
V L S I Leaf Cel l D e s i g n by U n d e r s t a n d i n g Circui t S t r u c t u r e s *

W e n - J e n g L u e a n d L . P . M c N a m e e

C o m p u t e r S c i e n c e D e p a r t m e n t

U n i v e r s i t y o f C a l i f o r n i a , L o s A n g e l e s

L o s A n g e l e s , C A 9 0 0 2 4

A b s t r a c t

A new approach utilizing MOS circuit struc-
tures extracted from a circuit net-list for de-
signing VLSI leaf cells is described. A cir-
cuit s tructure is explicitly present in a circuit
schematic d iagram on which a designer relies
for drawing a layout. However, it is absent in
the net-list input to an au tomat ic layout sys-
tem. In this paper, how to extract schematic
like information from a net-list and how to ap-
ply it for au tomat ic leaf cell design are dis-
cussed.

1 I n t r o d u c t i o n
The cell layout problem involves the construction of geo-
metric artwork at different semiconductor layers that
define the circuit components and interconnections for
the cell f rom its circuit net-list description and bound-
ary constraints. The net-list describes the circuit com-
ponents, their interconnections, and the underlying fab-
rication technology. Cell boundary constraints specify
the topological and geometric requirements around the
outside boundary of the layout cell.

The circuit structure is understood through a hier-
archicM net-list part i t ioning and signal flow directions
among circuit components. The circuit network is par-
titioned in such a way that basic circuit building blocks
can be identified in most cases. A dependency-directed
backtracking search mechanism is employed to assign
signal flow direction for each circuit component by mak-
ing use of various knowledge about MOS circuit signal
flow. This general search scheme is capable of incorpo-
rat ing more knowledge, e.g. the set of rules discussed in
[1], to become more competent in assigning signal flow
directions

The major use for the extracted net-list structure to
generate a layout is its implication on layout cell dissec-
tion. This approach explicitly establishes a relationship
between the net-list s tructure and the layout placement.
A slicing-sfrucfure spatial ar rangement is adopted. This
has been widely used both in manual design and expert
layout design systems[3; 2; 4; 15]. However, all such
systems lack an understanding of the circuit structure.
They are able to use only local connection patterns, but

*This research has been supported in part by the State of
California MICRO program and the Rockwell International
Incorporated.

not global ones, in the circuit net-list for making layout
decisions.

In the following sections, the circuit network parti-
tioning method, a search mechanism for assigning sig-
nal flow directions, and the use of net-list structure for
making layout decisions are discussed. Finally, these
ideas are demonstra ted in a walk-through example fol-
lowed by some discussions. Although this approach is
based on CMOS circuits, the same principles can be
easily applied to circuits in other MOS technologies.

2 Circui t N e t w o r k P a r t i t i o n i n g
Parti t ioning can be described in terms of a series of
graph operations. A graph is obtained from the input
net-list. I t is then split into several graph components
along some specific nodes. Each component is charac-
terized by the set of signal nodes associated. Unions
of components are established depending on their char-
acteristics. The set of graph components so obtained
defines the circuit network parti t ioning.

2 . 1 C i r c u i t G r a p h

A c i r c u i t g r a p h can be derived directly from the in-
put net-list which is assumed to be in a SPICE input
format[7]. A net-list f~(S, T) consists of a set of sig-
nal S(~2), abbreviated as S, connected through a set of
transistors T(f2), abbreviated as T. Each element in T
can be either an n-fype transistor or a p-type transistor,
which is associated with three signals in S through its
source, drain, and gale nodes. A signal in S is active if
there are at least one p- type transistor and at least one
n-type transistor with either source node or drain node
connected to it. In general, output signals of CMOS
circuits are active. A signal is normal if it is not active.
Some signals may be declared as input, outpuf, or bias in
the input specification independent of the circuit struc-
ture. There are only two different bias signals, vdd and
vss. Other signals not specified are taken as inferior.

A c i r c u i t g r a p h C(V, E) is defined according to a
net list f~(S,T). The vertex set V is defined such that
each vertex corresponds to either one signal in S or one
transistor in T and vice versa. A signal connecting to a
transistor, by its source, drain, or gate node, defines an
edge in E.

2 . 2 B l o c k s

Net-list part i t ioning is done by split t ing the c i r c u i t
g r a p h into several subgraphs and then combining them

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

© 1989 ACM 0-89791-320-5/89/0006/0500 $1.50
500

http://crossmark.crossref.org/dialog/?doi=10.1145%2F66617.66681&domain=pdf&date_stamp=1989-06-06

to form blocks. This is obtained by two steps, graph
splitting and graph union. A set of subgraphs of the
circuit graph C can be obtained through the following
steps:

1. Remove all edges corresponding to connections be-
tween signals and transistor gate nodes from C.

2. Remove all isolated vertices after step 1, which de-
note signal vertices connected only to gate nodes of
transistors.

3. Split vertices of active and bias signals in the re-
maining graph.

The above steps originate from the following two obser-
vations. First, transistor gate signal connections in dig-
ital MOS circuits always function as inputs to the tran-
sistors connected, therefore they do not constitute con-
nections within a functional block of transistors. Sec-
ond, functional blocks connect with each other through
transistor source nodes or drain nodes at either active
or bias signals.

