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1. INTRODUCTION 

Consider an n X n matrix A = [oij] with integer-valued entries. The problem 
addressed here can be stated as that of finding an “equivalent” lower triangular 
matrix with integer-valued entries that determines all integer points b E 2” 
such that Ax = b for x: E 2”. One well-known “equivalent” lower triangular 
form related to A by a unimodular matrix K is called the Hermite normal 
form of A, denoted as H = [ hii]; a matrix K with integer entries is unimodular 
if ( det (K) ] = 1. For this work, A is assumed square and cl = ] det (A) 1 > 0. The 
generalization of these results for an arbitrary matrix with integer-valued entries 
is straightforward. The reader may wish to refer to an earlier paper by Domich 
et al. [7] and perhaps [5] and [6] for a more complete discussion of the preliminary 
algebraic development. 

THEOREM 1.1 (Hermite). Given an n x n nonsingular integer-ualued matrix 
A, there exists an n x n unimodular matrix K such that AK = H, the Hermite 
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normal form of A, whose entries satisfy 

hij = 0, Vj> i, 
hii > 0, Vi, 
hij I 0 and 1 hij 1 < hii, Vj < i. 

PROOF. A constructive proof is outlined later in this section, or see 
[ll]. cl 

THEOREM 1.2. There is a unique matrix H satisfying Theorem 1.1. 

PROOF. For an easy proof of this last result see Domich et al. [7]. 0 

The following elementary. column operations can be used to determine H: 

interchange two columns; (1.1) 
multiply a column by -1; 0.2) 
add an integral multiple of one column to another. (1.3) 

These three elementary column operations, or composites of operations (l.l)- 
(1.3), applied to the A matrix correspond to a unimodular transformation of A. 
Two types of unimodular transformations are used. 

Type 1 Type 2 

[; ; :] [$] (1.4) 

In the most simplistic procedure, iteration i begins with all superdiagonal 
entries in the first (i - 1) rows of A equal to zero. Both transformations operate 
on columns i and j, i < j, of the matrix A. The unimodular transformation of 
Type 1 performs operation (1.3) where traditionally the factor s in (1.4) is set 
equal to the largest integer no greater than aii/aij, that is, s = Laii/aijA. This 
choice for s results in reducing aii modulo aij, denoted as aiimod(a;j). Other 
choices for s using the “golden ratio” try to limit the magnitude of the factors s 
for an entire row iteration [6]. 

The Type 2 “composite” transformation is a product of Type 1 transformations. 
This transformation replaces aii with gcd (a;i, aij) and zeros aij . Here integers p, 
9, and r such that paii + qoij = gcd (aii, aij) = r are found by the Euclidean 
algorithm (see, for example, Knuth [14, p. 293-3161). 

One well-known procedure outlined by Rosser [19] uses only Type 1 transfor- 
mations. Applying these transformations in row order and from the diagonal to 
the right within each row, A is transformed into a lower triangular form in a 
finite number of steps. Additional transformations of the first type applied in 
row order reduce subdiagonal entries modulo the corresponding diagonal element. 
Since the product of unimodular matrices remains unimodular, this procedure 
suggests a constructive proof of Theorem 1.1. 

A second procedure by Bradley [3] applies both Type 1 and Type 2 transfor- 
mations using an elimination order similar to that of Rosser. Other proposed 
solution procedures include that of Blankenship [2], Sims [20], and Smith [21]. 
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More recently, a new order of computation using Type 2 transformations was 
suggested by Kannan and Bachem [ 131 for which they prove a polynomial bound 
both for the number of iterations and the required storage to solve for H as a 
function of the input data string. However, all of these procedures empirically 
exhibit a rapid rate of coefficient growth. This “entry explosion” [9, 10, 171 has 
in some cases prevented the solution of test problems of dimension 10 with initial 
entries bounded by 216 allowing 3200 bits for representing each (integer) entry 
(see [5] and also [4]). 

The results presented in this paper extend those of [7] in which polynomial- 
time algorithms were developed for solving for the Hermite normal form using 
modulo d arithmetic. A general algebraic development for the modulo d ap- 
proaches along with the fundamental results from the earlier work are reproduced 
in Section 2. A new procedure is developed in Section 3 that performs modulo d 
arithmetic using a general integral congruence relation. Computational experi- 
ence with this new type of Hermite normal form procedure and two of the earlier 
modulo d procedures are presented in Section 4. 

