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Abstract 

This paper  describes our recent results in devel- 
oping enhanced simulated annealing algorithms us- 
ing a LISP environment.  The application is to use 
simulated annealing for au tomat ic  reconfiguration of 
multiprocessors in space. Our approach to solv- 
ing this problem involves a combination of object- 
oriented programming,  search strategies, knowledge 
based reasoning, and an advanced reconfiguration al- 
gorithm. The application was developed and is being 
enhanced on a LISP workstation (Xerox Dandelion) 
using LOOPS. This  environment played an impor- 
tant  role in both  the initial success of the prototype 
[9] and the recent development efforts [3] [16] [22]. 

1 Introduction 

Simulated Annealing (SA) is a stochastic optimiza- 
tion technique that was inspired by concepts from 
statistical mechanics. Problems that lend themselves 
to a simulated annealing-based solution include NP- 
complete problems such as the traveling salesman [2] 
[8] and quadratic assignment problems, among others 
[1] [4] [5] [6] [7] [12] [11] [13] [14] [17] [19] [18] [20] [21] 
• Additionally, SA has proven to be a viable method 
for determining the weights between nodes in a neu- 
ral network. We will now introduce this sometimes 
controversial but always interesting algorithm. 

Given a combinatorial  optimization problem spec- 
ified by a set C of configurations and by a cost func- 
tion h defined on all the configurations S ,  belonging 
to C ,  the SA algori thm is characterized by a rule to 
randomly generate a new configuration with a certain 
probability, and by a probabilistic acceptance rule ac- 
cording to which the new configuration is accepted or 
rejected. A parameter  
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T, called the temperature, controls the acceptance 
rule. The generic simulated annealing algorithm is 
described as follows: 

procedure Simulated Annealing 

iterations <- i0 (* initial number of iterations *) 
T <- To (* initial temperature *) 
S <- S0 (* initial configuration *) 
repeat 

repeat 
NewS <- Perturb (S) 
i f  [h(NewS) <= h(S)] or 

[random# < exp((h(S) - h(NewS))/T)] then  
S <- NewS 

unt i l  inner loop has been repeated iterations times 
T <- UpdateTemperature(T) 
iterations <- Updatelterations(iterations) 

unt i l  outer loop terminating criteria 
end  

In the spaceborne processor array (SPA) environ- 
ment,  So corresponds to an initial assignment of log- 
ical processors to physical processors, Per turb to a 
procedure that  proposes a swap of an assignment of 
a logical processor from one physical processor to an- 
other of the same type, and h to an objective function 
where we want to minimize the total  pa th  length in 
the Module Interconnect Network (MIN). Although 
simulated annealing methods have proved to be suc- 
cessful for fnd ing  near opt imal  solutions to difficult 
problems, they often require long run time. We ad- 
dress this further in Section Four. 

In the sections that  follow we will introduce the 
application to which we apply the simulated anneal- 
ing algorithm, the LISP environment,  details of the 
resulting algorithm enhancements,  future directions 
for research, and our conclusions• Simulated anneal- 
ing is the method we use to solve the logical to phys- 
ical assignment problem. 
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2 T h e  A p p l i c a t i o n  

Control Data Corporation has developed a multipro- 
cessor system designed for use in space. The system 
is called the Space Processor Array (SPA). The mod- 
ules are connected using a simple bi-polar arrange- 
ment. The top plane consists of discrete processors 
of various types not connected. General purpose, sig- 
nal processors, and symbolic processors are examples 
of processor types. The bottom plane is the Mod- 
ule Interconnect Network (MIN) that provides the 
interprocessor communications hardware. For each 
processor in the top plane there is a corresponding 
"part" called the Configurable Network Unit (CNU) 
in the MIN. All interprocessor communication takes 
place in the MIN, with the path of the communica- 
tion being determined by the programmable CNU's. 
Each of four sides of a CNU can be thought of as 
an edge with the limitation of two paths entering the 
CNU through any single edge. Initial configuration 
of an array of processors or reconfiguration after a 
failure aboard the spacecraft requires a mapping of 
the logical design, representing the needs of the soft- 
ware application, onto the physical array of proces- 
sors. The logical processors are grouped into rings, 
reflecting required dataflow and inherent parallelism 
in the logical application. The mapping of the logi- 
cal onto the physical must be done in a way to mini- 
mize the total path length required, while at the same 
time satisfying the constraints of module types and 
network limitations. Reconfiguring an array requires, 
in addition to the above, that the system bypasses a 
failed module. 

