
PROCOL
A ProtocoloConstrained Concurrent

Object°Oriented Language

Jan van den Bos
Department of Computer Science

University of Leiden
P.O. Box 9512, Leiden

The Netherlands
E-maii: vdbos~hlerulS.bitnet

Abstract

PROCOL is a simple concurrent object-oriented lan-
guage supporting a distributed, incremental and dynamic
object environment. Its communication is based on uni-
directional messages. Objects are only bound during ac-
tuai message transfer and not dunng the processing of the
message. This short duration object binding promotes
parallelism. The communication ieaxiing to access has .o
obey aaa explicit protocol in each object. It takes the form
of a specification of the occurrence and sequencing of the
interaction between the object and its communication
partners. The use of such protocols fosters structured.
sder and potentially verifiable communication between
objects.

1 The Protocol-Constrained
Concurrent Object Model

PROCOL is a concurrent and distributed language
based on objects. Internally these objects are purely
sequential programs. Externally objects run m par-
atlel, as tong as they are not engaged in communi-
cation. The communication is accomplished by mes-
sage exchange. In PROCOL message transfer is syn-
chronous. The sender of the message waits until the
message has been accepted by an intended receiver.
A potential receiver is likewise suspended until it ac-
quires the required message. Immediately thereafter
both the sender and the receiver resume execution.
This (restricted synchronous) binding is identical to
the type of communication binding in CSP. Any pro-
cessing of the received message is done after the
sender has been released. In other words, this syn-
chronous transfer is not equivalent to an extended
procedure call such as in ADA or Smalltalk. because
that type of binding includes the processing of the
message until a result can be returned. In PROCOL
a particular message transfer is in one direction only.
Hence, relaying messages for processing by other ob-
jects can be done routinely.

As a mental model, it is perhaps best to consider
each PKOCOL object as being assigned to its own
processor-memory pair. A communication facility
then provides the means to send synchronous mes-
sages between the processor-memory pairs.
In PROCOL the exportable object services are inter-
n~ly specified as Actions. These actions are similar
to the Smalltalk methods or Eiffel routines. The ac-
tions are the only interface with the outside world. In
general, these actions may depend on one another or
on communication with some other object. In PRO-
COL eligible actions may also depend on the state
of the object, because a Protocol constrains possi-
ble communications, and thus access to the object's
actions. Per object, this protocol takes the form of
a specification rule over interactions, an interaction
being an entity consisting of sender, message, and in-
ternal action. The protocol determines the allowable
actions in a given state as well as the (partial} order-
ing of the actions. A run-time communication is legal
when the object is in the right state, and when the
actual sender and requested action correspond with
sender and action specified in the protocol interac-
tion(s) for that object state. Receipt of the mes-
sage denoted in the interaction triggers the action.
The form of the protocol has been derived from our
work on input expressions (ACM-Toplas 10,$,1988)
controlling man-machine interaction, which were m-
spired by the path expressions of Habermann.
An object type (abstract data type) is defined by
means of a (program) text. Objects become active
when created (allocated) by means of the new prim-
itive. Attributes may be used to tailor a p~ticular
object. The attribute list is passed to the object as
part of the new primitive, and bound to the object
through the initialization routine defined in the Inlt
section. Example:

Declare z : Oh]A;
z := new Ob]A (attrl, attr$,...)

in which ObjA is a defined object type, z a variable
of the type Oh]A, and atZri attributes of ObjA. After
succesfully executing the statement, the variable z
contains the identity of the object.
The object issuing the new primitive is known as
the Creator to the object created. Object removal
is accomplished by means of the del primitive, to
be issued by the Creator. Before the object is physi-
cally removed the C leanup section is executed (only
once). Object creation imposes a certain hierarchy
between objects. Originally, the identity of the cre-
ated object is only known to its Creator. The identity
may however be passed to other objects as part of an
attribute list or a message.

