
CH1'89 PROCEEDINGS MAY 1989

TASK-ORIENTED REPRESENTATION OF
ASYNCHRONOUS USER INTERFACES

Anton io C. S iochi
H. Rex Har t son

Depar tment o f Compu te r Sc ience
Virginia Tech

Blacksburg , V A 24061

A B S T R A C T
A simple, task-oriented notation for describing user
actions in asynchronous user interfaces is introduced. This
User Action Notation (UAN) allows the easy
association of actions with feedback and system state
changes as part of a set of asynchronous interface design
techniques, by avoiding the verbosity and potential
vagueness of prose. Use within an actual design and
implementation project showed the UAN to be
expressive, concise, and highly readable because of its
simplicity. The task- and user-oriented techniques are
naturally asynchronous and a good match for object-
oriented implementation. Levels of abstraction are
readily applied to allow definition of primitive tasks for
sharing and reusability and to allow hiding of details for
chunking. The UAN provides a critical articulation point,
bridging the gap between the task viewpoint of the
behavioral domain and the event-driven nature of the
object-oriented implementational domain. The potential
for UAN task description analysis may address some of
the difficulties in developing asynchronous interfaces.

KEYWORDS: Notation, interface design representation,
asynchronous user interfaces, task-orientation, user
actions, task description analysis.

INTRODUCTION
The dynamic nature of user interfaces has always been
difficult to represent. A good notation reduces the
semantic gap between entities in the designer's mind and
objects with which that designer must communicate the
design. Such entities lie in two interaction metaphors
postulated by Hutchins, Hollan and Norman [8] - the
conversational and the model world. The first is
sequential in nature (as in command line interfaces) while
the second is asynchronous (as in direct manipulation
interfaces).

Permission to copy without fee all or part of this material Is
granted provided that the copies a r e not macle or distrib-
uted for direct commercial advantage, the ACM copyright
notice and the title of the publication and Its date appear,
and notice Is given that copying Is by permission of the As-
sociation for Computing MachinerY. To copy otherwise, or
to republish, requires a fee and/or specific permission.

© 1989 ACM 0-89791-301-9/89/0004-0183 1.50

There are many techniques for explicitly representing the
control flow of sequential dialogue, including BNF and
state transition diagrams. However, representational
needs for asynchronous interaction are difficult to satisfy
with such techniques [10]. For example, how are the user
actions required in a direct manipulation [17] interface
specified? How are multi-thread and concurrent dialogues
represented?

This paper introduces a task-oriented representation
technique for asynchronous interaction and focuses on a
notation called the User Action Notation (UAN) for
representing user action sequences involved in the
execution of a task. The UAN is part of a set of techniques
that, taken together, is used to describe interface designs.
This set of techniques has been successfully used to design
the interface of a UIMS, where a direct manipulation
interface was required. Because the project involved
designers, implementors, and evaluators, communication
of designs was vitally important. Our initial designs
were in prose, supplemented with illustrations. These
were time-consuming and varied in expressiveness. The
descriptions were often verbose, imprecise, and typically
difficult to read, understand, and change.

Our need was for an expressive and concise notation
specifying user actions in relation to screen objects, as
well as techniques for associating feedback and state
changes with those actions. Because the design process is
driven by requirements and task analysis, descriptions had
to be expressible primarily from the viewpoint of the
user, not the computer. Moreover, the interface's
asynchronous nature demanded a technique which avoided
explicit specification of control flow among tasks. The
purpose of the UAN is therefore to communicate with
all developer roles the user actions required to perform a
task in an asynchronous interface.

The next section summarizes work related to the
problem. The rest of the paper presents the UAN by
describing portions of a well-known interface, then
discusses some UAN characteristics.

RELATED WORK
Models and meta-languages for interfaces exist which can
describe the task structure of an interface. They are
formal in nature since their creators intended to use them

1 8 3

http://crossmark.crossref.org/dialog/?doi=10.1145%2F67450.67487&domain=pdf&date_stamp=1989-03-01

CH1'89 PROCEEDINGS MAY 1989

in an analytical fashion, e.g., to predict the quality of the
interface given its formal description [15, 11, 16, 2, 12].
Our needs, however, were for a simple notation to
describe user actions in a direct manipulation interface - a
synthetic rather than analytic tool.

From a synthetic viewpoint, existing work has involved
user interface specification based on state transition
diagrams, e.g., [9, 18, 19], requiring explicit specification
of the interface's control flow. Other work has focused
on use of concurrent programming concepts to specify or
implement the interface, e.g., [6, 3, 7, 4].

