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A new approach utilizing MOS circuit struc- 
tures extracted from a circuit net-list for de- 
signing VLSI leaf cells is described. A cir- 
cuit s tructure is explicitly present in a circuit 
schematic d iagram on which a designer relies 
for drawing a layout. However, it is absent in 
the net-list input to an au tomat ic  layout sys- 
tem. In this paper,  how to extract  schematic 
like information from a net-list and how to ap- 
ply it for au tomat ic  leaf cell design are dis- 
cussed. 

1 I n t r o d u c t i o n  
The cell layout problem involves the construction of geo- 
metric artwork at  different semiconductor layers that  
define the circuit components  and interconnections for 
the cell f rom its circuit net-list description and bound- 
ary constraints. The  net-list describes the circuit com- 
ponents, their interconnections, and the underlying fab- 
rication technology. Cell boundary constraints specify 
the topological and geometric requirements around the 
outside boundary  of the layout cell. 

The circuit structure is understood through a hier- 
archicM net-list part i t ioning and signal flow directions 
among circuit components.  The circuit network is par- 
titioned in such a way that  basic circuit building blocks 
can be identified in most  cases. A dependency-directed 
backtracking search mechanism is employed to assign 
signal flow direction for each circuit component  by mak-  
ing use of various knowledge about  MOS circuit signal 
flow. This general search scheme is capable of incorpo- 
rat ing more knowledge, e.g. the set of rules discussed in 
[1], to become more competent  in assigning signal flow 
directions 

The major  use for the extracted net-list structure to 
generate a layout is its implication on layout cell dissec- 
tion. This  approach explicitly establishes a relationship 
between the net-list s tructure and the layout placement.  
A slicing-sfrucfure spatial  ar rangement  is adopted. This 
has been widely used both in manual  design and expert 
layout design systems[3; 2; 4; 15]. However, all such 
systems lack an understanding of the circuit structure. 
They are able to use only local connection patterns,  but 
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not global ones, in the circuit net-list for making layout 
decisions. 

In the following sections, the circuit network parti- 
tioning method,  a search mechanism for assigning sig- 
nal flow directions, and the use of net-list structure for 
making layout decisions are discussed. Finally, these 
ideas are demonstra ted  in a walk-through example fol- 
lowed by some discussions. Although this approach is 
based on CMOS circuits, the same principles can be 
easily applied to circuits in other MOS technologies. 

2 Circui t  N e t w o r k  P a r t i t i o n i n g  
Parti t ioning can be described in terms of a series of 
graph operations. A graph is obtained from the input 
net-list. I t  is then split into several graph components 
along some specific nodes. Each component  is charac- 
terized by the set of signal nodes associated. Unions 
of components  are established depending on their char- 
acteristics. The set of graph components  so obtained 
defines the circuit network parti t ioning. 

2 . 1  C i r c u i t  G r a p h  

A c i r c u i t  g r a p h  can be derived directly from the in- 
put net-list which is assumed to be in a SPICE input 
format[7]. A net-list f~(S, T)  consists of a set of sig- 
nal S(~2), abbreviated as S, connected through a set of 
transistors T(f2), abbreviated as T. Each element in T 
can be either an n-fype transistor or a p-type transistor, 
which is associated with three signals in S through its 
source, drain, and gale nodes. A signal in S is active if 
there are at least one p- type transistor and at least one 
n-type transistor with either source node or drain node 
connected to it. In general, output  signals of CMOS 
circuits are active. A signal is normal if it is not active. 
Some signals may  be declared as input, outpuf, or bias in 
the input specification independent of the circuit struc- 
ture. There are only two different bias signals, vdd and 
vss. Other  signals not specified are taken as inferior. 

A c i r c u i t  g r a p h  C(V, E) is defined according to a 
net list f~(S,T). The vertex set V is defined such that  
each vertex corresponds to either one signal in S or one 
transistor in T and vice versa. A signal connecting to a 
transistor, by its source, drain, or gate node, defines an 
edge in E.  

2 . 2  B l o c k s  

Net-list part i t ioning is done by split t ing the c i r c u i t  
g r a p h  into several subgraphs and then combining them 
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to form blocks. This is obtained by two steps, graph 
splitting and graph union. A set of subgraphs of the 
circuit graph C can be obtained through the following 
steps: 

1. Remove all edges corresponding to connections be- 
tween signals and transistor gate nodes from C. 

2. Remove all isolated vertices after step 1, which de- 
note signal vertices connected only to gate nodes of 
transistors. 

3. Split vertices of active and bias signals in the re- 
maining graph. 

The above steps originate from the following two obser- 
vations. First, transistor gate signal connections in dig- 
ital MOS circuits always function as inputs to the tran- 
sistors connected, therefore they do not constitute con- 
nections within a functional block of transistors. Sec- 
ond, functional blocks connect with each other through 
transistor source nodes or drain nodes at either active 
or bias signals. 

