
C o n c u r r e n t P r o g r a m m i n g vs. C o n c u r r e n c y C o n t r o l t

S h a r e d Even t s o r S h a r e d D a t a

Bruce Martintt

Computer Systems Research Group
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, California 92093

Two views of concurrency in an object system exist. Those pursuing concurrent programming

believe that activities in the real world are inherently concurrent and therefore objects are themselves

active. Objects engage in shared events by sending and receiving messages. Communicating Sequential

Processes [Hoar85a] and Actors [Agha86a] embrace this view. On the other hand, those pursuing models

of concurrency control believe that objects are data and that concurrent access to darn needs to be con-

trolled by the system according to some correcmess notion. Database transactions, atomic objects

[Weih84a, Schw84a] and nested objects tMart88a] embrace this view.

Concurrent programming, in our view, places a significant burden on programming. Correct con-

current behavior is specified as combinations of interactions within a potentially large set of concurrent

objects. A programmer must verify that the implementations of all the objects never produce undesirable

interactions. Correctness of concurrent behavior is left to the programmer.

We are pursuing models embracing concxu~e~acy control primarily because a programmer is not

required to consider concurrency. The operations on an object can be specified in terms of preconditions

and postconditioas and traditional program veritieation techniques can be used to verify an operation's

implementation. A programmer only considers the serial behavi~ of an object in isolation; he need not

concern himself with how other concurrent activities might affect the object. Correemess of int~rleavings

is left to the system.

Serializability is the usual correemess notion for concurrency control algorithms. In transaction ter-

minology, each competing transaction executes a sequence of basic actions. Any interleaving of the

actions is correct if it is equivalent to some serial execution of the transaction. Serialirabilky allows a tran-

saction to be programmed in isolation, that is without considering possible interleavings with other

t ~ work was sponsored in part by gtram.I frem U.C. MICRO Prognma and the NCR Corporation.
t'l" Authors eurtmat address: Hewletx-Paekard Laboratortes, 1501 Page Mill Road, Pslo Alto, California 94304

mamn@h#a/xT.hp.com

142

http://crossmark.crossref.org/dialog/?doi=10.1145%2F67386.67426&domain=pdf&date_stamp=1988-09-26

transactions. The system may indeed interleave the actions of several transactions but it is up to the system

to make the interleaving appear serial.

Concurrent programming is apparently more general. A programmer can implement anything,

including undesirable interactions like deadlock. The price for this generality is that the programmer must

reason about global ordefings of events and thus correctness is difficult to show.

The traditional transaction model is not general enough for programming shared object systems. For

example, several researchers, [Bern87a, Garc87a, Pu88a], have recognized that transactions are too restric-

tive for long-lived activities. The problem is that the transaction model is too conservative. Only reading

and writing a data item at a single layer of abstraction is modeled. Once a read-write, write-read or write-

write dependency is established between two transactions, it remains for the fife of the transaction and tim-

its further interleavmgs.

Our approach is to discover and explore less resmctive correctness notions that still allow program-

mers to implement operations on objects in isolation. In [Mart88a] we present two such correctness

notions: externally serializable computations and semantically verifiable nonserializable computations.

Both correcmess notions assume the nested object model. In [Mart87a] we give a nested object solution to

the Dining Philosophers' Problem [Dijk71a]. Nested objects incorporate both the semantics of an object

and the data abstraction hierarchy of an object.

Nested objects form a nested object system. A nested object system is hierarchical; objects exist at

different levels of the system. The execution of an operation on an object at level i results in the execution

of operations on objects at level i-1. However, only top level objects are viewed externally.

A computation at level i is a description of the state change made to level i objects and the return

values produced by executing a partially ordered set of operations on level i objects. The computations at

each level together form an n-level system computation.

Externally senalizable computations are n-level system computations in which the top level objects

are left in states that could be produced by serial computations. However, lower level objects may be left

in states that no serial computatton could produce. Because both data abstraction hierarchies and opera-

tions semantics are considered in the nested object model, dependencies established between concurrent

computations can be systematically ignored. Long-lived computations can execute efficiently if dependen-

cies can later be ignored.

Nested objects are more general than other models of concurrency control. Transactions are two-

level nested objects that read and write basic data items. Atomic objects are two-level nested objects that

perform abstract operations.

The 1988 Object Based Concurrent Programming Workshop did not directly address the differences

between concurrent programming and concurrency connvl. Perhaps future workshops can contrast the

generality, the applicability, the programmability, the security and the performance implications of models

143

from both concurrent programming and concmT'ency control.

References

Agha86a.
G. Agha, "Actors," Ph.D. dissertation, MIT Press, Cambridge, Massachusetts, 1986.

Bern87a.
P. Bernstein, "Database System Support for Software Engineering," Proceedings of the Ninth Inter-
national Conference on Software Engineering omputing, 1987.

Dij~71a.
E. Dijkstra, "Hierarchical Ordering of Sequential Processes," Acta Informatica, vol. 1, pp. 115-138,
1971.

Garc87a.
Hector Garcia-Molina and Kenneth Salem, "SAGAS," Proceedings of the 1987 ACM SIGMOD
Conference, pp. 249-259, 1987.

Hoar85a.
C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hail, 1985.

Mart87a.
B.E. Martin, "Modeling Concurrent Activities with Nested Objects," Proceedings of the Seventh
International Conference on Distributed Computing Systems, West Berlin, West Germany, Sep-
tember, 1987.

Mart88a.
B.E. Martin, "Concurrent Nested Object Computations," Ph.D. dissertation, UCSD Department of
Computer Science and Engineering, June, 1988.

Pu88a.Calton Pu, Gall E. Kaiser, and Norman Hutchinson, "Split-Transactions for Open-Ended Activi-
ties," Proceedings of the Fourteenth International Conference on Very Large Databases, 1988.

Schw84a.
Peter M. Schwarz, "Transactions on Typed Objects," Phd Thesis, pp. 1-159, Department of Com-
puter Science, Carnegie-Mellon University, December, 1984.

Weih~a.
W.E. Weihl, "Specilic~on and Implementation of Atomic Data Types," Ph.D. dissertation, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, March, 1984.

144

