
Network Expert Diagnostic System 
for Real-time Control 

Terry L. Janssen 

CSC Technology Center 
Computer Sciences Corporation 

3160 Fairview Park Drive 
Falls Church, VA 22046 

ABSTRACT 

Data communications networks are controlled by network 
management systems that are responsible for performance 
and fault management. This paper presents an expert system 
capable of performing fault and performance management 
through different levels of autonomous control. A blackboard 
architecture design provides for processing of multiple lines 
of machine reasoning and planning: the set of all unresolved 
events is used to generate hypotheses of network state through 
event correlation and ancillary network information; support- 
ing network data provides evidence that supports orrefutes the 
hypotheses; conclusions are drawn from the hypotheses; 
plans of corrective action are built, executed, and monitored 
to attempt improvement to a "normal" network state. 

1. INTRODUCTION 

Computer networks are controlled by network management 
systems that are responsible for performance and fault man- 
agement. They perform these functions by monitoring events 
and giving commands to various network devices such as 
terminals and host computers (along with their embedded 
communications capabilities) located on the networks. The 
"current state" of the network, on both the global and device 
levels, is monitored through event messages sent from the 
devices. Events range from device specific-faults to exces- 
sive protocol errors caused by multiple device interactions. 

As data communications networks have become larger and 
more complex, the knowledge required to maintain them at 
acceptable levels of performance has likewise increased in 
complexity. This problem is compounded by networks of 
varying architectures linked through gateways and multiple 
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vendors, network hardware (Boyd, et a11987). Thus, network 
management is both complex and expensive, and network 
problems are often misdiagnosed, leading to excessive down- 
time. 

Artificial intelligence has been applied to network manage- 
mentin a variety of areas. Generally, these efforts fall into one 
of the following categories: expert advisors that assist a 
network operator in performing network fault management, 
and expert managers that directly perform the network fault 
management functions. Cronk, et al (1988), provides a recent 
summary of some expert systems in the first category. 

The success of expert systems in the first category may be 
accounted for by the success of expert diagnosis systems in re- 
lated problem domains. Several expert systems provide fault 
diagnosis of electronics circuits (Bandler, eta11985; Cantone, 
et al 1984; Merry, 1983; Laffey,et al 1984; Fredman, 1985), 
and central processing units (Gikes, et al 1986). ACE, a very 
successful expert system for diagnosing failures in telephone 
cables, correlates network fault indicators with customer 
trouble reports by off-line batch processing of historical data 
(Bernstein, et al 1988). Ganesan, et al (1988) developed an 
expert system on the front end of a network management 
system to allow the network operator to interact with a 
network management system using natural language, text and 
graphics. 

The second category, expert manager systems, has been 
widely discussed as the next major evolutionary step in 
network mangement (Bernstein,et a11988; Ward, et al 1985). 

The ultimate goal of an expert manager in a data communica- 
tions network is self-healing of failures and performance 
anomalies; when self-healing is not possible, an expert man- 
ager should automatically create a trouble report. Sutter, et al 
(1988), has suggested an approach to designing expert sys- 
tems for real-time self-correcting networks. 

Expert manager systems have not had the same degree of 
success as have expert advisor systems. One contributing 
factor has been that network management systems have not 
yet provided the capability for an expert system to access a 
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wide range of network data and statistics in multiple vendor 
and protocol environments. Also, network management sys- 
tems have not provided for direct expert system issuance of 
tests and commands on-line to the network, and for operator 
control of which tests and commands the expert system should 
perform autonomously. Most network management systems 
in operation today do not have a network database including 
device information, network configuration and statistics. 
Such data is required for an expert manager system; without 
this information it appears that event correlation alone pro- 
vides the greatest promise for on-line automated fault diagno- 
sis in large data communications networks. Correlation of 
events within a data communications network has been sug- 
gested as a means of eliminating unnecessary diagnostic effort 
(Boyd, 1988). 

