
Towards an Efficient Evaluation of General Queries:
Quantifier and Disjunction Processing Revisited

FranGois Bry
ECRC, Arabellastr. 17,800O Miinchen 81, West Germany

uucp: . ..!pyramid!ecrcvax!jb

ABSTRACT Database applications often require to
evaluate queries containing quantifiers or disjunctions,
e.g., for handling general integrity constraints. Existing
eficient methods for processing quantifiers depart from the
relational model as they rely on non-algebraic procedures.
Looking at quantified query evaluation from a new angle,
we propose an approach to process quantifiers that makes
use of relational algebra operators only. Our approach
performs in two phases. The first phase normalizes the
queries producing a canonical form. This form permits to
improve the translation into relational algebra performed
during the second phase. The improved translation relies
on a new operator - the complement-join - that generalizes
the set difference, on algebraic expressions of universal
quantifiers that avoid the expensive division operator in
many cases, and on a special processing of disjunctions by
means of constrained outer-joins. Our method achieves an
eficiency at least comparable with that of previous
proposals, better in most cases. Furthermore, it is con-
siderably simpler to implement as it completely relies on
relational data structures and operators.

1. Introduction

Evaluating expressions with quantified variables or dis-
junctions is often needed for database applications, e.g., for
processing queries involving refined relationships between
data, or for evaluating sophisticated views, or for handling
integrity constraints that are more complex than depen-
dencies. Although defining quantified expressions is
usually considered difficult, natural language interfaces to
databases considerably help inexperienced users, for ex-
ample by allowing various grammatical forms that are less
stringent than explicit prefixed quantifications. Further-
more with the advent of couplings between databases and
artificial intelligence systems, one can expect from users
more familiarity with logic - in particular with quantifica-
tion. The capability of using quantified expressions with
ease is often assumed from database users, for instance in

Permission to copy without fee all or part of this material is granted provided that

the copies are not made or distributed for direct commercial advantage, the ACM

copyright notice and the title of the publication and its date appear, and notice is

given that copying is by permission of the Association for Computing Machinery.

To copy otherwise, or to republish, requires a fee and/or specific pemkion.

0 1989 ACM O-89791-3174/89/OC05/0193 $1.50

the special area of scientific and statistic applications (see,
e.g., [CC0 861). The original definition of SQL [DAT 811
includes both universal and existential quantifiers, but con-
strains their use (explicit universal quantifications are
strongly limited). Some high-level query languages, e.g.,
DAPLEX [SHI 811 and PASCAL/R [JS 821, permit explicit
unrestricted quantifications.

Most research on efficient query evaluation however has
focused on quantifier-free conjunctive expressions. The im-
plementations of the most popular relational calculus lan-
guages do not permit general quantifications. Quel [ZOO
771 for instance does not have quantifiers. A variable not
occurring in the target list is implicitly considered to be
existentially quantified. Universal quantification is ach-
ieved in QueI by means of an aggregate function: In order
to check if all tuples qualified by an expression Q also
satisfy a property P, one has to pose a query comparing the
numbers of tuples satisfying Q and P, respectively. In
QBE [ZLO 771 and SQL [DAT 811, general universal
quantifications are in addition expressable by means of set
inclusions. These solutions can be criticized for two
reasons. First, they are often inefficient because they im-
pose to compute intermediate results - aggregates or rela-
tions - that are in principle not needed for answering the
universally quantified query. Second, they compromise the
declarative character of the query languages and many
users consider them mom complicated than explicit quan-
tifications.

Since relational calculus is complete with respect to rela-
tional algebra [COD 721, any kind of quantified query can
in principle be translated into relational algebra. Codd’s
completeness proof of the calculus defines a reduction al-
gorithm for translating quantified calculus queries into rela-
tional algebra expressions. Quantified queries are processed
by considering first their prenex disjunctive normal form
and the cartesian product of the ranges of all variables oc-
curring in the query. Existential quantifications are then
expressed by means of projections; universal quantifica-
tions by means of divisions. Despite of its theoretical inter-
est, this approach - even improved as proposed in [PAL
72, JS 82, CG 851 - turns out to be unreasonable for prac-
tical use. Because of the initial Cartesian product of all
ranges and the systematic use of divisions, the relational
algebra expressions it generates are extremely inefficient.
As shown in [DAY 831, this Cartesian product usually
retains much more tuples than needed and these tuples are
eliminated too late, when divisions are finally performed.

193

http://crossmark.crossref.org/dialog/?doi=10.1145%2F67544.66944&domain=pdf&date_stamp=1989-06-01

evaluate(exists x in R: F(x), value):
value := false
for each x in R while value + true
do evaluate(F(x), v)

if v = true then value := true
end

@J Closed (i.e., yeslno) existential queries

evaluate(forall x in R: F(x), value):
value := true
for each x in R while value + false
do evaluate@(x), v)

ifv = false then value := false
end

(bJ Closed (i.e., yeslno) universal queries

evaluate(x1 in Rr: [quantifier 3 in s: F(xt,x&, rel):
rel := 0
for each x1 in R,
do evaluate(quantifier 3 in R2: F(xy,x2), value)

ifvalue = true then rel := relu(xt)
end

u Open quantified queries

Fin. 1 Loop algorithms for evaluating

quantified queries

A rather immediate alternative to Codd’s processing of
quantifiers is to process them by means of the loop al-
gorithms of Figure 1, where R represents a range relation
for the variable x - this concept is formally defined in Sec-
tion 2.1 - and F(x) and F(xl,x2) represent subqueries with
free variables x and x1, x2, respectively.

It is important to note the symmetry of the procedures
given in Fig. la and lb. Both consist of very similar while
loops in which the same subexpressions are evaluated. The
algorithms differ in two points only: In the loop halting
conditions and in the value finally returned The truth (the
falsity, respectively) of the evaluated subexpression stops
the loop in the first procedure (the second procedure,
respectively) and establishes the truth (the falsity,
respectively) of the existential query (of the universal
query, respectively). A logical formalization of this remark
(Section 2.1: rewriting rules 4 and 5), and the definition of
an operator that generalizes the set difference (Section 3.1:
Definition 6) give rise to evaluating universal quantifica-
tions similarly to existential ones (Section 3.2: Proposition
4) - up to the above-mentionned symmetry. The efficient
methods proposed in [DAY 83, DAY 871, as opposed, rely
on special techniques for evaluating universal quantifica-
tions.

The algorithms of Fig. 1 process multiple quantifications

with nested loop programs, the loop nesting reflecting the
quantifier nesting. All operations are pipelined [SC
75, YAO 791 and performed one tuple at a time. Although
avoiding temporary storage, this approach is in general in-
efficient. This is in particular the case when not all relations
involved in the query can be simultaneously opened. Since
algebraic operations are amenable to pipelining without im-
posing this technique, nor requiring to perform it on the
whole of the query, an efficient quantifier processing
method based on relational algebra operations is desirable.

In spite of their drawbacks, the loop algorithms of Fig. 1
have two noticeable properties: Each range relation is
searched only once, and no more tuples are accessed than
necessary. The main result achieved in this article is the
description of a quantifier processing method based on
relational algebra operators that has these two attractive
properties. The method retains the ‘logic’ of the nested
loop approach without keeping its one-tuple-at-a-time
‘control’ - in the sense of Kowalski’s equation ‘algorithm =
logic + control’ [KOW 793. Our method can handle all
types of quantified queries.