Let ® = {O1, O 2 , . . . ,  Or} be the set of resulting sub- 
graphs. An impor tan t  set of vertices characterizing each 
subgraph ®i are all active and bias signal vertices in ®i 
such as 

f"(Oi) = Y(Oi) U A C T I V E ( C )  U BIAS(C)  
where A C T I V E ( C )  and BIAS(C)  are two sets of nodes 
in the circuit graph C corresponding to active signals 
and bias signals respectively. Note that  if Oi comes 
from a combinational  logic gate in the original circuit, 
it will contain both bias and active signal vertices. The 
only active signal vertex is the output  signal of this logic 
gate. If Oi is obtained from a pass logic gate, it will 
not, in general, contain bias signal vertices and consist 
of more than one active signal vertex. 

A block is a union of several subgraphs by joining 
identical signal vertices. Let ~)k = Ok1 t -JOk2U.. .UOkj  
be a block, then subgraphs {®kl,®k2, . . . .  ®kj} C ® 
satisfy the following conditions: 

1. Either all V(®ki) contain bias signal vertices or all 
of them don ' t  contain bias signal vertices. 

2. V(Okl) - BIAS(C)  = f/(Ok2) - BIAS(C)  = . . . .  
f/(Okj ) - BIAS(C)  

This is because subgraphs in the same block are ex- 
pected to share the same active signal vertices that  are 
not bias. Furthermore,  each subgraph of a block would 
contain bias signal vertices if that  block contains bias 
signal vertices. The latter case is manifested in combi- 
national logic circuits. 

A parti t ion of the input net-list can hence be defined 
according to the set of blocks obtained. An observation 
of the CMOS circuit characteristics is that  functional 
gates, static or dynamic,  can usually be part i t ioned in 
this way. 

A b l o c k  g r a p h  B can b e  built based on the set of 
blocks obtained. Each vertex in B is either a block 
vertex, corresponding to a subnet-list as a block, or a 
signal vertex, corresponding to a signal that  connects 
transistors in different blocks. An edge is defined only 
between a signal vertex and a block vertex signifying 

a connection between the signal and some transistors 
inside the block. 

2.3 Serial-Parallel  Connect ions  
Serial-parallel connection pat terns  are impor tan t  struc- 
tures in CMOS circuits as discussed in [5]. Such struc- 
tures are to be extracted for every block. The ex- 
traction of serial-parallel connections between transistor 
source/drain nodes in each block can be done in a man- 
ner similar to the approach discussed in [5] with the 
constraint that  no vertices corresponding to active or 
bias signals can be used for serial connections. A new 
graph can be obtained by extracting all serial-parallel 
connectioned edges into serial-parallel trees. Each edge 
of the resulting graph corresponds to either a transis- 
tor or a serial-parallel tree representing a serial-parallel 
connection pattern.  

3 Signal Flow Assignment 
3.1 Signal Flow Constraints  
A set of constraints for assigning signal flow directions 
between a signal and a block based on tile b l o c k  g r a p h  
B are described as follows: 

C1 A signal should flow along one and only one direc- 
tion between a signal vertex and block vertex. 

C2 There is at  least one signal input to each block 
through a transistor source or drain node. 

C3 There is at  least one signal output  from each block 
through transistor source or drain node. 

C4 If a signal is declared as input, it must  go into some 
blocks. 

C5 If a signal is declared as output ,  it must  come from 
some blocks. 

C6 An interior signal must  go into some blocks. 

C7  An interior signal must  come from some blocks. 

Besides this set of constraints, two heuristics are em- 
ployed: 

H1 If  a signal connects to a block through transistor 
gate nodes, it goes into tha t  block. 

H2  A bias signal always goes into the block it connects. 

C1 states that  a signal should flow along one and 
only one direction between each signal and a connected 
block. Even though some signals may travel bidirec- 
tionally in an actual circuit, it is reasonable to consider 
only one direction for identifying a global circuit struc- 
ture. C2  and C3 consider signal flows only through 
transistor sources or drains because transistor gates are 
usually regarded as receptive site for controlling signal 
flows. Note that  if input and output  signals are are not 
specified, all signals would be considered interior. It  is 
quite likely that  not all the constraints can be satisfied 
in this case. Eventually, some constraints will have to be 
relaxed. H1  reflects the commonly  known fact that  gate 
nodes of CMOS transistors in digital circuits are used 
mainly for signal input. H 2  states tha t  bias signals, 
namely, vss and vdd, are considered as input signals to 
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all blocks connected to them. These heuristics play very 
important  roles in determining an initial partial signal 
flow specifications. 

3.2 Dependency-Directed 
Backtracking Search 

Given the knowledge about  how a signal flow direction 
should be assigned locally, a search is needed to find a 
direction for each undirected edge of b lock  g r a p h  B 
guided by a set of constraints. This constraint satisfac- 
tion problem[13/ can be solved through a dependency- 
directed backtracking scheme[12/, where domain knowl- 
edge can be applied to regulate the control of the search 
and to reduce further the computat ional  cost. A rea- 
soning maintenance system(RMS)[6] is employed to de- 
tect the presense of contradictions and determine the 
set of search decisions responsible. Each signal flow di- 
rection assignment may come directly from an assump- 
tion made during the search or deducted from the set of 
constraints and all assumptions made. The underlying 
RMS performs such deductions whenever an assump- 
tion is asserted, records how an assignment is obtained, 
detects conflicts, and reports all possible sets of assump- 
tions causing the conflicts if they occur. 

