
Enhanced Simulated Annealing for Automat ic Reconfiguration of
Multiprocessors in Space

J a m e s R . S lag le , A s h i m Bose , P e r r y B u s a l a e e h i , C a t h e r i n e W e e ,
U n i v e r s i t y o f M i n n e s o t a ~ M i n n e a p o l i s ~ M i n n e s o t a .

Abstract

This paper describes our recent results in devel-
oping enhanced simulated annealing algorithms us-
ing a LISP environment. The application is to use
simulated annealing for au tomat ic reconfiguration of
multiprocessors in space. Our approach to solv-
ing this problem involves a combination of object-
oriented programming, search strategies, knowledge
based reasoning, and an advanced reconfiguration al-
gorithm. The application was developed and is being
enhanced on a LISP workstation (Xerox Dandelion)
using LOOPS. This environment played an impor-
tant role in both the initial success of the prototype
[9] and the recent development efforts [3] [16] [22].

1 Introduction

Simulated Annealing (SA) is a stochastic optimiza-
tion technique that was inspired by concepts from
statistical mechanics. Problems that lend themselves
to a simulated annealing-based solution include NP-
complete problems such as the traveling salesman [2]
[8] and quadratic assignment problems, among others
[1] [4] [5] [6] [7] [12] [11] [13] [14] [17] [19] [18] [20] [21]
• Additionally, SA has proven to be a viable method
for determining the weights between nodes in a neu-
ral network. We will now introduce this sometimes
controversial but always interesting algorithm.

Given a combinatorial optimization problem spec-
ified by a set C of configurations and by a cost func-
tion h defined on all the configurations S , belonging
to C , the SA algori thm is characterized by a rule to
randomly generate a new configuration with a certain
probability, and by a probabilistic acceptance rule ac-
cording to which the new configuration is accepted or
rejected. A parameter

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

© 1989 ACM 0-89791-320-5/89/0006/0401 $1.50

T, called the temperature, controls the acceptance
rule. The generic simulated annealing algorithm is
described as follows:

procedure Simulated Annealing

iterations <- i0 (* initial number of iterations *)
T <- To (* initial temperature *)
S <- S0 (* initial configuration *)
repeat

repeat
NewS <- Perturb (S)
i f [h(NewS) <= h(S)] or

[random# < exp((h(S) - h(NewS))/T)] then
S <- NewS

unt i l inner loop has been repeated iterations times
T <- UpdateTemperature(T)
iterations <- Updatelterations(iterations)

unt i l outer loop terminating criteria
end

In the spaceborne processor array (SPA) environ-
ment, So corresponds to an initial assignment of log-
ical processors to physical processors, Per turb to a
procedure that proposes a swap of an assignment of
a logical processor from one physical processor to an-
other of the same type, and h to an objective function
where we want to minimize the total pa th length in
the Module Interconnect Network (MIN). Although
simulated annealing methods have proved to be suc-
cessful for fnd ing near opt imal solutions to difficult
problems, they often require long run time. We ad-
dress this further in Section Four.

In the sections that follow we will introduce the
application to which we apply the simulated anneal-
ing algorithm, the LISP environment, details of the
resulting algorithm enhancements, future directions
for research, and our conclusions• Simulated anneal-
ing is the method we use to solve the logical to phys-
ical assignment problem.

401

http://crossmark.crossref.org/dialog/?doi=10.1145%2F66617.66666&domain=pdf&date_stamp=1989-06-06

2 T h e A p p l i c a t i o n

Control Data Corporation has developed a multipro-
cessor system designed for use in space. The system
is called the Space Processor Array (SPA). The mod-
ules are connected using a simple bi-polar arrange-
ment. The top plane consists of discrete processors
of various types not connected. General purpose, sig-
nal processors, and symbolic processors are examples
of processor types. The bottom plane is the Mod-
ule Interconnect Network (MIN) that provides the
interprocessor communications hardware. For each
processor in the top plane there is a corresponding
"part" called the Configurable Network Unit (CNU)
in the MIN. All interprocessor communication takes
place in the MIN, with the path of the communica-
tion being determined by the programmable CNU's.
Each of four sides of a CNU can be thought of as
an edge with the limitation of two paths entering the
CNU through any single edge. Initial configuration
of an array of processors or reconfiguration after a
failure aboard the spacecraft requires a mapping of
the logical design, representing the needs of the soft-
ware application, onto the physical array of proces-
sors. The logical processors are grouped into rings,
reflecting required dataflow and inherent parallelism
in the logical application. The mapping of the logi-
cal onto the physical must be done in a way to mini-
mize the total path length required, while at the same
time satisfying the constraints of module types and
network limitations. Reconfiguring an array requires,
in addition to the above, that the system bypasses a
failed module.