A particularity of our approach is to process queries in two
phases. The first phase is a logical normalization of queries
into a canonical form. The canonical form is based on con-
cepts - such as the miniscope form - that are unusual in
query optimization, though rather classical in logic. The
canonical form is important because it gives rise to improv-
ing the algebraic translation performed during the second
phase. The algebraic translation we describe improves over
the classical ones [COD 72, PAL 72, JS 82, CG 851 since it
avoids the initial cartesian product, and in most cases the
expensive division operator for expressing universal quan-
tifications. Instead, it relies on a new difference operator,
that we call complement-join, on a special processing of
quantified expressions, and on an improved processing of
disjunctions by means of outer-joins.

Other efficient approaches [DAY 83, DAY 871, as op-
posed, depart from the relational model and rely on non-
algebraic procedures. Dayal’s first method [DAY 831 re-
quires a considerable machinery and uses unnormalized
data structures. Although having the two noticeable
properties of the nested loop approach, it imposes to
process a quantified query as a whole. Dayal’s second
method [DAY 871 is significantly simpler than the first
one, as it is based on normalized data structures and uses
algebraic operators. However, it handles universal quan-
tification with special algorithms. The special translation
into relational algebra we describe improves over the ef-
ficient processing of Dayal’s methods. Furthermore, it is
considerably simpler to implement as it completely relies
on relational data structures and operators, especially for
handling universal quantifications.

Logic based normalizations of quantified queries have al-
ready been proposed in [JK 831. However, the normaliza-
tions described there are not related to any improved uans-
lation into relational algebra. Instead, a restriction to a spe-
cial class of queries - called ‘perfect queries’ - is proposed,
in order to ensure acceptable evaluation costs under con-
ventional translations, e.g., [COD 72, PAL 72, JS 82, CG
851. Although well motivated from an implementation
viewpoint, this restriction is unnatural for database users.

194

Moreover, ‘perfect queries’ are in our opinion much too
restricted for practical use. As opposed, the canonical form
we propose combined with the algebraic translation we
describe achieve an efficient processing of unrestricted
queries.

The article is organized as follows. After this introduction,
we define and motivate in Section 2 the canonical form of
queries. Section 3 describes the improved translation of
canonical form queries into relational algebra. In Section
4, we summarize the main points of the paper. In the
remainder of this introductory section, we introduce a few
definitions and notations.

Definitions and Notations

We assume that queries are expressed in a relational cal-
culus with domain variables. A selection over an nary rela-
tion R is therefore represented in a query by means of an
atom R(t,,...,tJ, where the terms $ are constants or vari-
ables. The choice of a formal calculus intends to make the
description of the method independent from any actual
query language. Domain variables are chosen instead of
tuple variables for making easier the reference to logic
properties that are traditionally expressed in this manner.
Although some of the logical concepts and properties we
use are rarely mentioned in query optimization, they am
classical in logic (see, e.g., the tutorial lMEN 791).

Query languages usually have typed variables. We recall
that typed quantifications ‘3x in R: F(x)’ and
‘Vx in R: F(x)’ correspond to ‘3x R(x) A F(x)’ and ‘Vx
R(x) => F(x)‘, respectively, in untyped logic. In order to
treat all parts of a query uniformly, we adopt the untyped
formalism. In an existential subquery ‘3x R(x) A F(x)’ the
outermost conjunction therefore distinguishes the variable
range ‘R(x)’ from the rest of the subquery. Similarly, the
implication distinguishes the range ‘R(x)’ in a universal
subquery ‘Vx R(x) => F(x)‘. For simplifying the descrip-
tion of the method, the connective => will be used only for
expressing ranges. In other contexts an expression ‘F, =>
F2’ is supposed to be written as ‘7 F, v F2’, and an expres-
sion ‘F, <=> F2’ as ‘(- F, v F2) A (7F2 v F1)‘.

Since ‘3x,3x, F’ and ‘3x23x1 F’ are logically equivalent
whatever formula is F, we allow the shorthand notation
‘3x1x2...% F’ - in which the order of the 3’s is irrelevant -
in lieu of ‘3x,3x,...%,, F’. Similarly ‘Vx1x2...x, F’ will
denote ‘Vx,Vx,...V,‘x, F’. Remember however that com-
muting distinct quantifiers in general does not preserve
logical equivalence.

A subformula A has positive polarity in a formula F if A is
embedded in zero or in an even number of negations in F
(the left hand side of an implication being considered as an
implicit negation). Similarly A has negative polarity in F if
it is embedded in an odd number of - explicit or implicit -
negations in F.

The governing relationship between variables is important
for optimizing quantified queries (Section 2.2). We there-
fore recall its definition. Given a quantification [Qx Sl
where Q denotes either 3 or V, the subformula S is called
the scope of x. A quantified variable x directly governs a
variable y if the following conditions are satisfied:

1. y is quantified within the scope of x
2. the quantification of y ‘follows immediately* that

of x (formally: y is not quantified within the scope
of a variable quantified in the scope of x)

3. S contains an atom in which both x and y or a
variable governed by y occur

4. x and y have distinct quantifiers
The governing relationship is the transitive closure of the
above-defined relationship: A quantified variable x governs
a quantified variable y either if x directly governs y, or if x
directly governs a variable z that governs y. Intuitively, x
governs y iff moving the quantification of y out of the
scope of x could compromise logical equivalence. For ex-
ample, x governs y but none of the zi’s in the formula:

3x (student(x) A [Vy lecture(y,db) => attends(x,y)] A

[V z1 student(zt) => 3% attends(zr,z$])
(there is a student attending all database lectures and
each student attends at least one lecture)

2. The Canonical Form of Quantified Queries

This section defines a standardization of queries with quan-
tifiers into a ‘canonical form’. This form is motivated by
efficiency reasons. The translation into canonical form
preserves logical equivalence and produces calculus ex-
pressions. It is defined by means of 14 rewriting rules. This
technique, stemming from Artificial Intelligence, is par-
ticularly well-suited for formalizing standardization
processes. Rule defined rewriting systems can easily be
compiled into deterministic procedures that are more amen-
able to practical use. However, the rule formalism is more
convenient to simple descriptions.

Section 2.1 defines some concepts of ‘range’, ‘restricted
quantification’, and ‘restricted variables’ corresponding to
variable declarations in procedural languages. In Section
2.2, we show how to improve evaluations of quantified
queries with a ‘miniscope form’. In Section 2.3 we argue
for keeping disjunctive subqueries in certain cases. Finally,
we show in Section 2.4 that the rewriting system defining
the canonical form is correctly defined, i.e., in formal
terms, it is noetherian and has the Church-Rosser property.

2.1. Formulas with Restricted Variables

In a database, negations are interpreted by failure: Facts not
known to be true are assumed to be false. Under this as-
sumption - the Closed World Assumption - the evaluation
of non-ground queries with negative polarities is only pos-
sible if domains of values are specified for all variables. In
order to provide general queries with non-ambiguous
semantics, it is assumed that there are no other values than
those in the database. By this postulate - the Domain
Closure Assumption - the set of all values in the database,
called the database domain, can be assigned to all vari-
ables. A query -p(x l ,...,xJ is in consequence equivalent to
dom(xi) A . . . A domb,J A 7 P(xi ,...,a) where the view
‘dom’ describes the database domain. If variables in the
query language are typed, the type relations can be used
instead of ‘dom’.