Selecting one edge to assign a signal flow direction 
from the set of undirected edges observes the following 
order: 

1. If two edges with the same signal vertex are undi- 
rected, one connecting to a combinational block and 
the other connecting to a pass block, set the signal 
flow for the latter edge into the pass block. 

2. If an edge with an input signal vertex is undirected, 
set the signal flow out of the signal vertex. 

3. If an edge with an output  signal vertex is undi- 
rected, set the signal flow into the signal vertex. 

4. If an edge is undirected, set the signal flow into the 
block vertex connected. 

The above rules are valid according to heuristics of 
CMOS circuit properties. The first rule comes from the 
commonly occurred feedback-loop structure. A block is 
defined combinationalif: 1) it contains the same number 
of p-type transistors and n-type transistors; 2) it con- 
nects to both vdd and vss; and 3) of all signals that  are 
not bias, it connects to only one active signal. A pass 
block refers to a block not connecting to any bias signal 
vertex. These definitions are heuristic in the sense that  
all combinational logic gates and pass logic gates will 
satisfy such conditions, but  not necessarily vice versa. 
The second and third rules imply the natural  tendency 
of directing signal flow towards output  signals and from 
input signals. The last rule simply selects one undi- 
rected edge arbitrarily and assigns to it a signal flow 
direction towards the block. 

There are two sources of conflicts possible during the 
search for signal flow directions: 

1. The initial assumptions. 

2. The set of inpu t /ou tpu t  signals assigned for a 
block. 

Currently, the initial assumptions are made very con- 
servatively. The most common case it reports as a con- 
flict is when a signal is assigned as input to all blocks 
it connects. This usually happens because the signal 
is actually an input signal but not declared as such. 
The assignment of inpu t /ou tpu t  signals for a block has 
to satisfy some requirements based on the transistor 
source/drain node connections in the block. A conflict 
occurs when they are not satisfied. More detailed dis- 
cussion on such a requirement is to be discussed later. 

In the presence of conflicts, the search should retract 
some assertions, either assumptions about  signal flow 
directions or the constraints themselves. Which one to 
choose is strongly dependent on the characteristics of 
the particular problem. The following is a priority list 
according to the assumption properties (from high to 
low): 

1. A constraint about  a signal which connects to all 
its adjacent blocks through transistor gate nodes. 

2. A constraint about  a signal which connects to all 
its adjacent blocks through transistor source/drain 
nodes. 

3. A constraint about  a block caused directly by initial 
assertions. 

4. A signal flow direction assertion. 

The above priority order in retracting assertions reflects 
some knowledge of the circuit structure. In the first 
case, the only possible reason is that  the signal con- 
cerned is actually an input signal, because no signal 
would flow out of transistor gate nodes. The second one 
is established for the possibility that  the signal can ac- 
tually be an output  signal, because output  signals con- 
nect only through transistor source/drain nodes in most 
cases. The third one may also occur because of the lack 
of output  signal information. The last selection is for 
the sake of completeness so that  an initial signal flow 
assumption can be retracted rather than the constraint 
itself if no knowledge applies. 

3.3 Signal Flow Assignment  for Each 
Transistor 

The signal flow directions along transistor source/drain 
nodes are specified based on the input and output  sig- 
nals of each block. Consider a graph defined through 
the transistor source/drain connections with all serial- 
parallel patterns extracted inside a block. The assumed 
requirements for a set of satisfactory transistor signal 
flow assignments are that:  

1. For any input signal vertex, there exists a directed 
path to an output  signal vertex that  doesn't  go 
through any other output  vertex. 

2. For any output  signal vertex, there exists a di- 
rected path to an input signal vertex that  doesn't 
go through any other output  vertex. 

3. Each edge has to belong to a directed path from an 
input vertex to an output  vertex. 

Such assumptions originate from the understanding that 
signals flow through transistor source/drain nodes from 
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input vertices to output  vertices regulated by transistor 
gate nodes to perform some function. 

One way to obtain signal flow directions satisfying 
the above requirements is through a breadth-first search 
that  proceeds from input vertices towards output  ver- 
tices and directs the edges accordingly. 

I. Initialize a queue as a list of 

all input vertices. 

2. Label all output vertices. 
3. Until the queue is empty, remove 

the first element q from the queue, 

3.a. If q is an output vertex, 

do nothing. 
3.b. Otherwise, for all v 

adjacent to  q and 
v i s  n o t  l a b e l e d ,  
3 . b . 1  d i r e c t  e d g e  e f r o m  q t o  v ,  
3.b.2 label vertex v, 

3.b.3 add v to the back 

of the queue. 

