
Residual Hermite Normal Form
Computations

PAUL D. DOMICH
National Institute of Standards and Technology

This paper extends the class of Hermite normal form solution procedures that use modulo determinant
arithmetic. Given any relatively prime factorization of the determinant value, integral congruence
relations are used to compute the Hermite normal form. A polynomial-time complexity bound that
is a function of the length of the input string exists for this class of procedures. Computational results
for this new approach are given.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems-computation on matrices; G.1.3 [Numerical Analysis]:
Numerical Linear Algebra-determinants; Il.2 [Algebraic Manipulation]: Algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Hermite normal form, integral congruence techniques, matrices
with integer entries, modulo determinant arithmetic

1. INTRODUCTION

Consider an n X n matrix A = [oij] with integer-valued entries. The problem
addressed here can be stated as that of finding an “equivalent” lower triangular
matrix with integer-valued entries that determines all integer points b E 2”
such that Ax = b for x: E 2”. One well-known “equivalent” lower triangular
form related to A by a unimodular matrix K is called the Hermite normal
form of A, denoted as H = [hii]; a matrix K with integer entries is unimodular
if (det (K)] = 1. For this work, A is assumed square and cl =] det (A) 1 > 0. The
generalization of these results for an arbitrary matrix with integer-valued entries
is straightforward. The reader may wish to refer to an earlier paper by Domich
et al. [7] and perhaps [5] and [6] for a more complete discussion of the preliminary
algebraic development.

THEOREM 1.1 (Hermite). Given an n x n nonsingular integer-ualued matrix
A, there exists an n x n unimodular matrix K such that AK = H, the Hermite

This research was supported in part by National Science Foundation grant ECS8113534 and was
conducted at CORE, Universiti! Catholique de Louvain, Louvain-la-Neuve, Belgium, and the National
Institute of Standards and Technology, Boulder, Colorado.
Author’s current address: National Institute of Standards and Technology, Applied and Computa-
tional Mathematics Division (719), Boulder, CO 80303-3328.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1989 ACM 0098-3500/89/0900-0275 $01.50

ACM Transactions on Mathematical Software, Vol. 15, No. 3, September 1989, Pages 275-286.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F66888.66892&domain=pdf&date_stamp=1989-09-01

276 l Paul D. Domich

normal form of A, whose entries satisfy

hij = 0, Vj> i,
hii > 0, Vi,
hij I 0 and 1 hij 1 < hii, Vj < i.

PROOF. A constructive proof is outlined later in this section, or see
[ll]. cl

THEOREM 1.2. There is a unique matrix H satisfying Theorem 1.1.

PROOF. For an easy proof of this last result see Domich et al. [7]. 0

The following elementary. column operations can be used to determine H:

interchange two columns; (1.1)
multiply a column by -1; 0.2)
add an integral multiple of one column to another. (1.3)

These three elementary column operations, or composites of operations (l.l)-
(1.3), applied to the A matrix correspond to a unimodular transformation of A.
Two types of unimodular transformations are used.

Type 1 Type 2

[; ; :] [$] (1.4)

In the most simplistic procedure, iteration i begins with all superdiagonal
entries in the first (i - 1) rows of A equal to zero. Both transformations operate
on columns i and j, i < j, of the matrix A. The unimodular transformation of
Type 1 performs operation (1.3) where traditionally the factor s in (1.4) is set
equal to the largest integer no greater than aii/aij, that is, s = Laii/aijA. This
choice for s results in reducing aii modulo aij, denoted as aiimod(a;j). Other
choices for s using the “golden ratio” try to limit the magnitude of the factors s
for an entire row iteration [6].

The Type 2 “composite” transformation is a product of Type 1 transformations.
This transformation replaces aii with gcd (a;i, aij) and zeros aij . Here integers p,
9, and r such that paii + qoij = gcd (aii, aij) = r are found by the Euclidean
algorithm (see, for example, Knuth [14, p. 293-3161).

