore network state.

This approach provides several advantages. First, each black-

209

Event
Management

Hypothesis
Test

1. event

4. hypothesis J

7. conclusion

BLACKBOARD

r["-[Event objects [

Hypothesis objects

Test objects [

~ Conclusion objects ~

Subplan objects

2. event ,_._[

3. hypothesis

9. subplan

Hypothesis
Generation

Resolution
Management

Figure 1. The Blackboard is a global data structure used by the process modules of the NEDS process.
The number and label by each arrow pointing toward the blackboard is the sequence in which the objects
are created on the blackboard; the arrows pointing away represent information accessed from objects.

EVENT e i

e 2 BLACKBOARD

Hypotheses
rzw~x~xx~x'~
Ancillary

Information

HYPOTHESIS

Conclusions

CONCLUSION

Protocol
Data

S OBl'Ce I
Device [
Data

Associated
Device
Data

Evidence ~ ,,, ~ - ~ , ~ \ \ ~ - ~ \ ~ x ~ SUBPLAN

TEST -r ilk t l . . tk
Subplans

Figure 2. The blackboard contains several types of linked objects (frames). The primary objects correspond to sets
E, H, C, T, and S, and are represented as shaded rectangles.

210

board object independently passes through phases of process-
ing. Second, newly created objects do not produce redun-
dancy. Membership in the set of objects is checked, and if a
similar object is already in the set, the new object is coalesced
with the existing object. Third, objects in wait state do not
require CPU resources, allowing other objects to be processed
while waiting for test and command results to be returned
from the host network management system.

A metalevel controller schedules four cooperating processes:
event management, hypothesis generation, hypothesis test,
and resolution management. Each process has a specialized
knowledge source. Each blackboard process performs a
specialized function. Each blackboard process is independ-
ent, and an object scheduled for processing is processed
through the next phase. This approach provides near-real-
time event correlation and processing of multiple events, and
multiple threads of control for self-healing within an in-
ternetted data communications network.

A prototype of this system is being implemented in Common
LISP on a MicroVAX computer. Common LISP was selected
because of its many advantages for symbolic processing. The
MicroVAX computer was selected because of a management
decision to use the same host computer for the expert system
as for the network management system. The same host com-
puter provides all network communication and network man-
agement functions required by the expert system.

Performance on the MicroVAX, a concern from the beginning
of the effort, has prompted special design considerations. The
blackboard processes are independent and, at a conceptual
level, operate in parallel. This design characteristic provides
an alternative implementation to attain more efficient per-
formance. Hayes-Roth (1985) called attention to the prob-
lematic performance of a blackboard architecture expert sys-
tem implemented in LISP on a sequential (von Neuman) proc-
essor. As part of our ongoing effort, we are attempting to
transport this design onto a parallel processor. This aspect of
the project is discussed further in the last section of this paper.

Each blackboard process has a knowledge source that has
been compiled to improve efficiency of search. Each black-
board process knowledge source contains knowledge particu-
lar to the process it performs. A separate knowledge acquisi-
tion system assists in knowledge acquisition and compilation
of the knowledge into its respective knowledge source.
(Discussion of the knowledge acquisition system is beyond
the scope of this paper).

The blackboard architecture and processes are presented in
further detail in the following sections.

4.1 BLACKBOARD ARCHITECTURE

The blackboard, a repository for information objects within a
global memory area, is a means for information sharing
among processes (Figure 1). Each process performs at least
one distinct function and posts its results to the blackboard.
There are five information object types: events, hypotheses,
tests, conclusions, and subplans (Figure 2). Each object is
created in "unprocessed" state and is processed through vari-
ous phases; each blackboard process advances the object
through one particular phase at a time. The numbered arrows
in Figure 1 illustrate the general sequence in which objects are
created and posted to the blackboard.