Our research focuses on the development of an operator- 
independent, intelligent event processing capability for diag- 
nosis and control. This capability is accomplished by integrat- 
ing the development of a machine reasoning component into 
a network management system. Integration has been accom- 
plished by consolidating this effort with the Integrated Net- 
work Management Control (INMC) system, another CSC 
Independent Research and Development effort. INMC pro- 
vides a unified network management protocol and the net- 
work management functions for (1) access to events and sta- 
tistics from the network, (2) performance of on-line network 
tests, and (3) issuance of commands to control devices on the 
network. INMC is an implementation of a network manager 
that uses the Common Management Information Service and 
Common Management Information Protocol developed by 
the International Standards Organization (ISO #9595/2, ISO 
#9596/2). The network management functions are being 
implemented in the C language on a MicroVAX. Networks 
from multiple vendors conforming to IEEE 802.3, OSI, and 
other protocols, either standalone or connected by gateways, 
are targeted for management by the INMC. 

Our research and development effort has led to a total design 
for an expert system and INMC as an integrated system. The 
expert system, i.e., the Network Expert Diagnostic System for 
Real-time Control (NEDS/RC), is targeted at performing 
most of the fault management functions of a human operator: 
near real-time event correlation and processing, diagnosis, 
and on-line network control for restoring a network state to 
"normal." 

2. EVENT PROCESSING FOR FAULT DIAGNOSIS AND 
CONTROL. 

This section defines the fault diagnosis and control problem in 
terms of sets of object and their inter-relationships. An event 
is an indication of a fault. An event is either active, meaning 
that it is being processed, or inactive, meaning that it has been 
processed and is no longer an indicator of the current network 
state. 

Let E be the set of active events: 

E = {el, e 2 ..... el} where i is the number of events, i>_1. 

As events arrive they are added to the set; when resolved they 
are removed. For every event there exists at least one 
hypothesis h such that h is a plausible explanation of that 
event. Let H be the set of hypotheses: 

H = {h 1, h 2 ..... h.} wherej  is the number of hypotheses, j>_l. 

A hypothesis states that a specific failure or performance 
anomaly has occurred. Hypotheses are generated by event 
correlation and inference from ancillary network information. 
When possible a hypothesis states the specific point in the 
network where the failure or performance anomaly has oc- 
curred. The set of hypotheses suggest a set of plausible, 
unique states that may or may not represent the state of the 
network. Hypotheses are not redundant: only one hypothesis 
exists for a given plausible network state, and one or more 
events in set E is an indication of a specific hypothesis in set 
H. 

Hypotheses are supported or refuted by evidence gathered by 
hypothesis testing. Tests can provide statistical or physical 
evidence. A database of network data provides traffic and 
error measurements for each level of protocol and of each 
network and subnetwork. Statistical tests are performed by 
utilizing network data. Physical tests are performed by 
sending messages to one or more devices on the network and 
executing a physical device test. Supporting evidence is 
sought for each hypothesis in set H by searching for a test t that 
can provide that evidence. Let T be the set of tests: 

T = {t 1, t z ..... tk} where k is the number of tests, k>0. 

Each test in T provides support for one or more hypothesis in 
H, as measured by degree of confidence. Degree of confi- 
dence is a measurement of the likelihood that the conclusion 
is true. If the degree of confidence surpasses a threshold level 
of confidence (set by a parameter), the hypothesis that it 
supports is considered true. For every hypothesis in H with 
supporting evidence greater than the threshold of confidence, 
a conclusion is created and added to the set of conclusions C: 

C = {c a, c 2 ..... c,,} where m is the number of conclusions, m>l. 

A conclusion is a belief that a particular fault has occurred. 
Each event in E (the driving force of this event processing 
system) has at least one conclusion in C. The likelihood that 
a conclusion c accurately models network state is measured by 
the degree of confidence in the hypothesis from which it origi- 
nated. When possible, a conclusion points to a specific point 
in one of the networks or subnetworks where the failure or per- 
formance anomaly is believed to have occurred. For any event 
e, if no hypothesis h exists with a degree of confidence above 
the acceptable threshold of confidence, a default conclusion 
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is formed: the conclusion that the cause of the event is 
unknown (and the creation of a trouble report is required). 

Conclusions need to be acted upon to attempt to restore the 
state of the network, i.e., the state of the network that is 
believed to exist, to a "normal" network state. Normal is 
defined (in the context of this paper) to mean that the state of 
the network is consistent with network design and intended 
network performance. 

Planning is required to restore network state to normal. Aplan 
of action for the entire network is actually a set of subplans 
refined into a unique set of on-line commands for controlling 
devices within the global network. Let S be the set of 
subplans: 

S = {s 1, s z ..... s} where n is the number of subplans, n_>l. 