2. ALGEBRAIC PRELIMINARIES 

Several of the important results for the general modulo d Hermite normal form 
procedures are summarized below. The interested reader should refer to [7] or 
[5] and [6] for a full algebraic development of these results. 

THEOREM 2.1. Suppose A is a nonsingular n X n matrix with integer entries 
and I * d is an identity matrix scaled by d = ] det (A) I. Define matrices 

A,- AlI*d 
-[ 3 01 I 

and H’= 

Then H ’ is the Hermite normal form of A ‘, and conversely, H ’ determines H, the 
Hermite normal form of A. 

PROOF. Since A-l exists and is equal to A+/d, where A+ is the integer adjoint 
matrix of A, then I * d = AA+. Thus I * d is an integral combination of the 
columns of A. The result follows from the uniqueness of H (Theorem 1.2). 0 

With this theorem the validity of a general modulo d Hermite normal form 
procedure is apparent. Standard transformations of Type 1 and 2 are first applied 
to the A portion of A ’ as seen in Section 1. Entries in A can then be altered by 
integral multiples of d using operation 1.3 and columns of I * d. Thus modulo d 
arithmetic on A is reduced to a simple column operation. Define G = [gii] as the 
lower triangular form found from the matrix A applying the operations specified 
above. 

The Hermite normal form of A is found after removing I * d in A ’ using 
columns of G in a similar fashion. Note that removing I * d in column order 
permits modulo d arithmetic as before on the “fill” entries introduced into I * d 
using the untouched columns of I * d. Further, rows n + 1 to 2n have no affect 
on Hand can be ignored. This result provides the basis for a modulo d approach, 
An analogous result exists for a second matrix D. 
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COROLLARY 2.2. Let d, = d, and define di+l = di/hii for i = 1, 2, . . . , n - 1, 
where hii is the ith diagonal element of H, the Hermite normal form of A. Then 
the diagonal matrix D = diag(d,, dz, . . . , d,) = AN for some n X n integer 
matrix N. 

PROOF. See [7] or [5] and [6]. Cl 

The matrix D is used in a similar fashion as I * d. Suppose D replaces I * d in 
A’, and let G be a lower triangular matrix computed from the A matrix after 
applying the standard unimodular transformations and modulo arithmetic using 
columns of D, that is, oi; s o;jmod(di). 

PROPOSITION 2.3. For 1 5 i I n, hii = gcd(gii, di), where di is a.s defined in 
Corollary 2.2. 

PROOF. A constructive proof of Proposition 2.3 demonstrates that the result- 
ing diagonal elements of G remain unaltered after eliminating the diagonal entries 
in D. See [6] or [7]. Cl 

By the uniqueness of H, it can be shown that eliminating the diagonal entries 
from D using the columns of G is sufficient to determine H. This last result 
significantly reduces the computational effort required to find the Hermite 
normal form of the A matrix. This type of procedure is called a decreasing 
modulus approach. 

An extension to these basic developments requires two classical results, the 
Chinese Remainder Theorem and the Unique Prime Factorization Theorem. 
Both are characterizations of unique representation properties for the integers. 
Using these results, an algorithm is developed that performs the modulo arith- 
metic operation implicitly. This is done using congruence relations which further 
reduce the size of the largest operand encountered by the procedure. This 
modification extends the class of problems that can be solved using standard 
working precision while simplifying the modulo operation. 

THEOREM 2.4 (Chinese Remainder Theorem). Suppose 0 < p1 < pz < 
P3 --* < pk are pairwise relatively prime integers, and let p = flfzl pi. For 
some integer u, 0 5 u <p, let ui = u mod (pi), Vi. Then u is uniquely determined 
bY (4, u2,. * *, uk), where 0 % ui <pi, Vi. 

PROOF. See, for example, [I]. 0 

Corollary 2.5 extends Theorem 2.4 to the field of all integers. 

COROLLARY 2.5. Suppose u 2 p or u < 0. Then (w,, w2, . . . , wk), 
where wi = u mod (pi) determines a unique integer w such that 0 I w < p and 
w = u mod(p). 

PROOF. Since p is divisible by each pi, writing u as w + w ‘p for integers w 
andw’,O(w<p,thenforalli 

u mod(pi) e (W + w’p)mod(pi) 
= w mod(p;) 
= Wi* cl 
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THEOREM 2.6 (Unique Prime Factorization Theorem). Any integer CY > 1 can 
be uniquely factored in one way as p?lpP . - - pi” where the CT;~S are positive integers 
andp,Cp2<..- < pk are positive prime numbers. 