149

http://crossmark.crossref.org/dialog/?doi=10.1145%2F67386.67428&domain=pdf&date_stamp=1988-09-26

Objects in PROCOL coexist with some set of basic
types as present in most languages. PROCOL object
types do not emulate these basic types. PROCOL
uses facilities such as procedures, expressions, and
assignments of some imperative host programmang
language.
PROCOL knows one special object type to indicate
a collection of regular object types. The type has
the name any with optional parameters enclosed m
square brackets. The parameters indicate the object
types involved. If the parameter list is absent, the
universe of object types is meant. For example:

Declare z : any; r,y : any {obja, ObjB]

As a result z and y can be of type ObjA or of type
ObjB, but not simultaneously. The variable z can be
any object type, but again one at a time. The actual
type is deterrraned by explicit assignment or implic-
itly via a message. It is also in this connection that
the object A N Y is employed. This name is option-
ally used with a parameter list equal to the one with
the type any. For example, with the declarations just
given in force:

r := A N Y [ObjA];
y := A N Y [ObjA, ObjB];
z := A N Y

means that z is any instance of type ObjA, y is any
instance of type ObjA or ObjB (the assignment to
y may be replaced by the shorthand y:mANY), and
z stands for any instance of all object types. The
literats Creator and A N Y may be used wherever an
object type variable is allowed.
A PROCOL object definition consists of the follow-
ing parts:

OBJ
D e s c r i p t i o a
Dec lare
Init
P r o t o c o l
C l e a n u p
A c t i o n s
E n d o b j

Name Attrtbutea
natural language description
local type definitions, data, procs
section executed once at creation
(sender-message-action)-expression
section executed once at deletion
definitions of local actions
Name

2 Act ions

The so-called Act ions section in a PROCOL object
definition contains the definitions of the actions to
which other object may send messages. The names
of the actions are known externally. The action is ex-
ecuted when the correct type of message is received
from the right source object, as indicated in the pro-
tocol. Messages to other object may be sent from
within the actions specified in the Act ions section.

but also from within the In.lt and C leanup sections.
Reception, meaning acceptance of the message, can
only take piace when the action is allowed according
to the protocol. An action body may contain any
executable code. In particular it may include send-
ing a message to an object using the syntax (square
brackets enclose options):

[rtc:=] OtherObjecL[Actwn-Name] [msg]

OtherObject contains the identity of the created ob-
ject. Ac¢wn-Name is the name of the action in Oih-
erObject to which message msg is sent for process-
ing. The success or failure of the send is transmit-
ted through the boolean variable rtc. Failure occurs
when the object does not exist.
Actions have an atomic nature: the object processing
an action first completes it before it can receive any
new message. In other words only one action per
object can be in progress at a time.

3 PROCOL Protocol

During the life of a PROCOL object, the correspond-
ing protocol repeats until the object is deleted. This
protocol is an expression over interaction terms. An
interaction term specifies the communication part-
ner, the type of memage involved, and the action to
be executed. The form of an interaction term is:

SourceObjec~ [msg] - - Action.

The semantics is that upon receipt of message msg,
from source SourceObject, action Action will be exe-
cuted.
The protocol contains expressions constructed by the
following four operators selectwn +, sequence ;, repe.
ti~ion *, and guards (in increasing precedence). The
guard is a boolean expression opening or closing a
gate to the interaction E. Given expressions E and
F, and guard ~, their meaning is as follows:

E + F sdeCtion: E or F is selected
E ; F , e~ence : E is followed by F
E * repetition: Zero of more times E

: E guard: E only if ~ is true

4 P R O C O L E x a m p l e s

4 .1 S q u a r e R o o t P i p e l i n e

This pipeline consists of one object of type Sqroot
and any number of pipeline elements NRSiep. The
square root of x is calculated by a series of approxi-
mations according to the Newton-Raphson method.
Sqroot creates an object NRStep which computes the

150

next est imate. This object creates a next NRSiep
for a new est imate. This creation and approxima-
tion process goes on until the present es t imate and
the previous one differ tess than some value cps. The
present es t imate is then re turned to the user. As

soon as Sqrooi has p ~ s e d its a rgument to the first
instance of NRSlep, it is ready to handle a second
square root request, because the pipeline remains in
existence. Once the pipeline is filled, n computa t ions
are in progress simultaneously.