Let ® = {O1, O 2 , . . . , Or} be the set of resulting sub-
graphs. An impor tan t set of vertices characterizing each
subgraph ®i are all active and bias signal vertices in ®i
such as

f"(Oi) = Y(Oi) U A C T I V E (C) U BIAS(C)
where A C T I V E (C) and BIAS(C) are two sets of nodes
in the circuit graph C corresponding to active signals
and bias signals respectively. Note that if Oi comes
from a combinational logic gate in the original circuit,
it will contain both bias and active signal vertices. The
only active signal vertex is the output signal of this logic
gate. If Oi is obtained from a pass logic gate, it will
not, in general, contain bias signal vertices and consist
of more than one active signal vertex.

A block is a union of several subgraphs by joining
identical signal vertices. Let ~)k = Ok1 t -JOk2U.. .UOkj
be a block, then subgraphs {®kl,®k2, ®kj} C ®
satisfy the following conditions:

1. Either all V(®ki) contain bias signal vertices or all
of them don ' t contain bias signal vertices.

2. V(Okl) - BIAS(C) = f/(Ok2) - BIAS(C) =
f/(Okj) - BIAS(C)

This is because subgraphs in the same block are ex-
pected to share the same active signal vertices that are
not bias. Furthermore, each subgraph of a block would
contain bias signal vertices if that block contains bias
signal vertices. The latter case is manifested in combi-
national logic circuits.

A parti t ion of the input net-list can hence be defined
according to the set of blocks obtained. An observation
of the CMOS circuit characteristics is that functional
gates, static or dynamic, can usually be part i t ioned in
this way.

A b l o c k g r a p h B can b e built based on the set of
blocks obtained. Each vertex in B is either a block
vertex, corresponding to a subnet-list as a block, or a
signal vertex, corresponding to a signal that connects
transistors in different blocks. An edge is defined only
between a signal vertex and a block vertex signifying

a connection between the signal and some transistors
inside the block.

2.3 Serial-Parallel Connect ions
Serial-parallel connection pat terns are impor tan t struc-
tures in CMOS circuits as discussed in [5]. Such struc-
tures are to be extracted for every block. The ex-
traction of serial-parallel connections between transistor
source/drain nodes in each block can be done in a man-
ner similar to the approach discussed in [5] with the
constraint that no vertices corresponding to active or
bias signals can be used for serial connections. A new
graph can be obtained by extracting all serial-parallel
connectioned edges into serial-parallel trees. Each edge
of the resulting graph corresponds to either a transis-
tor or a serial-parallel tree representing a serial-parallel
connection pattern.

3 Signal Flow Assignment
3.1 Signal Flow Constraints
A set of constraints for assigning signal flow directions
between a signal and a block based on tile b l o c k g r a p h
B are described as follows:

C1 A signal should flow along one and only one direc-
tion between a signal vertex and block vertex.

C2 There is at least one signal input to each block
through a transistor source or drain node.

C3 There is at least one signal output from each block
through transistor source or drain node.

C4 If a signal is declared as input, it must go into some
blocks.

C5 If a signal is declared as output , it must come from
some blocks.

C6 An interior signal must go into some blocks.

C7 An interior signal must come from some blocks.

Besides this set of constraints, two heuristics are em-
ployed:

H1 If a signal connects to a block through transistor
gate nodes, it goes into tha t block.

H2 A bias signal always goes into the block it connects.

C1 states that a signal should flow along one and
only one direction between each signal and a connected
block. Even though some signals may travel bidirec-
tionally in an actual circuit, it is reasonable to consider
only one direction for identifying a global circuit struc-
ture. C2 and C3 consider signal flows only through
transistor sources or drains because transistor gates are
usually regarded as receptive site for controlling signal
flows. Note that if input and output signals are are not
specified, all signals would be considered interior. It is
quite likely that not all the constraints can be satisfied
in this case. Eventually, some constraints will have to be
relaxed. H1 reflects the commonly known fact that gate
nodes of CMOS transistors in digital circuits are used
mainly for signal input. H 2 states tha t bias signals,
namely, vss and vdd, are considered as input signals to

501

all blocks connected to them. These heuristics play very
important roles in determining an initial partial signal
flow specifications.

3.2 Dependency-Directed
Backtracking Search

Given the knowledge about how a signal flow direction
should be assigned locally, a search is needed to find a
direction for each undirected edge of b lock g r a p h B
guided by a set of constraints. This constraint satisfac-
tion problem[13/ can be solved through a dependency-
directed backtracking scheme[12/, where domain knowl-
edge can be applied to regulate the control of the search
and to reduce further the computat ional cost. A rea-
soning maintenance system(RMS)[6] is employed to de-
tect the presense of contradictions and determine the
set of search decisions responsible. Each signal flow di-
rection assignment may come directly from an assump-
tion made during the search or deducted from the set of
constraints and all assumptions made. The underlying
RMS performs such deductions whenever an assump-
tion is asserted, records how an assignment is obtained,
detects conflicts, and reports all possible sets of assump-
tions causing the conflicts if they occur.