3 A n E x a m p l e

In this section, a simple example is described to il-
lustrate the working of the SPA program. In this ex-
ample, the logical design (Figure 2) is to be mapped
onto a 3x3 SPA. On comparing modules in the log-
ical design with the modules in the SPA, it is evi-
dent that the SPA contains spares for each processor
type. Hence, the logical to physical mapping entails
determining assignments of logical modules to phys-
ical modules and the circuits between the physical
modules. The solution determined by the SPA pro-
gram including the execution time is shown in Figure
1.

Processor Types
1

IO

SPU

PATH LENGTH = 7
(Ring 1 (3) + Ring 2 (4) = 7)
T initial = 10
T final = 0.5

Time Elapsed = 63.5 seconds

~lp 0

SPU (- --->

IO

Ring 1 - - >

Ring 2 ==>

z

Figure 1: Example 1 - 3x3

on our ability to create a good simulation of the phys-
ical system by using the object hierarchy defined by
LOOPS. The level of abstraction provided by the ob-
ject and attribute hierarchy provided data structures
that were both meaningful and efficient. Association
lists were used to quickly determine the change in the
state of the system at different levels. The graphi-
cal representations of the object and function hier-
archy provide focal points that the developers could
view to gain overall system perspective. The graph-
ics provided by the system again proved their worth
in providing a visual representation of the SPA hard-
ware system and immediate feedback for changes in
the SA algorithm. In this way the swaps proposed
for individual assignments and any feasible solutions
found by the algorithm were easily displayed. When
combined with liberal use of gauges, active values,
and inspectors, we were able to watch the algorithm
in action, and thereby closely monitor the solution
progress. This led to several insights on how the al-
gorithm worked and how it could be improved. The
excellent debugging environment allowed for quickly
tracing errors to individual functions.

Continuing work has been underway at the Univer-
sity of Minnesota. The LISP environment has been
responsible for the short time that was necessary to
get the researchers up to speed. The following results
were obtained by part-time researchers over a period
of five months.

4 T h e E n v i r o n m e n t

Due to the rapid prototyping capability of the LISP
machine and development environment, we developed
a prototype simulator in less than three months that
used simulated annealing to perform the reconfigura-
tion task. Throughout development we relied heavily

5 E n h a n c e m e n t s to the SA al-
g o r i t h m

We have enhanced the SA algorithm by examining
strategies for temperature reduction and different
penalty functions and their effects.

402

5.1 Strategies for t empera tu re reduc-
tion

We focused our research on three aspects of the tem-
perature portion of the SA process:

e Selecting an Initial Tempera ture

• Determining the Number of Iterations at a Tem-
perature and;

• Determining the Stopping Criterion.

5.1.1 S e l e c t i n g a n I n i t i a l T e m p e r a t u r e

The initial t empera ture is impor tan t from two oppos-
ing perspectives. The higher the initial temperature,
the more randomness that would be allowed, reducing
the possibility of stopping at a local minimum. The
lower the initial temperature , the faster we arrive at
a solution. A key to efficiently solving the reconfigu-
ration problem is finding an acceptable compromise.

Our research included three methods for selecting
an initial temperature:

1. Rat io Method;

2. Initial Configuration Based Method, and;

3. Standard Deviation est imated Method.

R a t i o M e t h o d fo r S e l e c t i n g a n I n i t i a l T e m p e r -
a t u r e .

This was the initial method used to select an initial
t empera ture and is defined by the following formula:

To = 20 * (# of logical modules / # of physical mod-
ules)

where:
of logical modules is the total number of modules
of all module types required by the problem or appli-
cation, and
of physical modules is the total number of modules
in the physical array. This leads to a conservative
(high) start ing temperature .