PROOF. See, for example, [12]. q 

Hence, any relatively prime factorization of an integer p > 0 as in Theo- 
rem 2.6 corresponds to a particular partition of the factors above. Further, any 
such relatively prime factorization of p may be used to uniquely represent a 
second integer u, 0 5 u c p, using the residual vector as in Theorem 2.4. 

Thus, for the Hermite normal form development, let p = d = 1 det (A)1 > 0. 
Then any entry aij in matrix A has a residual representation using the factors 
defined above that uniquely determines an integer wij, 0 5 Wij < d. Further, wij 
is equal to oijmod(d). Often the residual form of an integer is used in conjunction 
with its mixed radix representation (see, e.g., Knuth [14, p. 1751). 

PROPOSITION 2.7. Let 0 c p1 c p2 c p3 . . . C pk be pairwise relatively prime 
integers, and let p = n L, pi. Then an integer u, 0 I u < p, is uniquely determined 
by (vi, ~21 . - * 3 IJ~) for 0 5 vi <pi where 

u = Vl + v2p1 + V3plp2 + * f * + v,$,& * * * Pk-1. 

PROOF. See, for example, [16]. Cl 

The homomorphic transformation from residual to radix representation is as 
follows: 

u1 = ulmodh), 
u2 = (~2 - vl)c12mod(p2), 
~3 = ((~3 - vI)c13 - v2)c23modb3), 

uk = (((uk - vl)clk - UZ)C~L -.. - vk-l)ck-l,mod(pd, 

where(ul,..., uk) is the vector of residual values associated with u, and integers 
ci, are selected such that pici, E 1 mod(pj), where pi < pj. The scalars c;j are 
easily found by the Euclidean algorithm. 

3. MODULO D CONGRUENCE PROCEDURES 

The procedures developed in this section use a pairwise relatively prime factori- 
zation of d = ) det (A) ] as the moduli for an integral congruence relation. These 
factors further reduce the size of the operands in the procedure, thus permitting 
the solution of larger problems in standard working precision than any of those 
procedures previously described. The implementation of these approaches is more 
efficient since the operation of reducing an entry modulo d is performed implicitly. 

Given any relatively prime factorization of d, a modulo d Hermite normal form 
procedure is defined that uses standard congruence relations to represent matrix 
entries modulo d. The size of the operands encountered during computation is 
then bounded by the largest factor of d. The validity of this type of procedure 
follows from Theorem 2.1 and the Chinese Remainder Theorem 2.4. 
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These procedures are robust in that any relatively prime factorization of d can 
be used. When no nontrivial factorization of d is known, the procedure is identical 
to a general modulo d Hermite normal form approach seen in [7], and a 
polynomial-time bound for this procedure follows directly from those general 
modulo d results. Otherwise, a polynomial-time bound exists as a function of 
these factors and the problem description. 

3.1 Factoring the Determinant Value d 

Suppose an n x n nonsingular matrix A with integer entries is given. As a result 
of the determinant value computation, say by the polynomial-time bounded 
Gaussian elimination procedure of [8], a partial factorization of d may be 
available. This partial factorization can be easily adjusted into a relatively prime 
factorization of d using the Euclidean algorithm. These new factors are used as 
moduli in an integral congruence relation as defined in Theorem 2.4. 

Other routines to factor d directly can be found in [14, p. 339-3591 or [18], for 
example. It remains a well-known open question whether a polynomial-time 
algorithm exists for factoring an integer, as well as deciding in polynomial time 
whether an integer is composite (see [15]). This work does not address the 
problem of factoring d; the trivial factors 1 and d are used when no nontrivial 
factorization of d is known. 

3.2 Development of the Modulo D Congruence Procedures 

We assume throughout the remainder of the paper that positive integers pl, 
Pz, --*, pk are known such that d = n p1 pi, where gcd (pi, pi) = 1 for all i # j. 
Using an integral congruence relation as in Theorem 2.4, each entry (i, j) in the 
A matrix is represented as 

where aijt = eij mod(p,). Thus, if column 1 of A is scaled by s and added to column 
j, then the tth residual term of the (i, j) entry is set equal to 

This can be viewed in matrix format as k separate matrices, A@) = [uij,], where 
ACpt) is maintained modulo pt, for t = 1, . . . , k. Applying unimodular transfor- 
mations KL found during row iteration L’, the updated residual matrices at the 
start of row iteration i are 

ACPt) = AK1K2 . . . Ki-lmod(pt), for lstsk. 