Selecting one edge to assign a signal flow direction
from the set of undirected edges observes the following
order:

1. If two edges with the same signal vertex are undi-
rected, one connecting to a combinational block and
the other connecting to a pass block, set the signal
flow for the latter edge into the pass block.

2. If an edge with an input signal vertex is undirected,
set the signal flow out of the signal vertex.

3. If an edge with an output signal vertex is undi-
rected, set the signal flow into the signal vertex.

4. If an edge is undirected, set the signal flow into the
block vertex connected.

The above rules are valid according to heuristics of
CMOS circuit properties. The first rule comes from the
commonly occurred feedback-loop structure. A block is
defined combinationalif: 1) it contains the same number
of p-type transistors and n-type transistors; 2) it con-
nects to both vdd and vss; and 3) of all signals that are
not bias, it connects to only one active signal. A pass
block refers to a block not connecting to any bias signal
vertex. These definitions are heuristic in the sense that
all combinational logic gates and pass logic gates will
satisfy such conditions, but not necessarily vice versa.
The second and third rules imply the natural tendency
of directing signal flow towards output signals and from
input signals. The last rule simply selects one undi-
rected edge arbitrarily and assigns to it a signal flow
direction towards the block.

There are two sources of conflicts possible during the
search for signal flow directions:

1. The initial assumptions.

2. The set of inpu t /ou tpu t signals assigned for a
block.

Currently, the initial assumptions are made very con-
servatively. The most common case it reports as a con-
flict is when a signal is assigned as input to all blocks
it connects. This usually happens because the signal
is actually an input signal but not declared as such.
The assignment of inpu t /ou tpu t signals for a block has
to satisfy some requirements based on the transistor
source/drain node connections in the block. A conflict
occurs when they are not satisfied. More detailed dis-
cussion on such a requirement is to be discussed later.

In the presence of conflicts, the search should retract
some assertions, either assumptions about signal flow
directions or the constraints themselves. Which one to
choose is strongly dependent on the characteristics of
the particular problem. The following is a priority list
according to the assumption properties (from high to
low):

1. A constraint about a signal which connects to all
its adjacent blocks through transistor gate nodes.

2. A constraint about a signal which connects to all
its adjacent blocks through transistor source/drain
nodes.

3. A constraint about a block caused directly by initial
assertions.

4. A signal flow direction assertion.

The above priority order in retracting assertions reflects
some knowledge of the circuit structure. In the first
case, the only possible reason is that the signal con-
cerned is actually an input signal, because no signal
would flow out of transistor gate nodes. The second one
is established for the possibility that the signal can ac-
tually be an output signal, because output signals con-
nect only through transistor source/drain nodes in most
cases. The third one may also occur because of the lack
of output signal information. The last selection is for
the sake of completeness so that an initial signal flow
assumption can be retracted rather than the constraint
itself if no knowledge applies.

3.3 Signal Flow Assignment for Each
Transistor

The signal flow directions along transistor source/drain
nodes are specified based on the input and output sig-
nals of each block. Consider a graph defined through
the transistor source/drain connections with all serial-
parallel patterns extracted inside a block. The assumed
requirements for a set of satisfactory transistor signal
flow assignments are that:

1. For any input signal vertex, there exists a directed
path to an output signal vertex that doesn't go
through any other output vertex.

2. For any output signal vertex, there exists a di-
rected path to an input signal vertex that doesn't
go through any other output vertex.

3. Each edge has to belong to a directed path from an
input vertex to an output vertex.

Such assumptions originate from the understanding that
signals flow through transistor source/drain nodes from

502

input vertices to output vertices regulated by transistor
gate nodes to perform some function.

One way to obtain signal flow directions satisfying
the above requirements is through a breadth-first search
that proceeds from input vertices towards output ver-
tices and directs the edges accordingly.

I. Initialize a queue as a list of

all input vertices.

2. Label all output vertices.
3. Until the queue is empty, remove

the first element q from the queue,

3.a. If q is an output vertex,

do nothing.
3.b. Otherwise, for all v

adjacent to q and
v i s n o t l a b e l e d ,
3 . b . 1 d i r e c t e d g e e f r o m q t o v ,
3.b.2 label vertex v,

3.b.3 add v to the back

of the queue.

A tree can be constructed by adding to the set of all
labeled vertices and directed edges a new vertex root
and new set of directed edges from root to every input
vertex.

If the input and output vertices assignments are
satisfactory, the above constructed tree will be a
spanning tree that includes all vertices of the transis-
tor source/drain graph of a block. In this case, each
remaining undirected edge can then be directed from
the vertex associated at a higher level of the tree to the
other one at a lower level. Those with two vertices of
the same level are directed arbitrarily.

However, if the constructed tree doesn't cover all the
vertices, the inpu t /ou tpu t signal assignments for the
block are unsatisfactory. In other words, some vertices
can only be reached from the input vertices through out-
put vertices, which violate the previous mentioned as-
sumptions. This will be reported as a contradiction, and
a new set of input and output vertices are to be found
through the dependency-directed backtracking scheme.

4 B lock and Trans i s tor
Ordering

Further ordering information about a circuit net-list
structure can be obtained by using the block partitions
and signal flow assigned for each transistor.