One well-known procedure outlined by Rosser [19] uses only Type 1 transfor-
mations. Applying these transformations in row order and from the diagonal to
the right within each row, A is transformed into a lower triangular form in a
finite number of steps. Additional transformations of the first type applied in
row order reduce subdiagonal entries modulo the corresponding diagonal element.
Since the product of unimodular matrices remains unimodular, this procedure
suggests a constructive proof of Theorem 1.1.

A second procedure by Bradley [3] applies both Type 1 and Type 2 transfor-
mations using an elimination order similar to that of Rosser. Other proposed
solution procedures include that of Blankenship [2], Sims [20], and Smith [21].
ACM Transactions on Mathematical Software, Vol. 15, No. 3, September 1989.

Residual Hermite Normal Form Computations l 277

More recently, a new order of computation using Type 2 transformations was
suggested by Kannan and Bachem [131 for which they prove a polynomial bound
both for the number of iterations and the required storage to solve for H as a
function of the input data string. However, all of these procedures empirically
exhibit a rapid rate of coefficient growth. This “entry explosion” [9, 10, 171 has
in some cases prevented the solution of test problems of dimension 10 with initial
entries bounded by 216 allowing 3200 bits for representing each (integer) entry
(see [5] and also [4]).

The results presented in this paper extend those of [7] in which polynomial-
time algorithms were developed for solving for the Hermite normal form using
modulo d arithmetic. A general algebraic development for the modulo d ap-
proaches along with the fundamental results from the earlier work are reproduced
in Section 2. A new procedure is developed in Section 3 that performs modulo d
arithmetic using a general integral congruence relation. Computational experi-
ence with this new type of Hermite normal form procedure and two of the earlier
modulo d procedures are presented in Section 4.

2. ALGEBRAIC PRELIMINARIES

Several of the important results for the general modulo d Hermite normal form
procedures are summarized below. The interested reader should refer to [7] or
[5] and [6] for a full algebraic development of these results.

THEOREM 2.1. Suppose A is a nonsingular n X n matrix with integer entries
and I * d is an identity matrix scaled by d =] det (A) I. Define matrices

A,- AlI*d
-[3 01 I

and H’=

Then H ’ is the Hermite normal form of A ‘, and conversely, H ’ determines H, the
Hermite normal form of A.

PROOF. Since A-l exists and is equal to A+/d, where A+ is the integer adjoint
matrix of A, then I * d = AA+. Thus I * d is an integral combination of the
columns of A. The result follows from the uniqueness of H (Theorem 1.2). 0

With this theorem the validity of a general modulo d Hermite normal form
procedure is apparent. Standard transformations of Type 1 and 2 are first applied
to the A portion of A ’ as seen in Section 1. Entries in A can then be altered by
integral multiples of d using operation 1.3 and columns of I * d. Thus modulo d
arithmetic on A is reduced to a simple column operation. Define G = [gii] as the
lower triangular form found from the matrix A applying the operations specified
above.

The Hermite normal form of A is found after removing I * d in A ’ using
columns of G in a similar fashion. Note that removing I * d in column order
permits modulo d arithmetic as before on the “fill” entries introduced into I * d
using the untouched columns of I * d. Further, rows n + 1 to 2n have no affect
on Hand can be ignored. This result provides the basis for a modulo d approach,
An analogous result exists for a second matrix D.

ACM Transactions on Mathematical Software, Vol. 15, No. 3, September 1989.

278 l Paul D. Domich

COROLLARY 2.2. Let d, = d, and define di+l = di/hii for i = 1, 2, . . . , n - 1,
where hii is the ith diagonal element of H, the Hermite normal form of A. Then
the diagonal matrix D = diag(d,, dz, . . . , d,) = AN for some n X n integer
matrix N.

PROOF. See [7] or [5] and [6]. Cl

The matrix D is used in a similar fashion as I * d. Suppose D replaces I * d in
A’, and let G be a lower triangular matrix computed from the A matrix after
applying the standard unimodular transformations and modulo arithmetic using
columns of D, that is, oi; s o;jmod(di).