With these k residual matrices, row i can be computed explicitly using the 
mixed radix representation for each entry. Hence, row entries are known up to 
integral multiples of d. The unimodular transformation matrix Ki is then deter- 
mined from row i and applied to each of the residual matrices, A’@) = 
ACP”Kimod(pt). 

THEOREM 3.1. Matrices A’(Pl), A’(p2), . . . A’@k) found at the end of row 
iteration i us defined above determine the unique n X n matrix A’ with entries 
ult E [0, d) and with A’ = AKIK2 - -. Kimod(d). 
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PROOF. For i = 1, A’@) = A mod(p,)K1mod(pt) = AK,mod(p,), for 
1 5 t 5 k, and by Corollary 2.5 the theorem holds. For row iteration i - 1, 
assume residual matrices AtP1), ACp2), . . . ACPk) that satisfy the conditions of 
the theorem are known. Hence, for any unimodular matrix Ki found during row 
iteration i 

A’(ptf E A(Pf)Kimod(p,) = (AKIKZ * * * Ki-l)mod(p,) K;mod(p,) 

= AKlKz * * * Kimod(p,), 

for t = 1, . . . , k, and once again by Corollary 2.5 the theorem holds. q 

An alternative solution procedure using congruence techniques updates a single 
row of A in residual form for each row iteration. For this type of product form 
approach, the unimodular transformations are saved for later row iterations. The 
updated form of the ith row at the start of the ith iteration is found by evaluating 
in residual form the matrix vector product 

where A i represents the ith row of the original A matrix and K/ is the unimodular 
matrix determined in row iteration L. This matrix-vector product is computed 
modulop,, for t = 1, . . . , k, to find the residual form for row i. From the residual 
vectors, the radix form of the row is determined, and unimodular transformations 
are found and applied to row i as before. 

THEOREM 3.2. The matrix KCd) = K,K, . . . KiTlmod(d) is sufficient to 
determine the updated form of the ith row. 

PROOF. Suppose d = 1 det(A)J, and let KlK2 -9 . Ki-1 = KCd’ + Sd for some 
n x n matrix S with integer entries (j, /) such that 0 5 Kj”/’ < d, Vj, !. Then 
the updated form of row i is of the form 

AiKlK2 * * * Ki-1 = Ai(KCd’ + Sd) s AiK’%od(d). 

Since this row is known to within integral multiples of d, the result follows. q 

With the transformation matrix KCd) maintained modulo d, the Hermite 
normal form can be determined while bounding the storage requirements for the 
entire procedure as a polynomial function of the input. Note that Ktd) is not 
necessarily unimodular as specified in Theorem 1.1; the matrix K with integer 
entries such that AK = H and 1 det (K) 1 = 1 can be determined from this linear 
relation. 

In practice, the matrices K/ in the product form of K have not been found to 
have excessively large coefficients, and explicit representation of each K/ is 
possible, as seen in Section 4. It is also possible to maintain KCd’ in residual form, 
that is, to define matrices Klpl), KtP2), . . . K(ph’ at the start of iteration i such 
that K(pr) = KlK2 * * - Ki-Imod( Vt. 

The procedure begins with each KCpl) initialized to an identity matrix. As 
iterations progress, each KCPr) is modified by the unimodular operations deter- 
mined from the current row of A. The updated residual form of the (i, j) entry 
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of A at the start of the ith iteration is, therefore, 

(AiK!T’)mod(pi), AiK!T”mod(p,), . . . , AiKIPk’mod(p,)), 

where K!?’ is the jth column of K (PC). The unimodular operations applied to the 

ith row of A are applied to each of the Irz residual matrices KcpJ for use in the 
next iteration and for determining the final K’ defined above. 

4. COMPUTATIONAL RESULTS 

In this section four Hermite normal form procedures are examined empirically. 
Two procedures (KANBAC and ROSSER) have been previously examined in an 
earlier work [7] and include modulo d arithmetic and a reconstruction phase. 
A single congruence relation Hermite normal form procedure (RESROS) was 
developed as a variant on ROSSER which uses modulo d and an implicit 
reconstruction step (see Section 3). Owing to the slower growth of coefficients 
for the method of Rosser, RESROS was then altered so as to not require 
determinant value information. For this procedure, the size of the largest matrix 
entry is monitored at each iteration and an appropriately large set of moduli for 
the congruence relation is determined. This guarantees that no entry exceeds in 
magnitude the product of the prime factors and that the correct Hermite normal 
form can be reconstructed from the residual representation of the matrix entries. 

