
CH1'89 PROCEEDINGS MAY 1989

GENERATING HIGHLY INTERACTIVE
USER INTERFACES

Charles Wiecha, William Bennett, Stephen Boles, and John Gould

I B M T.J. Wat son Research Center
P.O. B o x 704

York town Heights , N Y 10598

ABSTRACT
Developers of User Interface Management Systems (UIMS)
have demonstrated that separating the application from its
user interface supports device independence and customiza-
tion. Interfaces produced in UIMS are typically crafted by
designers expert in human factors and graphic arts. Little at-
tention has been paid, however, to capturing the knowledge
of such experts so that interfaces might be automatically gen-
erated by the application of style rules to additional applica-
tions. This paper considers how toolkits and style rules can
be structured so that the resulting interfaces take advantage of
the best human factors and graphic arts knowledge, and are
consistently styled.

KEYWORDS: User interface management systems, interface
consistency, graphic interfaces

INTRODUCTION

User interface management systems (UIMS) have tradition-
ally separated applications into three components: applica-
tion actions, a dialog manager, and user interaction routines.
Structured as a set of service routines, the same application
can be used with a variety of different dialogs or interaction
routines as required.

There are two important shortcomings in this model. First,
the interface designer, an expert in human factors and graphic
arts, typically creates each interface by directly coding and
assembling interaction routines f~om a toolkit. We believe
that the expertise of such designers can be encoded in style
rules so that interfaces can be automatically and efficiently
generated for varying user groups and hardware environ-
ments.

Second, many interesting interfaces depend on extensive
knowledge of the application. If separating the application
from the interface also removes that knowledge, then such

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distrib-
uted for direct commercia l advantage, the ACM copyright
notice and the tit le of the publication and Its date appear,
and notice Is given that copying is by permission of the As-
sociation for Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific permission.

© 1989 ACM 0-89791-301-9/89/0004-0277 1.50

highly interactive interfaces will not be possible. Retaining
knowledge about application data types allows the interface
to interact more intelligently with users while remaining
separate from the application. An interface having only ab-
stract type knowledge can, in addition, be reused by different
concrete data types [10]. As shown below, a single tree view
might be used for organization charts, file directories, and
documents.

FOUR ROLES IN SYSTEM DEVELOPMENT

We are implementing these ideas in the Interactive Transac-
tion Systems (ITS) project at IBM Research. The structure of
an application implemented in ITS is shown in Figure 1. An
application expert defines the content of an application inde-
pendent of its style. Content includes data types to be used by
the application, and tables which store data being shared be-
tween the application and the interface. The application ex-
pert also specifies the contents of each frame, the flow of con-
trol among frames, and the application actions that should be
executed at each point in the dialog. An application
programmer implements actions called by the dialog.

A dialog compiler merges information from the type, table,
and dialog files. The parse tree produced by the dialog
compiler is passed as input to the style compiler. Rules

[Dialog content]i

I Dialog compiler [

Style compiler

I i o manage I
I I

I Act,ons II Views I

Figure I. Structure of an ITS application.

2 7 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F67450.67502&domain=pdf&date_stamp=1989-03-01

CH1'89 PROCEEDINGS MAY 1989

Det~

Expand

Q~

F, odJo,o,h I I

Jolmionl Lazxy]David [~¢ooley, Tony Franc

12:3 valley road rI~63 east shore drive
Katonah, ny thaca, n},
1053~ 14850

Figure 2. Screen display of employee browser

coded by the style expert, are used by the style compiler to
attach interaction techniques and views from a toolkit to each
node of the parse tree. In the current implementation all style
decisions are made at compile time based on static attributes
of the three input f'des. Finally, at run-time, the dialog man-
ager interprets the fully attributed parse tree by executing ac-
tions and calling the view manager to display views coded by
a style programmer.

The style expert is concerned with two questions: which
views should be used for each dialog block, and what attrib-
ute values should be set for each view? View attributes might
include font or line style choices, or the order in which first,
middle, and last names should appear in a name field. The
role of the style expert is not, however, to make these deci-
sions for each specific application. Rather, the style expert
writes rules which express the regularities of a style. Given
those rules in an executable form, they can be applied to many
different applications to create interfaces of a specific style
rapidly and automatically. Related work on rule-based inter-
face generation includes APEX [1], APT [5], and Perlman's
layout axioms [8].