A subplan is a part of the overall plan of action, and provides 
a means to change network state at a specific point in the 
network. For every conclusion in C there exists at least one 
subplan in S that can potentially improve network state to a 
more "normal" state. A subplan s may restore more than one 
network failure or anomaly concluded in set C. 

Resolution management involves adding new subplans to the 
set S and refining the suplans into a total network plan 
composed of a string of nonredundant device commands. At 
periodic intervals the plan is executed by sending it to the host 
network management system for Ixansmission on the network. 
The plan includes commands for feedback to monitor for 
network state improvement. The management of unique sets 
of events, hypotheses, tests, conclusions, and subplans pro- 
vides for synchronization of multiple activities for managing 
multiple faults and performance anomalies occurring simulta- 
neously within the network. 

3. LEVELS OF AUTONOMOUS CONTROL 

ing network state but require inappropriate amounts of net- 
work resource; tests or commands issued by the expert system 
may take an excessive amount of time to perform. The first 
occurs because of an entry in the knowledge source that is 
incorrect or incomplete. The last two occur when the knowl- 
edge is correct but not reasonable given current conditions. 

Network resource utilization can be measured in terms of 
network or device load. Both network utilization and time are 
included with knowledge of specific tests and commands 
within the expert managers, knowledge sources. 

One solution to the problem is to give an expert manager dif- 
ferent degrees of autonomous control. Such an approach 
allows the operator to set the degree of autonomy that the 
expert system can assume. The level of autonomy can be 
increased over time as trust in the expert manager increases. 
Knowledge of network utilization requirements and estimates 
of time requirements to perform tests and commands provide 
rule-based constraints on the tests and commands that can be 
performed. Before a test or command is issued to the network 
it must surpass a threshold level that permits it to be executed 
without network operator approval. 

This approach provides a continuum of control: control 
ranges from total control by a human operator through human 
operator override of the expert system's recommendations to 
complete autonomy of the expert system. 

4. APPROACH 

We reviewed commercially available expert system shells at 
the beginning of our research effort. None of the evaluated 
shells provided a good match for near-real-time processing; 
the correlation and processing of multiple events; and mul- 
tiple threads of control needed to resolve multiple network 
failures and performance anomalies. All are required for au- 
tonomous network management. 

One major obstacle in development of an expert management 
system is maintaining control of the expert system, i.e., 
avoiding inappropriate commands from being issued to one or 
more of the networks by the expert system. Expert system 
advisors leave decision making and command of network 
functions to the discretion of the human operator. Conversely, 
expert managers perform commands automonously. Events 
provide uncertain information, and the knowledge in a knowl- 
edge-based system is often inexact. Consequently, an expert 
management system is prone to making wrong inferences and 
executing commands that are inappropriate. 

Three basic situations in expert management systems man- 
date placing control restrictions on the expert system: the 
expert manager can perform actions on the network (tests and 
commands) that are inappropriate; the expert manager can 
perform actions on the network that are appropriate to improv- 

Our approach has been to design an expert system to perform 
event processing for fault diagnosis and control, as defined 
previously (in Section 3). Design of NEDS/RC has resulted 
in a new expert system architecture that has evolved from 
other blackboard expert systems (Hayes-Roth, 1985; Craig, 
1986). The blackboard is a repository of information within 
a global memory area. Distinct functions are performed on 
objects on the blackboard by independent knowledge-based 
processes. The processes manipulate five sets of objects on 
the blackboard: (1) objects that correspond to events that 
arrive from the network through a network management 
system; (2) hypotheses about fault and anomalous states 
within the network; (3) tests to support or refute the hypothe- 
ses; (4) conclusions formed from hypothesis testing; and (5) 
subplans to restore network state. 

This approach provides several advantages. First, each black- 
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Figure 1. The Blackboard is a global data structure used by the process modules of the NEDS process. 
The number and label by each arrow pointing toward the blackboard is the sequence in which the objects 
are created on the blackboard; the arrows pointing away represent information accessed from objects. 
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Figure 2. The blackboard contains several types of linked objects (frames). The primary objects correspond to sets 
E, H, C, T, and S, and are represented as shaded rectangles. 
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board object independently passes through phases of process- 
ing. Second, newly created objects do not produce redun- 
dancy. Membership in the set of objects is checked, and if a 
similar object is already in the set, the new object is coalesced 
with the existing object. Third, objects in wait state do not 
require CPU resources, allowing other objects to be processed 
while waiting for test and command results to be returned 
from the host network management system. 