A tree can be constructed by adding to the set of all 
labeled vertices and directed edges a new vertex root 
and new set of directed edges from root to every input 
vertex. 

If the input and output  vertices assignments are 
satisfactory, the above constructed tree will be a 
spanning tree that  includes all vertices of the transis- 
tor source/drain graph of a block. In this case, each 
remaining undirected edge can then be directed from 
the vertex associated at a higher level of the tree to the 
other one at a lower level. Those with two vertices of 
the same level are directed arbitrarily. 

However, if the constructed tree doesn't  cover all the 
vertices, the inpu t /ou tpu t  signal assignments for the 
block are unsatisfactory. In other words, some vertices 
can only be reached from the input vertices through out- 
put vertices, which violate the previous mentioned as- 
sumptions. This will be reported as a contradiction, and 
a new set of input and output  vertices are to be found 
through the dependency-directed backtracking scheme. 

4 B lock  and Trans i s tor  
Ordering 

Further ordering information about  a circuit net-list 
structure can be obtained by using the block partitions 
and signal flow assigned for each transistor. 

4 . 1  L o o p s  a n d  T o p o l o g i c a l  O r d e r  

Loops among blocks reflect possible feedback paths ex- 
isting in the net-list. This is an important  structure 
appearing in many circuits, e.g. flip-flops, ring oscilla- 
tors, and most clocked sequential circuits. In general, 
a block may belong to many loops. It is desired that 
all possible loops are identified. An algorithm based on 
the approach proposed in [14] is applied. Each loop is 
associated with a set of blocks constituting the loop. 

An acyclic digraph can be obtained from a new 
partit ion of the net-llst according to the directed 

b lo ck  g r a p h  on the set of strongly connected com- 
ponents(SCC)[lO]. Two vertices v ,w are said to be 
strongly connected, v .~ w, if there is a directed path 
from v to w and vice versa. Clearly, -~ is an equivalence 
relation and it partitions the vertex set into nonempty 
subsets V1,V2,. . . ,Vp, such that  if v E Yi and w is 
strongly connected to v, then w E Vi. Each subset 
Vi is called a strongly connected component.  With all 
loops identified, an SCC can be established by a block, 
if it doesn't  belong to any loop; a loop, if it doesn't 
share constituent blocks with other loops; or a set of 
connected loops. Connected is an equivalence relation 
and two loops are connected if they share at least one 
block or are connected through other loops. 

Each SCC Vi is associated with a subnet-list ~2v~ 
which is the union of all blocks corresponding to all 
strongly connected vertices in Vi. Note that  signal flow 
between Vis' is acyclic, i.e. it doesn't  contain any di- 
rected cycles. Therefore there exists a topological order 
among net-list partitions ~2v,, f~v2, . . . ,  ~2yp. 

4 . 2  T r a n s i s t o r  O r d e r i n g  

Transistors can be ordered inside each block accord- 
ing to the spanning tree identified by the transistor 
source/drain connections. Consider the spanning tree 
7"n, established for a block f~i. Let l(v) be the level of 
the vertex v E 7"n,, then one property of the spanning 
tree obtained through the breadth-first search based al- 
gor i thm is 

if e = < vl, v2 >E E(7-n,), 

then l(v2) = i(vl) or i(v2) = l(cl) + 1 

Note that  each edge e corresponds to a transistor in f~i. 
This results in a natural ordering of transistors accord- 
ing to the levels of the two vertices associated with their 
source and drain nodes. 

5 U s e  of  N e t - L i s t  S t r u c t u r e  in 
Cel l  Layout  

The extracted net-list structure and the partial ordering 
relationships defined through assigned signal flow direc- 
tions can be readily applied for generating a CMOS leaf 
cell. Its use is basically twofold: one is to provide a hi- 
erarchical parti t ion of the cell layout area, and the other 
is to help determine the ordering relationships between 
different partitions, hence the layout placement. The 
leaf cell layout would then be completed with subse- 
quent routing. 

Considering layout problem as a search through all 
possible spatial arrangements to arrive at a satisfactory 
solution following a particular layout architecture, the 
extracted net-list structure provides a set of constraints 
to assist in finding a proper solution. It defines a rea- 
sonable initial solution following the natural properties 
of the input circuit. Some of the routing considerations 
are taken into account through both the clustering of 
circuit devises in the hierarchical structure and the or- 
dering relationships derived from signal flow directions. 

To simply the problem, all layouts will be addressed 
only at the symbolic level[8] where all geometrical mask 
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information is coalesced into symbols for circuit compo- 
nents and lines for connection wires. The layout prob- 
lem consists of two separate, but not independent sub- 
problems, placement and routing. Placement is of the 
major concern here, while routing can be done by ap- 
plying existing algorithms. 

5.1 Cell Slicing Structure 
Representation 

A common way to represent cell layout area is by parti- 
tioning it into subareas. This is also one way to reduce 
the complexity of the cell layout problem applied both 
in automatic  and manual design[15; 2]. Among various 
partitioning methods, the slicing struclure[9] represen- 
tation for rectangular dissection is the most widely used 
one, both for its simplicity, and more importantly, its 
suitability for a hierarchical description. The structure 
extracted from the circuit net-list implies exactly the 
adoption of such a cell representation scheme. 