4 . 1 L o o p s a n d T o p o l o g i c a l O r d e r

Loops among blocks reflect possible feedback paths ex-
isting in the net-list. This is an important structure
appearing in many circuits, e.g. flip-flops, ring oscilla-
tors, and most clocked sequential circuits. In general,
a block may belong to many loops. It is desired that
all possible loops are identified. An algorithm based on
the approach proposed in [14] is applied. Each loop is
associated with a set of blocks constituting the loop.

An acyclic digraph can be obtained from a new
partit ion of the net-llst according to the directed

b lo ck g r a p h on the set of strongly connected com-
ponents(SCC)[lO]. Two vertices v ,w are said to be
strongly connected, v .~ w, if there is a directed path
from v to w and vice versa. Clearly, -~ is an equivalence
relation and it partitions the vertex set into nonempty
subsets V1,V2,. . . ,Vp, such that if v E Yi and w is
strongly connected to v, then w E Vi. Each subset
Vi is called a strongly connected component. With all
loops identified, an SCC can be established by a block,
if it doesn't belong to any loop; a loop, if it doesn't
share constituent blocks with other loops; or a set of
connected loops. Connected is an equivalence relation
and two loops are connected if they share at least one
block or are connected through other loops.

Each SCC Vi is associated with a subnet-list ~2v~
which is the union of all blocks corresponding to all
strongly connected vertices in Vi. Note that signal flow
between Vis' is acyclic, i.e. it doesn't contain any di-
rected cycles. Therefore there exists a topological order
among net-list partitions ~2v,, f~v2, . . . , ~2yp.

4 . 2 T r a n s i s t o r O r d e r i n g

Transistors can be ordered inside each block accord-
ing to the spanning tree identified by the transistor
source/drain connections. Consider the spanning tree
7"n, established for a block f~i. Let l(v) be the level of
the vertex v E 7"n,, then one property of the spanning
tree obtained through the breadth-first search based al-
gor i thm is

if e = < vl, v2 >E E(7-n,),

then l(v2) = i(vl) or i(v2) = l(cl) + 1

Note that each edge e corresponds to a transistor in f~i.
This results in a natural ordering of transistors accord-
ing to the levels of the two vertices associated with their
source and drain nodes.

5 U s e of N e t - L i s t S t r u c t u r e in
Cel l Layout

The extracted net-list structure and the partial ordering
relationships defined through assigned signal flow direc-
tions can be readily applied for generating a CMOS leaf
cell. Its use is basically twofold: one is to provide a hi-
erarchical parti t ion of the cell layout area, and the other
is to help determine the ordering relationships between
different partitions, hence the layout placement. The
leaf cell layout would then be completed with subse-
quent routing.

Considering layout problem as a search through all
possible spatial arrangements to arrive at a satisfactory
solution following a particular layout architecture, the
extracted net-list structure provides a set of constraints
to assist in finding a proper solution. It defines a rea-
sonable initial solution following the natural properties
of the input circuit. Some of the routing considerations
are taken into account through both the clustering of
circuit devises in the hierarchical structure and the or-
dering relationships derived from signal flow directions.

To simply the problem, all layouts will be addressed
only at the symbolic level[8] where all geometrical mask

503

information is coalesced into symbols for circuit compo-
nents and lines for connection wires. The layout prob-
lem consists of two separate, but not independent sub-
problems, placement and routing. Placement is of the
major concern here, while routing can be done by ap-
plying existing algorithms.

5.1 Cell Slicing Structure
Representation

A common way to represent cell layout area is by parti-
tioning it into subareas. This is also one way to reduce
the complexity of the cell layout problem applied both
in automatic and manual design[15; 2]. Among various
partitioning methods, the slicing struclure[9] represen-
tation for rectangular dissection is the most widely used
one, both for its simplicity, and more importantly, its
suitability for a hierarchical description. The structure
extracted from the circuit net-list implies exactly the
adoption of such a cell representation scheme.

A slicing structure is characterized by a decomposi-
tion tree which represents a hierarchy of the regions in
the layout rectangle. The root of the tree is the top
level of the hierarchy and represents the enclosing rect-
angle. Each node corresponds to a subarea of the layout
rectangle. The children of a node is created by a slicing
operation, either horizontal or vertical. The recursive
subdivision ends with nodes corresponding to rectan-
gles that contain already completed layouts called lay-
out patterns. In general, there are more than one slicing
structure for one rectangular dissection.

5.2 Initial Placement
Cell layout placement can be obtained through the fol-
lowing two steps: first, determining a cell slicing struc-
ture to parti t ion the input circuit, second, assigning the
orientation and order of children slices for each slice.

Instanciatlng Slicing Structure A cell slicing
structure can be determined by adopting the net-list
structure as a decomposition tree with each node as-
signed either horizontal or vertical slicing for its chil-
dren. To obtain a CMOS layout architecture similar
the one presented above, the nodes in the decompo-
sition tree are all assigned horizontal slicing except for
those corresponding to blocks of the original circuit par-
tition. These nodes are associated with vertical slieings
for separating pmos transistors from nmos transistors if
both types are included. Each node at the bot tom level
corresponds to a symbolic layout for a single transistor.
A decomposition tree may also be obtained by modify-
ing the original net-list structure. This happens when
imposing layout patterns to the cell and hence requir-
ing circuit clusters different from those in the original
net-list structure.