PROPOSITION 2.3. For 1 5 i I n, hii = gcd(gii, di), where di is a.s defined in
Corollary 2.2.

PROOF. A constructive proof of Proposition 2.3 demonstrates that the result-
ing diagonal elements of G remain unaltered after eliminating the diagonal entries
in D. See [6] or [7]. Cl

By the uniqueness of H, it can be shown that eliminating the diagonal entries
from D using the columns of G is sufficient to determine H. This last result
significantly reduces the computational effort required to find the Hermite
normal form of the A matrix. This type of procedure is called a decreasing
modulus approach.

An extension to these basic developments requires two classical results, the
Chinese Remainder Theorem and the Unique Prime Factorization Theorem.
Both are characterizations of unique representation properties for the integers.
Using these results, an algorithm is developed that performs the modulo arith-
metic operation implicitly. This is done using congruence relations which further
reduce the size of the largest operand encountered by the procedure. This
modification extends the class of problems that can be solved using standard
working precision while simplifying the modulo operation.

THEOREM 2.4 (Chinese Remainder Theorem). Suppose 0 < p1 < pz <
P3 --* < pk are pairwise relatively prime integers, and let p = flfzl pi. For
some integer u, 0 5 u <p, let ui = u mod (pi), Vi. Then u is uniquely determined
bY (4, u2,. * *, uk), where 0 % ui <pi, Vi.

PROOF. See, for example, [I]. 0

Corollary 2.5 extends Theorem 2.4 to the field of all integers.

COROLLARY 2.5. Suppose u 2 p or u < 0. Then (w,, w2, . . . , wk),
where wi = u mod (pi) determines a unique integer w such that 0 I w < p and
w = u mod(p).

PROOF. Since p is divisible by each pi, writing u as w + w ‘p for integers w
andw’,O(w<p,thenforalli

u mod(pi) e (W + w’p)mod(pi)
= w mod(p;)
= Wi* cl

ACM Transactions on Mathematical Software, Vol. 15, No. 3, September 1989.

Residual Hermite Normal Form Computations l 279

THEOREM 2.6 (Unique Prime Factorization Theorem). Any integer CY > 1 can
be uniquely factored in one way as p?lpP . - - pi” where the CT;~S are positive integers
andp,Cp2<..- < pk are positive prime numbers.

PROOF. See, for example, [12]. q

Hence, any relatively prime factorization of an integer p > 0 as in Theo-
rem 2.6 corresponds to a particular partition of the factors above. Further, any
such relatively prime factorization of p may be used to uniquely represent a
second integer u, 0 5 u c p, using the residual vector as in Theorem 2.4.

Thus, for the Hermite normal form development, let p = d = 1 det (A)1 > 0.
Then any entry aij in matrix A has a residual representation using the factors
defined above that uniquely determines an integer wij, 0 5 Wij < d. Further, wij
is equal to oijmod(d). Often the residual form of an integer is used in conjunction
with its mixed radix representation (see, e.g., Knuth [14, p. 1751).

PROPOSITION 2.7. Let 0 c p1 c p2 c p3 . . . C pk be pairwise relatively prime
integers, and let p = n L, pi. Then an integer u, 0 I u < p, is uniquely determined
by (vi, ~21 . - * 3 IJ~) for 0 5 vi <pi where

u = Vl + v2p1 + V3plp2 + * f * + v,$,& * * * Pk-1.

PROOF. See, for example, [16]. Cl

The homomorphic transformation from residual to radix representation is as
follows:

u1 = ulmodh),
u2 = (~2 - vl)c12mod(p2),
~3 = ((~3 - vI)c13 - v2)c23modb3),

uk = (((uk - vl)clk - UZ)C~L -.. - vk-l)ck-l,mod(pd,

where(ul,..., uk) is the vector of residual values associated with u, and integers
ci, are selected such that pici, E 1 mod(pj), where pi < pj. The scalars c;j are
easily found by the Euclidean algorithm.