A metalevel controller schedules four cooperating processes: 
event management, hypothesis generation, hypothesis test, 
and resolution management. Each process has a specialized 
knowledge source. Each blackboard process performs a 
specialized function. Each blackboard process is independ- 
ent, and an object scheduled for processing is processed 
through the next phase. This approach provides near-real- 
time event correlation and processing of multiple events, and 
multiple threads of control for self-healing within an in- 
ternetted data communications network. 

A prototype of this system is being implemented in Common 
LISP on a MicroVAX computer. Common LISP was selected 
because of its many advantages for symbolic processing. The 
MicroVAX computer was selected because of a management 
decision to use the same host computer for the expert system 
as for the network management system. The same host com- 
puter provides all network communication and network man- 
agement functions required by the expert system. 

Performance on the MicroVAX, a concern from the beginning 
of the effort, has prompted special design considerations. The 
blackboard processes are independent and, at a conceptual 
level, operate in parallel. This design characteristic provides 
an alternative implementation to attain more efficient per- 
formance. Hayes-Roth (1985) called attention to the prob- 
lematic performance of a blackboard architecture expert sys- 
tem implemented in LISP on a sequential (von Neuman) proc- 
essor. As part of our ongoing effort, we are attempting to 
transport this design onto a parallel processor. This aspect of 
the project is discussed further in the last section of this paper. 

Each blackboard process has a knowledge source that has 
been compiled to improve efficiency of search. Each black- 
board process knowledge source contains knowledge particu- 
lar to the process it performs. A separate knowledge acquisi- 
tion system assists in knowledge acquisition and compilation 
of the knowledge into its respective knowledge source. 
(Discussion of the knowledge acquisition system is beyond 
the scope of this paper). 

The blackboard architecture and processes are presented in 
further detail in the following sections. 

4.1 BLACKBOARD ARCHITECTURE 

The blackboard, a repository for information objects within a 
global memory area, is a means for information sharing 
among processes (Figure 1). Each process performs at least 
one distinct function and posts its results to the blackboard. 
There are five information object types: events, hypotheses, 
tests, conclusions, and subplans (Figure 2). Each object is 
created in "unprocessed" state and is processed through vari- 
ous phases; each blackboard process advances the object 
through one particular phase at a time. The numbered arrows 
in Figure 1 illustrate the general sequence in which objects are 
created and posted to the blackboard. 

Blackboard processes access the blackboard objects through 
common code functions. The objects are linked together into 
a bidirectional graph structure that provides direct access to 
associated objects. For example, event objects are linked to 
the hypothesis objects that are indicated by the events. Test 
objects are linked to the hypothesis objects that they support 
or refute, and so forth. The objects on the blackboard form a 
current model of fault and anomalous states. The model rep- 
resents a global view of the entire network, free of redan- 
dancy. The model may not reflect the actual network state 
since it is based on uncertain information. However, uncer- 
tainty is managed by computing the degree of confidence 
using rules within the knowledge sources and representing 
confidence in the arcs between objects on the blackboard. 
Degree of confidence is an estimation of the likelihood that the 
blackboard objects accurately model network state. 

The blackboard processes are described in the following 
sections. 

4.2 METALEVEL CONTROL 

The metalevel controller is a supervisory knowledge-based 
process that schedules the execution of other blackboard 
processes. It processes all input from the host network 
management system except newly arriving events. 

Objects ready for processing are scheduled for processing by 
the respective blackboard process. An agenda is created by 
prioritizing the blackboard processes that are scheduled. The 
highest priority process is executed first. 

The blackboard is maintained by the metalevel controller. 
Information queried by one of the blackboard processes is 
posted to the appropriate blackboard object by the metalevel 
controller. Objects that have passed through all phases of 
processing are archived and purged from the blackboard. 