Blackboard processes access the blackboard objects through
common code functions. The objects are linked together into
a bidirectional graph structure that provides direct access to
associated objects. For example, event objects are linked to
the hypothesis objects that are indicated by the events. Test
objects are linked to the hypothesis objects that they support
or refute, and so forth. The objects on the blackboard form a
current model of fault and anomalous states. The model rep-
resents a global view of the entire network, free of redan-
dancy. The model may not reflect the actual network state
since it is based on uncertain information. However, uncer-
tainty is managed by computing the degree of confidence
using rules within the knowledge sources and representing
confidence in the arcs between objects on the blackboard.
Degree of confidence is an estimation of the likelihood that the
blackboard objects accurately model network state.

The blackboard processes are described in the following
sections.

4.2 METALEVEL CONTROL

The metalevel controller is a supervisory knowledge-based
process that schedules the execution of other blackboard
processes. It processes all input from the host network
management system except newly arriving events.

Objects ready for processing are scheduled for processing by
the respective blackboard process. An agenda is created by
prioritizing the blackboard processes that are scheduled. The
highest priority process is executed first.

The blackboard is maintained by the metalevel controller.
Information queried by one of the blackboard processes is
posted to the appropriate blackboard object by the metalevel
controller. Objects that have passed through all phases of
processing are archived and purged from the blackboard.

4.3 EVENT MANAGEMENT

The primary function of the event management process is to

211

Type: Device #:

Object type: Event #:

ID:
Alert:
Type:
Priority:
Device:
Config Unit: ~ .

 o7o o
Time:
Category:
Occurances:
Hypotheses:
Status:
State:
Supporting_attributes:

7

Device:
Type:
Status:
Location:
Model:
Version:
Vendor:
Install_date:
Maim date:

Type: Protocol #:

Device:
Protocol:
Status:
Network:
IP_address:
PI_MAC_addr

Type: Config_unit

Device:
Config_unit:
Type:
Status:
Vendor:
Model:
Version:
Install_.date:
Maint_date:

#:

Type: Statistics #:

Date_time:
Device:
Protocol:
Network:
Assoc_device:
Config_Unit:
Type:
SPDUs:
RPDUs:
SD_octets:
RD_octets:
S_request_corm
R_request_corm
S_connects:
R_connects:
S_broadcasts:
R_broadcasts:
Collisions:
Retransmits:
Checksums:

Figure 3. Data is appended to the event object to provide facts about the device that issued the
event, the configuration of the device (if known), the protocol and a snapshot of the associated
protocol statistics. Several layers of protocol statistics exist in the database; the statistics that
are the best indicators for hypothesis generation are acquired (by rules in the event management
knowledge source) and linked to the event.

read new events that have recently arrived for processing. An
event is an indication of a fault state or performance anomaly
within the network. Unique events are posted to the set of
event objects on the blackboard. A pre-compiled knowledge
source is used to query the database for network information
and statistics, i.e., information that is necessary for processing
the event, depending on event type, source, and protocol from
which the event was generated.

An event object and associated data are illuslxated in Figure 3.
There are two primary variations of event objects depending
upon the event type. The first is a threshold event that is
generated by a threshold violation. This class of event is
caused by faults that are either corrected due to retransmis-
sion, or are unsuccessful transmissions. In both cases, the
occurrences of such events are tallied and stored in the
network management database. When a predetermined thresh-

old level is surpassed, an event is generated by the network
management system and sent to the expert system for process-
ing. The threshold violation is an indication of an excessive
number of otherwise tolerable fault states within the network.

The second type of event is an error report from a specific
device within the network. With this type of event an error
code is provided with the event message. The error code may
or may not pinpoint a specific fault condition within the
device, or an associated device, from which it was generated.
This type of event reports the relative severity of the fault
condition.

In both cases, the information received with the event together
with the information obtained from the network management
database are posted to the blackboard so that the next process
can generate hypotheses as to the specific cause and location
of the failure or anomaly.