3. MODULO D CONGRUENCE PROCEDURES

The procedures developed in this section use a pairwise relatively prime factori-
zation of d =) det (A)] as the moduli for an integral congruence relation. These
factors further reduce the size of the operands in the procedure, thus permitting
the solution of larger problems in standard working precision than any of those
procedures previously described. The implementation of these approaches is more
efficient since the operation of reducing an entry modulo d is performed implicitly.

Given any relatively prime factorization of d, a modulo d Hermite normal form
procedure is defined that uses standard congruence relations to represent matrix
entries modulo d. The size of the operands encountered during computation is
then bounded by the largest factor of d. The validity of this type of procedure
follows from Theorem 2.1 and the Chinese Remainder Theorem 2.4.

ACM Transactions on Mathematical Software, Vol. 15, No. 3, September 1989.

280 l Paul D. Domich

These procedures are robust in that any relatively prime factorization of d can
be used. When no nontrivial factorization of d is known, the procedure is identical
to a general modulo d Hermite normal form approach seen in [7], and a
polynomial-time bound for this procedure follows directly from those general
modulo d results. Otherwise, a polynomial-time bound exists as a function of
these factors and the problem description.

3.1 Factoring the Determinant Value d

Suppose an n x n nonsingular matrix A with integer entries is given. As a result
of the determinant value computation, say by the polynomial-time bounded
Gaussian elimination procedure of [8], a partial factorization of d may be
available. This partial factorization can be easily adjusted into a relatively prime
factorization of d using the Euclidean algorithm. These new factors are used as
moduli in an integral congruence relation as defined in Theorem 2.4.

Other routines to factor d directly can be found in [14, p. 339-3591 or [18], for
example. It remains a well-known open question whether a polynomial-time
algorithm exists for factoring an integer, as well as deciding in polynomial time
whether an integer is composite (see [15]). This work does not address the
problem of factoring d; the trivial factors 1 and d are used when no nontrivial
factorization of d is known.

3.2 Development of the Modulo D Congruence Procedures

We assume throughout the remainder of the paper that positive integers pl,
Pz, --*, pk are known such that d = n p1 pi, where gcd (pi, pi) = 1 for all i # j.
Using an integral congruence relation as in Theorem 2.4, each entry (i, j) in the
A matrix is represented as

where aijt = eij mod(p,). Thus, if column 1 of A is scaled by s and added to column
j, then the tth residual term of the (i, j) entry is set equal to

This can be viewed in matrix format as k separate matrices, A@) = [uij,], where
ACpt) is maintained modulo pt, for t = 1, . . . , k. Applying unimodular transfor-
mations KL found during row iteration L’, the updated residual matrices at the
start of row iteration i are

ACPt) = AK1K2 . . . Ki-lmod(pt), for lstsk.

With these k residual matrices, row i can be computed explicitly using the
mixed radix representation for each entry. Hence, row entries are known up to
integral multiples of d. The unimodular transformation matrix Ki is then deter-
mined from row i and applied to each of the residual matrices, A’@) =
ACP”Kimod(pt).

THEOREM 3.1. Matrices A’(Pl), A’(p2), . . . A’@k) found at the end of row
iteration i us defined above determine the unique n X n matrix A’ with entries
ult E [0, d) and with A’ = AKIK2 - -. Kimod(d).
ACM Transactions on Mathematical Software, Vol. 15, No. 3, September 1989.

Residual Hermite Normal Form Computations 281

PROOF. For i = 1, A’@) = A mod(p,)K1mod(pt) = AK,mod(p,), for
1 5 t 5 k, and by Corollary 2.5 the theorem holds. For row iteration i - 1,
assume residual matrices AtP1), ACp2), . . . ACPk) that satisfy the conditions of
the theorem are known. Hence, for any unimodular matrix Ki found during row
iteration i

A’(ptf E A(Pf)Kimod(p,) = (AKIKZ * * * Ki-l)mod(p,) K;mod(p,)

= AKlKz * * * Kimod(p,),

for t = 1, . . . , k, and once again by Corollary 2.5 the theorem holds. q

An alternative solution procedure using congruence techniques updates a single
row of A in residual form for each row iteration. For this type of product form
approach, the unimodular transformations are saved for later row iterations. The
updated form of the ith row at the start of the ith iteration is found by evaluating
in residual form the matrix vector product

where A i represents the ith row of the original A matrix and K/ is the unimodular
matrix determined in row iteration L. This matrix-vector product is computed
modulop,, for t = 1, . . . , k, to find the residual form for row i. From the residual
vectors, the radix form of the row is determined, and unimodular transformations
are found and applied to row i as before.