A slicing structure is characterized by a decomposi- 
tion tree which represents a hierarchy of the regions in 
the layout rectangle. The root of the tree is the top 
level of the hierarchy and represents the enclosing rect- 
angle. Each node corresponds to a subarea of the layout 
rectangle. The children of a node is created by a slicing 
operation, either horizontal or vertical. The recursive 
subdivision ends with nodes corresponding to rectan- 
gles that  contain already completed layouts called lay- 
out patterns. In general, there are more than one slicing 
structure for one rectangular dissection. 

5.2 Initial Placement  
Cell layout placement can be obtained through the fol- 
lowing two steps: first, determining a cell slicing struc- 
ture to parti t ion the input circuit, second, assigning the 
orientation and order of children slices for each slice. 

Instanciatlng Slicing Structure A cell slicing 
structure can be determined by adopting the net-list 
structure as a decomposition tree with each node as- 
signed either horizontal or vertical slicing for its chil- 
dren. To obtain a CMOS layout architecture similar 
the one presented above, the nodes in the decompo- 
sition tree are all assigned horizontal slicing except for 
those corresponding to blocks of the original circuit par- 
tition. These nodes are associated with vertical slieings 
for separating pmos transistors from nmos transistors if 
both types are included. Each node at the bot tom level 
corresponds to a symbolic layout for a single transistor. 
A decomposition tree may also be obtained by modify- 
ing the original net-list structure. This happens when 
imposing layout patterns to the cell and hence requir- 
ing circuit clusters different from those in the original 
net-list structure. 

Layout Pattern A layout pattern constrains a small 
number of transistors to be placed in one slice following 
a particular manner. One example is to pile up the same 
type of transistors sharing one gate signal. This is in- 
tended to either make use of extra vertical layout space 
or make the resulting cell higher and thinner. This type 

of placement arrangement is also used in gate-matrix[16] 
layout, where it is used as part  of the layout constraints 
that have to be always followed. 

In general, all possible patterns are extracted and se- 
lected according to layout heuristics. In case of insuffi- 
cient heuristics, each of them will be considered to de- 
rive different final layouts and evaluated through layout 
performance measurement.  Currently, no heuristics are 
included and multiple layout results are generated ac- 
cording to layout patterns utilized. 

The major  effect of imposing a layout pat tern is the 
modification of the decomposition tree. If a pattern 
contains n non-overlapped subtrees of the original de- 
composition tree, the modification requires that  these n 
subtrees to be removed from the original tree. The new 
subtree representing the pat tern will be attached to one 
of the n positions in the original tree left open by the 
removal. Layout knowledge is needed to select one of 
the n positions, which is currently done arbitrarily. 

Each pattern is associated with a set of conditions. 
They include net-list structural characteristics, electri- 
cal properties, and the input layout specification. Con- 
sider the pattern currently adopted. The set of condi- 
tions to activate it are: 1) each transistor should be of 
the same type; 2) the gate node signal of each transistor 
should be the same; and either 3) there are other transis- 
tors with large sizes compared with the ones considered; 
or 4) the width of the final layout cell is expected to be 
small. 

With more layout knowledge, more layout patterns 
can be added to make the design more competent.  How- 
ever, the cost for extracting and selecting a proper set 
of layout patterns would also increase significantly. Dif- 
ferent layout patterns may interact with each other, i.e. 
overlapping on the set of transistors included. Extra  de- 
sign knowledge is then needed to resolve such conflicts. 
Currently, no such knowledge is used and the resolution 
is arbitrarily done. 

O r d e r  and Orientation Besides partitioning, a lay- 
out placement has to specify the ordering relationships 
between all sibling slices and the orientations of all bot- 
tom level patterns. Initial!y, the ordering relationships 
are arbitrarily specified except for those where the de- 
rived signal flow direction implies an ordered sequence, 
or others determined through layout heuristics. For ex- 
ample, p-type transistors are always placed above p- 
type transistors. Slices with circuit clusters serially con- 
nected are also ordered according to their sequence of 
connection. The transistor symbolic layout is initially 
oriented with its source node on the left and drain node 
on the right. 

5.3 Layout  P l a c e m e n t  O p t i m i z a t i o n  

An optimized layout placement based on the initial re- 
sult can be obtained by applying a set of spatial oper- 
ations to change the orientation of each slice and the 
order of its children. A simple evaluation function is 
used to calculate a heuristic concerning the signal wire 
routing. The hill-climbing procedure searches through 
the possible layout solutions under the same decompo- 
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sition tree. Even though the size of such a search space 
is still exponential,  it is structured in a way consistent 
with the characteristics of the circuit. 