3 A n  E x a m p l e  

In this section, a simple example is described to il- 
lustrate the working of the SPA program. In this ex- 
ample, the logical design (Figure 2) is to be mapped 
onto a 3x3 SPA. On comparing modules in the log- 
ical design with the modules in the SPA, it is evi- 
dent that the SPA contains spares for each processor 
type. Hence, the logical to physical mapping entails 
determining assignments of logical modules to phys- 
ical modules and the circuits between the physical 
modules. The solution determined by the SPA pro- 
gram including the execution time is shown in Figure 
1. 
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Figure 1: Example 1 - 3x3 

on our ability to create a good simulation of the phys- 
ical system by using the object hierarchy defined by 
LOOPS. The level of abstraction provided by the ob- 
ject and attribute hierarchy provided data structures 
that were both meaningful and efficient. Association 
lists were used to quickly determine the change in the 
state of the system at different levels. The graphi- 
cal representations of the object and function hier- 
archy provide focal points that the developers could 
view to gain overall system perspective. The graph- 
ics provided by the system again proved their worth 
in providing a visual representation of the SPA hard- 
ware system and immediate feedback for changes in 
the SA algorithm. In this way the swaps proposed 
for individual assignments and any feasible solutions 
found by the algorithm were easily displayed. When 
combined with liberal use of gauges, active values, 
and inspectors, we were able to watch the algorithm 
in action, and thereby closely monitor the solution 
progress. This led to several insights on how the al- 
gorithm worked and how it could be improved. The 
excellent debugging environment allowed for quickly 
tracing errors to individual functions. 

Continuing work has been underway at the Univer- 
sity of Minnesota. The LISP environment has been 
responsible for the short time that was necessary to 
get the researchers up to speed. The following results 
were obtained by part-time researchers over a period 
of five months. 

4 T h e  E n v i r o n m e n t  

Due to the rapid prototyping capability of the LISP 
machine and development environment, we developed 
a prototype simulator in less than three months that 
used simulated annealing to perform the reconfigura- 
tion task. Throughout development we relied heavily 

5 E n h a n c e m e n t s  to  the  SA al- 
g o r i t h m  

We have enhanced the SA algorithm by examining 
strategies for temperature reduction and different 
penalty functions and their effects. 
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5.1 Strategies for t empera tu re  reduc- 
tion 

We focused our research on three aspects of the tem- 
perature portion of the SA process: 

e Selecting an Initial Tempera ture  

• Determining the Number  of Iterations at a Tem- 
perature and; 

• Determining the Stopping Criterion. 

5.1.1 S e l e c t i n g  a n  I n i t i a l  T e m p e r a t u r e  

The initial t empera ture  is impor tan t  from two oppos- 
ing perspectives. The higher the initial temperature,  
the more randomness that  would be allowed, reducing 
the possibility of stopping at a local minimum. The 
lower the initial temperature ,  the faster we arrive at 
a solution. A key to efficiently solving the reconfigu- 
ration problem is finding an acceptable compromise. 

Our research included three methods for selecting 
an initial temperature:  

1. Rat io Method; 

2. Initial Configuration Based Method, and; 

3. Standard Deviation est imated Method. 

R a t i o  M e t h o d  fo r  S e l e c t i n g  a n  I n i t i a l  T e m p e r -  
a t u r e .  

This was the initial method used to select an initial 
t empera ture  and is defined by the following formula: 

To = 20 * ( #  of logical modules / # of physical mod- 
ules) 

where: 
# of logical modules is the total  number  of modules 
of all module types required by the problem or appli- 
cation, and 
# of physical modules is the total  number  of modules 
in the physical array. This leads to a conservative 
(high) start ing temperature .  

I n i t i a l  C o n f i g u r a t i o n  B a s e d  M e t h o d  o f  Se lec t -  
ing  a n  I n i t i a l  T e m p e r a t u r e .  

This method is defined by the following algorithm: 

Select an initial configuration; 
Take a few one step random transitions from this initial 
configuration and record all the changes in cost; 

i f  (there are one step random transitions that result in an 
increase in cost) t hen  

Calculate the average increase in cost, C+; 

T0=C+/-ln(P); 
where P is the acceptance ratio. The acceptance ratio is 

the ratio of the number of accepted transitions 
to the number of proposed transitions. 
P ---- 0.80 if there are more transitions that 

result in an increase in cost than 
transitions that result in a decrease 
or no change in cost. 