THEOREM 3.2. The matrix KCd) = K,K, . . . KiTlmod(d) is sufficient to
determine the updated form of the ith row.

PROOF. Suppose d = 1 det(A)J, and let KlK2 -9 . Ki-1 = KCd’ + Sd for some
n x n matrix S with integer entries (j, /) such that 0 5 Kj”/’ < d, Vj, !. Then
the updated form of row i is of the form

AiKlK2 * * * Ki-1 = Ai(KCd’ + Sd) s AiK’%od(d).

Since this row is known to within integral multiples of d, the result follows. q

With the transformation matrix KCd) maintained modulo d, the Hermite
normal form can be determined while bounding the storage requirements for the
entire procedure as a polynomial function of the input. Note that Ktd) is not
necessarily unimodular as specified in Theorem 1.1; the matrix K with integer
entries such that AK = H and 1 det (K) 1 = 1 can be determined from this linear
relation.

In practice, the matrices K/ in the product form of K have not been found to
have excessively large coefficients, and explicit representation of each K/ is
possible, as seen in Section 4. It is also possible to maintain KCd’ in residual form,
that is, to define matrices Klpl), KtP2), . . . K(ph’ at the start of iteration i such
that K(pr) = KlK2 * * - Ki-Imod(Vt.

The procedure begins with each KCpl) initialized to an identity matrix. As
iterations progress, each KCPr) is modified by the unimodular operations deter-
mined from the current row of A. The updated residual form of the (i, j) entry

ACM Transactions on Mathematical Software, Vol. 15, No. 3, September 1989.

282 l Paul D. Domich

of A at the start of the ith iteration is, therefore,

(AiK!T’)mod(pi), AiK!T”mod(p,), . . . , AiKIPk’mod(p,)),

where K!?’ is the jth column of K (PC). The unimodular operations applied to the

ith row of A are applied to each of the Irz residual matrices KcpJ for use in the
next iteration and for determining the final K’ defined above.

4. COMPUTATIONAL RESULTS

In this section four Hermite normal form procedures are examined empirically.
Two procedures (KANBAC and ROSSER) have been previously examined in an
earlier work [7] and include modulo d arithmetic and a reconstruction phase.
A single congruence relation Hermite normal form procedure (RESROS) was
developed as a variant on ROSSER which uses modulo d and an implicit
reconstruction step (see Section 3). Owing to the slower growth of coefficients
for the method of Rosser, RESROS was then altered so as to not require
determinant value information. For this procedure, the size of the largest matrix
entry is monitored at each iteration and an appropriately large set of moduli for
the congruence relation is determined. This guarantees that no entry exceeds in
magnitude the product of the prime factors and that the correct Hermite normal
form can be reconstructed from the residual representation of the matrix entries.

All of the traditional Hermite normal form methods are easily adapted to
include congruence relation representation of the matrix entries and modulo d
arithmetic. These other methods, though, for example, KANBAC, have been
found to experience faster coefficient growth. This may indicate that using
congruence relations without determinant value information would be inappro-
priate since the number and size of prime factors could become prohibitively
large. Hence, only the procedure of Rosser is examined in this setting. The
procedures reported in this section are described in more detail below.

At the start of iteration i for the procedure of Kannan and Bachem [13]
implemented in KANBAC, the (i - l)st principal submatrix of A is in lower
triangular form. To zero the first i - 1 entries in column i, unimodular trans-
formations of Type 2 are applied sequentially to column pairs (1, i), (2, i),
. . . (i - 1, i). The procedure then iterates for the (i + 1) st principal submatrix.
For KANBAC implementation, the subsequent reconstruction step and the
reduction of subdiagonal entries is postponed until the entire matrix is in lower
triangular form.