Layout Pattern A layout pattern constrains a small
number of transistors to be placed in one slice following
a particular manner. One example is to pile up the same
type of transistors sharing one gate signal. This is in-
tended to either make use of extra vertical layout space
or make the resulting cell higher and thinner. This type

of placement arrangement is also used in gate-matrix[16]
layout, where it is used as part of the layout constraints
that have to be always followed.

In general, all possible patterns are extracted and se-
lected according to layout heuristics. In case of insuffi-
cient heuristics, each of them will be considered to de-
rive different final layouts and evaluated through layout
performance measurement. Currently, no heuristics are
included and multiple layout results are generated ac-
cording to layout patterns utilized.

The major effect of imposing a layout pat tern is the
modification of the decomposition tree. If a pattern
contains n non-overlapped subtrees of the original de-
composition tree, the modification requires that these n
subtrees to be removed from the original tree. The new
subtree representing the pat tern will be attached to one
of the n positions in the original tree left open by the
removal. Layout knowledge is needed to select one of
the n positions, which is currently done arbitrarily.

Each pattern is associated with a set of conditions.
They include net-list structural characteristics, electri-
cal properties, and the input layout specification. Con-
sider the pattern currently adopted. The set of condi-
tions to activate it are: 1) each transistor should be of
the same type; 2) the gate node signal of each transistor
should be the same; and either 3) there are other transis-
tors with large sizes compared with the ones considered;
or 4) the width of the final layout cell is expected to be
small.

With more layout knowledge, more layout patterns
can be added to make the design more competent. How-
ever, the cost for extracting and selecting a proper set
of layout patterns would also increase significantly. Dif-
ferent layout patterns may interact with each other, i.e.
overlapping on the set of transistors included. Extra de-
sign knowledge is then needed to resolve such conflicts.
Currently, no such knowledge is used and the resolution
is arbitrarily done.

O r d e r and Orientation Besides partitioning, a lay-
out placement has to specify the ordering relationships
between all sibling slices and the orientations of all bot-
tom level patterns. Initial!y, the ordering relationships
are arbitrarily specified except for those where the de-
rived signal flow direction implies an ordered sequence,
or others determined through layout heuristics. For ex-
ample, p-type transistors are always placed above p-
type transistors. Slices with circuit clusters serially con-
nected are also ordered according to their sequence of
connection. The transistor symbolic layout is initially
oriented with its source node on the left and drain node
on the right.

5.3 Layout P l a c e m e n t O p t i m i z a t i o n

An optimized layout placement based on the initial re-
sult can be obtained by applying a set of spatial oper-
ations to change the orientation of each slice and the
order of its children. A simple evaluation function is
used to calculate a heuristic concerning the signal wire
routing. The hill-climbing procedure searches through
the possible layout solutions under the same decompo-

504

sition tree. Even though the size of such a search space
is still exponential, it is structured in a way consistent
with the characteristics of the circuit.

S p a t i a l M o v e m e n t Two types of operations are de-
fined for each slice to change the spatial arrangements
of the circuit cluster included. One is flipping which
reverses the order of its children slices along either hor-
izontal or vertical direction and requires each of its chil-
dren slice to be flipped along the same direction too.
This proceeds recursively until the bo t tom symbolic
transistor layout, which simply reverses its node posi-
tions along the flipping direction. Another operation
is swapping that alters the ordering relationship of the
children slices by exchanging the positions of any two
of them. Either operation incurs only very local change
of the layout placement. The first one is meant to vary
the orientations of sibling slices, and the second one to
examine different ordering relationships. Applying com-
binations of these two operations makes it possible to
obtain any desired placement from any initial arrange-
ment under the same decomposition tree.

C o s t E v a l u a t i o n A cost based on the change of esti-
mated routing distance is calculated for each operation.
The routing cost is measured according to Manhat tan
distance between signal nodes inside the slice considered
and those outside the slice. If more than one pair exist
for routing one signal, the one with min imum distance
is selected. The final cost is the sum of the cost for each
signal inside the slice.

Such distance measure is very crude since the coor-
dinates at the symbolic level only exhibit relative posi-
tions rather than actual geometrical dimensions. How-
ever, since the measurement is used only for comparison,
it is able to find some desired features for placement.
Two prominent features are alignment and abutment.
Alignment means that a set of routing pairs do not inter-
sect with each other. Abutment refers to the situation
that a routing pair of the same layer between adjacent
slices are placed next to each other, and can therefore
be connected without wiring. The cost associated with
these two routing states are always minimum, although
locally, with the cost function used. However, the cur-
rently adopted evaluation function may not always be
able to distinguish other placement arrangements from
these two desired situations.

C o n t r o l Start ing from the initial layout, each slice is
examined for possible application of optimization oper-
ations to decrease the routing cost. This process con-
tinues until either it achieves a local minimum that no
improvement is possible by applying any single opera-
tion, or it exceeds a preset limit on the number of iter-
ations for this process. Such a limit on the amount of
optimization operations is necessary because there is no
guarantee that the simple evaluation function adopted
will not result in a loop. However, this hasn ' t yet been
found in all cases examined.