Note that the separation of content and style is a refinement of
the traditional separation of interface from application in user
interface management systems. Kamran's Abstract Interac-
tion Handler [4] is an early example of this idea but imple-
ments style rules in conventional, imperative, languages. We
have refined interface design into four separate expert and
programmer roles. Application and style experts write exe-

cutable specifications in languages designed to be usable by
nonprogrammers. Languages for application and style pro-
grammers remain imperative, to provide for generality in im-
plementing functions needed by the interface.

TOOLS FOR APPLICATION EXPERTS AND PROGRAM-
MERS

The language used by application experts supports the sepa-
ration of content and style by providing a set of style inde-
pendent tags to describe each component of a dialog. The
language is based on an analogy with tagged document for-
matters such as GML [3] and SCRIBE [11]. Tagged documents
are structured as a hierarchy of components such as chapter,
section, paragraph, and footnote. Each component is then as-
sociated with formatting properties contained in a separate
style data base. In ITS, dialog is described as a hierarchy of
tags such as frame, form, list, and choice. Each tag is associ-
ated with formatting routines by executable rules written for a
particular style. 1

We'll illustrate the use of dialog tags by implementing a
browser for a hierarchically structured employee data base.
The browser shows general and detailed views of selected
employees, which in the style described below are drawn as
the tree and panels in Figure 2.

1. The dialog and rule syntax reflect minor revisions for readability and
extensions currently being implemented.

2 7 8

CH1'89 PROCEEDINGS MAY 1989

first, a name type used below...

data type=fullname, structure=disjoint
di field=last, type=string
di field--middle, type=string
di field=first, type=string

edata

...then the employee data type

data type=employee, structure=disjoint
di field=name, type=fullname, emphasis=special
eli field=serial, type=integer
di field=address, type=us_address
di field=manager, type=employee

edata

Figure 3. Employee data type dermition

Each employee is represented by the application as an in-
stance of the data type defined in Figure 3. The employee
type has subfields of primitive or user defined types for each
item of employee information. The type, and each field in it,
also has attributes describing the nature of the data. On the
data tag, the structure attribute indicates that the collection of
fields is disjoint, i.e. is a collection of independent informa-
tion about an employee. Dialog attributes such as structure,
emphasis, security, and kind are part of the ITS architecture
and provide information used by the style rules to select ap-
propriate presentations for each data type.

One or more fields that share data between the application
and views are grouped into tables as shown in Figure 4. The
browser table contains a single field, an instance of the em-
ployee type.

In the dialog segment shown in Figure 5, the employees
frame encloses two other frames. The frame called general
contains a set of choices controlling the organization chart,
and a list block containing the items of the chart itself. The
choices allow a user to display an employee in detail, expand
the organization chart to show a node's children, or quit. The
detailed_view frame contains only the list of employees dis-
played in detail.

When a node is selected from the main chart the set_name
action is executed. Set_name records the node in se-
lected_name, used by the visit and expand actions once a
command choice has been made Visit adds a record to the
details list for the selected employee. Similarly, expandadds
a record to the chart list for each person reporting to the se-

table name=browser
ti field=person, type=employee, required=yes

etable

Figure 4. Table for employee browser actions

lected employee. As each list is updated, the appropriate
view is automatically signalled that it should redraw itself.

The grouping of choice and list blocks by frames is important
both for the dialog and for style processing. In the dialog,
frames are statically scoped so that tables created when enter-
ing a frame are visible only to actions in that frame and in its
children. Frame nesting also provides information used by
style rules to influence screen layout.

TOOLS FOR STYLE EXPERTS AND PROGRAMMERS

Style rules represent both graphic arts decisions, such as the
choice of background color, and human factors decisions,
such as a choice of an appropriate view for a given type of
data. Views, once written, undergo behavioral testing to im-
prove them and most importantly to understand the condi-
tions under which they should be used. Those conditions be-
come style rules to govern the appropropriate use of the view
library's components.

As an example of this process, we recently built several key-
board entry techniques which differed in the amount of auto-
matic completion of input they provided. The time to per-
form input tasks using the entry techniques was compared
with two selection techniques using cursor keys [2]. The
simple entry techniques, offering little or no automatic com-
pletion, required more time than the selection techniques

frame refid=employees, table=selected_name:browser,
listname=details:browser
the "employees" frame has nested frames for general
and detailed employee views...

frame fetid=general, lismame=chart:browser

define the valid commands...

choice kind= l_and_only 1
ci message='detail', action=visit(details)
ci message='expand', action=expand(chart)
ci message='quit', pop

echoice

...then a list showing only the name subfield for each
person...

list lisfid=chart, field=person, structure=set
li field=name, action=set_name(selected_name)

elist

...the end of frame "general."

effame
The detailed list showing all subfields of person...

frame fetid=detailed_view
list listid=details, structure=disjoint, number=2

li field=person, area=fit
elist

efxam.e

...and the end of frame "employees."

efi'ame

Figure 5. Dialog tags for employee browser

2 7 9

CH1'89 PROCEEDINGS MAY 1989

which in turn were slower than the highly aided entry tech-
nique. These results might be represented in style rules by
stating that (1) when no mouse is available, and (2) when the
set of valid inputs is known then use aided entry rather than
selection. When the set of inputs is unknown then use simple
entry.