S p a t i a l  M o v e m e n t  Two types of operations are de- 
fined for each slice to change the spatial  arrangements 
of the circuit cluster included. One is flipping which 
reverses the order of its children slices along either hor- 
izontal or vertical direction and requires each of its chil- 
dren slice to be flipped along the same direction too. 
This proceeds recursively until the bo t tom symbolic 
transistor layout, which simply reverses its node posi- 
tions along the flipping direction. Another operation 
is swapping that  alters the ordering relationship of the 
children slices by exchanging the positions of any two 
of them. Either operation incurs only very local change 
of the layout placement.  The first one is meant  to vary 
the orientations of sibling slices, and the second one to 
examine different ordering relationships. Applying com- 
binations of these two operations makes it possible to 
obtain any desired placement from any initial arrange- 
ment  under the same decomposition tree. 

C o s t  E v a l u a t i o n  A cost based on the change of esti- 
mated  routing distance is calculated for each operation. 
The routing cost is measured according to Manhat tan  
distance between signal nodes inside the slice considered 
and those outside the slice. If  more than one pair exist 
for routing one signal, the one with min imum distance 
is selected. The final cost is the sum of the cost for each 
signal inside the slice. 

Such distance measure is very crude since the coor- 
dinates at  the symbolic level only exhibit relative posi- 
tions rather than actual geometrical dimensions. How- 
ever, since the measurement  is used only for comparison, 
it is able to find some desired features for placement. 
Two prominent  features are alignment and abutment. 
Alignment means that  a set of routing pairs do not inter- 
sect with each other. Abutment  refers to the situation 
that  a routing pair of the same layer between adjacent 
slices are placed next to each other, and can therefore 
be connected without wiring. The cost associated with 
these two routing states are always minimum, although 
locally, with the cost function used. However, the cur- 
rently adopted evaluation function may not always be 
able to distinguish other placement arrangements  from 
these two desired situations. 

C o n t r o l  Start ing from the initial layout, each slice is 
examined for possible application of optimization oper- 
ations to decrease the routing cost. This process con- 
tinues until either it achieves a local minimum that  no 
improvement  is possible by applying any single opera- 
tion, or it exceeds a preset limit on the number  of iter- 
ations for this process. Such a limit on the amount  of 
optimization operations is necessary because there is no 
guarantee that  the simple evaluation function adopted 
will not result in a loop. However, this hasn ' t  yet been 
found in all cases examined. 

Figure 1: D-Flip-Flop Circuit 

5 . 4  R o u t i n g  

The channel routing scheme[l l]  is used to complete all 
signal net connections in a bo t tom-up  fashion follow- 
ing the slicing structure. Each slice is considered to be 
routed only when all its children slices are routed. Ex- 
cept for slices which are layout patterns,  routing chan- 
nels are assigned between each adjacent sibling slices. 
The number  of channels is decided in a conservative way 
such that  all routing paths can be completed. To fur- 
ther simplify the routing problem, two layers of metal  
lines are employed. All vertical wires are in poly or 
metal-1 layers while horizontal ones are in metal-2 layer. 
The I / O  ports specified by the boundary constraints can 
be connected after all routings inside the cell are com- 
pleted. 

6 A n  E x a m p l e  
Consider the CMOS network shown in fig. 1 as a work- 
ing example. This is a d-flip-flop circuit consisting of 17 
signals S = {sl ,  s 2 , . . . ,  s15, vdd, vss} and 27 transistors 
T = {tl ,  t 2 , . . . , t 2 7 } .  Tp = { t l , t 2 , . . . , t l 3 }  is the set of 
all p-type transistors and Tn = {t14, t 1 5 , . . . , t 2 7 }  that  
of all n-type transistors. The set of active signals Sacti,e 
includes {s4, s9, s l0,  s l l ,  s12, s13} and the rest will be 
normal,  Snormat = S - S a c t i v e .  Assume that  the input 
and output  signals are not specified and that  all signals 
except the bias ones {vdd, vss} are taken as interior. 

The set of blocks identified from parti t ioning the cir- 
cuit network is illustrated in fig. 2. Functional implica- 
tions exist in some of the blocks obtained. Block a is 
a clocked inverter;, b is a nor-gate; g is an inverter, h is 
the combination of an inverter and a pass-gate for reset 
purposes; and the remainder are pass-gates. 

The signal flow assignment procedure first asserts 
that  signals flow out of bias signal vertices and into 
blocks if connected through transistor gate nodes. 
These assertions are shown in fig. 3. The constraints 
are then propagated and nine more directions are in- 
ferred accordingly. For example,  arc (a, s4) is deduced 
from the constraint tha t  there has to be at least one 
signal flows out of a through vdd, vss, or s4. Since sig- 
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Figure 2: Blocks of D-Flip-Flop Circuit 
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Figure 3: Signal Flow Directions Assignment 

nals have to flow into a through vdd and vss, as initially 
asserted, the signal is therefore constrained to flow out 
of a through s4. 