Myers [13] specifies interfaces by demonstration,
producing only program code, with no other
representation of the interface that conveys its design or
that can be analyzed. Olsen [14] generates a standard
interface given a set of application functions. Jacob [10]
combines state diagrams and object orientation. A
mutually asynchronous set of state diagrams represents
the interface, avoiding the complexity of a single large
diagram. Foley, et al., [5] build a knowledge base
consisting of objects, attributes, actions, and pre- and
post-conditions on actions which form a declarative
description of an interface, from which interfaces are
generated. These approaches describe the interface in
terms of algorithms the computer must execute in order
to interpret user actions. None describe actions from a
task orientation.

A SIMPLE EXAMPLE
The description of the task of selecting the trash icon in
the Macintosh TM Finder as written in [1] is

1. Position the pointer on the Trash icon...
2. Click the icon by pressing and immediately

releasing the mouse button.

The actions required by this task are moving the cursor,
locating a particular context on the screen, and operating
the mouse button. In the UAN, cursor motion is
represented by ~. A screen object's context is indicated by
enclosing in square brackets a mnemonic descriptive of
that object. Thus

~[trash-icon]

represents moving the cursor to the context of trash-icon
(leaving that context would be written as [trash-icon]~).
The context of trash-icon is the "handle" that allows the
user to manipulate trash-icon. In this case it is trash-icon
itself.

The mouse button is identified as a device, and its possible
operations described by representing the mouse button as
M and denoting the actions of depressing it by v, and
releasing it by ^. Hence

Mv ̂

Macintosh TM is a trademark licensed to Apple Computer,
Inc. MacDraw TM is a trademark of Apple Computer, Inc.

indicates the user action "click the mouse button." The
complete specification for the "select trash-icon" actions
is

~[trash-icon] Mv ̂

Again quoting [1], the description of actions required for
the task of moving the trash icon is

1. Position the pointer on the Trash icon.
2. Press and hold the mouse button while you move

the mouse.
When you press the mouse button, you select the
icon. As you move the mouse, the pointer moves
and drags an outline of the icon and its name along
with it...

3. Release the mouse button
The icon snaps to its new place.

In the UAN, these actions are represented by

~[trash-icon] Mv
(~[x,y])*
M A

This example introduces several concepts. Reference to
the context of a coordinate pair, [x,y], represents some
screen location. Grouping of actions is indicated by
parentheses. The Kleene star, *, denotes zero or more
occurrences of the immediately preceding action. Thus
(~Ix,Y])* means "move the cursor to an arbitrary number
of screen locations." These and other concepts will be
developed more in the next section.

THE USER ACTION NOTATION
The example above presented parts of the notation to
describe user actions necessary for a task. A more
complete specification for this portion of the user
interface requires more data, e.g., feedback and system
states. It is important to associate that information with
the appropriate user actions. The following sections
describe the UAN and techniques used with it to make
such associations.

User Actions
The user actions for a task are represented by a sequence of
symbols. Table 1 lists the current UAN symbols.

Feedback
In the example of the task for moving the trash icon, the
prose version included descriptions of what happened on
the screen in response to user actions. The user actions can
be annotated to describe this feedback:

~[trash-icon] Mv trash-icon !
(~[x,y])* outline of trash-icon follows cursor
M A show trash-icon at (x,y)

where trash-icon ! means highlight trash-icon. Note that
feedback for a user action sequence is written on the same
line as that sequence, giving a simple method of indicating
the relationship between user actions and feedback.
Feedback is often described with prose in combination
with notation, since the range of feedback effects is
relatively unconstrained compared to the set of user

1 8 4

CH1'89 PROCEEDINGS MAY 1989

actions. In some cases supplemental figures may be
required, or may themselves be annotated with user action
sequences.

TABLE 1. The User Action Notation Symbols.

User Actions:
~ move the cursor
[sym] context of sym; "handle" with which user

manipulates sym
[x,y] context of screen location x,y
Xv depress key X
X ̂ release key X
() grouping mechanism
* Kleene star; indicates zero or more

repetitions of previous action
& concurrency symbol; used to indicate that

actions it connects are performed together,
but are order independent

; task interrupt symbol; used to indicate that
user may interrupt the current task at this
point (the effect of this interrupt is
specified as well, otherwise it is undefined,
i.e. as though the user never performed the
actions)

Feedback:
! highlight an object
-I dehighlight an object
II same as !, but use an alternate highlight

Conditions of Viability:
condition: action if condition is true, then

action may be performed, e.g., X -! :
~IX]My ^ means " i f X is not
highlighted, user may click the
mouse on it"

! is used abstractly in the UAN; its definition is kept
separate since how to highlight an object is a detail that
can interfere with the design process at this level, and is
subject to change. The specific meaning of X! can be
defined as part of X. For example, a "check box" can be
highlighted by placing a check mark in it, a radio button
with a bullet, or text by reverse video. If the methods for
highlighting are inheritable within a hierarchical
structure, consistent highlighting is easy to achieve over a
class of interface objects.