P ---- 0.65 if there are an equal number of 
transitions that result in an increase 
in cost and transitions that result in 
a decrease or no change in cost. 

P --- 0.50 otherwise. 
else 

To = 20 * Standard Deviation of all the costs obtained 
(including the cost of the initial configuration). 

There are several advantages in calculating the ini- 
tial tempera ture  this way. The temperature ,  T plays 
an impor tant  role in whether a random transition is 
accepted. A random transit ion is accepted if exp (- 
C / T )  is greater than a generated random number,  
lying between 0 and 1, where C is the change in cost, 
i.e. the difference in cost of the new configuration 
and the current configuration. 

Given a certain value P, that  represents the prob- 
ability of acceptance, and C+,  the est imated higher 
cost, initial tempera ture  To is computed.  By doing 
this, we hope to relate To with the initial configura- 
tion that  is chosen. This may  enable the system to 
start  with a lower tempera ture  and obtain the solu- 
tion faster if a good initial configuration is chosen. If 
a less satisfactory initial configuration is chosen, the 
system would s tar t  at a higher temperature ,  and take 
a longer t ime to find the solution. 

S t a n d a r d  D e v i a t i o n  E s t i m a t e d  S t a r t i n g  T e m -  
p e r a t u r e  M e t h o d .  

In this method,  a few random transitions are taken 
and the s tandard deviation of the cost distribution is 
computed.  The initial t empera ture  is computed as 
follows: 

To = 20 * Standard Deviation of the costs 

In this method,  To is chosen such that  almost all con- 
figurations would be accepted. Since To allows almost 
all configurations to be accepted, it can be considered 
as the upper bound of the temperatures.  Thus, ini- 
tial temperatures  calculated using this method would 
always be higher than the previous method.  

5.1.2 D e t e r m i n i n g  t h e  N u m b e r  o f  I t e r a t i o n s  
a t  a T e m p e r a t u r e  

As in the previous section, there are opposing per- 
spectives to the value that  this number  should take 
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on. The larger the number, the more thorough and 
time consuming will be the search. The compromises 
used in this study include: 

• Number of Physical Modules Method; 

• Cost-Based Function Method and; 

• Configuration-Rejected Method. 

N u m b e r  o f  P h y s i c a l  M o d u l e s  M e t h o d  fo r  De-  
t e r m i n i n g  N u m b e r  o f  I terat ions .  

This method involved remaining at a temperature  for 
the number of iterations equal to the number of mod- 
ules in the physical array. 

C o s t - B a s e d  F u n c t i o n  M e t h o d  fo r  D e t e r m i n i n g  
N u m b e r  o f  I t e r a t i o n s  

The number of iterations, N(T),  to execute at a par- 
ticular temperature  T,  was obtained as: 

N(T)=exp( (hmax(T) -hmin (T) ) /T )  

where hmax(T)  and hmin(T)  were the highest and 
lowest values of the cost function obtained thus far 
at this temperature.  Originally we defined hmax(T)  
and hmin (T) to be the highest and the lowest value 
obtained so far during the execution of the system. 
However, N(T) became too large and the system ran 
too long. 

As the temperature  decreases, N(T) may become 
large, thus we impose an upper bound of three times 
the number of physical modules. 

The above formula was suggested by Remeo and 
Sangiovanni-Vincentelli [10], when they observed 
that  to obtain a final configuration close to a glob- 
ally minimal one, there should always be a sufficiently 
large probability to leave any configuration, possibly 
a local minimum. A good estimate of the number of 
iterations required is given by the above formula for 
N(T). 

N(T) above has the property of being small when 
the temperature  is high. As temperature decreases, 
N(T) would increase correspondingly. 

C o n f i g u r a t i o n s - R e j e c t e d  M e t h o d  fo r  D e t e r -  
m i n i n g  N u m b e r  o f  I t e r a t i o n s .  

In this method,  the number of iterations taken de- 
pends on the number of configurations being rejected. 
At every temperature,  a certain number of configu- 
rations must be rejected before it can go to another 
temperature.  The number of configurations to be re- 
jected was set equal to the number of physical mod- 
ules. This method has the property of running many 

iterations when the temperature  was high and run- 
ning just  a few iterations when the temperature de- 
creases. 