All of the traditional Hermite normal form methods are easily adapted to 
include congruence relation representation of the matrix entries and modulo d 
arithmetic. These other methods, though, for example, KANBAC, have been 
found to experience faster coefficient growth. This may indicate that using 
congruence relations without determinant value information would be inappro- 
priate since the number and size of prime factors could become prohibitively 
large. Hence, only the procedure of Rosser is examined in this setting. The 
procedures reported in this section are described in more detail below. 

At the start of iteration i for the procedure of Kannan and Bachem [13] 
implemented in KANBAC, the (i - l)st principal submatrix of A is in lower 
triangular form. To zero the first i - 1 entries in column i, unimodular trans- 
formations of Type 2 are applied sequentially to column pairs (1, i), (2, i), 
. . . (i - 1, i). The procedure then iterates for the (i + 1) st principal submatrix. 
For KANBAC implementation, the subsequent reconstruction step and the 
reduction of subdiagonal entries is postponed until the entire matrix is in lower 
triangular form. 

The ROSSER procedure uses operations (l.l)-(1.3) in a row by row elimination 
scheme. In row iteration i, the entry with the largest magnitude on and to the 
right of the diagonal is reduced modulo the second largest entry using operation 
(1.3). Here, entries to the left of the diagonal are reduced iteratively so as to 
lower the size of the multipliers. That is, whenever an entry in the current row, 
say cij where j < i, has a magnitude that exceeds the largest entry cik, for k zz i, 
operation (1.3) is performed reducing cijmod(cik). 

Modifying this last procedure to include a residual representation of the matrix 
entries using an integral congruence relation (RESROS) requires a nontrivial, 
relatively prime, factorization of d. Here it is assumed that d has been determined 
ACM Transactions on Mathematical Software, Vol. 15, No. 3, September 1989. 
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using a stable procedure such as lower/upper triangular unit (LU) decomposition 
[8], and the factors of d are adjusted to be relatively prime using the Euclidean 
algorithm. Hence, relatively prime integers pi, 0 C p1 < p2 C - - . < pk exist such 
that nbI p1 = d and gcd (pi, pj) = 1 for i # j. The residual form of oij is, 
therefore, 

(aijmod(pl), aijmod(Pz), . . . , aijmod(pk)). 

A product form procedure was implemented for the RESROS approach (see 
Section 3). At the start of iteration i, the residual form of row i is AiK, K2 . - - 
Ki-Imod for t = 1, . . . , k, and Ki is initialized to an identity matrix. The 
radix form for each entry in the row is determined, and operations (l.lb(1.3) are 
applied to the radix form and the corresponding columns of Ki. At the end of 
the iteration, the final form of row i and Ki are stored and the procedure iterates. 

If Ki is maintained exactly, coefficients in Ki may become excessively large, 
and a product form of Ki can be used. In this situation, a second Ki matrix is 
initialized and operations continue with this new matrix as before. Additional 
unimodular matrices found in row iteration i are applied in order of appearance 
in computing the updated form of later rows of A. For notational convenience, 
let Ki denote the product of all transformation matrices found in iteration i. As 
seen in Section 3, it is possible to implement the product form procedure 
maintaining the residual form of K (d) thus bounding the storage requirements , 
for the procedure. 

All the traditional elimination schemes mentioned in Section 1 can be used on 
the residual form of A with the single requirement that all operations are applied 
to the residual vector of each entry cij. The result is a lower triangular form of 
A found using modulo arithmetic and operations (l.l)-(1.3). Note that the scaling 
factor in (1.4), s = Laij/aijl, is computed either explicitly using the mixed radix 
form of each entry or by a real-valued approximation: 

LJ 
& 
bii 

where bi.p,p, * - * pk-1 z Ui., and bi. E (0, pk). If the real-valued approximation 
is used and s is incorrectly specified, the resulting entry may become negative. 
The corresponding column is then scaled by -1, the residual values are adjusted 
appropriately, and operations continue. 

The transformations needed to locate the diagonal entries of H can be per- 
formed either explicitly or in residual form with only slight modifications. Recall 
that the reconstruction requires the elimination of I * d using columns of A and 
unimodular transformations. To represent the entries of magnitude equal to d, 
the radix vector 

(0, 0, * * * , 0, P/J 

is used. Once this reconstruction is completed, H is known up to the final 
reduction of subdiagonal entries modulo the corresponding diagonal elements. 