Since negation is interpreted by failure, logically equivalent
open queries can be evaluated differently: p(x) for instance

195

can be used for producing values for x, the evaluation of its
logically equivalent form 7 7 p(x) however does not
return values for x. In order to permit a correct evaluation
of queries involving nested negations, we use the following
classical rewriting rules:

Rulel: 77F + F
Rule 2: 1 &“F,) + TF, v -+
Rule 3: 1 (F1vF2) -j --IF, A ‘F,

Rules 1, 2 and 3 preserve logical equivalence. Note that
they do not transform negated quantifications.

Explicit calls to the database domain or types can be
avoided by declaring for each variable the attribute of a
relation or of a view as range. The following definition
formalizes this notion.

Definition 1
A range R[xt,... ,xJ for variables x1,...& is
recursively defined as follows:
1. P(xacl

is a re r’
,..., x0& is a range for x1, s if P
ation or a view and if o is a permutation

of (1 ,...,nl
2. R, A R, is a range for x1,..., s if R, is a

range for yl,..., yk, if R, is a range for
z1 ,..., % and if (yl ,..., yk)u(zI ,..., zh) =
b+..JJ

3. R, v R2 is a range for x1,...,% if R, and R,
are both ranges for xl,...&

4. RAFisarangeforxt,...,~ifRisarange
for xl,...,% and F is a (possibly quantified)
formula with free variables in (x,,...,xJ

5. 3yI...y Risarangeforxt ,..., x,ifRisa
range P or xl,...+yl ,... , yp

Existential quantifications in ranges correspond to projec-
tions: A range 3yz p(x,y,z) for a variable x expresses that x
takes its values from the first projection of p. Classical
ranges are those defined only by Conditions 1 and 5, i.e.,
corresponding to projections of a single relation or view.
The more general definition given here may be seen as
allowing view definitions local to a query.

Closed formulas with restricted quantifications are the
counterparts in logic to yes/no queries in conventional
query languages:

Definition 2
A formula is a closed formula with restricted
qua~lifications if all its- quantified subformulas
SF have one of the forms 3x,...% R[xt ,..., xJ,
3x1...% R[xt ,..., x&F, Vxt...x,, lR[xl ,..., x,,l, or
Vxl...~ R[xt ,..., xJ => F where R[xt ,..., x,.J is a
range for x1, s, and if variables free in SF are
quantified outside SF.

Queries like F1: 35x2 [f(q) v s(x&lP(xl,x2) am

rejected by Definition 2. F, is unacceptable since certain
evaluations of [r(xl) v s(x2)] - such as xl = a, if r(a) holds -
leads to unbound variables occurring in the negated sub-
query 7p(xt,x2): The expression [r(xt) v s(x.J] is not a
range for x1 and x2.

Consider a closed existential formula Ql:
3x1...% R[xl ,..., x&Fi. An evaluation of Ql that min-
imizes the number of tuples accessed and the number of
tuple comparisons performed can be informally described
as follows. First, the open formula R[x~,...,x,] is evaluated
and for each returned binding Q of x1,...,%, the closed ex-
pression F,a is in turn evaluated. This evaluation can ter-
minate as soon as a binding o is found such that F,o
evaluates to true, Qi is known to be true. If no such binding
is found, Qt is false. In the rest of the paper, an evaluation
method is described that follows this evaluation scheme but
permits other controls than the one-tuple-at-a-time strategy
of the loop algorithms mentioned in the introduction.

The evaluation of a closed universal formula with restricted
quantifications Q2: Vx,...x, R[xl,...,x,,] => F2 is very
similar. First, the range R[xt,...,xJ is evaluated. For each
returned variable binding o, F20 is evaluated. Q2 is known
to be false if and only if there is a binding o such that F2a
evaluates to false. Up to the truth value finally returned,
this evaluation process is identical with that of
3x1.4 R[xl ,..., xJ A 7 FZ. In other words, the logically
equivalent formulas Q2 and 7 @x1..+, R[x~,..,,x,] A 7

F2) are evaluated in the same manner. Based on this obser-
vation, we introduce two rewriting rules that reduce the
evaluation of universal expressions to that of existential
ones:

Rule 4: Vxl...x, R[xt ,..., xJ => F +
7 (3x l...xn R[xi ,..., xnl A 7 F>

Rules: Vxl...xn 7 R[xt ,..., xnl +
1 (3x1-.x, Nxl,...,x,l)

Rules 4 and 5 preserve logical equivalence. This reduction
of universal expressions to existential ones requires to be
capable to evaluate existential formulas in which negations
occur. An efficient translation of such formulas into rela-
tional algebra is proposed in Section 3.

If the existential closure of an open query is a formula with
restricted quantifications, then the query can be evaluated
similarly to existential formulas. Let Qs: R[xl...xJ A Fs be
an open query such that its existential closure 3x,..+., Qs is
a closed formula with restricted quantifications. The
evaluation of the range R[xl...xJ returns bindings for the
s’s. For each such binding cr, the expression F3a is
evaluated. If it evaluates to true, the o defines an answer to
Qs. As opposed to closed formulas, all solutions to
N.x I,...,xJ have to be computed, in order to determine all
answers to Qs. Definition 3 formalizes the concept of open
query.

Definition 3
Open formulas with restricted variables xl,...,xn
are recursively defined as follows:

196

1. F is an open formula with restricted variables
xl,...~ifevery~isfreeinF,ifFhasno
other free variables and if 3x1..+, F(xt ,..., a)
is a closed formula with restricted quantifi-
cations

2. F, v F2 is an open formula with restricted
variables x1,...,% if both F, and F, are open
formulas with restricted variables xI,...,xn

Formulas with restricted variables and quantifications are
definite [KUH 671 and domain independent [FAG 801, two
equivalent properties characterizing the formulas whose
valuations remain unchanged under updates on relations
not occurring in the formulas. As opposed to domain in-
dependence, the restricted variable and quantification
properties are defined syntactically. Other syntactical
classes of domain independent formulas that have been
proposed are, e.g., the range-restricted formulas l?lD 831
and the various classes of allowed formulas [LT 86, VGT
87, SHE 881. For each expression in one of these classes, it
is possible to construct an equivalent formula with
restricted variables and quantifications [BRY 891.

Well-formed formulas may contain ‘useless’ quantifica-
tions, i.e. quantifications applying to variables that do not
occur in the rest of the formula. This is for example the
case of the first quantification in the formula F: 3x [t/y p(y)
=> q(y)]. There are no chances to find ranges for variables
with such quantifications! We therefore introduce two
rewriting rules for avoiding these cases:

Rule 6: 3x1...x,, + F
ifnoneofthe~‘soccurinF

Rule 7: 3x1...% + 3x,,...% F
if the xi)s distinct from Xip..~~ do not occur in F

Rule 6 preserves logical equivalence. Rule 7 also preserves
logical equivalence since 3xt...x, F is logically equivalent

to %7(1)-%(n) F, for all permutations CT of (l,...,n) (we
recall that 3x1..+, F denotes 3x,3x,...3x, F).