The ROSSER procedure uses operations (l.l)-(1.3) in a row by row elimination
scheme. In row iteration i, the entry with the largest magnitude on and to the
right of the diagonal is reduced modulo the second largest entry using operation
(1.3). Here, entries to the left of the diagonal are reduced iteratively so as to
lower the size of the multipliers. That is, whenever an entry in the current row,
say cij where j < i, has a magnitude that exceeds the largest entry cik, for k zz i,
operation (1.3) is performed reducing cijmod(cik).

Modifying this last procedure to include a residual representation of the matrix
entries using an integral congruence relation (RESROS) requires a nontrivial,
relatively prime, factorization of d. Here it is assumed that d has been determined
ACM Transactions on Mathematical Software, Vol. 15, No. 3, September 1989.

Residual Hermite Normal Form Computations l 283

using a stable procedure such as lower/upper triangular unit (LU) decomposition
[8], and the factors of d are adjusted to be relatively prime using the Euclidean
algorithm. Hence, relatively prime integers pi, 0 C p1 < p2 C - - . < pk exist such
that nbI p1 = d and gcd (pi, pj) = 1 for i # j. The residual form of oij is,
therefore,

(aijmod(pl), aijmod(Pz), . . . , aijmod(pk)).

A product form procedure was implemented for the RESROS approach (see
Section 3). At the start of iteration i, the residual form of row i is AiK, K2 . - -
Ki-Imod for t = 1, . . . , k, and Ki is initialized to an identity matrix. The
radix form for each entry in the row is determined, and operations (l.lb(1.3) are
applied to the radix form and the corresponding columns of Ki. At the end of
the iteration, the final form of row i and Ki are stored and the procedure iterates.

If Ki is maintained exactly, coefficients in Ki may become excessively large,
and a product form of Ki can be used. In this situation, a second Ki matrix is
initialized and operations continue with this new matrix as before. Additional
unimodular matrices found in row iteration i are applied in order of appearance
in computing the updated form of later rows of A. For notational convenience,
let Ki denote the product of all transformation matrices found in iteration i. As
seen in Section 3, it is possible to implement the product form procedure
maintaining the residual form of K (d) thus bounding the storage requirements ,
for the procedure.

All the traditional elimination schemes mentioned in Section 1 can be used on
the residual form of A with the single requirement that all operations are applied
to the residual vector of each entry cij. The result is a lower triangular form of
A found using modulo arithmetic and operations (l.l)-(1.3). Note that the scaling
factor in (1.4), s = Laij/aijl, is computed either explicitly using the mixed radix
form of each entry or by a real-valued approximation:

LJ
&
bii

where bi.p,p, * - * pk-1 z Ui., and bi. E (0, pk). If the real-valued approximation
is used and s is incorrectly specified, the resulting entry may become negative.
The corresponding column is then scaled by -1, the residual values are adjusted
appropriately, and operations continue.

The transformations needed to locate the diagonal entries of H can be per-
formed either explicitly or in residual form with only slight modifications. Recall
that the reconstruction requires the elimination of I * d using columns of A and
unimodular transformations. To represent the entries of magnitude equal to d,
the radix vector

(0, 0, * * * , 0, P/J

is used. Once this reconstruction is completed, H is known up to the final
reduction of subdiagonal entries modulo the corresponding diagonal elements.

The RESROS procedure also uses the decreasing modulus approach (see
Section 2). As diagonal entries of H become known, the modulus and its relatively
prime factors are reduced. Since dj divides di, for j I i (see Corollary 2.2), the

ACM Transactions on Mathematical Software, Vol. 15, No. 3, September 1989.

284 l Paul D. Domich

procedure sets dj = di as the modulus in row j, Vj z i, until the diagonal entry of
H in that row is found.