System State
Communicating the interface design requires specifying
connect ions to the task semantics. This tells
implementors how to interpret user actions. The UAN
can be further annotated to indicate semantic connections:

~[trash-icon] Mv trash-icon ! currentObject =
(~[x,y])* outline of trash- trash-icon

icon follows cursor
M ~ show trash-icon at update location

(x,y) of trash-icon

This indicates that trash-icon becomes the currently
selected object when the mouse button is depressed while
the cursor is over it. When the mouse button is released,

the location of trash-icon is set to the coordinates where
the mouse button was released.

Condit ions of Viability
The user and the developer need to know under what
conditions a particular task is viable (i.e., can be
performed) at a given point in the interaction. Hence
conditions of viability must be included as part of a task
description (see pre-conditions in [5]).

For example, a condition of viability for the task of
duplicating a file in the Macintosh Finder is that a file
must be selected. Assume that the task of selecting from
a pull-down menu has been defined as menu(X), where X is
the menu item to be selected. The duplication task would
thus be described by

Condition of viability: some file is selected
menu(duplicate) display duplicate-file duplicate the

duplieatefile ! selected file

Conditions of viability may be used by designers to
prevent errors by disallowing non-viable tasks, e.g.,
graying out a menu item. Conditions of viability also
indicate to the user what has to be done to make a task
viable.

Examples
Deleting Multiple Macintosh Files. As an example of using
the set of techniques above, consider the task of deleting
several files on the Macintosh. Two assumptions are
made about the interface design:

1. An object is highlighted if and only if it is selected.
2. A file exists if and only if an icon for it is on the

desktop.

The condition of viability is that there are files on the
desktop. A UAN task description is shown in Figure 1.

TASK: delete multiple files
I

USER ACTIONS FEEDBACK SYSTEM STATE

(' sh i f t - key ' v ;
(file-icon -!:
~[file-icon];

Mv
M^;)*;

' sh i f t - key ' ^) * ;

f i le-icon!:
~[f i le- icon];

Mv
~ [x , y] *

~[trash- icon];
M ̂

f i le-icon!

hilited icons
follow cursor
trash-icon!
erase hilited
icons,
trash-icon!!

add file-icon to
selected set

mark selected
files for deletion

Figure 1. UAN Task Description for Deleting
Multiple Files on the Macintosh

1 8 5

CH1'89 PROCEEDINGS MAY 1989

TASK: select-menu(x,choice') RETURNS: choice' I

USER ACTIONS i FEEDBACK SYSTEM STATE

~[x-menu-bar-choice] Mv

select-pul l -down-
choice(x,choice')

x-menu-bar-choice ! ,
show x-menu (See figure x.)

hide x-menu Return choice'

Figure 2. UAN Task Description for Selecting a Pull-Down Menu

The file-icon -!: (second line of "User Actions") indicates
a condition of viability that applies to a specific step. For
this task the file being selected cannot already be selected.
This cannot be stated in a task-level condition of viability
since during the iteration of selection actions (lines two
and three of "User Actions"), some files are selected and
some are not. After the mouse click, file-icon is
highlighted. In the next pass through the iteration, file-
icon refers to some other file since the condition of
viability restricts selection to non-highlighted files.

This task can be thought of as two sub-tasks, select-files
and delete-selection. These sub-tasks could be defined as
separate tasks and referred to here by name.

Selection from a Macintosh Pull-Down Menu. This example
shows the definition of two sub-tasks, one (see Figure 2.)
for selecting a pull-down menu from a menu bar and
another (see Figure 3.) for selecting a choice from the
resulting pull-down menu. The second sub-task is
referred to in the first task description.

TASK: select-pull-down-choice (x,choice')
RETURNS: choice'

USER ACTIONS FEEDBACK SYSTEM STATE
(~[x.choice] x.choice!
[x .choice]~)* ; x.choice -!
~[x.choice'] x.choice'!
M ̂ x.choice'!! Return choice'

Figure 3. UAN Task Description for Selecting a Choice
from a Pull-Down Menu

Selec t -menu(x ,choice) can be used in another task
description. For example, in the task to open a file, the
description might contain select-menu(FILE,OPEN).