4.3 EVENT MANAGEMENT 

The primary function of the event management process is to 
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Type: Device #: 

Object type: Event #: 

ID: 
Alert: 
Type: 
Priority: 
Device: 
Config Unit: ~ .  

 o7o o  
Time: 
Category: 
Occurances: 
Hypotheses: 
Status: 
State: 
Supporting_attributes: 

7 

Device: 
Type: 
Status: 
Location: 
Model: 
Version: 
Vendor: 
Install_date: 
Maim date: 

Type: Protocol #: 

Device: 
Protocol: 
Status: 
Network: 
IP_address: 
PI_MAC_addr 

Type: Config_unit 

Device: 
Config_unit: 
Type: 
Status: 
Vendor: 
Model: 
Version: 
Install_.date: 
Maint_date: 

#: 

Type: Statistics #: 

Date_time: 
Device: 
Protocol: 
Network: 
Assoc_device: 
Config_Unit: 
Type: 
SPDUs: 
RPDUs: 
SD_octets: 
RD_octets: 
S_request_corm 
R_request_corm 
S_connects: 
R_connects: 
S_broadcasts: 
R_broadcasts: 
Collisions: 
Retransmits: 
Checksums: 

Figure 3. Data is appended to the event object to provide facts about the device that issued the 
event, the configuration of the device (if known),  the protocol and a snapshot of the associated 
protocol statistics. Several layers of protocol statistics exist in the database; the statistics that 
are the best indicators for hypothesis generation are acquired (by rules in the event management 
knowledge source) and linked to the event. 

read new events that have recently arrived for processing. An 
event is an indication of a fault state or performance anomaly 
within the network. Unique events are posted to the set of 
event objects on the blackboard. A pre-compiled knowledge 
source is used to query the database for network information 
and statistics, i.e., information that is necessary for processing 
the event, depending on event type, source, and protocol from 
which the event was generated. 

An event object and associated data are illuslxated in Figure 3. 
There are two primary variations of event objects depending 
upon the event type. The first is a threshold event that is 
generated by a threshold violation. This class of event is 
caused by faults that are either corrected due to retransmis- 
sion, or are unsuccessful transmissions. In both cases, the 
occurrences of such events are tallied and stored in the 
network management database. When a predetermined thresh- 

old level is surpassed, an event is generated by the network 
management system and sent to the expert system for process- 
ing. The threshold violation is an indication of an excessive 
number of otherwise tolerable fault states within the network. 

The second type of event is an error report from a specific 
device within the network. With this type of event an error 
code is provided with the event message. The error code may 
or may not pinpoint a specific fault condition within the 
device, or an associated device, from which it was generated. 
This type of event reports the relative severity of the fault 
condition. 

In both cases, the information received with the event together 
with the information obtained from the network management 
database are posted to the blackboard so that the next process 
can generate hypotheses as to the specific cause and location 
of the failure or anomaly. 
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EVENT: Time values 

Unexpected Response HYPOTHESIS: / wrong 
Design Flaw f 

3 = .09 T n set 
PROTOCOL: wrong 
IEEE 802.3 Brief device 

/ overload 
HYPOTHESIS: (Gene ra l  network 

SOURCE: ~ Network Traffic 
Comm. Device ~ = .27 " "  overload 

Component 
ASSOCIATED 

E V E N T "  HYPOTHESIS: / X 1 Failure 

Overdue Response Component Failure~,,,, Component 
= .64 X n Failure 

Figure 4. Simplified example of events (left), plausible 
hypotheses with degree of confidence (3) and more 
specific subhypotheses (right). 

4.4 HYPOTHESIS GENERATION 

A cause of an event can be a number of things from a specific 
component failure within a device on some network, to 
complex protocol interactions. A hypothesis is a plausible 
explanation for a specific fault or performance anomaly. The 
goal of hypothesis generation is to generate the set of plausible 
hypotheses that are as specific as possible based on the infor- 
mation available. Available information is limited to that 
which arrives with the event, is in the network management 

Object type: Test # <object number> 

ID: <symbol ' T '  and number> 
Type: {Device I DB I OW} 
Name: <test name> 
Tinae: <date_time> 
Control Level: {0..100} 
Parameter Query: <formal command> 
Command Parameters: <ordered list> 
Command: <formal ASN.1 command> 
Result: <symbol> 
Confidence: {0..100} 
Evaluators (list of 4 tuples): 

<{= I > I < } , symbol, conclusion, 3> 
Hypotheses: List of tuples 

<object address, O> 
Parents: <address list> 
Siblings: <address list> 
Status: {unprocessed I in-process 11 

in-process 2 1 processed} 
State: {on-hold I interrupt I schedule} 

Figure 5. The Test object type and frame structure. 

system database or, in some isolated cases, acquired by query 
of the network operator. Available information is also consid- 
ered to be that information accessible within a limited 
timeframe; information not accessible by the expert system 
within the allotted timeframe is defaulted to "unknown" and 
processing continues without it. Event correlation among 
events in the set of event objects provides indication of faults 
and anomalies that cannot be identified by the event alone. 