2.2. The Miniscope Form

The methods proposed in the literature for evaluating quan-
tified queries usually first compute their prenex form - ob-
tained by moving the quantifiers in front of queries [COD
72, PAL 72, JS 82, DAY 83, CG 85, DAY. 871. Here we
plead for a different syntactical form of queries, the min-
iscope form. Informally, this form is obtained by pushing
all quantifiers inwards, reducing variable scopes as much as
possible.

We first motivate the miniscope form with an example.
Consider the query

Qt: 3x student(x) A t/y [cs-lecture(y) =a attends(x,y)
A 7 enrolled(x,cs)]

asking if one may find a student attending all lectures in
computer science without being enrolled in this depart-
ment. If Qt is evaluated as described above, for a given
student ‘a’ the subquery -1 enrolled(a,cs) is evaluated as

many times as there are computer science lectures. This is
of course neither necessary nor desirable. It has been
proposed in [JK 831 to rely on more sophisticated query
evaluation procedures for avoiding these redundant evalu-
tions. A much simpler - and cheaper - solution consists in
first transforming Qt into the equivalent formula

Q2: 3x student(x) A [Vy cs-lecture(y) => attends(x,y)l
A -, enrolled(x,cs)

and then to process Q2 as described in the previous section.
During the evaluation of Q2, the subquery 7 enrolled(x,cs)
is evaluated only once for each possible student x because
the variable x is no more in the scope of the universal
variable y. Definition 4 formalizes this remark.

Definition 4
A formula is in miniscope form if and only if
none of its quantified subformulas F contains an
atom in which only variables quantified outside F
occur.

A miniscope form is often obtained by simply moving sub-
formulas out of the scopes of quantifiers according to the
following rules, where 8 denotes A or v.

Rule 8: 3x1...xn F1 8 F21 + F, 8 [3x1...x2 Fz]
if none of the variables x1 ,...,x, occur in F,

Rule 9: 3x1...x,., l-F1 8 F2] -+ [3x 1...~n Ft] 8 Fz
if none of the variables xt,...,xn occur in F2

These rules preserve logical equivalence. In certain cases
Rules 8 and 9 are not sufficient for reaching a formula in
miniscope form. Consider for example the formula:

F,: 3x P(x) A (q(Y) v r(x))
In order to move the atomic subformula q(y) out of the
scope of the existential quantifier, one has first to move it
out of the disjunction. This is done by first putting the
matrix of F, in disjunctive normal form:

F2: 3x [P(X)f&‘)l v [PP(x)&)I
Then, since existential quantifiers distribute over disjunc-
tions, Fz is transformed into:

F3: 0x1 [P(xt) A q(Y)]) v (3x2 [P(xz) A r(x2)l)
Finally, applying Rule 5 results in:

F4: ([3x1 Al A q(Y)) v (3x2 [P(x~) A r(x&])
Both disjuncts D,: [3x1 p(xt)] A q(y) and D,: 3x2 [p(x,) A
r(x2)] of F4 share a common subexpression, namely C: 3x
p(x). It is therefore desirable that both evaluations of D,
and D2 use the evaluation of C as a sharable resource. To
this aim, it is tempting to look for a rewriting of F4 in
which C occurs only once. Unfortunately, this results in a
non-miniscope expression similar to the initial query F,!

It is worth noting that the two requirements, miniscope
form and sharing of common subexpressions, cannot al-
ways be reached by a unique syntactical form of the
queries. However, answers to common subexpressions that
are not syntactically shared in the query can be shared
procedurally by refined evaluation procedures. Such
methods have been investigated, e.g., in [SEL 861. The
following rules together with Rules 8 and 9 yield formulas
in miniscope form.

197

Rule IO: 3x1...x, (F1 v F2) A Fs +
Pq...x,, PI A F3)1 v D+..x, C-Q A F3)1
if(t) F, or F2 contains an atomic subformula
in which none of the 3’s and none of the
variables governed by some xi occur

Rule 11: 3x1...% F, A (F2 v Fs) +
[3+x, (Ft A F2)1 v [3+x, (F1 A F3)1
if (7) holds

Rules 10 and 11 preserve logical equivalence. They cannot
be applied if Ft or F2 simply contains an atomic subfor-
mula in which none of the xi’s occur. The governing
relationships between variables must be taken into account.
Consider for example F5: 3x p(x) A vy 7 q(y) v r(x,y)].
Moving q(y) out of the universal quantification would not
preserve logical equivalence. In fact, Fs is in miniscope
form.

2.3. Producers and Filters

It is generally considered beneficial to break queries into
conjunctive subqueries in order to avoid - or to postpone as
long as possible - the computation of unions. Such an ap-
proach permits indeed to delay the creation of intermediate
results of larger size. The disjunctive normal form is in
consequence usually considered as the most appropriate
syntactical form of queries for an efficient evaluation. We
propose to distribute conjunctions over disjunctions only in
certain cases, namely when the superexpressions containing
the disjunctions are all ‘producers’. However, we advocate
to keep those disjunctions that occurr in subexpressions we
call ‘filters’. As we show in Section 3.3, this approach per-
mits to improve over the traditional ones, especially for
evaluating range expressions.

Let us first informally introduce in an example the concepts
of producer and filter. Consider a query:

Qt: 3x [(student(x) A makes(X,PhD)) v prOf(X)]

A [speaks(x,french) v speaks(x,german)]
asking if there is a PhD student or a professor that speaks
french or german. Evaluating the range R:
[(student(x) A makes(x,PhD)) v prof(x)] ‘produces’ bind-
ings for the variable x. These bindings are then tested with
the subexpression E: speaks(x,fiench) v speaks(x,german).
All variables occurring in E also occur in R: E therefore
does not ‘produce’ variable bindings but ‘filters’ the values
returned by the evaluation of R. The ranges in a query with
constrained variables are producers. The expressions out-
side ranges are filters. As shown at the end of this
paragraph, it is beneficial not to identify the concepts of
range and of producer.

Definition 5
Given a conjunctive expression (p A F) (F A P,
resp.) with -free variables x1, a; P is a
producer and F is a fslter if P is a range for the
%‘s. A filter which is a disjunction of subfor-
mulas is called a disjunctivefilter.

In certain cases, both arguments of a conjunction may be
considered as producers or as filters, respectively. Decid-

198

ing which argument will be considered first is a major con-
cern in query optimization. This is usually done by compar-
ing the (estimated) costs of the various solutions. In order
to estimate these costs or performances, one first has to
know how a given ordering is processed. Such a processing
is proposed below. However, no choice strategy is
described here: Such a strategy requires the definition of a
cost model - an issue out of the scope of this article.

Consider again the query Q1 defined at the beginning of
this section. Distributing the quantification and the range
of Q1 over the disjunction occurring in the filter
(speaks(x,french) v speaks(x,german)) yields the following
disjunctive query:
Q2: @x1 [(studem. A makes(xtPhD)) v prof(xt)]

A speaks(xl ,french)) v
(3 x2 [(student(x,) A makes(x$hD)) v prof(x2)]

A speaks(x2,ge~@).
A direct evaluation of Q2 would independently search on
the one hand for a PhD student or professor speaking
french, on the other hand for a PhD student or professor
speaking german. The set of individuals qualified by the
range is therefore searched twice. Keeping the disjunction
in the filter subexpression might permit a more efficient
evaluation. It is shown in Section 3 how disjunctions occur-
ring in filters can be expressed by means of outer-joins
instead of unions. Intuitively, disjunctions occurring in fil-
ters do not require to store intermediate relations, since
filters do not produce new tuples.