This is in sharp contrast to the typical "toolkit" approach. Ap-
plications using a toolkit typically give the application pro-
grammer (not the interface designer) control over which
toolkit objects should be used. We believe, as do most devel-
opers of UIMS, that it is unlikely the application programmer
should make this decision. In addition, though, we have fac-
tored the role of a single interface designer, into separateroles
of style programmer and expert. The style programmer cre-
ates a library of views. The style expert writes rules which
automatically generate interfaces for specific applications us-
ing those views.

One alternative to automatically generating an interface with
style rules is to support the interface designer in manually de-
signing panels by direct manipulation. Direct manipulation
panel design has been most successful for simple, static, pan-
els such as dialog boxes and menus. One system which has
had success in generalizing panel specifications built by ex-
ample is PERIDOT [7].

It is difficult in this approach, however, to capture the multi-
ple rules the designer may have applied to produce a panel's
final appearance. Some of these rules may have few condi-
tions and apply to many panels. Titles, for example, should
by default appear centered in their fields. Other rules may
have more conditions and apply in more specific contexts.
Titles being emphasized, for example, should appear in ital-
ics as well as according to attributes specified in other rules.

For the style workbench to correctly infer the generality of
these rules, and to understand that italics applies only to em-
phasized fields, the style expert must specify the rule condi-
tions. We believe that workbenches for creating interfaces
are important but that they should focus on helping the style
expert to express the conditions of these style rules, rather
than on helping to design panels directly.

AN EXAMPLE STYLE

Style rules recognize features of a block of dialog tags, such
as the tag name, attribute values, and data type, and match a
view to the block. The choice block in Figure 5 can be drawn
as a menu, cycle button, or command entry field. The appli-
cation expert has used the kind attribute to indicate that the
nature of the choice allows a single response. The style ex-
pert has written rules that use this information to draw each
choice item (ci block) as a menu button in Figure 2. Had kind
been coded to allow multiple choices, the style might use a
check box instead.

Name envt

Background text envt

[Lastname 1, [Firstname [1' Middlename [

Figure 6: Environments controlled
by the name view

Views are assigned to blocks indirectly through environ-
ments. An environment is a view name together with a set of
style attributes appropriate to that view which control its ap-
pearance. Environments can be created both for general in-
terface components such as rifles, panels, and dialog boxes
and for more specific objects such as nodes in a diagram, tran-
sistors or wires in a circuit, and names. Unlike earlier user
interface mangement systems, this means there is no screen
area not under control of the style mechanism in which the
application can write directly. All user interaction with an
application is mediated by style rules. The environments can
be extended and modified over time by style experts to cover
data types, devices, user groups, or other circumstances not
foreseen by the developers.

Abstracting a view and its associated attributes into an envi-
ronment allows a separation of content and style between the
style expert and programmer similar to that between the ap-
plication expert and style expert. As shown in Figure 6, a
style programmer has implemented a generic name view
which controls the size, position, and punctuation surround-
ing environments for the components of names. The data
types, and views used to draw them, in the firstname, mid-
dlename, and lastname environments are hidden. Style rules
are responsible for binding the particular types and field
names used by the application (first, middle, and last) to the
environment names used by the view.

By isolating views from knowledge about the implementa-
tion of application data types, environments allow views tobe
reused for many different types. An application which re-
fines last names with the structure shown in Figure 7 can still
use the name view. Rather than binding the lasmame envi-

data type=compound
di field--paternal, type=string
di field=maternal, type=string

edata

data type=fullname
di field=first, type=string
di field=middle, type=string
di field=last, type=compound

edata

Figure 7: Refined name data type

2 8 0

CH1'89 PROCEEDINGS MAY 1989

general enviromnents for interface objects...

define menu, view=table, space=as_required, position=left
define text, view=string, capitals=firstonly,

justification=left, font=timesroman, size=lO
define menuitem, parent=text, xoffset=50, yoffset=50
define title, parent=text, justification=centered
define panel, view=tiledpanel

gallery is usedfor a row of objects...