Events that are pending additional information are not proc- 
essed until the information arrives and is posted to the black- 
board. When information is pending, hypothesis generation 
continues for other events. When the hypothesis generation 
process is out of work (i.e., there are no more unprocessed 
events on the blackboard), or surpasses a time limit for execu- 
tion, the hypothesis generation process passes control back to 
the metalevel controller. Figure 4 illustrates events and asso- 
ciated plausible hypotheses. 

4.5 HYPOTHESIS TEST 

The hypothesis test process searches its knowledge source for 
tests that can provide evidence that supports or refutes each of 
the hypotheses on the blackboard. Hypothesis objects that are 
ready (i.e., flagged) for hypothesis generation are processed. 
For the set of hypotheses being processed, the hypothesis test 
process creates new test objects, or uses existing tests that 
have test results that are within age (elapsed time) limitations. 
The test object type is illustrated in Figure 5. 

The set of tests posted to the blackboard are refined to avoid 
redundancy. If  more than one test is found in the knowledge 
source, an attempt is made to select the one with the most 
efficient cost. The test with the most efficient cost is the test 
that provides the greatest confidence in support of the hy- 
pothesis at the least cost. Cost is measured by an estimation 
of the load that the test will place on network resources and the 
time required to get the result. 

Tests form a command string that is sent to the host network 
management system for execution. Operation on the test 
object is interrupted until the metalevel controller posts test 
results on the originating test object. The test object is then 
scheduled for test result evaluation. 

Subsequent hypothesis test process execution evaluates the 
result and forms one or more conclusions about one or more 
hypotheses supported by the test. When a threshold degree of 
confidence in a hypothesis is surpassed, a conclusion object 
is created and posted on the blackboard. In most cases a 
hypothesis states a specific failure or performance anomaly; 
only one specific conclusion can result from one specific hy- 
pothesis. However, an event with more than one hypothesis 
that surpasses level of confidence will likewise have more 
than one conclusion, (i.e., belief that a network failure or 
anomaly has occurred at a specific location). The conclusion 
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with the greatest confidence is activated first, i.e., scheduled 
for processing. The set of conclusion objects is processed by 
the following blackboard process. 

4.6 RESOLUTION MANAGEMENT 

Once the cause of a network problem has been inferred with 
a reasonable degree of confidence, the problem must be cor- 
rected. This is accomplished by generating a plan consisting 
of a sequence of actions that must be performed on the 
network. For each conclusion formed about an anomaly in 
network state, the knowledge source is searched to build a 
subplan capable of improving that network state. Subplans 
provide knowledge of how to restore network or device states 
to normal. 

The goal of a subplan is to change a specific state of the 
network to a desirable state. Subplans focus on a specific lo- 
cation in the network: when possible a subplan focuses on a 
specific component within a specific device on the network. 

Object type: Subplan # <object number> 

ID: <symbol "S" and number> 
Type: {device I operator workstation} 
Subplan Name: <symbol> 
Cost: {0..100} 
Confidence: {0..100} 
Time: <date_time> 
Control Level: {0..100} 
Command Parameters: <parameter list> 
Command: <formal ASN.1 command> 
Verification: <formal ASN.1 command> 
Result: <symbol> 
Evaluator (list of 4 tuples): 

<{= I > I < } , symbol, conclusion, 2> 
Conclusion: <symbol> 
Status: {unprocessed lin-process 

I processed} 
State: {on-hold I interrupt I schedule} 

Figure 6 The Subplan object type and frame structure. 

Network state change is accomplished through a formal 
command contained within the subplan object. The semantic 
is a generalization of an actual command that can be sent over 
a data communications network to the appropriate device and 
component. The level of generalization depends upon the 
device type and protocol level for which it is being issued. The 
devices that can change network state by on-line commands 
are a subset of all devices on the network. 

To apply the subplan to a specific devicein the network, the 
subplans are refined with the addresses of specific devices 
within the network to which the subplan is being applied. A 
subplan object type is illustrated in Figure 6. 

When physical device failure is concluded as the cause of one 
or more events, NEDS/RC first attempts to circumvent the 
problem and then sends a trouble report to an engineering ac- 
tivity for fault correction. 