In the general case of a query 3 x1...% R[xt ,,.., XJ A F, F
may contain quantified subformulas. This however does
not prevent from keeping disjunctions in the filter F. A
quantified formula, such as for example [Vy roman-
lwwageW => speaks(x,y)] (x speaks all roman
languages) expresses a property of the individual x rather
similar to the quantifier-free property speaks(x,french).

Distributing the existential quantifier and the filter
(speaks(x,french) v speaks(x,german)) over the disjunction
occurring in the producer R of Q2 yields the equivalent
query:
Qs: 3 x1 (student(xt) A makes(xt,PhD))

A (speaks(xt,french) v speaks(xr,german)) v
3 x2 prOfeSSOr(X2) A (speaks(x2,french) v

speaks(x2,ge=d)
Evaluating Qs consists in independently searching on the
one hand for a PhD student, on the other hand for a profes-
sor that speaks trench or german. The form Q3 of the
query appears to be preferable as it permits not to compute
the union of the relations of professors and of PhD stu-
dents.

It is in certain cases preferable to keep disjunctions occur-
ring in ranges. Consider, e.g., a query
Q4: 3~ [prOfeSSOr(X)~(member(X,CS)v Skill(X,IIMh))]

A speaks(x,french)
asking if there is a professor who speaks french, in the
computer science department or with a skill in math-
ematics. Moving the disjunction out of the range gives the
formuhX
Q5: 3x, [professors membCr(Xl,CS)]

A speaks(xt,french) v
3 x2 [pR3feSSOr(X2) A skill(~,math)l

A speaks(x#rench)
A direct evaluation of Qs would require to search the
professor relation twice. Sharing the search of this relation
for the evaluation of both subqueries is a rather natural
optimization. Such a sharing is precisely expressed in the
compacted original form Q4 of the query. This sharing is
possible by considering professor(x) as a producer and
[member(x,cs) v skill(x,math)] as a filter in the range
[professor(x) A (member(x,cs) v skill(x,math))].

The desirable transformation consists therefore in ‘moving
out’ disjunctions that are not contained in filter subexpres-
sions, and only those disjunctions. It is defined by the
following rules:

Rulel2: (P,vP~)AF + (F’,AF)v(PZAF)

if(P1vPz)AFoccursinarangeandif
(Pt v P2) is not a filter

Rule 13: FA(PlvP2) --) 6’ppl)“@+‘p~)
ifF~(PtvP.&occursinarangeandif
(Pt v P2> is not a filter

Rule 14: 3xt...xn (Rl v R2) +
(3Xj;.. xa RI) v @xkl...xkq Q)
if the 3’s (xk’s, resp.) are the 3’s
occurrmg in Rt (Rz, resp.)

Rules 12 and 13 express classical equivalence preserving
transformations. Rule 14 preserves logical equivalence be-
cause logical quantifers distribute over disjunctions and for
reasons similar to the motivation of Rule 7.

2.4. Correctness of the Rewriting System

In the previous paragraph, we have proposed to normalize
queries into a canonical form. We have defined this nor-
malization by 14 rewriting rules. We establish in the
present paragraph the correctness of the rewriting system.
We then show that the canonical form of a query is unique,
up to the choice of the producers. More formally, we prove
that the translation process defined by the rule system stops
in all cases - the rewriting system is noetherian - and we
show that the final result of a translation does not depend
on the application order of rules - the rewriting system is
confluent or has the Church-Rosser property.

Proposition 1 The rewriting system consisting
of Rules 1 to 14 is noetherian.

[Proof: It is sufficient to remark that the number of times a
given rule migth be applied during a translation process is
bounded by a parameter that depends only on the con-
sidered rule and on the formula to translate. Rules 4 and 5,
for example, are applicable at most as many times as there
are universal quantifiers in the formula.]

ProDosition 2 The rewriting system S consist-
ing of Rules 1 to 14 is confluent.

[Proof: (sketched) Let us informally recall some concepts
and refer to [SCH 87, HUE 801 for formal definitions. Two
subformulas SF, and SF2 form a ‘critical pair’ if there is a
formula F and two distinct rewriting rules both applicable
on F trough the subformulas SF, and SF2, respectively. A
normal form of a formula F is a final translation of F. Since
the system S is noetherian, each formula has at least one
normal form. Since S is noetherian, as shown in [HUE 801
it suffices to prove that for all critical pairs (SFI,SF2) and
for the corresponding normal forms NF,, NFz of a formula
F we have NF, = NF2 in order to establish Proposition 2. S
being finite, there are finitely many critical pairs (SF,,SF,),
that can be successively checked for the required property.
Consider for example the pair (3x1...% F, 8 F,, F, 8 Fz),
where F, does not contain any xi, and where a variable “i,
does not occur in F,. Applying Rule 7 first (for removing
the useIess variable x+ from the quantification) results in

3XI...Xi,-IXi+I... x, F, 8 Fp Applying Rule 5 on this expres-
sion (for moving F, out of the scope of the quantifier)
yields F, I3 Elxt...~~-tx~+t... x, F2. Applying Rule 5 first

gives F, 8 3x1...xn F2. The same normal form as before,
namely F, 8 3x t...x$-tx6+t...xr, F2, is obtained by apply-
ing now Rule 4. The reasoning is similar for the other criti-
cal pairs.]

3. Translation into Relational Algebra

Since queries in canonical form have restricted variables,
the translation of canonical queries could be done in a con-
ventional manner - existential quantifiers being processed
by projections, universal quantifier by divisions, disjunc-
tions by unions, conjunctions by joins and differences - as
proposed in [COD 72, PAL 72, JS 82, CG 851. In this sec-
tion, we describe a more efficient translation.

We define in Section 3.1 a new operator, the complement-
join, that generalizes the set difference. We show that the
complement-join improves significantly the processing of
certain conjunctions. In Section 3.2, we propose to add an
emptiness test to relational algebra. This test permits a
more faithful translation - and therefore a better processing
- of closed existential queries. We then describe a trans-
lation of quantified queries into relational algebra that con-
siderably restricts the use of the expensive division
operator. Furthermore, this new translation does not sys-
tematically rely on the cartesian product of all variable
ranges for expressing nested quantifications. We then
propose in Section 3.3 a special processing of disjunctive
filters by means of outer-joins. This processing of disjunc-
tions is especially useful for quantified queries. It is of
course also applicable to quantifier-free expressions.

3.1. The Complement-Join Operator

Certain conjunctions are inefficiently processed under the
classical translations into relational algebra. In order to
remedy to this undesirable situation, we propose to extend
the relational algebra with a new operator, the complement-
join. We first introduce informally the complement-join on
an example.

199

Consider an open query Qt qualifying the members of
some departments that have no skill in databases:

Qt: 3z member(x,z) A 4cill(x,db)
The usual translation of Qt into relational algebra is
nl(member) - sc,[o,.~t,,@oll)]. In order to also get the
names of the departments, one has to modify Qt into:

Q2: member(x,z) A 4cill(x,db)
Though Qt and Q2 are very similar, the conventional trans-
lation of QZ into relational algebra differs significantly
from that of Qt. Indeed, since the variable z does not occur
in the second conjunct of Q2, Q2 cannot be directly trans-
lated with a difference. A conventional translation of QZ is:

member I? @(member) - r~~[o~~(skill)])

This algebraic expression is more expensive to evaluate
than that associated with Qt because it requires to compute
not only a difference, but also a join.