OBJ Sqroot

Declare x : REAL; initpil:m : BOOk

Client : att~; Child : NIRStep

Init initpipe := TRUE

Protocol ANY(x)--Compute

Actions Compute = { Client := sender:
IF initpipe THEN new Child;

initpipe := FAI~E FI;
Child.Compute(x,O.5" x+ 1 ,Client) }

EndOBJ Sqroot.

OBJ NRStep

Declare x, "Fat, NewF~t, epa : REAk initpipe, done: BOOk
Client : 6-1~ Child : NRStep

Ymit elm := 0.0001; inhpipe := TIKIE

Protocol CreatoT(x,F.~t,C~ent)--Compute

Actions Compute = { NewEst : - 0.5*(Fat+Est/x);
done := abs(1-NewEst/Est) < eps;
IF done ~ Client.(NewEst);
lr~.~ IF initpipe 'IHEN new Child:

initpipe := FAI.~E FI;
Child.C ompu re(x,F.~tt ,Client)

n }
EndOBJ NRStep.

4 . 2 M a s t e r m i n d

This familiar game is modeled here as a parent ob-
ject, Mastermind, which creates two children, in-
stances of Player and Opponent. Mastermind does
little else but wait for a ready signal from its two sib-
lings. Player and an Opponent play with pawns in 7
colors. Opponent determines a sequence of 4 pawns.
called the code. Player tries to guess the code. Op-
ponent evaluates the guess and informs Player of the
number of bulls (position and color correct) and cows
(color correct , not including the bulls). Player now
determines a new guess. Player and Opponent are

presented only.

Player's protocol s tar ts by sending a r andom guess
f rom action SLart, to its opponen t . Opponent moni-
tors the number of turns allowed and evaluates the
correctness of the guess, which is sent to Player.
Player determines a new guess in act ion Makeguess
and sends it to Opponent. This m a y be repeated (*)
a number o f times, until either the code is guessed or
mazguess has been exceeded. I f so Opponem re turns
the score to action Stop in Player, and the repet i t ion
terminates. I f bulls=4 Playersends a celebration sig-
nal to act ion blow of any exist ing object of type Horn.
Finally it sends a (complet ion) message to its c rea tor
Mastermind.

OBJ Player

Declare

Protocol

Actions

opponent : Opponent;
i, built, cows:
gueas : ARRAY [1 ..4] OF INT:
proc EducatedGue~ = ,..

Creator(opponent)-* Start:
opponent(bulla, cows)-.Makegueu =;
opponent(bulls)--*Stop

Start = { FORi:=0 TO 4
~_~{i] = a,,Lndom(l, 7);

olq~onent.Eval(gum); }
Makegue~ = { EducatedGueu;

oppone, n t .Eva](gueas); }
Stop = { IF (buUs = 4) 'IHEN

ANY~Horn].blow:
F~
Creat 0r.EndPlayer; }

EndOBJ Player.

OBJ Opponent

Declare

Init

Protocol

Act ions

EndOBJ

player : Player; count, i, built, cows :
code, guess : ARRAY [1..4] OF INT;
notend : bool:
proc Deetermmescore = ...

~mi:=0 To 4 code{t] := ~ndom(LT);
playm" := ANY~layeT]; count := 1;
notend : true;

notend: player(gue~)--*Eval

Eval = {IF cotmt=l ~ player:msender Fl;
Determincscore: count:=count+ 1;
notend:=count<maxguess and bul]a<4:
IF notend

player.Makeguess(bulla,cows);
tIBE player.Stop(bulls);

Great 0 r.EndOpp(bulls---4)
n };

Opponent.

151