T A S K ORIENT A T I O N
Task descriptions, such as these examples, are written at a
detailed level of abstraction, i.e, in terms of user actions.
This level is the articulation point between two major
activities within the development life cycle: task analysis
and design. Because these task descriptions are at once the
terminal nodes of the task analysis hierarchy and the
beginnings of a user interface design, it is a case where
task analysis quite naturally drives the design process.

Use of sub-task references in task descriptions provides a
direct means for chunking user actions. The sequence

blvM A

is often thought of as a single mouse click:

My ̂

For many, this chunking is carded to higher levels. For
example, the user can assimilate the sequence

~IX] Idv^

into a cognitively atomic action for selecting X. Since the
sequence is automatic to the user, lower level actions do
not add to the task's cognitive load. The sequence can be
defined once and referred to as a sub-task, abstracting
away undesirable detail. Many common actions in, for
example, the Macintosh Finder soon become automatic
for the user. Sub-task references in the UAN then become
appropriate for tasks such as invoking a pull-down menu,
making a menu choice, or moving an object. In addition,
from a design and implementation viewpoint, sub-tasks
support reusability and consistency.

A N A L Y S I S
User actions in a task description can be processed to
analyze structure and detect ambiguity and inconsistency.
Although the motivation for the UAN was to provide a
practical notation for representing asynchronous
interaction, it became apparent that there was a need for
analyzing task descriptions, since an interface design
consists of a set of disjoint task descriptions. The
common prefix problem is presented as an illustration.

With our approach to interface design, it is possible to
design two tasks such that they share an initial
subsequence of actions. Although only one of two such
tasks is intended by the user, the computer cannot
distinguish between them until actions go beyond their
common sequence. This situation, which could lead to
ambiguity and conflict in the design, can be detected by
task description analysis.

As an illustration, consider these two tasks:

~[X]; Mv X!
M A

[TASK 1 : select-X]

1 8 6

CH1'89 PROCEEDINGS MAY 1989

[TASK 2: move-x].
~[X]; Mv X I
~[x,y] X follows cursor
IVP Show X at new Update location of X

location

These tasks have a common prefix, ~[X]; Mv. One
explanation for this prefix is that selection is a move of
zero distance. Yet this is a case in which task description
analysis can identify a potential user problem with the
interface. An inadvertent hand movement between Mv and
M ̂ in the select-X task will cause a switch to an
unintended task, move-X. MacDraw TM users will recall
having moved an object while attempting only to select
it.

Another potential problem is unresolvable ambiguity. If
these two tasks were designed at different times by
different designers, two different highlighting styles
might be specified. This presents an impossibility to the
implementor because for the prefix

~[X]; Mv

it cannot be decided which task is active and, therefore,
which highlighting to use.

Consider further the tasks of selecting and opening a
document. The select task, ~[document]Mv ̂, is a prefix of
the open task, ~[document]Mv^v ̂ . Macintosh users may
recall the distressing effects of accidentally opening a
document while trying to select it.

Other types of analysis might involve user performance
metrics, usage strategies, structural consistency, and
implementation verification.

S C O P E
Because the UAN is textual, it is not suited to describing
screen layouts. When the actual appearance of screen
objects must be specified, figures are used to complement
UAN descriptions. Because the UAN is user-oriented, it
does not address the design of the system structure, nor of
the interface objects. Because the UAN is task-oriented, it
has a microscopic view of the interface: it does not
describe the tasks from a global view, nor does it provide
an overview of the system (what the system is).

These characteristics restrict the scope of the UAN to
describing user actions in the context of interface objects.
Within this scope, it is the simplicity of the notation
(few symbols, simple syntax) that makes it useful -
precise, concise, expressive, and easy to understand. In
addition, its textual nature gives it the power of
abstraction, its user-orientation encourages the designer
to think from the user's perspective, and its task-
orientation allows the designer to focus on specific tasks.

CONCLUSIONS AND FUTURE WORK
We have introduced a task-oriented User Action Notation
(UAN) for describing user actions and their associated

feedback and system state changes. Our notation is part of
a set of asynchronous user interface design techniques that
was successfully used to represent the design of the direct
manipulation interface of a UIMS. The UAN was found
to be concise, expressive and highly readable. It is an
articulation point between task analysis and interface
design, bridging the gap between the behavioral and
constructional domains. Our notation also has potential
for task description analysis, thus possibly easing the
process of developing asynchronous user interfaces.
Future work includes developing more formalism and
precision in the notation, and exploring task description
analysis.