I n i t i a l C o n f i g u r a t i o n B a s e d M e t h o d o f Se lec t -
ing a n I n i t i a l T e m p e r a t u r e .

This method is defined by the following algorithm:

Select an initial configuration;
Take a few one step random transitions from this initial
configuration and record all the changes in cost;

i f (there are one step random transitions that result in an
increase in cost) t hen

Calculate the average increase in cost, C+;

T0=C+/-ln(P);
where P is the acceptance ratio. The acceptance ratio is

the ratio of the number of accepted transitions
to the number of proposed transitions.
P ---- 0.80 if there are more transitions that

result in an increase in cost than
transitions that result in a decrease
or no change in cost.

P ---- 0.65 if there are an equal number of
transitions that result in an increase
in cost and transitions that result in
a decrease or no change in cost.

P --- 0.50 otherwise.
else

To = 20 * Standard Deviation of all the costs obtained
(including the cost of the initial configuration).

There are several advantages in calculating the ini-
tial tempera ture this way. The temperature , T plays
an impor tant role in whether a random transition is
accepted. A random transit ion is accepted if exp (-
C / T) is greater than a generated random number,
lying between 0 and 1, where C is the change in cost,
i.e. the difference in cost of the new configuration
and the current configuration.

Given a certain value P, that represents the prob-
ability of acceptance, and C+, the est imated higher
cost, initial tempera ture To is computed. By doing
this, we hope to relate To with the initial configura-
tion that is chosen. This may enable the system to
start with a lower tempera ture and obtain the solu-
tion faster if a good initial configuration is chosen. If
a less satisfactory initial configuration is chosen, the
system would s tar t at a higher temperature , and take
a longer t ime to find the solution.

S t a n d a r d D e v i a t i o n E s t i m a t e d S t a r t i n g T e m -
p e r a t u r e M e t h o d .

In this method, a few random transitions are taken
and the s tandard deviation of the cost distribution is
computed. The initial t empera ture is computed as
follows:

To = 20 * Standard Deviation of the costs

In this method, To is chosen such that almost all con-
figurations would be accepted. Since To allows almost
all configurations to be accepted, it can be considered
as the upper bound of the temperatures. Thus, ini-
tial temperatures calculated using this method would
always be higher than the previous method.

5.1.2 D e t e r m i n i n g t h e N u m b e r o f I t e r a t i o n s
a t a T e m p e r a t u r e

As in the previous section, there are opposing per-
spectives to the value that this number should take

403

on. The larger the number, the more thorough and
time consuming will be the search. The compromises
used in this study include:

• Number of Physical Modules Method;

• Cost-Based Function Method and;

• Configuration-Rejected Method.

N u m b e r o f P h y s i c a l M o d u l e s M e t h o d fo r De-
t e r m i n i n g N u m b e r o f I terat ions .

This method involved remaining at a temperature for
the number of iterations equal to the number of mod-
ules in the physical array.

C o s t - B a s e d F u n c t i o n M e t h o d fo r D e t e r m i n i n g
N u m b e r o f I t e r a t i o n s

The number of iterations, N(T), to execute at a par-
ticular temperature T, was obtained as:

N(T)=exp((hmax(T) -hmin (T)) /T)

where hmax(T) and hmin(T) were the highest and
lowest values of the cost function obtained thus far
at this temperature. Originally we defined hmax(T)
and hmin (T) to be the highest and the lowest value
obtained so far during the execution of the system.
However, N(T) became too large and the system ran
too long.

As the temperature decreases, N(T) may become
large, thus we impose an upper bound of three times
the number of physical modules.

The above formula was suggested by Remeo and
Sangiovanni-Vincentelli [10], when they observed
that to obtain a final configuration close to a glob-
ally minimal one, there should always be a sufficiently
large probability to leave any configuration, possibly
a local minimum. A good estimate of the number of
iterations required is given by the above formula for
N(T).

N(T) above has the property of being small when
the temperature is high. As temperature decreases,
N(T) would increase correspondingly.

C o n f i g u r a t i o n s - R e j e c t e d M e t h o d fo r D e t e r -
m i n i n g N u m b e r o f I t e r a t i o n s .