Figure 1: D-Flip-Flop Circuit

5 . 4 R o u t i n g

The channel routing scheme[l l] is used to complete all
signal net connections in a bo t tom-up fashion follow-
ing the slicing structure. Each slice is considered to be
routed only when all its children slices are routed. Ex-
cept for slices which are layout patterns, routing chan-
nels are assigned between each adjacent sibling slices.
The number of channels is decided in a conservative way
such that all routing paths can be completed. To fur-
ther simplify the routing problem, two layers of metal
lines are employed. All vertical wires are in poly or
metal-1 layers while horizontal ones are in metal-2 layer.
The I / O ports specified by the boundary constraints can
be connected after all routings inside the cell are com-
pleted.

6 A n E x a m p l e
Consider the CMOS network shown in fig. 1 as a work-
ing example. This is a d-flip-flop circuit consisting of 17
signals S = {sl , s 2 , . . . , s15, vdd, vss} and 27 transistors
T = {tl , t 2 , . . . , t 2 7 } . Tp = { t l , t 2 , . . . , t l 3 } is the set of
all p-type transistors and Tn = {t14, t 1 5 , . . . , t 2 7 } that
of all n-type transistors. The set of active signals Sacti,e
includes {s4, s9, s l0, s l l , s12, s13} and the rest will be
normal, Snormat = S - S a c t i v e . Assume that the input
and output signals are not specified and that all signals
except the bias ones {vdd, vss} are taken as interior.

The set of blocks identified from parti t ioning the cir-
cuit network is illustrated in fig. 2. Functional implica-
tions exist in some of the blocks obtained. Block a is
a clocked inverter;, b is a nor-gate; g is an inverter, h is
the combination of an inverter and a pass-gate for reset
purposes; and the remainder are pass-gates.

The signal flow assignment procedure first asserts
that signals flow out of bias signal vertices and into
blocks if connected through transistor gate nodes.
These assertions are shown in fig. 3. The constraints
are then propagated and nine more directions are in-
ferred accordingly. For example, arc (a, s4) is deduced
from the constraint tha t there has to be at least one
signal flows out of a through vdd, vss, or s4. Since sig-

505

. iii::i~:::::::iii~:!: ,7

:i::ii: :i~ii::i::~i :::::::::::::::::::::::::::: ::::i~::ill ~: ::i: ::: ,n ,~

:•~•:: i~: i :~i :i:i~i:i: ~:~::~: ~i :i
a ~:::::: ~::::i::!i~ii iii:: ii:iiiiii::iii::::~:~::: :iiiiiiiiiiii~:~ : _L

Figure 2: Blocks of D-Flip-Flop Circuit

vdd vdd vdd

................
...:::' : ii:! !i 511i: :! :: 1 . :::::

s6 ' • : : : : " : : : : : : : : : : - : : ' : ' - : : :

:~i:~: % ~ 1 1 ~ : ' \ ~ 1 " ~ :~ "-,,. .,J.'.-.~

......... : ~" v.aa I 2 " / v~ . . / "%
::,~ _ 1 " / f J " " , " ~ ,N..

• ===================== i::: : : : : : : : : :[:~:::: : " " ~ . ~ 1 . . . ~ ' 1 :::: :::-::. ¢ ~ l d . J
" :!52 : :::::::::::: :::::::::: :::::i:." " ~ ~ : : ::::::: ::::::: : : : : ~-,~r:i~sl2~s|2 " ~

:~ i::~i~i :: : i i i ~:i

,:: , ,

"~ 1" ~ . o . /

. ::." l l ,~um~d

Figure 3: Signal Flow Directions Assignment

nals have to flow into a through vdd and vss, as initially
asserted, the signal is therefore constrained to flow out
of a through s4.

The DDB (dependency-directed backtracking) is then
applied to resolve possible conflicts and to guide the
assignment of the rest of signal flow directions. Three
conflicts have been incurred so far. The constraint that
each signal should have at least one input signal flow
(constraint C6) is violated at all three signal vertices
s l , s6, and s7. This is because they are all connected to
transistor gate nodes. The underlying RMS (reasoning
maintenance system) identifies the causes of each con-
flict to retract. For the violation at s l , it is reported
tha t either assertion s l ~ j , assertion s l ---. i, assertion
s l --~ d, assertion s l --+ a, or the constraint itself is at
fault, where s ---* a denotes that signal s flows into block
a and a --+ s means signal s flows out of block a. The
heuristic tha t constraints, rather than assertions will be
retracted has been implemented in the DDB. Therefore,
this constraint at signal net n l l is retracted to remove
one contradiction. Similar actions are taken for signals

.::iii:ii:i:~ii:::i: ::::¸ ::..