Applying congruence techniques when determinant information is not used
requires knowledge of a bound, say b, on the magnitude of the largest entry in
the updated form of the current row. For row iteration i, a set of relatively prime
integers pl, p2, . . . , pk is selected such that n bl pt > 2b. (Note that the factor
2 is included so as to properly represent negative entries.) Using the entry of
maximum magnitude in each Kj, say bj, one such bound is

i-l

max(aij) n bjn < h p/.
j=l /=l

Additional primes pt are added to the current set as determined by the above
equation where for convenience the factors pt are selected from the set of prime
integers. The number and magnitude of these factors can be varied and can affect
the performance of the procedure. Heuristic methods to determine a better bound
b are also possible [6], although a verification of the final solution may be
required.

The updated residual vector for each entry in row i is then computed by
applying the unimodular transformation matrices K1, K2, . . . , Ki-1 in the
indicated order to row i of A. The corresponding radix vector is determined, and
operations continue as before. The validity of the congruence relation follows
directly from Theorem 2.4.

Each of these four procedures have been applied to 50 randomly generated test
problems with known solutions. Initially, all problems have entries bounded
by 2 I6 The real-valued statistics in Table I represent the average value for .
10 problems of the stated size. The Solution time and the time used in a
linked-integer Division routine are in CPU seconds for an IBM 3081. Length is
the number of 16-bit integer words used to represent the determinant value of
A. For the two RESROS routines, IRl indicates the number of vectors of length
n required to store the Ki matrices. Iterations specifies the number of column
operations performed.

As previously demonstrated in [71, the general modulo d procedures are capable
of solving larger problems than the traditional methods with a significantly
improved solution time. The versions of KANBAC and ROSSER without modulo
d arithmetic require in excess of 3200 bits per entry or more than 60 CPU seconds
for problems of size 20 or larger. The introduction of determinant information
improves these procedures considerably as shown in Table I. The addition of
congruence techniques permits solution of the same problems in standard working
precision.

The statistics in Table I demonstrate that the division procedure that explicitly
performs the modulo d operation consumes a large portion of the solution time
for both KANBAC and ROSSER. The congruence relation procedure RESROS
significantly reduces the solution time by implicitly performing the modulo d
operation via congruence techniques. These factors were representable in a single
integer word so that system routines could perform the modulo operation result-
ing in a decreased solution time.
ACM Transactions on Mathematical Software, Vol. 15, No. 3, September 1989.

Residual Hermite Normal Form Computations

Table I. Test Problem Results

- 285

Size Solution

8 0.26
10 0.70
16 3.38
20 6.64
30 22.74

8 0.25
10 0.55
16 2.51
20 5.23
30 21.60

Size Solution
8 0.03

10 0.07
16 0.38
20 0.90
30 3.35

Division

KANBAC

0.10
0.31
1.81
3.77

13.62

ROSSER

0.02
0.07
0.27
0.43
3.63

RESROS

Length Iterations

1.1 84.0
1.7 134.0
2.2 360.0
2.7 570.0
2.9 1,305.o

1.1 114.0
1.7 211.0
2.2 735.0
2.7 1,311.0
2.9 3,578.5

IRl Iterations
43.0 100.4
64.0 233.6

151.0 872.5
231.0 1,740.8
501.4 4.369.8

8
10
16
20
30

RESROS (without determinant information)

0.04 43.0 132.3
0.10 64.0 244.6
0.55 151.0 981.2
1.38 229.0 2,017.4
7.71 500.1 7.548.3

Note that the transformation matrices are stored explicitly, and this addi-
tional storage for the RESROS approach may be further reduced by storing
Kl KS . . . Kimod(d) (see Section 3). Note also that the RESROS routine without
determinant information performs considerably better than the first two routines
even without determinant information. These results suggest that congruence
techniques are effective in determining the Hermite normal form of a matrix
with integer entries offering savings in both storage and solution time.

ACKNOWLEDGMENTS

This work is a direct result of my graduate work at Cornell University while
under the supervision of L. E. Trotter, Jr. I gratefully acknowledge his contri-
bution in the development and review of this work.