In this method, the number of iterations taken de-
pends on the number of configurations being rejected.
At every temperature, a certain number of configu-
rations must be rejected before it can go to another
temperature. The number of configurations to be re-
jected was set equal to the number of physical mod-
ules. This method has the property of running many

iterations when the temperature was high and run-
ning just a few iterations when the temperature de-
creases.

Since configurations at higher temperatures can be
accepted more easily, this method tries to find the
solution close to the beginning of the simulation.

5.1.3 D e t e r m i n i n g t h e S t o p p i n g C r i t e r i o n

Originally, the system would stop if the temperature
was less than the minimum temperature. The mini-
mum temperature was either user-defined or set to be
0.1. The system would also stop if the solution was
equal to the lower bound, i.e. the cost as computed
from the logical design.

For this study, the system was modified so that it
would stop if any one of the following conditions was
true.

1. The temperature was less than the minimum
temperature of 0.1;

2. The cost was equal to the lowest possible cost;

3. The minimum cost accepted has not changed for
four consecutive decreases in temperature. We
used this condition as a stopping criterion as the
commercial package, TimberWolf, also uses this
as its stopping criterion for its SA algorithm im-
plementation;

4. No swap was accepted at a particular temper-
ature. This condition would be applicable only
if there were four or more decreases in tempera-
ture and may mean that a minimum configura-
tion has been obtained.

However, after doing some runs, we found that con-
ditions 3 and 4 were not suitable for these assignment
problems. Condition 3 stopped the system too early,
and hardly any run terminated because of condition
4.

As a result, the first two conditions remained as
the stopping criterion except that the minimum tem-
perature is set to 0.3.

5.1.4 Tests

To test these alternatives, some representative prob-
lems were identified. Each of these test problems was
considered for testing against four combinations of
temperature strategies identified as Cases A through
D.

A. The initial temperature was calculated by taking
the average increase in cost of one step transi-
tions from the initial configuration. The number
of iterations to be performed before going to an-
other temperature was determined from the tem-
perature and the maximum and minimum cost
obtained at that temperature.

404

B. The initial temperature was calculated by taking
the average increase in cost of one step transi-
tions from the initial configuration. The number
of iterations to be performed at every tempera-
ture depended on the number of swaps rejected.

C. The Standard Deviation-Estimated Method was
used to calculate the initial temperature. The
number of iterations to be performed before go-
ing to another temperature was determined by
the temperature and maximum and minimum
cost obtained at that temperature.

D. The Standard Deviation-Estimated Method was
used to calculate the initial temperature. The
number of iterations to be performed at every
temperature depended on the number of swaps
rejected.

In i t i a l O b s e r v a t i o n s .

After a few initial tests, we confirmed that the Stan-
dard Deviation-Estimated Method selected an initial
temperature that was too high. On the other hand,
the initial configuration-based method is more selec-
tive and hence more efficient by using a lower start-
ing temperature for some configurations than others.
Thus, cases C and D were eliminated from consider-
ation.

The Configuration-Rejected Method for determin-
ing the number of iterations tends to run quite long
when higher temperatures are encountered. This is
due to the fact that the most swaps are accepted
at higher temperatures. When the Configurations-
Rejected Method was used in combination with the
Standard Deviation-Estimated Starting Temperature
Method (Case D), long execution times were ob-
served. Thus, Case D had a second reason for removal
from consideration.

F ina l T e s t C o n f i g u r a t i o n s .

Cases A and B were evaluated for each test problem.
Three test problems were defined with each having
a different logical definition and associated physical
array size. The three physical sizes were 9, 16, and
25 modules.

Each test problem was run using cases A and B a
total of five times each. Because the initial configura-
tion is chosen using a random number, the five tests
were all different.

F ina l O b s e r v a t i o n s .

1. Using the Initial Configuration-Based Method
for selecting an initial temperature is better than
the Standard Deviation-Estimated Method.

2. The relationship between initial temperature (as
determined using the Initial Configuration Based
Method) and initial cost was observed for differ-
ent assignment problems. Configurations with
the same cost do not necessarily start at the
same temperature, since temperature is meant
to indicate how close a configuration is to an op-
timal solution. A configuration with lower cost
does not necessarily mean that it is closer to an
optimal solution as there may not be any direct
transition that leads to an optimal solution.