5. PERFORMANCE 

Expert management systems, to be effective, must perform 
uninterrupted processing of events at a rate greater than the 
arrival rate of events. Real-time processing is not necessary 
because the host network management system queues events 
for processing, and queues messages from the network until 
processing is scheduled. However, near real-time perform- 
ance can be achieved. Processing is performed continuously 
on the blackboard without interruption. Processing is focused 
on objects scheduled for a function to be performed. Objects 
that can not be processed because of priorities or delays due to 
test or command execution are placed in "interrupt" status 
until processing can resume. Each object on the blackboard 
requires one or more phases of processing. When all process- 
ing on a specific object is complete the object becomes 
inactive. 

A time slice of NEDS/RC processing is illustrated Figure 7. 
This illustration conveys an example of the dynamics of the 
blackboard processes over time. The time line attempts to 
show several key properties of the blackboard system. First, 
at time t the hypothesis generation (HG) process is executing. 
At time t+l control is passed back to the metalevel controller 
(MC), which schedules and executes the hypothesis test 
process (HT). Midway into the hypothesis test process a test 
message (T1) is sent to the host network management system. 
The hypothesis test process continues with other processing 
until control is passed back to the metalevel controller. The 
metalevel controller schedules and executes the next highest 
priority process: resolution management. At time t+3 the 
result from test T 1 arrives at the network management system 
which writes the result message to a NEDS/RC input queue 
(Q). The test results remain in the queue until the resolution 
management process passes control back to the metalevel 
controller. The metalevel controller processes allinput queues 
by priority and posts the test result for test T 1 on the originat- 
ing object on the blackboard and places that object in "sched- 
ule" state. The metalevel controller schedules the next highest 
priority process. The hypothesis test process processes all 
scheduled test objects. The results of test T1 are evaluated and 
stored to provide supporting evidence to one or more hypothe- 
ses to which it is linked. 

This example, although not fully representative of NEDS/RC 
processing, does illustrate how NEDS/RC is able to perform 
in near-real-time. NEDS/RC implementation is currently 
sequential. The following section discusses the future direc- 
tion of our research to provide a much more efficient parallel 
implementation of the blackboard processes. 
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Figure 7. Example of NEDS/RC event processing over time t. 

6. FUTURE DIRECTIONS 

A major objective of this research has been to provide near- 
real-time event processing for fault and performance manage- 
ment of large data communications networks. An expert 
manager system needs to perform self-healing within a data 
communications network as quickly as possible; at a mini- 
mum, the average rate of event processing must be greater 
than the average arrival rate of events. Some communica- 
tions network environments, such as data communications in 
hostile environments, mandate fault diagnosis and adaptation 
to be as fast as possible (Diamond, 1987). 

The performance of the current implementation is limited 
because the average number of computer cycles required to 
process each event is very large. Performance has been 
considered in the design: several major processes of the 
NEDS/RC system can be performed in parallel. 

A future direction of this research is to transport the existing 
Common LISP code now functioning on a MicroVAX to a 
parallel processing computer. Several parallel architectures 
have been reviewed. The architecture selected for implemen- 
tation of NEDS/RC is the multiple instruction multiple data 
(MIMD) architecture. This architecture will allow parallel 
processing of the blackboard access functions and all black- 
board processes. Within each of the blackboard processes 
further parallel processing can be performed by additional 
processors. 

Our aim for the near future is to implement our Common LISP 
code on the AMETEK 2010 parallel processor, a MIMD 
architecture computer. We expect to improve event process- 
ing throughput by an order of magnitude. Simulation of 
parallel processing of a blackboard architecture system, the 
Hearsay-II system, has been reported (Fennell, 1977), al- 
though there are no clear results on the effectiveness of 
parallel processing of a blackboard architecture system for 
real-time fault diagnosis and control. 

Within the blackboard processes, further parallelization is 
possible. These areas for parallelization include: (1) genera- 
tion of hypotheses by parallel search for plausible hypotheses 
using a parallel implementation of the Rete algorithm; (2) 
parallel search for tests that can support or refute hypotheses; 
and (3) parallel planning, by building subplans in parallel. 
These claims are made in light of recent research. Examples 
are data-driven chaining using the Rete algorithm imple- 
mented in parallel on MIMD architecture computers (Forgy, 
et al 1984; Gupta, 1987; Gupta, et al 1988), and parallel logic 
programming languages such asPARLOG (Clark, etal 1986]. 
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