
Position Statement on Concurrent Objects
for Massively Parallel Architectures*

Edward A. Luke / Electrical Engineering
Helen C. Takacs / Computer Science

hctakacs@msstate
William C. Welch / Institute for Technology Development

claude@cs.cmu.edu
Mississippi State University

1. Introduction

In choosing the appropriate model for
programming free-grained tasks to be run on
a multicomputer system the facts that
objects are inherently sequential and actors
are inherently concurrent do not strongly
influence the choice. The interesting
concurrency occurs in the interaction among
computational agents, not in the concurrency
within an agent.

2. Motivation

This discussion reviews some features
of objects and actors and attempts to
answer remarks made by Carl Hewitt
[Hewitt, 1988} concerning the superiority of
actors over objects.

Our interest in this discussion stems
from research on a multicomputer being
designed at Mississippi State University
called the Mapped Array Differential
Equation Machine (MADEM). The
architecture for this floating-point-intensive
scientific problem solver supports a fine-
grained reactive message-passing
programming model. Message delivery and
process scheduling are performed by a
node's i/o processor, which operates
concurrently with a high performance
numeric processor. In choosing our model
for concurrent computation we were
influenced by research at Cal Tech and by
the work of William Dally [Dally, 1986].

3. Concurrency within computational
agents

It has been said [Hewitt, 1988] that
actors are not objects, because objects are
inherently sequential, while actors are
inherently concurrent. The essential
concurrency in an object-based model
occurs because multiple asynchronous
threads of activity use message passing to
share data and to synchronize their actions.
Within these threads of activity, execution
is sequential. Indeed, objects can be
viewed as combining sequential procedures
and declarative information to control access
to data and to promote modularity. In our
system "objects" and "processes" are
interchangeable except that the object
notation affords encapsulation and
information hiding. On the other hand, an
actor has no presumed sequentiality in its
actions.

Clearly actors support a finer grain of
concurrency. After receiving a message, an
object performs a sequence of actions
(which may include instancing other
objects), and then either terminates or
grabs the next message in its queue. An
actor responds to a message by executing a

*The research described in this paper was sponsored
by the Defense Advanced Research Projects Agency
under contract number DAAA 15-86-K-0025,
through a subcontract with Mississippi State Univer-

sity

171

http://crossmark.crossref.org/dialog/?doi=10.1145%2F67387.67435&domain=pdf&date_stamp=1988-09-26

set of actions, too, but these may be
performed in any order or in parallel.
including the computing of the actor's
"replacement behavior" (i.e. specifying the
actor that will process the next message in
t h e queue.) This notion of allowing
processing on the next message in the
queue to begin before processing on the
current message has completed is difficult to
mimic with concurrent object systems,
because a new object does not assume
ownership of an old object's queue. The
older object would have to relay messages
from its queue to the newer object's queue
explicitly. The message queue in the actor
system is distributed, so that a replacement
actor may start on a processor different from
the one on which the current message is
executing.

4. Lack of significance of intra-agent
concurrency

If we grant that finer-grained tasks are
essential to take advantage of massively
parallel ensemble machines, then whether
we view our individual computational agents
as objects or as actors, the sequential
nature of the objects or the parallel nature of
the actors has little impact on the overall
parallelism in the system. An object
consists of a code area and a private
memory area. The private memory area of
an object in a fine-grained message-driven
program is quite small, say less than 100
bytes. Each object is an independent
computational agent, interacting with others
solely by message passing. It consists of
private variables that persist between
receiving messages, a list of variables that
describe the contents of the next message,
and a sequence of actions describing how
the object will react to the next message.
There will be only a small number of
instructions executed between each

communication operation. The size of these
threads will be so small that the decrease in
concurrency caused by ordering actions in an
object versus performing these actions in
parallel is irrelevant to overaU concurrency.
As the grain-size decreases, less work is
done in response to receipt of a message.
We begin to view the actions taken in
processing a message as an atomic
response.

5. Summary

Replacement behavior in actors offers a
level of concurrency that objects do not
have, but as long as there is enough work to
keep the processors busy in a parallel
machine no additional concurrency is
necessary. Handing off the replacement
behavior to another processor does not
accomplish anything if the processors have
plenty to do already. Therefore, even though
replacement behavior in the actor occurs
anywhere, even perhaps before the method
is performed, while replacement behavior in
an object is always at the end, there is no
advantage to early replacement behavior if
the method is time-gained. It is not as
important to have "parallel" replacement
behavior when it demands more from the
communication network.

Figure 1.a:
In the actor model the replacement behavior occurs
at any point in the method.

172

Queue ~ Method

Replacement/Behavior

Figure 1.b:
In the object model the replacement behavior
occurs at the end of an ordered method. In finer
grained applications where the methods become
more atomic in nature, this limitation is less sig-
nificant.

The challenge is to write programs
organized into small pieces that send and
receive messages. We choose the model
that facilitates programming. Researchers
in parallel processing developed the actors
model, while researchers in software
engineering developed the object oriented
model. It is not surprising then that actors
can describe an additional level of
concurrency, but objects facilitate
organization of programs. Many new
languages are borrowing from both models,
e.g. [Athas, 1988]. Once the program is
expressed as a collection of fine-grained
objects, exploitation of concurrency is
straightforward.

Efficient use of fine-grain machines, i.e.
machines that contain tens of kilobytes of
memory as opposed to those which contain
megabytes of memory [Athas, 1988]
remains on the research frontier. The
interesting concurrency occurs in the
interaction among computational agents, be
they actors or objects. If message
communication takes place m larger units
and less frequently than memory accesses,
then message communication between
computational units can exhibit a larger
latency. But as the sequences that execute
between messages are reduced, then
message latencxes must reduce in

proportion, for performance is end-to-end
latency time for interprocess communication
[Hewitt, 1988].

As message-passing performance
improves relative to computing performance,
the contrast between actors and objects
may become significant, but present day
medium-gain multicomputers cannot
exploit the full advantages offered by the
inherent concurrency of actors. We can be
optimistic about the practicality of actors in
our future.

References

[Agha, 1986]
Agha, G. A., Actors: a model of concur-

rent computation in destributed O's-
terns, Boston : MIT Press, 1986

[Athas, 1988]
Athas, WilIiam C. and Seitz, Charles L.,

Multicomputers : message-passing
concurrent computers, IEEE Comput-
er, 21, 8. (Sept. 1988) pp. 9-24.

[Dally, 1986]
Dally, W. J., A VLSI architecture for con-

current data structures, Hingharm
MA : Kluwer Publishers, 1986.

[Hewitt, 1988]
Hewitt, Carl. Panel discussion on object-

oriented concurrency. OOPSLA '87.
Sigplan Notices. 23, 5. (May 1988)
pp. 119-127,

173