 !iiiiiiiiiiiiiii, :: ,,,i:::i!ii!iiiiiiiiiili :, !!i

• :l :i

Figure 4: Topological Ordering

c i r c u i t

"" o Z 'X , A A'

t8 tie t22 t24

Figure 5: Extracted Net-List Hierarchy

s6 and s7.
After all contradictions are resolved by relaxing con-

straints, the search proceeds to assign signal flow di-
rections for those edges not yet directed. According to
the control heuristic H1 , the edge incident to a vertex
for pass block tha t connects to a combinat ional block
should be considered first. Hence s9 ~ d is asserted,
and from this d --. s l0 is inferred. The last two as-
signments c --~ s4 and c --+ s13 are done arbitrari ly but
satisfy all constraints. Signal flows between transistor
source and drain nodes are all determined according to
the inpu t /ou tpu t signals of each block without any in-
consistency as shown in Jig.3. Since all signal flows are
assigned and no constraints are violated, the DDB stops
with an acceptable solution.

Three loops are found among the blocks in fig. 3.
They are L1 = {b,c}, L2 = {h , j , f } , and L3 =
{g, i, h, j} . La is basically composed of a flip-flop. All
blocks in a loop are strongly connected; therefore loop
La defines a strongly connected component B. Since
loops L2 and La share two bl6cks,h and j, they both de-
fine another strongly connected component A. A topo-
logical order can be found among the new circuit net-
work part i t ions a, e, d, A, and B as shown in fig. 4

The extracted net-list s tructure is shown in fig.5.
Nodes {a, e, d, A}, and B correspond to the parti t ions
shown in fig.4. Blocks include nodes { a, b, c, d, e, i, g,
f, h, j}. There are three clusters defined by serial con-
nections and two defined by parallel connections, which
are nodes {k, l, m}, and nodes {n, s}, respectively.

Two different cell layout placements are exemplified
in fig.6 and fig.7. The former has a decomposit ion tree

506

t3 t 4 t l 6 t i t t 9 A t 2 3 / ~ t25 t26

t8 t l 0 t22 t24
[] horizontal s l idn8

(a) decomposition tree 0 vertical slicing

I l , , + t l t2 t3 t4 t9 t8 t l 0 t5 17 t12 t13

i ;19 - - t20 t l l
t14 : 1 5 : 1 6 t17 t23 : t22 25, t21 25 t26 0.7

:18

(b) initial placement

t2 t l t9 t8 t l 0 t3 t4 t7
i t5 t13

I i + H - - t20 .25 t26 t l 5 t14 t23 t 22 2 4 : 1 6 t17 t18 t21 t27

(c) optimized placement

Figure 6: Placement Example 1

exactly the same as the net-list structure. It assigns all
nodes with horizontal slicing except for those represent-
ing blocks where two different types of transistors are
partitioned vertically. In fig.7, several layout patterns
are imposed, therefore the decomposition tree shown in
(a) is slightly different from the net-list structure. The
initial placements are shown in part (b) of both figures,
while the optimized results are shown in part (c). Note
that both placements in (b) and (c) in the two examples
share the same decomposition tree for cell dissection,
differing only in the orientation and order for each slice.
The orientation of each transistor is considered in the
placement although not indicated in the figure. Two
final symbolic layouts completed with routing based on
the two optimized placements are shown in fig.8 and
fig.9. The number of horizontal tracks in fig.8 is 30,
while that for those in fig.9 is 24, as expected for the im-
posed layout patterns. However, this can only be used
as heuristic comparison. The exact evaluation should
still be based on final mask layouts.

7 Implementat ion and
Discussion

This system is implemented on a Sun4/280S using Ky-
oto Common Lisp. All algorithms involved are of poly-
nomial time complexity except the one searching for the
signal flow direction of each transistor. In the worst
case, assigning either of two possible signal flow direc-
tions for each transistor will be of exponential time com-
plexity, i.e. 0(2'*) where n is the number of transistors.
However, with the help of heuristic constraints, only a
very small number of possible solutions need to be con-
sidered. Of the examples tested, a completed symbolic

t8 t l 0 t22 t24 t16 t19 0 hofizonud slicin 8
0 veaicad s l i c ~

(a) dccamp~tion ucc • layout l~ucrn

1 I tl t2

I t8 I t13 t12
t l t2 t9 t3 t4 t J t l l

r i o t7

I +
t22 t16 t18 t21 . . t26 t25

t14 t13 t23 t24 t17 t27 t20

0)) t o i l i d l~Ic=mcm

t8 I t I 1
t9 - , . t3 I t4 t5

t l 0 t16

t22 ~ t18 " t20 , t26
t23 I t24 " " I t l 7

(c) optimized plsccmcm

Figure 7: Placement Example 2

t14 t15

t12 t13

t7

t25 t21

t27

::
...!J I ! I
================================= ;:i;:~"[...........

Figure 8: Completed Symbolic Layout 1

vdd

q
r / / / ,

J

.:.:,:,:,:.:,:,
v l l

¢ontact
p-diff
n-diH
poly
metal-I
metal-2

.•vdd

Figure 9: Completed Symbolic Layout 2

507

layout placement takes about 2 minutes for the d-flip-
flop circuit (consisting of 27 transistors) presented above
(both with and without imposing layout patterns), and
30 seconds for a circuit with 10 transistors. The routing
time is not considered because it is independent of the
net-list structure used. Among the 2 minutes computa-
tion time, about 15 seconds are spent on the extraction
of net-list structure, 10 seconds for the initial place-
ment, and the rest 95 seconds for optimization. The
ratio may differ for different cases, but the optimization
cost is significantly higher than others. This is because
the cycle intensive nature of such computation. The
initial placement examined doesn't take too much time
because only one type of layout pat tern is considered. It
can be expected that as more and more layout patterns
participate in the design, this portion of computat ion
will increase considerably.