212

EVENT: Time values

Unexpected Response HYPOTHESIS: / wrong
Design Flaw f

3 = .09 T n set
PROTOCOL: wrong
IEEE 802.3 Brief device

/ overload
HYPOTHESIS: (Gene ra l network

SOURCE: ~ Network Traffic
Comm. Device ~ = .27 " " overload

Component
ASSOCIATED

E V E N T " HYPOTHESIS: / X 1 Failure

Overdue Response Component Failure~,,,, Component
= .64 X n Failure

Figure 4. Simplified example of events (left), plausible
hypotheses with degree of confidence (3) and more
specific subhypotheses (right).

4.4 HYPOTHESIS GENERATION

A cause of an event can be a number of things from a specific
component failure within a device on some network, to
complex protocol interactions. A hypothesis is a plausible
explanation for a specific fault or performance anomaly. The
goal of hypothesis generation is to generate the set of plausible
hypotheses that are as specific as possible based on the infor-
mation available. Available information is limited to that
which arrives with the event, is in the network management

Object type: Test # <object number>

ID: <symbol ' T ' and number>
Type: {Device I DB I OW}
Name: <test name>
Tinae: <date_time>
Control Level: {0..100}
Parameter Query: <formal command>
Command Parameters: <ordered list>
Command: <formal ASN.1 command>
Result: <symbol>
Confidence: {0..100}
Evaluators (list of 4 tuples):

<{= I > I < } , symbol, conclusion, 3>
Hypotheses: List of tuples

<object address, O>
Parents: <address list>
Siblings: <address list>
Status: {unprocessed I in-process 11

in-process 2 1 processed}
State: {on-hold I interrupt I schedule}

Figure 5. The Test object type and frame structure.

system database or, in some isolated cases, acquired by query
of the network operator. Available information is also consid-
ered to be that information accessible within a limited
timeframe; information not accessible by the expert system
within the allotted timeframe is defaulted to "unknown" and
processing continues without it. Event correlation among
events in the set of event objects provides indication of faults
and anomalies that cannot be identified by the event alone.

Events that are pending additional information are not proc-
essed until the information arrives and is posted to the black-
board. When information is pending, hypothesis generation
continues for other events. When the hypothesis generation
process is out of work (i.e., there are no more unprocessed
events on the blackboard), or surpasses a time limit for execu-
tion, the hypothesis generation process passes control back to
the metalevel controller. Figure 4 illustrates events and asso-
ciated plausible hypotheses.

4.5 HYPOTHESIS TEST

The hypothesis test process searches its knowledge source for
tests that can provide evidence that supports or refutes each of
the hypotheses on the blackboard. Hypothesis objects that are
ready (i.e., flagged) for hypothesis generation are processed.
For the set of hypotheses being processed, the hypothesis test
process creates new test objects, or uses existing tests that
have test results that are within age (elapsed time) limitations.
The test object type is illustrated in Figure 5.

The set of tests posted to the blackboard are refined to avoid
redundancy. If more than one test is found in the knowledge
source, an attempt is made to select the one with the most
efficient cost. The test with the most efficient cost is the test
that provides the greatest confidence in support of the hy-
pothesis at the least cost. Cost is measured by an estimation
of the load that the test will place on network resources and the
time required to get the result.

Tests form a command string that is sent to the host network
management system for execution. Operation on the test
object is interrupted until the metalevel controller posts test
results on the originating test object. The test object is then
scheduled for test result evaluation.

Subsequent hypothesis test process execution evaluates the
result and forms one or more conclusions about one or more
hypotheses supported by the test. When a threshold degree of
confidence in a hypothesis is surpassed, a conclusion object
is created and posted on the blackboard. In most cases a
hypothesis states a specific failure or performance anomaly;
only one specific conclusion can result from one specific hy-
pothesis. However, an event with more than one hypothesis
that surpasses level of confidence will likewise have more
than one conclusion, (i.e., belief that a network failure or
anomaly has occurred at a specific location). The conclusion

213

with the greatest confidence is activated first, i.e., scheduled
for processing. The set of conclusion objects is processed by
the following blackboard process.