The  DDB (dependency-directed backtracking) is then 
applied to resolve possible conflicts and to guide the 
assignment of the rest of signal flow directions. Three 
conflicts have been incurred so far. The constraint that  
each signal should have at  least one input signal flow 
(constraint C6) is violated at  all three signal vertices 
s l ,  s6, and s7. This is because they are all connected to 
transistor gate nodes. The underlying RMS (reasoning 
maintenance system) identifies the causes of each con- 
flict to retract.  For the violation at  s l ,  it is reported 
tha t  either assertion s l  ~ j ,  assertion s l  ---. i, assertion 
s l  --~ d, assertion s l  --+ a, or the constraint itself is at  
fault, where s ---* a denotes that  signal s flows into block 
a and a --+ s means signal s flows out of block a. The 
heuristic tha t  constraints, rather  than assertions will be 
retracted has been implemented in the DDB. Therefore, 
this constraint  at  signal net n l l  is retracted to remove 
one contradiction. Similar actions are taken for signals 
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Figure 4: Topological Ordering 
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Figure 5: Extracted Net-List Hierarchy 

s6 and s7. 
After all contradictions are resolved by relaxing con- 

straints, the search proceeds to assign signal flow di- 
rections for those edges not yet directed. According to 
the control heuristic H1 ,  the edge incident to a vertex 
for pass block tha t  connects to a combinat ional  block 
should be considered first. Hence s9 ~ d is asserted, 
and from this d --. s l0  is inferred. The  last two as- 
signments c --~ s4 and c --+ s13 are done arbitrari ly but 
satisfy all constraints. Signal flows between transistor 
source and drain nodes are all determined according to 
the inpu t /ou tpu t  signals of each block without  any in- 
consistency as shown in Jig.3. Since all signal flows are 
assigned and no constraints are violated, the DDB stops 
with an acceptable solution. 

Three loops are found among  the blocks in fig. 3. 
They are L1 = {b,c}, L2 = {h , j , f } ,  and L3 = 
{g, i, h, j} .  La is basically composed of a flip-flop. All 
blocks in a loop are strongly connected; therefore loop 
La defines a strongly connected component  B. Since 
loops L2 and La share two bl6cks,h and j, they both de- 
fine another  strongly connected component  A. A topo- 
logical order can be found among  the new circuit net- 
work part i t ions a, e, d, A, and B as shown in fig. 4 

The extracted net-list s tructure is shown in fig.5. 
Nodes {a, e, d, A}, and B correspond to the parti t ions 
shown in fig.4. Blocks include nodes { a, b, c, d, e, i, g, 
f, h, j}. There are three clusters defined by serial con- 
nections and two defined by parallel connections, which 
are nodes {k, l, m}, and nodes {n, s}, respectively. 

Two different cell layout placements are exemplified 
in fig.6 and fig.7. The former has a decomposit ion tree 
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Figure 6: Placement Example 1 

exactly the same as the net-list structure. It assigns all 
nodes with horizontal slicing except for those represent- 
ing blocks where two different types of transistors are 
partitioned vertically. In fig.7, several layout patterns 
are imposed, therefore the decomposition tree shown in 
(a) is slightly different from the net-list structure. The 
initial placements are shown in part (b) of both figures, 
while the optimized results are shown in part (c). Note 
that both placements in (b) and (c) in the two examples 
share the same decomposition tree for cell dissection, 
differing only in the orientation and order for each slice. 
The orientation of each transistor is considered in the 
placement although not indicated in the figure. Two 
final symbolic layouts completed with routing based on 
the two optimized placements are shown in fig.8 and 
fig.9. The number of horizontal tracks in fig.8 is 30, 
while that for those in fig.9 is 24, as expected for the im- 
posed layout patterns. However, this can only be used 
as heuristic comparison. The exact evaluation should 
still be based on final mask layouts. 

7 Implementat ion and 
Discussion 

This system is implemented on a Sun4/280S using Ky- 
oto Common Lisp. All algorithms involved are of poly- 
nomial time complexity except the one searching for the 
signal flow direction of each transistor. In the worst 
case, assigning either of two possible signal flow direc- 
tions for each transistor will be of exponential time com- 
plexity, i.e. 0(2'*) where n is the number of transistors. 
However, with the help of heuristic constraints, only a 
very small number of possible solutions need to be con- 
sidered. Of the examples tested, a completed symbolic 
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Figure 7: Placement Example 2 
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Figure 8: Completed Symbolic Layout 1 
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layout placement takes about 2 minutes for the d-flip- 
flop circuit (consisting of 27 transistors) presented above 
(both with and without imposing layout patterns), and 
30 seconds for a circuit with 10 transistors. The routing 
time is not considered because it is independent of the 
net-list structure used. Among the 2 minutes computa- 
tion time, about  15 seconds are spent on the extraction 
of net-list structure, 10 seconds for the initial place- 
ment, and the rest 95 seconds for optimization. The 
ratio may differ for different cases, but the optimization 
cost is significantly higher than others. This is because 
the cycle intensive nature of such computation.  The 
initial placement examined doesn't  take too much time 
because only one type of layout pat tern is considered. It 
can be expected that  as more and more layout patterns 
participate in the design, this portion of computat ion 
will increase considerably. 