define gallery, view=table, rows=l, space=equal,
position=bottom

chart, node, and link format a group of items as a
tree...

define chart, view=tree, direction=horizontal, hgutter=100,
vgutter= 100, space=equal

define node, view=boxednode, connections=center
define link, view=graphic, type=line, width=l,

linestyle=solid

next, some enviromnents for the employee and
name types...

define employee, view=draw_employee
det'me name, view--personal_name, order=lasffirst,

font=helvetica, capitals=firstonly
define f'trstname, view=string
define middlename, view=string
define lasmame, view=string, size=l 1

and finally, environments for address components...

define address, view=street_address
def'me street, view=string
define city, view=string, capitals=firstonly, justify=left,

linebreak=true
define zip, view=string, justify=left, linebreak=true

Figure 8. Environments used by
tree and employee views

ronment to a string view, as previously, the iastname environ-
ment might be drawn by a table view. Each of the two eleo
ments in the table itself would be bound to a string view. The
string attributes set in the lastname environment would be in-
herited by the two string views and continue to control last
name formatting.

Similarly, when the tree creates links in Figure 2 it does so,
not by directly drawing lines between nodes, but by creating
instances of link environments with attributes for the start and
end points. A variety of different views, including line or ras-
ter graphics, could be chosen by the style expert to render
links. Environments give the style expert rather than the style
programmer control over how the link actually appears.

To create the employee browser shown in Figure 2, the style
expert must define environments and write rules to assign
them to dialog blocks. The environments required by the tree
and employee views are defined in Figure 8 and the rules
matching them to the example dialog are in Figure 9 .

Several of the environments in Figure 8 are common inter-
face components. Menus are drawn using a table view, with
whatever space each child requires. The style expert can
force the table view to divide space equally among its chil-

5
6 if

7 i f
8 if
9 i f

10 if
11 if

12 if
13 if

if (TAG=FRAME) then (MATCH panel)
if (TAG=CHOICE) then (MATCH menu)
if (TAG=CI) then (MATCH menuitem, input=message)
if (TAG=LIST) & (STRUCTURE--SET)

& (TYPE=employee) then (MATCH chart)
if (PARENTENVT=chart) then (MATCH node)

(TAG=LIST) & (STRUCTURE=DISJOINT)
then (MATCH gallery)

(TYPE=employee) then (MATCH employee)
(TYPE=fullname) then (MATCH name)
(FIELD=first) then (MATCH firstname)
(FIELD=middle) then (MATCH middlename)
(FIELD=middle) & (EMPHASIS=BACKGROUND)
then (MODIFY middlename, characters=firstonly)

(FIELD=last) then (MATCH lastname)
(TYPE=us_address) then (MATCH address)

Figure 9. Rules matching
environments to dialog tags

dren by setting the space attribute to equal rather than as_re-
quired. Titles are drawn centered and inherit their other at-
tributes from the text environment. Panels, as implemented
by the tiled panel view, arrange their children to completely
fill the alloted space without overlapping. The tiled panel
view looks for position attributes in each child stating prefer-
ences for the top, bottom, left, or right of the panel, but will
reconcile conflicts among the children itself.

Other environments are created when additional knowledge
is required to adequately interact with application data. In the
example, a tree view displays the organization chart format-
ted left to right, with each layer of the tree starting at the top of
the frame. Links are drawn by a graphics package as a single
width solid line. Names themselves have specific first, mid-
die, and last environments so they can be separately styled
and drawn in the right order. In this style, the first letter of
each name is capitalized; the first and middle names follow
the last with appropriate punctuation.

The rules in Figure 9 assign environments to each component
of the dialog based on tag names, data types, and attributes.
The employees drawn as a tree and the two drawn in detail are
both coded with list tags in the dialog. The application ex-
pert, however, used the structure attribute to indicate that the
second group is disjoint while the first is related as a set. The
style rules can use the additional information provided by the
structure attribute to render the disjoint group as a collection
of unrelated views, and the ordered group as a tree. The data
type (employee) is used by Rule 4 to decide that a tree view is
appropriate for this particular set structured list.

Rule 5 recognizes that individual elements in the list (in-
stances of the browser table) are children of a chart environ-
ment, and matches node environments to them. Nodes dis-
play a rectangle surrounding their contents, and define con-
nection points into and out of them for links.