4.6 RESOLUTION MANAGEMENT

Once the cause of a network problem has been inferred with
a reasonable degree of confidence, the problem must be cor-
rected. This is accomplished by generating a plan consisting
of a sequence of actions that must be performed on the
network. For each conclusion formed about an anomaly in
network state, the knowledge source is searched to build a
subplan capable of improving that network state. Subplans
provide knowledge of how to restore network or device states
to normal.

The goal of a subplan is to change a specific state of the
network to a desirable state. Subplans focus on a specific lo-
cation in the network: when possible a subplan focuses on a
specific component within a specific device on the network.

Object type: Subplan # <object number>

ID: <symbol "S" and number>
Type: {device I operator workstation}
Subplan Name: <symbol>
Cost: {0..100}
Confidence: {0..100}
Time: <date_time>
Control Level: {0..100}
Command Parameters: <parameter list>
Command: <formal ASN.1 command>
Verification: <formal ASN.1 command>
Result: <symbol>
Evaluator (list of 4 tuples):

<{= I > I < } , symbol, conclusion, 2>
Conclusion: <symbol>
Status: {unprocessed lin-process

I processed}
State: {on-hold I interrupt I schedule}

Figure 6 The Subplan object type and frame structure.

Network state change is accomplished through a formal
command contained within the subplan object. The semantic
is a generalization of an actual command that can be sent over
a data communications network to the appropriate device and
component. The level of generalization depends upon the
device type and protocol level for which it is being issued. The
devices that can change network state by on-line commands
are a subset of all devices on the network.

To apply the subplan to a specific devicein the network, the
subplans are refined with the addresses of specific devices
within the network to which the subplan is being applied. A
subplan object type is illustrated in Figure 6.

When physical device failure is concluded as the cause of one
or more events, NEDS/RC first attempts to circumvent the
problem and then sends a trouble report to an engineering ac-
tivity for fault correction.

5. PERFORMANCE

Expert management systems, to be effective, must perform
uninterrupted processing of events at a rate greater than the
arrival rate of events. Real-time processing is not necessary
because the host network management system queues events
for processing, and queues messages from the network until
processing is scheduled. However, near real-time perform-
ance can be achieved. Processing is performed continuously
on the blackboard without interruption. Processing is focused
on objects scheduled for a function to be performed. Objects
that can not be processed because of priorities or delays due to
test or command execution are placed in "interrupt" status
until processing can resume. Each object on the blackboard
requires one or more phases of processing. When all process-
ing on a specific object is complete the object becomes
inactive.

A time slice of NEDS/RC processing is illustrated Figure 7.
This illustration conveys an example of the dynamics of the
blackboard processes over time. The time line attempts to
show several key properties of the blackboard system. First,
at time t the hypothesis generation (HG) process is executing.
At time t+l control is passed back to the metalevel controller
(MC), which schedules and executes the hypothesis test
process (HT). Midway into the hypothesis test process a test
message (T1) is sent to the host network management system.
The hypothesis test process continues with other processing
until control is passed back to the metalevel controller. The
metalevel controller schedules and executes the next highest
priority process: resolution management. At time t+3 the
result from test T 1 arrives at the network management system
which writes the result message to a NEDS/RC input queue
(Q). The test results remain in the queue until the resolution
management process passes control back to the metalevel
controller. The metalevel controller processes allinput queues
by priority and posts the test result for test T 1 on the originat-
ing object on the blackboard and places that object in "sched-
ule" state. The metalevel controller schedules the next highest
priority process. The hypothesis test process processes all
scheduled test objects. The results of test T1 are evaluated and
stored to provide supporting evidence to one or more hypothe-
ses to which it is linked.