Since configurations at higher temperatures can be 
accepted more easily, this method tries to find the 
solution close to the beginning of the simulation. 

5.1.3 D e t e r m i n i n g  t h e  S t o p p i n g  C r i t e r i o n  

Originally, the system would stop if the temperature 
was less than the minimum temperature.  The mini- 
mum temperature  was either user-defined or set to be 
0.1. The system would also stop if the solution was 
equal to the lower bound, i.e. the cost as computed 
from the logical design. 

For this study, the system was modified so that  it 
would stop if any one of the following conditions was 
true. 

1. The temperature  was less than the minimum 
temperature of 0.1; 

2. The cost was equal to the lowest possible cost; 

3. The minimum cost accepted has not changed for 
four consecutive decreases in temperature.  We 
used this condition as a stopping criterion as the 
commercial package, TimberWolf,  also uses this 
as its stopping criterion for its SA algorithm im- 
plementation; 

4. No swap was accepted at a particular temper- 
ature. This condition would be applicable only 
if there were four or more decreases in tempera- 
ture and may mean that  a minimum configura- 
tion has been obtained. 

However, after doing some runs, we found that  con- 
ditions 3 and 4 were not suitable for these assignment 
problems. Condition 3 stopped the system too early, 
and hardly any run terminated because of condition 
4. 

As a result, the first two conditions remained as 
the stopping criterion except that  the minimum tem- 
perature is set to 0.3. 

5.1.4 Tests  

To test these alternatives, some representative prob- 
lems were identified. Each of these test problems was 
considered for testing against four combinations of 
temperature strategies identified as Cases A through 
D. 

A. The initial temperature  was calculated by taking 
the average increase in cost of one step transi- 
tions from the initial configuration. The number 
of iterations to be performed before going to an- 
other temperature  was determined from the tem- 
perature and the maximum and minimum cost 
obtained at that  temperature.  
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B. The initial temperature  was calculated by taking 
the average increase in cost of one step transi- 
tions from the initial configuration. The number 
of iterations to be performed at every tempera- 
ture depended on the number of swaps rejected. 

C. The Standard Deviation-Estimated Method was 
used to calculate the initial temperature.  The 
number of iterations to be performed before go- 
ing to another temperature was determined by 
the temperature and maximum and minimum 
cost obtained at that  temperature.  

D. The Standard Deviation-Estimated Method was 
used to calculate the initial temperature.  The 
number of iterations to be performed at every 
temperature depended on the number of swaps 
rejected. 

In i t i a l  O b s e r v a t i o n s .  

After a few initial tests, we confirmed that  the Stan- 
dard Deviation-Estimated Method selected an initial 
temperature that  was too high. On the other hand, 
the initial configuration-based method is more selec- 
tive and hence more efficient by using a lower start- 
ing temperature for some configurations than others. 
Thus, cases C and D were eliminated from consider- 
ation. 

The Configuration-Rejected Method for determin- 
ing the number of iterations tends to run quite long 
when higher temperatures are encountered. This is 
due to the fact that  the most swaps are accepted 
at higher temperatures. When the Configurations- 
Rejected Method was used in combination with the 
Standard Deviation-Estimated Starting Temperature 
Method (Case D), long execution times were ob- 
served. Thus, Case D had a second reason for removal 
from consideration. 

F ina l  T e s t  C o n f i g u r a t i o n s .  

Cases A and B were evaluated for each test problem. 
Three test problems were defined with each having 
a different logical definition and associated physical 
array size. The three physical sizes were 9, 16, and 
25 modules. 

Each test problem was run using cases A and B a 
total of five times each. Because the initial configura- 
tion is chosen using a random number, the five tests 
were all different. 

F ina l  O b s e r v a t i o n s .  

1. Using the Initial Configuration-Based Method 
for selecting an initial temperature is better than 
the Standard Deviation-Estimated Method. 

2. The relationship between initial temperature (as 
determined using the Initial Configuration Based 
Method) and initial cost was observed for differ- 
ent assignment problems. Configurations with 
the same cost do not necessarily start  at the 
same temperature,  since temperature is meant 
to indicate how close a configuration is to an op- 
timal solution. A configuration with lower cost 
does not necessarily mean that  it is closer to an 
optimal solution as there may not be any direct 
transition that  leads to an optimal solution. 