Although the flexibility of identifying a set of rea-
sonable signal flow assignments has been demonstrated,
even without specifying the input /ou tput signals of the
circuit, the above analysis of net-list is by no means
complete. In all the examples tested, the signal flows
assigned are consistent with the original intent of the
circuit. However, it is not guaranteed to be so for all
other circuits. With only a small number of heuristics
rules, there are many sets of possible signal flow as-
signments that satisfy all constraints. If more specific
results are desired, more knowledge is needed to narrow
down the number of possible solutions. Many circuits,
designed with electrical rather than functional consid-
erations, haven't been taken into account in this work.
The general search scheme used for identifying signal
flow directions is capable of incorporating more MOS
circuit knowledge to achieve better results for both net-
list parti t ioning and signal flow assignments. One such
set of knowledge directly applicable can be found in [1].

Many improvements are possible for generating the
layout from the net-list structure. One example is tran-
sistor sizing. Although transistor sizing has been con-
sidered in enacting the simple layout pattern applied,
the placement still assumes uniform size for each transis-
tor. Representation of different sizes of transistor at the
symbolic level would require different evaluation func-
tion for optimization. Another area to improve is the
use of more layout patterns from the real design expe-
rience. Other spatial movements for optimization may
also be introduced, e.g. rotating a slice, for further ex-
ploration of a better layout.

8 C o n c l u s i o n
An approach for VLSI leaf cell layout based on an un-
derstanding about MOS circuits is presented. Various
knowledge about the circuit is applied to extract a net-
list structure and assign signal flow directions between
circuit components. Such structure and signal flow rela-
tionship are then used to generate a layout placements
and control subsequent optimization procedure to ob-
tain the resulting layout. The final evaluation of this
approach has to be done through performance measure-
ment of the final mask layout derived from the symbolic
layout generated. Although this hasn't been completed

at this stage, the plausibility of utilizing knowledge of
MOS circuit for generating cell layout is demonstrated.

R e f e r e n c e s
[1] N. P. Jouppi. Derivation of Signal Flow Direction in

MOS VLSI. IEEE Transactions on Computer-Aided
Design, CAD-6(3):480-490, 1987.

[2] J. H. Kim. Use of Domain Knowledge in Computer
Aid for IC Cell Layout Design. PhD thesis, Carnegie-
Mellon University, 1985.

[3] P. Kollaritsch and N. Weste. A Rule-Based Symbolic
Layout Expert. VLSI Design, 62-66, Aug. 1984.

[4] Y. S. Lin and D. D. Gajski. LES: A Layout Expert
System. In Proceedings, 24th ACM/IEEE Design Au-
tomation Conference, pages 672-678, 1987.

[5] W. Lue and L. McNamee. PLAY- Pattern-Based Sym-
bolic Cell Layout. In Proceedings, 24th A CM/IEEE De-
sign Automation Conference, pages 659-665, 1987.

[6] D. V. McDermott. Assimilation of New Information by
A Natural Language-Understanding System. Technical
Report AI-TR291, MIT AI Lab., 1974.

[7] L. W. Nagel. SPICE2: A Computer Program to Sim-
ulate Semiconductor Circuits. Memo ERL-M520, Uni-
versity of California, Berkeley, 1975.

[8] A. Newton. Symbolic Layout and Procedural Design.
In G. D. Micheli, A. Sangiovanni-Vincentelli, and P. An-
tognetti, editors, Design Systems for VLS1 Circuits,
pages 65-112, Martinus Nijhoff, 1987.

[9] R. Otten. Automatic Floor-Plan Design. In Proc. 19th
Design Automation Conf., pages 261-267, June 1982.

[10] V. B. Rao and T. N. Trick. Network Partitioning and
Ordering for MOS VLSI Circuits. 1EEE Trans. on
Computer-Aided Design, CAD-6(1):128-144, Jan. 1987.

[11] J. Soukup. Circuit Layout. Proc. of the 1EEE,
69(10):1281-1304, 1981.

[12] R. Stallman and G. Sussman. Forward Reasoning
and Dependency-Directed Backtracking in a System
for Computer-Aided Circuit Analysis. Artificial Intel-
ligence, 9:135-196, 1977.

[13] D. Waltz. Understanding line drawings fo scenes with
shadows. In P. Winston, editor, The Psychology of
Computer Vision, McGraw-Hill, 1975.

[14] H. Weinblatt. A New Search Algorithm for Finding the
Simple Cycles of A Finite Directed Graph. J. A CM,
19(1):43-56, Jan. 1972.

[15] N. Weste and K. Eshraghian. CMOS VLSI Design.
Addison-Wesley, 1984.

[16] O. Wing, S. Huang, and R. Wang. Gate Matrix Layout.
IEEE Trans. on CAD, CAD-4:220-231, July 1985.

508