This example, although not fully representative of NEDS/RC
processing, does illustrate how NEDS/RC is able to perform
in near-real-time. NEDS/RC implementation is currently
sequential. The following section discusses the future direc-
tion of our research to provide a much more efficient parallel
implementation of the blackboard processes.

214

EM

HG

HT

RM

MC

i ~ _

t+l

T1

~-~-kv,.-...

!On-lithe Test to INMC)

' i i
i :

ff

. x x ~ x x x x ~ x x x x x x

i

1
!

t+3 t+2
time

- !

t+n

Legend:

(g)

I

process executing
Reply from INMC queued
(received at NEDS/RC mailbox)
Elapsed time
Test sent to INMC from
NEDS/RC

Processes:
EM - Event Management
MC - Metalevel Control
HG - Hypothesis Generation
HT - Hypothesis Test
RM - Resolution Management

Figure 7. Example of NEDS/RC event processing over time t.

6. FUTURE DIRECTIONS

A major objective of this research has been to provide near-
real-time event processing for fault and performance manage-
ment of large data communications networks. An expert
manager system needs to perform self-healing within a data
communications network as quickly as possible; at a mini-
mum, the average rate of event processing must be greater
than the average arrival rate of events. Some communica-
tions network environments, such as data communications in
hostile environments, mandate fault diagnosis and adaptation
to be as fast as possible (Diamond, 1987).

The performance of the current implementation is limited
because the average number of computer cycles required to
process each event is very large. Performance has been
considered in the design: several major processes of the
NEDS/RC system can be performed in parallel.

A future direction of this research is to transport the existing
Common LISP code now functioning on a MicroVAX to a
parallel processing computer. Several parallel architectures
have been reviewed. The architecture selected for implemen-
tation of NEDS/RC is the multiple instruction multiple data
(MIMD) architecture. This architecture will allow parallel
processing of the blackboard access functions and all black-
board processes. Within each of the blackboard processes
further parallel processing can be performed by additional
processors.

Our aim for the near future is to implement our Common LISP
code on the AMETEK 2010 parallel processor, a MIMD
architecture computer. We expect to improve event process-
ing throughput by an order of magnitude. Simulation of
parallel processing of a blackboard architecture system, the
Hearsay-II system, has been reported (Fennell, 1977), al-
though there are no clear results on the effectiveness of
parallel processing of a blackboard architecture system for
real-time fault diagnosis and control.

Within the blackboard processes, further parallelization is
possible. These areas for parallelization include: (1) genera-
tion of hypotheses by parallel search for plausible hypotheses
using a parallel implementation of the Rete algorithm; (2)
parallel search for tests that can support or refute hypotheses;
and (3) parallel planning, by building subplans in parallel.
These claims are made in light of recent research. Examples
are data-driven chaining using the Rete algorithm imple-
mented in parallel on MIMD architecture computers (Forgy,
et al 1984; Gupta, 1987; Gupta, et al 1988), and parallel logic
programming languages such asPARLOG (Clark, etal 1986].

215

ACKNOWLEGEMENTS

I would like to thank everyone who contributed to this re-
search: Carolyn Stokes for general assistance with the re-
search and for numerous hours spent programming in Com-
mon LISP; Maral Achikian for helping with the Common
LISP coding; Layli Amiri for knowledge engineering; Lucian
Russell, Chris Lightfoot, and especially Jerry Shelton, for
many invaluable discussions on a wide variety of topics and
for their review of this paper; Steve Smith andWill Copper for
many long hours spent in integrating the design of NEDS/RC
with the design of the Integrated Network Management
Control system; and Hassan Dastvar for his support of this
research.

REFERENCES

Bandler, J., Salama, A., "Fault Diagnosis of Analog Circuits,"
Proc. IEEE, 73(8), pp. 1279-1325, Aug. 1985.

Bernstein, L., Yuhas, C., "Expert Systems in Network Man-
agement- The Second Revolution," IEEE Sel. Areas Comm.,
6(5), pp. 784-87, June 1988.