3. Although initially 
we thought that  case B (Configurations-Rejected 
Iteration Method) would always be better than 
case A, (Cost-Based Iteration Function Method), 
results showed that  case A is better. Case A al- 
ways had shorter run times and managed to find 
more optimal solutions than case B. 

4. Case A was also a more conservative algorithm, 
since the ratio of accepted swaps to total swaps 
was lower. 

5. What  we have done so far (finding a suitable 
initial temperature,  doing the right number of 
iterations before going to another temperature, 
and finding the correct t ime to terminate) is to 
improve the SA algorithm. In general, we believe 
that  the best approach for solving large problems 
would be to use, in addition, some problem spe- 
cific knowledge (heuristics). Improving just the 
algorithm would not enable an almost optimal 
solution to be found within a reasonable time. 

6. Problem size is related to the number of possi- 
ble assignments, the number of assignments that 
are optimal solutions and the number of assign- 
ments that  would lead to these optimal assign- 
ments. Because fewer assignments were optimal, 
it proved to be more difficult to find an optimal 
solution for a test problem that  was smaller than 
another in terms of logical and physical modules. 

7. A good initial assignment is another important  
factor for finding an optimal solution. However, 
it is difficult or even impossible to determine 
which initial assignment is good. Using paral- 
lel processing would be a solution to assignment 
problems as different initial assignments could 
be run at the same time and the best solution 
can then be chosen. 

5.2 A s tudy  of different  pena l ty  func- 
t ions and the i r  effects 

The Simulated Annealing (SA) algorithm imple- 
mented in the SPA program relies heavily on the ac- 
curacy of the "energy" or "cost" function that  is to be 
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minimized. The cost of a given configuration of the 
SPA essentially represents the state of the configura- 
tion. Hence, the more accurate this representation, 
the better  the results of the SA algorithm. In the 
current implementation, the cost function is defined 
as: 

Cost for a given SPA configuration = total path 
length + total penalty 
where, the penalty is given by the penalty function 
(PF) that  is defined as: 

P e n a l t y  fo r  a g i v e n  S P A  c o n f i g u r a t i o n  

N 

E v(i) 
i=1  

where N = # of edges along the paths of all rings 
and where the number v(i) of violations at edge i is: 

max[ (#  of paths through edge i - maximum per- 
missible # of paths through edge i), 0] 

Recall that  an "edge" can have only two paths 
through it. The  current penalty function appears to 
be too simplistic because it penalizes all individual 
edge violations equally irrespective of the number of 
violations and the control temperature of the configu- 
ration. We believe that  the search to find an optimal 
configuration of the SPA can be made more efficient 
by modifying the penalty function to evaluate a given 
configuration more accurately. 

Several penalty functions have been tried on a di- 
verse range of problems. These will be described in 
the rest of this section. 

5.2.1 U s i n g  A r b i t r a r y  N u m b e r s  as M u l t i p l i -  
e r s  t o  t h e  E d g e  V i o l a t i o n s  

Our first study direction for the penalty function in- 
volved the use of penalities that  varied directly and 
exponentially with the number of edge violations. Let 
the total penalty (represented by the modified PF) be 
defined as: 

N 

~p(i) 
i=1  

where p(i) = penalty for edge i, and N is as de- 
fined previously. When the edge penalty varies expo- 
nentially as the number of edge violations, the edge 
penalty is defined as: 

of the SA algorithm when succeeding edge violations 
are penalized more heavily and more leniently. 

When using b = 1.5, the algorithm becomes ex- 
tremely conservative in moving to an invalid config- 
uration. This inhibits an exhaustive search, and the 
algorithm tends to remain close to the initial feasible 
solution. The percentage of swaps that  are rejected 
increases by an average of 34%. This can be explained 
by the fact that  a change (C) in cost for an infeasi- 
ble configuration is large causing the probability of 
acceptance of a swap [P=exp(-C/T)]  to be low, re- 
ducing the chance that  the swap will be accepted. 
This impedes search, and often the best feasible so- 
lution is inferior to that  obtained by the use of the 
original PF. 

Using a base of 0.75, the percentage of proposed 
swaps rejected decreases by an average of 22%. Since 
an infeasible configuration is not penalized by a sig- 
nificant amount,  search is promoted. However, this 
does not necessarily facilitate the discovery of a bet- 
ter solution. In most cases, the solution is as good as 
the one obtained by the original PF.  The conclusion 
is that  the extra effort involved in the larger search 
is not worthwhile. 