The conjunction in Q2 could however be evaluated
similarly to a semi-join. For each tuple (m,d.J in
‘member’, the relation ‘shill’ could be searched for a tuple
(mi,“db”). If such a tuple is found - i.e., if (mi,di) E member
yl ~~~[o~=,,~,,Jskill)] - then (mi,dJ is not an answer to QZ.
Otherwise, it is an answer to Qp In other terms, QZ cor-
responds to the complement of the relation
‘member i:i ~l[o~d&kill)]’ in the relation ‘member’.
Like a semi-join, the complement-join of two relations is a
subset of its first argument.

The following definition of the complement-join operator is
based on the preceding observation.

Definition 6
Let P and Q be two relations with arities p and q,
respectively. Let ‘conj’ be a conjunction of
equalities i=j where 1 I i 4 p and 1 I j 5 q.

The complement-join P o(Q is the p-ary relation
defined as:

conj

I(Cl,..., Cd 1 (Cl ,..., cd E P - z1...p 2 Q))

Using the complement-join, the example query QZ
sidered above is expressed as:

member itKi 7cl [02=“db”(skill)l

The complement-join is easily implemented by modifying
any semi-join algorithm, thus permitting an algebraic

con-

processing of queries like Q2 much more efficient than the
conventional one.

The following proposition motivates the name
‘complement-join’ and shows that this new operator
generalizes the set difference.

Proposition 3
Let P and Q be two relations with arities p and q,
respectively. Let ‘conj’ be a conjunction of
equalities i=j, where 1 I i I p and 1 I j I q.

The following equalities hold:

p = ‘y+(P w Q) u P 6-T Ql ti conj

If p = q, then the following equality holds:

P-Q =P t? Q
l=h...Ap=q

[Proof: The equalities are immediate consequences of
Definition 6.3

The similarity as well the difference between the semi-join
and the complement-join can also be illustrated by the fol-
lowing equalities, that are directly implied by the defini-
tions:

RK S 1=1 = (x 1 R(x) A 3Y sky))

Ri? S = (x 1 R(x) A-I3ys(X,y)}
1x1

where R and S denote a unary and a binary relation, respec-
tively.

3.2. Processing Quantifiers

The query standardization described in Section 2 reduces
universal quantifications to existential ones. It is therefore
sufficient to describe how existential expressions are trans-
lated into relational algebra.

A closed existential query Q: 3xt...x,, F(xr,...,x,) is equiv-
alent to the equation (2 I F(xt ,...,xJ) # 0. Provided the
quantification in Q is restricted, i.e., F(xt ,..., x,,) =
R[xt ,..., x,] A G where R[xt ,..., xJ is a range for the xi’s, the
set S: (2 I F(xt,...,xJ) is definable by an algebraic expres-
sion. It is indeed not necessary to compute the whole set S
for evaluating Q. It is therefore desirable to extend the rela-
tional algebra with a non-emptiness test. Allowing tests in
algebraic expressions leads to allow boolean connectives as
well. This is indeed needed for queries consisting of con-
junctions or disjunctions of closed formulas. Consider for
example the query:

3x (student(x) A Ny lecture(y,db) => attends(x,y)l)
A [V zt student(z,) => 32, attends(zt ,z$l

asking if there is a student attending all database lectures
and if each student attends at least one lecture. It cor-
responds to the boolean expression:
(x I student(x) A [vy lecture(y,db) => attends(x,y)]) # 0

A (zt I student(z,) A 3% attends(zt,zJ) = 0

Pipelined evaluations [SC 75, YAO 791 are particularly
convenient for performing such tests. Consider the query:

Q: 3xy [enrokd(x,y) A y # cs A makes(x,PhD)
A 32 (lecture(z,cs) A attends(x,z))]

asking if there is a PhD student who is enrolled in another
department than the computer science department and at-
tends a lecture in computer science. A conventional evalua-
tion of Q consists for instance in computing both sets:

sl: “&#wcs” (enrolled) l; cr2,~fi~(makes)l

S2: n2[crwC~.(lecture) Iz attends]

200

and in performing the join St I: S,. Such a processing in
general performs much more tuple comparisons than a
pipelined evaluation of Q.

Pipelining the evaluation of Q consists in fact in applying
the loop algorithms of Fig. 1 (Section 1). With this ap-
proach, the relation ‘enrolled’ is first searched for a tuple
(x,y) such that y # “cs”. As soon as such a tuple is found, it
is checked if makes(x,PhD) holds or not. If it does hold, the
relation ‘lecture’ is searched for a tuple (z,cs). As soon as
such a tuple is found, it is checked if the tuple (x,z) is in the
relation ‘attends’. In case of failure, the next tuple of the
last relation is considered. When convenient values for x, y
and z are found, Q is known to be true: There is no need to
pursue the search for other values. This one-tuple-at-a-time
evaluation therefore minimizes the number of tuple com-
parisons. It is however often inefficient, in particular when
the relations mentioned in the query cannot be altogether
simultaneously opened. It is generally preferable not to
pipeline the evaluation of a query as a whole, but to
pipeline the evaluation of subexpressions only. A faithful
translation of closed existential queries with non-emptiness
equations gives rise to save useless computations.

The following proposition shows how to translate open cal-
culus expressions with nested quantifications into relational
algebra. It is worth noting that, among four syntactical
forms, only one case makes use of the expensive division
operator. Translations according to Proposition 4 are there-
fore more efficient than the conventional ones described,
e.g., in [COD 72, PAL 72, JS 82, CG 851.

Proposition 4
Let R and T be two binary relations, and let S and
G be two ternary relations. Q, = Q, denotes that
the calculus query Q, is equivalent to the al-
gebraic query Q,.

1. 3~’ W,y) A 32 [S(x,y,z) A G(x,y,z)l
= “P 1=I&z ?2@ w ldG?dA3=3

(31

2a.3y R&9 A 32 KWv,z) A 1 G(x,y,z)l

2b.3y R(x,y) A 32 [T(y,z) A 1 W,y,z)l

3. 3~ R(w) A 1 @z [S(x,y~z) A G(x,y,z)l)

4. 3y R(x,y) A ~(32 [S(X,Y,Z) A 1 G(x,y,z)l)

5. 3~ R(w) A ~(32 [T(Y,z) A 1 G(x,y,z)l)

[Proof: The first five equivalences are immediate con-
sequences of the definitions of the join and complement-
join operators. The last one holds as well since:

a. T (32 [T(y,z) A T G(x,y,z)]) is logically equivalent to
(Vz [T(Y,z) => G(x,y,z)l)

b. G 2 x2(T) = ((x,Y) 1 (x,Y) E 752G) A v’z [z E %(T)

=> (x,Y,z) E Gl)
by definition of the division operator.]

In the fifth case, the division operator cannot be avoided,
except rewritten in terms of difference or complement-
join. Since the variable x does not occur in T(y,z), but only
in G(x,y,z), a translation similar to that of case 4 is impos-
sible. The impossibility to translate all quantified calculus
expressions into relational algebra without using either
division or difference was observed by Codd [COD 721. It
has motivated the introduction of the division operator into
relational algebra.