Boyd, R., Johnston, A., "Network Operations and Manage-
ment in a Multi-Vendor Environment," IEEE Communica-
tions, 25(7), pp. 40-47, July 1987.

Clark, K., Gregory, S., "PARLOG: Parallel Programming in
Logic," ACM TOPLAS, 8(1), pp. 1-49, 1986.

Cantone, R., Lander, W., Marrone, M., Gaynor, M., "IN-ATE/
2: Interpretating High-Level Fault Modes," First Conf. on
ArtificialIntelligence Applications, pp. 470-475, Dec. 1984.

Craig, I., "The Ariadne-1 Blackboard System," Computer
Journal, 29(3), pp. 235-240, 1986.

Cronk, R., Callahan, P., Bernstein, L. "Rule-Based Expert
Systems for Network Management and Operations: An Intro-
duction", IEEE Network, 2(5), pp. 7-21, 1988.

Diamond, F., "Intelligent Communications," MILCOM-87,
Proc. IEEE Military Comm. Conf., Washington, D.C., vol. 2,
pp. 745-6, Oct. 1987.

Forgy, C., "Rete: A Fast Algorithm for the Many Pattern/
Many Object Pattern Matching Problem," Artificial Intelli-
gence, Menlo Park, vol. 19, pp. 17-37, 1982.

Forgy, C., Gupta, A., Newell, A., Wendig, R., "Initial Assess-
ment of Architectures for Production Systems," AAAI-84,
Proc. of the Third National Conf. on Artificial Intelligence,
Austin, TX, pp. 116-120, 1984.

Fennell, R., Lesser, V., "Parallelism in Artificial Intelligence
Problem Solving: A Case Study of Hearsay II," IEEE Trans.
Computers, C-26(2), pp. 98-111, Feb. 1977.

Fredman, N., "An Analysis of Qualitative Reasoning and
Dependence Modeling in Fault Diagnosis and Testability
Assessment," Third Annual Expert Systems in Government
Conference, IEEE Comp. Soc. Press, pp. 169-75, Oct.1987.

Ganesan, K., Ganti, M., "A Multimedia Front-End for an
Expert Network Management System,"IEEE Sel. Areas
Comm., 6(5), pp. 788-91, June 1988.

Gilkes, A., Nekhom, A., "Applying Expert Systems to On-
line Fault Isolation," Texas Instruments Engineering Journal,
pp. 19-24, Jan.-Feb. 1986,

Gupta, A., Parallelism in Production Systems, Morgan
Kaufman Publishers, Los Altos, CA, 1987.

Gupta, A., Tambe, M., Kalp, D., Forgy, C., Newell, A.,
"Parallel Implementations of OPS5 on the Encore Multi-
processor: Results and Analysis," International Journal Par-
allel Programming, 1988.

Hayes-Roth, B., "A Blackboard Architecture for Control,"
Artificial Intelligence, 26(3), pp. 251-321, 1985.

ISO #9595/2, Common Management Information Service
Definition, International Standards Organization, New York,
1987.

ISO #9596]2, Common Management Information Protocol
Specification, International Standards Organization, New
York, 1987.

Laffey, T., Perkins, W., Nguyen, T., "Reasoning about Fault
Diagnosis with LES," First Conference on Artificial Intelli-
gence Applications, IEEE Computer Society Press, New
York, pp. 267-73, Dec. 1984.

Merry, M., "APEX 3: An Expert System Shell for Fault
Diagnosis," Journal of Research, 1(1), pp. 39-47, 1983.

Sutter, M., Zeldin, P., "Designing Expert Systems for Real-
time Diagnosis of Self-Correcting Networks," IEEENetwork,
2(5), pp. 43-51, September 1988.

Ward, T., Bye, P., "Automated Network Management," Tele-
communications, 19(1), pp. 47-52, January 1985.

216