3. Although initially
we thought that case B (Configurations-Rejected
Iteration Method) would always be better than
case A, (Cost-Based Iteration Function Method),
results showed that case A is better. Case A al-
ways had shorter run times and managed to find
more optimal solutions than case B.

4. Case A was also a more conservative algorithm,
since the ratio of accepted swaps to total swaps
was lower.

5. What we have done so far (finding a suitable
initial temperature, doing the right number of
iterations before going to another temperature,
and finding the correct t ime to terminate) is to
improve the SA algorithm. In general, we believe
that the best approach for solving large problems
would be to use, in addition, some problem spe-
cific knowledge (heuristics). Improving just the
algorithm would not enable an almost optimal
solution to be found within a reasonable time.

6. Problem size is related to the number of possi-
ble assignments, the number of assignments that
are optimal solutions and the number of assign-
ments that would lead to these optimal assign-
ments. Because fewer assignments were optimal,
it proved to be more difficult to find an optimal
solution for a test problem that was smaller than
another in terms of logical and physical modules.

7. A good initial assignment is another important
factor for finding an optimal solution. However,
it is difficult or even impossible to determine
which initial assignment is good. Using paral-
lel processing would be a solution to assignment
problems as different initial assignments could
be run at the same time and the best solution
can then be chosen.

5.2 A s tudy of different pena l ty func-
t ions and the i r effects

The Simulated Annealing (SA) algorithm imple-
mented in the SPA program relies heavily on the ac-
curacy of the "energy" or "cost" function that is to be

405

minimized. The cost of a given configuration of the
SPA essentially represents the state of the configura-
tion. Hence, the more accurate this representation,
the better the results of the SA algorithm. In the
current implementation, the cost function is defined
as:

Cost for a given SPA configuration = total path
length + total penalty
where, the penalty is given by the penalty function
(PF) that is defined as:

P e n a l t y fo r a g i v e n S P A c o n f i g u r a t i o n

N

E v(i)
i=1

where N = # of edges along the paths of all rings
and where the number v(i) of violations at edge i is:

max[(# of paths through edge i - maximum per-
missible # of paths through edge i), 0]

Recall that an "edge" can have only two paths
through it. The current penalty function appears to
be too simplistic because it penalizes all individual
edge violations equally irrespective of the number of
violations and the control temperature of the configu-
ration. We believe that the search to find an optimal
configuration of the SPA can be made more efficient
by modifying the penalty function to evaluate a given
configuration more accurately.

Several penalty functions have been tried on a di-
verse range of problems. These will be described in
the rest of this section.

5.2.1 U s i n g A r b i t r a r y N u m b e r s as M u l t i p l i -
e r s t o t h e E d g e V i o l a t i o n s

Our first study direction for the penalty function in-
volved the use of penalities that varied directly and
exponentially with the number of edge violations. Let
the total penalty (represented by the modified PF) be
defined as:

N

~p(i)
i=1

where p(i) = penalty for edge i, and N is as de-
fined previously. When the edge penalty varies expo-
nentially as the number of edge violations, the edge
penalty is defined as:

of the SA algorithm when succeeding edge violations
are penalized more heavily and more leniently.

When using b = 1.5, the algorithm becomes ex-
tremely conservative in moving to an invalid config-
uration. This inhibits an exhaustive search, and the
algorithm tends to remain close to the initial feasible
solution. The percentage of swaps that are rejected
increases by an average of 34%. This can be explained
by the fact that a change (C) in cost for an infeasi-
ble configuration is large causing the probability of
acceptance of a swap [P=exp(-C/T)] to be low, re-
ducing the chance that the swap will be accepted.
This impedes search, and often the best feasible so-
lution is inferior to that obtained by the use of the
original PF.

Using a base of 0.75, the percentage of proposed
swaps rejected decreases by an average of 22%. Since
an infeasible configuration is not penalized by a sig-
nificant amount, search is promoted. However, this
does not necessarily facilitate the discovery of a bet-
ter solution. In most cases, the solution is as good as
the one obtained by the original PF. The conclusion
is that the extra effort involved in the larger search
is not worthwhile.