Proposition 4 extends easily to more general expressions,
e.g. with more than one free variable, or such that R, S, T
or G denote complex expressions, or such that x or y does
not occur in both S and G.

It is worth noting that this is because of the miniscope
form, that Cartesian products and divisions can be avoided.
Instead of the miniscope form, the classical methods [COD
72, PAL 72, JS 82, CG 851 consider calculus queries in
prenex form: An initial Cartesian product of all variable
ranges and a systematic translation of universal quantifica-
tions - or negated existential quantifications - into divisions
are in consequence necessary. The methods [DAY
83, DAY 871 also consider queries in prenex form. Al-
though not explicitly performing Cartesian products and
divisions, the method [DAY 831 rely on non-relational
procedures that perform similary to these operators. The
method [DAY 871 relies on cartesian products. It handles
quantifiers in ways similar to that of [DAY 831.

3.3. Processing Disjunctive Filters with Outer-Joins

Let us first consider how a disjunctive filter is evaluated
under a pipelining strategy. Consider for example the open
query Q1: P(x) A [T(x) v U(x)]. According to Definition 5,
P(x) can be considered as a producer and [T(x) v U(x)] as a
filter. In this case, the evaluation of P(x) produces values
for x that are filtered through the expression [T(x) v U(x)].
A pipelined evaluation of Qt consists in successively
checking for each P-tuple, first if it occurs in T, second if it
occurs in U.

This evaluation strategy presents three main advantages
over conventional algebraic approaches. First, the set
T u U is not constructed. Second, the relation P is
searched only once. Third, it is possible not to search U for
those tuples that are in T (or conversely). However, a major
drawback of the approach is that interleaved access to all
relations occurring in a disjunction are needed. This may
introduce a considerable overhead in secondary storage ac-
cess. In this paragraph, it is shown how a special process-
ing of disjunctive filters with outer-joins retains the three
above-mentioned advantages without imposing to simul-

201

taneously access all considered relations. In order to il-
lustrate the approach on an example consider the relations
P, T, and U of Fig. 2.

The unidirectional outer-join lLP 761 R1: P ii? T (Fig. 2)
permits to recognize the P-tuples - like (a) - &at are in T,
without losing the P-tuples - like (c) - that are not in T. The
former tuples correspond to R1-tuples with non-null second
attribute, the latter to R,-tuples with null second attribute.
The null symbol 0 serves only internal purposes: It is not
available in the user language.

E I _v

i t
a

i
e F

R1:Plw T
la1

Fin. 2

Since the outer-join R, ‘preserves’ its left operand -
P = zl(R1) - the relation R2: Rt lly U (Fig. 3) permits to
distinguish the P-tuples occurring in U. A R2-tuple with
non-null third argument corresponds to a tuple in both P
and U. The P-tuples occurring in at least one of T and U are
the R2-tuples with at most one null attribute. In other terms,
the query:

Q1: P(x) A fl(x> v U(x)>
can be translated into the algebraic expression:

“l(02#0v3#0(~ ;y 1 ;tl u)

Fia.

This translation presents the first two attractive properties
of a pipelined evaluation: The union P u T is not con-
structed and P is searched only once. However, it does not
satisfy the third property: For computing q the relation U

is also searched for tuples occurring in T - as reflected by
the presence of (a,a,a) in R,. The useless search can be
avoided by constraining the second outer-join with the con-
dition 2 = 0. Under this constraint, a tuple of R, with
non-null second argument - like (ala) - is not compared
with U-tuples, but yields an R,-tuple with null third at-
tribute.

Fig. 3 shows an undesirable redundancy: Since P is a
producer and T participates to a filter, there is no need to
register the value ‘b’ as second argument in the outer-join
P IW T. Instead, it would be sufficient to ‘mark’ with a

14
special symbol, say I, that ‘b’ has been found in T. The
symbol I is somehow a counterpart to 0. Like 0, I is not
available in the user language.

Definition 7 formalizes the concept of constrained outer-
join.

Definition 7
Let P and 0 be two relations with arities D and a.
respectively. Let ‘camp’ be a boolean combin&
tion of P- and Q-attribute comparisons. Let

const = Ai; (h, Em 0)

be a constraint on attributes of P, where an E,
denotes ‘=’ or ‘#‘.

The constrained outer-join P r Q is the rela-
tion with arity p+l defined as: -’

((c p...FpJ) 1 (Cl ,...,c,> E JC~...,(P -Fcm Q)l

u {(cl,...,cp,O) I (c lv...cp)~P - “l...pP w Q)1
wmp

u m, I..., cp,O) 1 (c,,...$.l E ~TconspN

The constrained outer-join operator is easily implemented
by modifying any join - or outer-join - procedure. Accord-
ing to Definition 7, the example query Q1: P(x) A (T(x) v
U(x)) corresponds to:

It is worth noting that, by definition of a constrained outer-
join, the projection in the expression E cannot induce dupli-
cate tuples. Manipulation rules for outer-joins, that apply
to constrained outer-joins as well, are given in [RR 841.

Disjunctive filters containing negated subexpressions can
also be evaluated by means of constrained outer-joins. Con-
sider the relations P, T and U of Fig. 2 and the query Q2:
P(x) A [- T(x) v U(x)]. By definition, a tuple (c) is in the
difference relation P - T if the outer-join R1: [p ;yr T] (Fig.

2) contains the tuple (c,0).

Conversely, (cl) is not in P - T if R2 contains a tuple
(c1,c2) such that CL f 0. For computing the constrained

outer-join R3: lP IK T] %? U (Fig. 4) it is sufficient to
l=l I=1

202

search U only for the P-tuples that are not in P - T. The
tuples of R, relevant to Q2 have a null second attribute or
have a non-null third attribute. Q2 is therefore described by
the algebraic expression:

R3: PlK T$$I
14

E
I I

i
ib

0
0

0 0

FiR. 4

The following proposition summarizes the processing of
disjunctive filters with constrained outer-joins.

Proposition 5
Let P and T,, T, be unary relations. Assume
that a symbol Ai denotes either ‘7’ or the empty
symbol ‘ ’ (AiF denotes 7F if I\i = ‘7’) it
denotes F if 4 =‘ ‘).

The calculus query

p(x) A [AtTl(x) v . . . v A,T,(x)]
is equivalent to the algebraic expression

K~[~E(...~ all T1) ~11’ Tz)...~ Ti+t ... ~~-” T,))]

where E denotes the expression:
At(2#0) v... v Ai(i+l#O) v . . . v A,(n+l#lZ)
and where, for i = 1, ..,, n-l:

const(i) = ~~~~ k=i+l A,-,& = 0)

The initial projection does not induce duplicate
tuples.

[Proof: From Definition 7, by induction on n.]

Proposition 5 extends easily to more complex producer-
filter expressions involving, e.g., nary relations or general
attribute comparisons.

4. Conclusion

Looking at query optimization from a logical viewpoint, we
have proposed a new evaluation method for quantified and
disjunctive queries. The method proceeds in two phases.
The first phase consists in a logical standardization of the
queries into a canonical form. In the second phase, canoni-
cal expressions are translated into relational algebra. The

translation we propose is unconventional and improves
over the usual ones. It relies on a new operator, the
complement-join, that generalizes the set difference, on
special translations of quantified expressions, and on an
improved processing of certain disjunctions by means of
constrained outer-joins.