To see employee names, we must insert name environments
as children of each node. Since only the name field of the
browser table is coded on the first listitem (li) tag, rule 8 can

281

CH1'89 PROCEEDINGS MAY 1989

Chart environment

Link environment
Node environment

Name envt
I I
I - . m .J

Figure 10: Environments created for
nodes and links in an organization

chart. Dashed boxes indicate borders
of environments without visible boxes.

match directly to that tag. Rules 6 and 7 similarly match gal-
lery environments to disjoint lists. The employee children of
the gallery will draw more detailed views of the employee
type as the user selects nodes of interest in the diagram.
Figure 10 shows how these rules combine to create a tree of
styled views for each node in the organization chart.

ITERATIVE DESIGN OF APPLICATIONS AND THEIR
TOOLS

We have implemented two prototypes of these tools during
the first year of the Interactive Transaction Systems, or ITS,
project. One prototype is based on DOS and OS/2[TM], and
the other on Berkeley Unix [TMI. Where the two prototypes
differ, the Unix version has been the basis for discussion here.

A number of dialogs have been implemented in the OS/2 ver-
sion, including an overview of the ITS project itself, and an
interactive workbench for writing style rules. Lists, tables,
pie-menus, and styled text views have been implemented in
this version. The table view has been extensively reused to
implement a wide variety of interface objects including
menus, forms, and cycle buttons. Input techniques include
variable rate scrolling, and automatic completion of text in-
put.

The Unix version is implemented using the ANDREW
toolkit [6] and X window system [9]. Views have been im-
plemented in this version for frames, panels, menus, strings,
and trees, as well as for the more specific employee, name,
and address types required by the example in this paper.

These views have been sufficient to generate the interfaces to
a number of demonstration applications. We plan to continue
with more extensive applications developed both by our
group and by external users. At first, two workbenches will
be implemented to help application and style experts. The
application workbench will contain syntax--directed editors
for dialog tags and attributes, and a variety of editors for con-
trol flow. The style workbench will focus on creating, modi-
fying, and understanding style rules. Of particular interest
will be explanation tools to trace the execution of rules which
have led to specific style decisions.

At the same time, we are testing the usability of the tools and
the applications developed with them. Studies of tool usabil-
ity are particularly helpful since many applications will reuse
interaction techniques originally developed for tools. We
look forward to describing these activities in future reports.

ACKNOWLEDGEMENTS

We thank Tom Cofino, Sharon Greene, Shirley Hsieh, Petar
Makara, Uri S hani, and Ann Vosburgh for their contributions
to the ITS project and comments on this paper.

REFERENCES

. Feiner, S. An Architecture for Knowledge--Based
Graphical Interfaces. In Proceedings of AAAI/Lockheed
Workshop on Intelligent Interfaces (Mar. 29-Apr. 1).
1988.

. Gould, J., Boies, S., Meluson, A., Rasamny, M., and
Vosburgh, A.M. Empirical Evaluation of Entry and Se-
lection Methods for Specifying Dates. Human Factors,
in Press.

. IBM Corporation. Document Composition Facility:
Generalized Markup Language Starter Set User's
Guide. SH20-9186--04, May, 1987.

. Kamran, A., and Feldman, M.B. Graphics Programming
Independent of Interaction Techniques and Styles. Com-
puter Graphics (January, 1983), 58-66.

. Mackinlay, J. Applying a Theory of Graphical Presenta-
tion to the Graphic Design of User Interfaces. In Pro-
ceedings of the ACM SIGGRAPH Symposium on User
Interface Software (Banff, Alberta, Canada, Oct.
17-19). ACM, New York, 1988, pp.179-189.

. Morris, J., Satyanarayanan, M., Conner, M., Howard, J.,
Rosenthal, D., and Smith, F. Andrew: A Distributed Per-
sonal Computing Environment. Communications of the
ACM 29, 3 (March 1986), 184-201.

. Myers, B.M. Creating Interaction Techniques by Dem-
onstration. IEEE Computer Graphics and Applications
7, 9 (Sept. 1987), 51-60.

. Perlman, G. An Axiomatic Model of Information Pres-
entation. In Proceedings of the Human Factors Soci-
ety-31st Annual Meeting. pp.1229-1233. 1987.

9. Scheifier, R.W. The X Window System. ACM Transac-
tions on Graphics 5, 2 (Apr. 1986), pp. 79-109.

10. Szekely, P. Separating the User Interface from the Func-
tionality of Application Programs. Ph.D. Thesis, Car-
negie Mellon University, 1988.

11. Unilogic, Ltd. SCRIBE Document Production Software,
User Manual, June, 1985.

2 8 2