When the edge penalty varies directly as the num-
ber of edge violations, p(i) is defined as:

p(i) = m * v(i)

Two values were tested, 1.5 and 0.75. The results
obtained with these multipliers are not significantly
different from those obtained by the original PF for
relatively large networks (more than 7 logical mod-
ules, 2 or more rings, 2 or more ring spanners). There
is a difference in the percentage of proposed swaps
that are rejected but this can be explained along lines
similar to those in the previous paragraph.

Our second study direction for the penalty function
involved the use of penalities that were temperature
based. The temperature of the SPA is an important
property that can be incorporated into the PF. As the
temperature decreases, the algorithm is closer to its
final solution. It is therefore necessary to limit search
by penalizing an infeasible solution more heavily at
a lower temperature. This is to make sure that at a
low temperature, a swap is not made for an infeasi-
ble solution if the number of edge violations is large
(because that would make it more difficult to find
a better feasible solution given that the end of the
search is near). The edge penalty is defined as:

p(i) -- b'(i) p(i) = M * (Ts tar t /Tcont ro l) * v(i)

Two values of b were tried, 1.5 and 0.75. The reason
for using such radical PF 's is to study the behavior

where M is a multiplier (constant or problem-based)
of the temperature ratio.

406

When the multiplier is a constant, 1.5 is selected
to ensure that the penalty for an edge violation is
greater than unity even when Tstart = Tcontrol.
With this PF, consistently better results (than those
with the original PF) are obtained.

When the multiplier is problem based, the multi-
plier is based on the given SPA and the logical de-
sign. The parameters from the problem are divided
into two categories:

1. parameters for which search should be promoted,
and;

2. parameters for which a large search is unneces-
sary.

Various combinations of the parameters were tried in
the PF through the multiplier that is defined as:

M = different combinations of type 2 / different com-
binations of type 1

The results from this study suggest that a suitable
multiplier is of the form

L

M = H S,,j/Sj
j = l

where St,j = # of logical modules of type j;
Sj - # of physical processors of type j, and;
L - # of different types of logical modules.

When M is defined in this way, its value for all prob-
lems tried is in the range 0.1 to 0.5. Since M < 1,
the edge violations are not penalized heavily initially
so that configurations that do not look promising ini-
tially but that might lead to better configurations
later on, are considered. In all the examples tried,
this PF gave the best results.

A Case Study.

For the case study, the original PF is compared to
the temperature based PF's described in the previous
paragraphs.

With the original PF, the path length was 12. The
number of swaps proposed was 153. Eighty-six of
these were accepted. With the temperature based
PF of the form M * Tstart / Tcontrol where M had
a weight of 1.5, the path length was 10. 170 swaps
were proposed. Seventy-nine of these were accepted.
Where M is problem-based of the type as described in
the previous paragraph, the path length was 10. The
of swaps proposed was 153. Eighty-six of these
were accepted. These results clearly indicate that
tim temperature based PF's perform better.

For all the examples that have been tried, the high-
est starting temperature was 15 and the ending tem-
perature was 0.1. If high starting temperatures are

being considered (> say 25), then the temperature
based PF's should be modified (perhaps by taking
the square root of Tstart/Tcontrol) since the ratio
Tstart/Tcontrol will become too high for low values
of Tcontrol.

6 C o n c l u s i o n s a n d F u t u r e D i -
r e c t i o n s

We conclude here that the LISP environment that we
used was a major factor in rapid prototyping. In ad-
dition, new researchers were able to quickly learn the
concepts used in the algorithm and able to use this
knowledge to develop working enhancements to the
original prototype. While SA is easy to understand
and flexible, much is required to tune it to a particu-
lar application. The environment we used made this
possible for the logical to physical assignment prob-
lem encountered in reconfiguring multiprocessors.

Our future research in this area is proceeding in
two directions:

1. We are investigating implementing the algorithm
in a distributed environment and;

2. We are investigating using an expert system ap-
proach to solve this problem.

R e f e r e n c e s

[1]

[2]

Prithviraj Banerjee and Mark Jones. A par-
allel simulated annealing algorithm for stan-
dard cell placement on a hypercube computer.
Proc. IEEE Int. Conf. Computer-Aided Design
(ICCAD-86), November, 1986.