The RESROS procedure also uses the decreasing modulus approach (see 
Section 2). As diagonal entries of H become known, the modulus and its relatively 
prime factors are reduced. Since dj divides di, for j I i (see Corollary 2.2), the 
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procedure sets dj = di as the modulus in row j, Vj z i, until the diagonal entry of 
H in that row is found. 

Applying congruence techniques when determinant information is not used 
requires knowledge of a bound, say b, on the magnitude of the largest entry in 
the updated form of the current row. For row iteration i, a set of relatively prime 
integers pl, p2, . . . , pk is selected such that n bl pt > 2b. (Note that the factor 
2 is included so as to properly represent negative entries.) Using the entry of 
maximum magnitude in each Kj, say bj, one such bound is 

i-l 

max(aij) n bjn < h p/. 
j=l /=l 

Additional primes pt are added to the current set as determined by the above 
equation where for convenience the factors pt are selected from the set of prime 
integers. The number and magnitude of these factors can be varied and can affect 
the performance of the procedure. Heuristic methods to determine a better bound 
b are also possible [6], although a verification of the final solution may be 
required. 

The updated residual vector for each entry in row i is then computed by 
applying the unimodular transformation matrices K1, K2, . . . , Ki-1 in the 
indicated order to row i of A. The corresponding radix vector is determined, and 
operations continue as before. The validity of the congruence relation follows 
directly from Theorem 2.4. 

Each of these four procedures have been applied to 50 randomly generated test 
problems with known solutions. Initially, all problems have entries bounded 
by 2 I6 The real-valued statistics in Table I represent the average value for . 
10 problems of the stated size. The Solution time and the time used in a 
linked-integer Division routine are in CPU seconds for an IBM 3081. Length is 
the number of 16-bit integer words used to represent the determinant value of 
A. For the two RESROS routines, IRl indicates the number of vectors of length 
n required to store the Ki matrices. Iterations specifies the number of column 
operations performed. 

As previously demonstrated in [ 71, the general modulo d procedures are capable 
of solving larger problems than the traditional methods with a significantly 
improved solution time. The versions of KANBAC and ROSSER without modulo 
d arithmetic require in excess of 3200 bits per entry or more than 60 CPU seconds 
for problems of size 20 or larger. The introduction of determinant information 
improves these procedures considerably as shown in Table I. The addition of 
congruence techniques permits solution of the same problems in standard working 
precision. 

The statistics in Table I demonstrate that the division procedure that explicitly 
performs the modulo d operation consumes a large portion of the solution time 
for both KANBAC and ROSSER. The congruence relation procedure RESROS 
significantly reduces the solution time by implicitly performing the modulo d 
operation via congruence techniques. These factors were representable in a single 
integer word so that system routines could perform the modulo operation result- 
ing in a decreased solution time. 
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Table I. Test Problem Results 

- 285 

Size Solution 

8 0.26 
10 0.70 
16 3.38 
20 6.64 
30 22.74 

8 0.25 
10 0.55 
16 2.51 
20 5.23 
30 21.60 

Size Solution 
8 0.03 

10 0.07 
16 0.38 
20 0.90 
30 3.35 

Division 

KANBAC 

0.10 
0.31 
1.81 
3.77 

13.62 

ROSSER 

0.02 
0.07 
0.27 
0.43 
3.63 

RESROS 

Length Iterations 

1.1 84.0 
1.7 134.0 
2.2 360.0 
2.7 570.0 
2.9 1,305.o 

1.1 114.0 
1.7 211.0 
2.2 735.0 
2.7 1,311.0 
2.9 3,578.5 

IRl Iterations 
43.0 100.4 
64.0 233.6 

151.0 872.5 
231.0 1,740.8 
501.4 4.369.8 

8 
10 
16 
20 
30 

RESROS (without determinant information) 

0.04 43.0 132.3 
0.10 64.0 244.6 
0.55 151.0 981.2 
1.38 229.0 2,017.4 
7.71 500.1 7.548.3 

Note that the transformation matrices are stored explicitly, and this addi- 
tional storage for the RESROS approach may be further reduced by storing 
Kl KS . . . Kimod(d) (see Section 3). Note also that the RESROS routine without 
determinant information performs considerably better than the first two routines 
even without determinant information. These results suggest that congruence 
techniques are effective in determining the Hermite normal form of a matrix 
with integer entries offering savings in both storage and solution time. 
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