REFERENCES

1. AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass., 1974, 290-291.

2. BLANKENSHIP, W. A. Algorithm 287, Matrix triangularization with integer arithmetic.
Commun. ACM 9 (Sept. 1966), 513.

ACM Transactions on Mathematical Software, Vol. 15, No. 3, September 1989.

286 l Paul D. Domich

3. BRADLEY, G. H. Algorithms for Hermite and Smith normal form matrices and linear diophan-
tine equations. Math. Comput. 2.5 (1971), 897-907.

4. CHOU, J. T. Algorithms for the solution of systems of linear diophantine equations. Ph.D.
dissertation, Dept. of Computer Science, Univ. of Wisconsin, Madison, 1979.

5. DOMICH, P. D. Three new polynomially-time bounded Hermite normal form algorithms. Mas-
ter’s thesis, School of Operations Research and Industrial Engineering, Cornell Univ., Ithaca,
N.Y., 1983.

6. DOMICH, P. D. Residual methods for computing Hermite and Smith normal forms. Ph.D.
dissertation, School of Operations Research and Industrial Engineering, Cornell Univ., Ithaca,
N.Y., 1985.

7. DOMICH, P. D., KANNAN, R., AND TROTTER, L. E., JR. Hermite normal form computation
using modulo determinant arithmetic. Math. Oper. Res. 12 (1987), 50-59.

8. EDMONDS, J. Systems of distinct representatives and linear algebra. J. Res. N.B.S. 71B (1967),
241-245.

9. FRUMKIN, M. A. Polynomial time algorithms in the theory of linear diophantine equations. In
Fundamentals of Computation Theory, M. Karpinski, Ed. Lecture Notes in Computer Science 56
Springer, New York, 1977, pp. 386-392.

10. HAVAS, G., AND STERLING, L. Integer matrices and Abelian groups, symbolic and algebraic
computation. In Lecture Notes in Computer Science EUROSAM’79, An International Symposium
on Symbolic and Algebraic Manipulation (Marseille, 1979). Springer Verlag, Berlin, 1979,
pp. 431-451.

11. HERMITE, C. Sur l’introduction des variables continues dans la theorie des nombres. J. Reine
Angew. Math. 41 (1951), 191-216.

12. HERSTEIN, I. N. Topics in Algebra. J. Wiley, New York, 1975, p. 20.
13. KANNAN, R., AND BACHEM, A. Polynomial algorithms for computing and the Smith and Hermite

normal forms of an integer matrix. SIAM J. Comput. 9 (1979), 499-507.
14. KNUTH, D. E. The Art of Computer Programming. Vol. 2, Seminumerical Algorithms. Addison-

Wesley, Reading, Mass., 1973.
15. LENSTRA, J. K., RINNOOY KAN, A. H. G., AND VAN EMDE BOAS, P. An appraisal of computa-

tional complexity for operations researchers. Mathematisch Centrum BW Tech. Rep. 159/82,
Amsterdam, The Netherlands, 1982.

16. LINDAMOND, G. E. Numerical analysis in residue number systems. Computer Science Rep.
TR-64-7, Univ. of Maryland, College Park, Md., 1964.

17. MCCLELLAN, M. T. The exact solution of systems of linear equations with polynomial coeffi-
cients. J. ACM 20, 4 (Oct. 1973), 563-588.

18. POLLARD, S. M. Theorems on factorization and primality testing. Proc. Camb. Phil. Sot. 76
(1974), 251-258.

19. ROSSER, J. B. A method of computing exact inverse of matrices with integer coefficients.
J. Res. N.B.S. 49 (1952), 349-358.

20. SIMS, C. C. The influence of computers in algebra. In Proceedings of the Symposium on Applied
Mathematics, 20 (Missoula, Mont., Aug. 1973). American Mathematical Society, Providence, R.I.,
1973, pp. 13-30.

21. SMITH, D. A. A basis algorithm for finitely generated Abelian groups. Math. Algorithms 1
(1966), 13-26.

Received October 1986; revised October 1988; accepted October 1988

ACM Transactions on Mathematical Software, Vol. 15, No. 3, September 1989.