E. Bonomi and J. Lutton. The n-city traveling
salesman problem: statistical mechanics and the
metropolis algorithm. Siam Review, 26(4):551-
568, 1984.

[3] Ashim Bose, James Slagle, and T.R. Fennel. A
study of the penalty function in the space proces-
sor array (SPA) program. Memo UMCS-AI-88-
3, University of Minnesota, Minneapolis, March
28, 1988.

[4]

[5]

A. Casotto, F. Romeo, and Vincentelli. A.S. A
parallel simulated annealing algorithm for the
placement of macro-cells. Proc. Int. Conf. on
Computer Aided Design, November, 1986.

Moon Chung and Kotesh Rao. Parallel sim-
ulated annealing for partitioning and routing.
Proc. IEEE Int. Conf on Computer Design
(ICCD-86), 238-242, October, 1986.

407

[6] F Darema, S Kirkpatrick, and V.A. Norton. Par-
allel algorithms for chip placement by simulated
annealing. IBM d. Res. Develop., 31(3), May
1987.

[7] Lawrence Davis. Genetic Algorithms and Simu-
lated Annealing. Morgan Kaufmann Publishers,
Inc., Los Altos, California, 1987.

[8] Edward Felten, Scott Karlin, and Steve Otto.
The traveling salesman problem on a hypercu-
bic, mimd computer. IEEE Proceedings of the
1985 Parallel Processing Conference, 6-10, Au-
gust, 1985.

[9] T.R. Fennel. Teaching a computer to fix itself-
when there's no alternative. International Com-
puters in Engineering Conference, 1988.

[10] M. Huang, F. Romeo, and A. Sangiovanni-
Vincentilli. An efficient general cooling schedule
for simulated annealing. Department of EECS,
University of California, Berkeley, 1984.

[11] S. Kirkpatrick. Optimization by simulated an-
nealing: quantitative studies. Journal of Statis-
tical Physics, 34(5/6):975-986, 1984.

[12] S Kirkpatrick, C.D. Gelatt, and M.P. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671 - 680, May, 1983.

[13] Saul Kravitz. Multiprocessor-based placement
by simulated annealing. Private communica-
tion by the Semiconductor Research Corpora-
tion, February 1986.

[14] Saul Kravitz. Multiprocessor-based placement
by simulated annealing. Proc. 23rd Design Au-
tomation Conference, 567-573, June, 1986.

[15] S. Nahar, S. Sahni, and E. Shragowitz. Simu-
lated annealing and combinatorial optimization.
Technical Report Number 85-56 University of
Minnesota, December, 1985.

[16] Byung Joon Park, James Slagle, and T.R. Fen-
nel. Experiments with simulated annealing.
Memo UMCS-AI-88-2, University of Minnesota,
Minneapolis, March 28, 1988.

[17] Rob Rutenbar and Saul Kravitz. Multiprocessor-
based placement by simulated annealing. Proc.
IEEE Int. Co~¢ on Computer Design (ICCD-
86), 434-437, October, 1986.

[18] C. Sechen and A.S. Vincentelli. Timberwolf 3.2 :
a new standard cell placement and global routing
package. Proc. 23rd Design Automation Confer-
ence, 432-439, June, 1986.

[19] C. Sechen and A.S. Vincentelli. The timberwolf
placement and routing package. Proc. Custom
Integrated Circuits Conf., 522-527, May, 1984.

[20] E. Sontag and H. Sussman. Image restoration
and segmentation using the annealing algorithm.
Proceedings of the 24th Conference on Decision
and Control, December, 1985.

[21] M. Vecehi and S. Kirkpatrick. Global wiring
by simulated annealing. IEEE Transactions
on Computer-Aided Design, CAD-2(4):215-222,
October, 1983.

[22] Catherine Wee, James Slagle, and T.R. Fennel.
Strategies for temperature reduction in simu-
lated annealing. Memo UMCS-AI-88-4, Univer-
sity of Minnesota, Minneapolis, March 28, 1988.

408