ACKNOWLEDGEMENTS
The authors wish to thank Deborah Hix, Eric Smith, and
the rest of the DMS Project at Virginia Tech for their
contributions to the development of this notation. The
financial support of the Software Productivity
Consortium and the Virginia Center for Innovative
Technology is also acknowledged.

REFERENCES
1. Apple Computer, Inc. Macintosh H Owner's Guide.

Apple Computer, Inc., California, pp. 31 - 33. 1986.

2. Card, S. K., Moran, T. P., & Newell, A. The
Psychology of Human-Computer Interaction,
Lawrence Erlbaum, Associates, New Jersey. 1983.

. Cardelli, L., & Pike, R. Squeak: a Language for
Communicating with Mice. Computer Graphics 19,3
(1985), 199 - 204.

4. Flecchia, M. & Bergeron, R. D. Specifying Complex
Dialogs in ALGAE. In Proceedings of CHI +GI 1987
(Toronto, Apr. 5-9). ACM, New York, 1987, pp. 229
- 2 3 4 .

. Foley, J., Gibbs, C., Kim, W., & Kovacevic, S. A
Knowledge-Based User Interface Management
System. In Proceedings of CHI 1988 (Washington,
May 15-19). ACM, New York, 1988, pp. 67 - 72.

6. Green, M. The University of Alberta User Interface
Management System. Computer Graphics 19,3
(1985), pp. 205 - 213.

. Hill, R. Event-Response Systems - A Technique for
Specifying Multi-Threaded Dialogues. In
Proceedings of CHI+GI 1987 (Toronto, Apr. 5-9).
ACM, New York, 1987, pp. 241 - 248.

8. Hutchins, E. L., Hollan, J. D., & Norman, D. A. Direct
Manipulation Interfaces. In User Centered System
Design, D. A. Norman, & S. W. Draper, eds. Lawrence
Erlbaum Associates, New Jersey, pp. 87 - 124. 1986.

1 8 7

CH1'89 PROCEEDINGS MAY 1989

.

10.

11.

12.

13.

14.

Jacob, R. J. K. An Executable Specification Technique
for Describing Human-Computer Interaction. In
Advances in Human-Computer Interaction, H. R.
Hartson, ed. Ablex, New Jersey, pp. 211 - 242. 1985.

Jacob, R. J. K. A Specification Language for Direct-
Manipulation User Interfaces. ACM Trans. on
Graphics 5, 4 (1986), 283 - 317.

Kieras, D & Poison, P. G. An Approach to the Formal
Analysis of User Complexity. Int. J. Man-Machine
Studies, 22 (1985), 365-394.

Moran, T. P. The Command Language Grammar: A
Representation for the User Interface of Interactive
Computer Systems. Int. J. Man-Machine Studies, 15
(1981), 3 - 51.

Myers, B. Creating Dynamic Interaction Techniques
by Demonstration. In Proceedings of CHI+GI 1987
(Toronto, Apr. 5-9). ACM, New York, 1987, pp. 271
- 278.

Olsen, D. R. MIKE: The Menu Interaction Kontrol
Environment. ACM Trans. on Graphics 5, 4 (1986),
318 - 344.

15.

16.

17.

18.

19.

Payne, S. J. & Green, T. R. G. Task-Action Grammars:
A Model of the Mental Representation of Task
Languages. In Human-Computer Interaction, vol. 2.
Lawrence Erlbaum Associates, Inc. pp. 93-133. 1986.

Reisner, P. Formal Grammar and Human Factors
Design of an Interactive Graphics System. IEEE
Trans. on Software Engineering SE-7, 2 (1981), 229 -
240.

Shneiderman, B. Direct Manipulation: A Step Beyond
Programming Languages. IEEE Computer 16, 8
(1983), 57 - 69.

Wasserman, A. & Shewmake, D. The Role of
Prototypes in the User Software Engineering (USE)
Methodology. In Advances in Human-Computer
Interaction, H. R. Hartson, ed. Ablex, New Jersey,
pp. 191- 209. 1985.

Yunten, T., & Hartson, H. R. A SUPERvisory
Methodology And Notation (SUPERMAN) for
Human-Computer System Development. In
Advances in Human-Computer Interaction, H. R.
Hartson, ed. Ablex, New Jersey, pp. 243 - 281. 1985.

188