Although the flexibility of identifying a set of rea- 
sonable signal flow assignments has been demonstrated, 
even without specifying the input /ou tput  signals of the 
circuit, the above analysis of net-list is by no means 
complete. In all the examples tested, the signal flows 
assigned are consistent with the original intent of the 
circuit. However, it is not guaranteed to be so for all 
other circuits. With only a small number of heuristics 
rules, there are many sets of possible signal flow as- 
signments that  satisfy all constraints. If more specific 
results are desired, more knowledge is needed to narrow 
down the number of possible solutions. Many circuits, 
designed with electrical rather than functional consid- 
erations, haven't  been taken into account in this work. 
The general search scheme used for identifying signal 
flow directions is capable of incorporating more MOS 
circuit knowledge to achieve better results for both net- 
list parti t ioning and signal flow assignments. One such 
set of knowledge directly applicable can be found in [1]. 

Many improvements are possible for generating the 
layout from the net-list structure. One example is tran- 
sistor sizing. Although transistor sizing has been con- 
sidered in enacting the simple layout pattern applied, 
the placement still assumes uniform size for each transis- 
tor. Representation of different sizes of transistor at the 
symbolic level would require different evaluation func- 
tion for optimization. Another area to improve is the 
use of more layout patterns from the real design expe- 
rience. Other spatial movements for optimization may 
also be introduced, e.g. rotating a slice, for further ex- 
ploration of a better  layout. 

8 C o n c l u s i o n  
An approach for VLSI leaf cell layout based on an un- 
derstanding about  MOS circuits is presented. Various 
knowledge about  the circuit is applied to extract a net- 
list structure and assign signal flow directions between 
circuit components. Such structure and signal flow rela- 
tionship are then used to generate a layout placements 
and control subsequent optimization procedure to ob- 
tain the resulting layout. The final evaluation of this 
approach has to be done through performance measure- 
ment of the final mask layout derived from the symbolic 
layout generated. Although this hasn't  been completed 

at this stage, the plausibility of utilizing knowledge of 
MOS circuit for generating cell layout is demonstrated. 

R e f e r e n c e s  
[1] N. P. Jouppi. Derivation of Signal Flow Direction in 

MOS VLSI. IEEE Transactions on Computer-Aided 
Design, CAD-6(3):480-490, 1987. 

[2] J. H. Kim. Use of Domain Knowledge in Computer 
Aid for IC Cell Layout Design. PhD thesis, Carnegie- 
Mellon University, 1985. 

[3] P. Kollaritsch and N. Weste. A Rule-Based Symbolic 
Layout Expert. VLSI Design, 62-66, Aug. 1984. 

[4] Y. S. Lin and D. D. Gajski. LES: A Layout Expert 
System. In Proceedings, 24th ACM/IEEE Design Au- 
tomation Conference, pages 672-678, 1987. 

[5] W. Lue and L. McNamee. PLAY- Pattern-Based Sym- 
bolic Cell Layout. In Proceedings, 24th A CM/IEEE De- 
sign Automation Conference, pages 659-665, 1987. 

[6] D. V. McDermott. Assimilation of New Information by 
A Natural Language-Understanding System. Technical 
Report AI-TR291, MIT AI Lab., 1974. 

[7] L. W. Nagel. SPICE2: A Computer Program to Sim- 
ulate Semiconductor Circuits. Memo ERL-M520, Uni- 
versity of California, Berkeley, 1975. 

[8] A. Newton. Symbolic Layout and Procedural Design. 
In G. D. Micheli, A. Sangiovanni-Vincentelli, and P. An- 
tognetti, editors, Design Systems for VLS1 Circuits, 
pages 65-112, Martinus Nijhoff, 1987. 

[9] R. Otten. Automatic Floor-Plan Design. In Proc. 19th 
Design Automation Conf., pages 261-267, June 1982. 

[10] V. B. Rao and T. N. Trick. Network Partitioning and 
Ordering for MOS VLSI Circuits. 1EEE Trans. on 
Computer-Aided Design, CAD-6(1):128-144, Jan. 1987. 

[11] J. Soukup. Circuit Layout. Proc. of the 1EEE, 
69(10):1281-1304, 1981. 

[12] R. Stallman and G. Sussman. Forward Reasoning 
and Dependency-Directed Backtracking in a System 
for Computer-Aided Circuit Analysis. Artificial Intel- 
ligence, 9:135-196, 1977. 

[13] D. Waltz. Understanding line drawings fo scenes with 
shadows. In P. Winston, editor, The Psychology of 
Computer Vision, McGraw-Hill, 1975. 

[14] H. Weinblatt. A New Search Algorithm for Finding the 
Simple Cycles of A Finite Directed Graph. J. A CM, 
19(1):43-56, Jan. 1972. 

[15] N. Weste and K. Eshraghian. CMOS VLSI Design. 
Addison-Wesley, 1984. 

[16] O. Wing, S. Huang, and R. Wang. Gate Matrix Layout. 
IEEE Trans. on CAD, CAD-4:220-231, July 1985. 

508 