When the edge penalty varies directly as the num- 
ber of edge violations, p(i) is defined as: 

p(i) = m * v(i) 

Two values were tested, 1.5 and 0.75. The results 
obtained with these multipliers are not significantly 
different from those obtained by the original PF for 
relatively large networks (more than 7 logical mod- 
ules, 2 or more rings, 2 or more ring spanners). There 
is a difference in the percentage of proposed swaps 
that  are rejected but  this can be explained along lines 
similar to those in the previous paragraph. 

Our second study direction for the penalty function 
involved the use of penalities that  were temperature 
based. The temperature  of the SPA is an important  
property that  can be incorporated into the PF. As the 
temperature decreases, the algorithm is closer to its 
final solution. It is therefore necessary to limit search 
by penalizing an infeasible solution more heavily at 
a lower temperature.  This is to make sure that  at a 
low temperature,  a swap is not made for an infeasi- 
ble solution if the number of edge violations is large 
(because that  would make it more difficult to find 
a better feasible solution given that  the end of the 
search is near). The edge penalty is defined as: 

p(i) -- b'(i) p(i) = M * (Ts tar t /Tcont ro l )  * v(i) 

Two values of b were tried, 1.5 and 0.75. The reason 
for using such radical PF 's  is to study the behavior 

where M is a multiplier (constant or problem-based) 
of the temperature  ratio. 
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When the multiplier is a constant, 1.5 is selected 
to ensure that the penalty for an edge violation is 
greater than unity even when Tstart = Tcontrol. 
With this PF, consistently better results (than those 
with the original PF) are obtained. 

When the multiplier is problem based, the multi- 
plier is based on the given SPA and the logical de- 
sign. The parameters from the problem are divided 
into two categories: 

1. parameters for which search should be promoted, 
and; 

2. parameters for which a large search is unneces- 
sary. 

Various combinations of the parameters were tried in 
the PF through the multiplier that is defined as: 

M = different combinations of type 2 / different com- 
binations of type 1 

The results from this study suggest that a suitable 
multiplier is of the form 

L 

M =  H S,,j/Sj 
j = l  

where St,j = # of logical modules of type j; 
Sj - # of physical processors of type j, and; 
L - # of different types of logical modules. 

When M is defined in this way, its value for all prob- 
lems tried is in the range 0.1 to 0.5. Since M < 1, 
the edge violations are not penalized heavily initially 
so that configurations that do not look promising ini- 
tially but that might lead to better configurations 
later on, are considered. In all the examples tried, 
this PF gave the best results. 

A Case Study.  

For the case study, the original PF is compared to 
the temperature based PF's described in the previous 
paragraphs. 

With the original PF, the path length was 12. The 
number of swaps proposed was 153. Eighty-six of 
these were accepted. With the temperature based 
PF of the form M * Tstart / Tcontrol where M had 
a weight of 1.5, the path length was 10. 170 swaps 
were proposed. Seventy-nine of these were accepted. 
Where M is problem-based of the type as described in 
the previous paragraph, the path length was 10. The 
# of swaps proposed was 153. Eighty-six of these 
were accepted. These results clearly indicate that 
tim temperature based PF's perform better. 

For all the examples that have been tried, the high- 
est starting temperature was 15 and the ending tem- 
perature was 0.1. If high starting temperatures are 

being considered (> say 25), then the temperature 
based PF's should be modified (perhaps by taking 
the square root of Tstart/Tcontrol) since the ratio 
Tstart/Tcontrol will become too high for low values 
of Tcontrol. 

6 C o n c l u s i o n s  a n d  F u t u r e  D i -  
r e c t i o n s  

We conclude here that the LISP environment that we 
used was a major factor in rapid prototyping. In ad- 
dition, new researchers were able to quickly learn the 
concepts used in the algorithm and able to use this 
knowledge to develop working enhancements to the 
original prototype. While SA is easy to understand 
and flexible, much is required to tune it to a particu- 
lar application. The environment we used made this 
possible for the logical to physical assignment prob- 
lem encountered in reconfiguring multiprocessors. 

Our future research in this area is proceeding in 
two directions: 

1. We are investigating implementing the algorithm 
in a distributed environment and; 

2. We are investigating using an expert system ap- 
proach to solve this problem. 
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