The standardization into canonical form has been defined
by a rewriting system. This system preserve logical equiv-
alence, hence the semantics of queries. We have shown that
the system is noetherian and confluent. The canonical form
permits to considerably improve the translation into rela-
tional algebra.

Unlike the rather efficient methods described by Dayal
in [DAY 83, DAY 871, our method process quantifiers by
means of relational algebra operators only. Thanks to the
canonical form, no special procedure is needed for handling
universal quantifications, as opposed to these approaches.
An advantage of our approach over that proposed by Dayal
is its simplicity: Neither special data structures, nor par-
ticular procedures are needed. However, this simplicity is
not obtained to the cost of efficiency. Instead, the method
proposed in this article significantly improves over the pre-
vious proposals. Another advantage of the approach ad-
vocated in this article is that, unlike both methods of Dayal,
quantified queries can be evaluated subexpression by sub-
expression. In other words, the method does not impose to
simultaneously access all relations occurring in the scope
of a quantifier, as opposed to the approaches [DAY
83, DAY 871.

The canonical form of queries we have defined permits to
avoid the systematic Cartesian products induced by the con-
ventional translation into relational algebra [COD 72, PAL
72, JS 82, CG 851. Furthermore, it permits in most cases to
translate quantified queries without calling for the expen-
sive division operator. Finally, the complement-join
operator we have defined and the special processing of dis-
junctions by means of outer-joins improve considerably
over the usual algebraic processings.

The techniques we have described for processing quan-
tifiers and disjunctions rely mostly on variants of a same
operator, namely the join operator. This is an additional
interesting feature of our approach, apart from its efficiency
and simplicity. Indeed, an algebraic translation basically
relying on a unique operator give rise to simplifying the
cost estimation model. Further research should be devoted
to investigating this issue.

This research has been motivated by an on-going project at
ECRC - the building of a knowledge base management
system. It is complementary to previous work on integrity
constraint processing [BDM 881.

5. Acknowledgement

I am grateful to Christoph Freytag and Rainer Manthey for
the many discussions we had during the elaboration of this
paper. I thank Jean-Marie Nicolas, Pierre Coste, Alexandre
Lefebvre, and Mark Wallace for useful comments on a first
version of this article.

203

6. References

[BDM881 Bry, F., Decker, H. and Manthey, R. A
Uniform Approach to Constraint Satisfaction and Con-
straint Satisfiability in Deductive Databases. In Proc.
EDBT ‘88. March, 1988.

[BRY 891 Bry, F. Logical Rewritings for Improving the
Evaluation of Quantified Queries. In Proc. IStInt. Con. on
Mathematical Fundamentals of Database Systems.
Visegrad, Hungary, June 26-20,1989.

[CC0 861 Cubitt, R., Cooper, B. and Ozsoyoglu,
G. (editors). Proc. 3rd Int. Workshop on Statistical and
Scientific Database Management. Eurostat, July 22-24,
Luxembourg, 1986.

[CG85] Ceri, S. and Gottlob, G. Translating SQL in
Relational Algebra: Optimization, Semantics and Equiv-
alence of SQL Queries. IEEE Trans. SE-l l(4), April,
1985.

[COD 721 Codd, E. Database Systems - Courant Com-
puter Science Symp. Prentice Hall, Englewood Cliffs, New
Jersey, 1972, Chapter Relational Completeness of Database
Sublanguages.

[DAT 811 Date, C. An Introduction to Database Systems.
Addison Wesley, 1981.

[DAY 831 Dayal, U. Processing Queries with Quan-
tifiers: A Horticultural Approach. In Proc. PODS ‘83,
pages 125-136. ACM, Atlanta, March, 1983.

[DAY 871 Dayal, U. Of Nests and Trees: A Unified Ap-
proach to Processing Queries That Contain Nested Sub-
queries, Aggregates, and Quantifiers. In Proc. VLDB ‘87,
pages 197-208. August, 1987.

FAG 801 Faain, R. Horn Clauses and Database Depen-
dencies. In 12’ Ann. ACM Symp. on Theory of Computing,
pages 123-134. 1980.

[HUE 801 Huet, G. Confluent Reductions: Abstract
Properties and Applications to Term Rewriting Systems.
Jour. ofthe ACM 27(4):797-821, October, 1980.

[JK 831 Jarke, M and Koch, J. Range Nesting: A Fast
Method to Evaluate Quantified Queries. In Proc. SIGMOD
'83, pages 196-206. ACM, San Jose, Calif, May 23-26,
1983.

[JS 821 Jarke, M. and Schmidt, J. Query Processing
Strategies in the PASCAL/R Relational Database Manage
ment System. In Proc. SIGMOD ‘82. ACM, June, 1982.

[KOW 791 Kowalski, R.A. Algorithm = Logic + Control.
Commun. ACM, Aug., 1979.

[KUH67] Kuhns, J.L. Answering Question by Com-
puter: A Logical Study. Technical Report RM-5428-PR,
Rand Corp., 1967.

lU'761 Lacroix, M and Pirotte, A. Generalized Joins.
SIGMOD Records 8(3): 14-15, September, 1976.

ET861 Lloyd, J.W. and Topor, R.W. A Basis for
Deductive Database Systems II. Jour. of Logic
Programming 3(1):55-67,1986.

[MEN 791 Mendelson, E. Introduction to Mathematical
Logic. Van Nostrand, New York, 1979.

@ID 831 Nicolas, J.-M. and Demolombe, R. On the
Stability of Relational Queries. Technical Report,
ONERA-CERT, Jan., 1983.

[PAL 721 Palermo, F. A Data Base Search Problem. In
Proc. 4” Symp. on Computer and Information SC.. 1972.

CRR 841 Rosenthal, A. and Reiner, D. Extending the
Algebraic Framework of Query Processing to Handle Out-
erjoins. In Proc. VLDB’84, pages 334-343. August, 1984.

[SC751 Smith, J.M. and Chang, P.Y.T. Optimizing the
Performance of a Relational Algebra Database Interface.
Commun. ACM 18(10):568-579, Oct., 1975.

[SCH 871 Schmitt, P. H. A Survey of Rewrite Systems.
In Proc. of the 1” Workshop on Computer Science Logic
(CSL '87), pages 235-262. Oct., 1987.

[SEL 861 Sellis, T. Global Query Optimization. In
Proc. SIGMOD ‘86, pages 191-205. ACM, 1986.

[SHE 881 Shepherdson, J.C. Foundations of Deductive
Databases and Logic Programming. Morgan Kaufmann,
Los Altos, CA, 1988, pages 19-88, Chapter Negation in
Logic Programming.

[SHI 811 Shipman, D. The Functional Data Model and
Data Language DAPLEX. ACM Trans. on Database
Systems 6(l), March, 1981.

[VGT 871 Van Gelder, A. and Topor, R.W. Safety and
Correct Translation of Relational Calculus Formulas. In
Proc. 6th ACM SIGACT-SIGMOD-SIGART Symp. on Prin-
ciples of Database Systems, pages 313-327. 1987.

[YAO 791 Yao, S.B. Optimization of Query Evaluation
Algorithms. ACM Trans. on Database Systems
4(2):133-155, June, 1979.

[ZLO 773 Zloof, M. Query by Example. IBM Systems
Jour. 16(4), 1977.

[ZOO 771 Zook W. et al. INGRES Reference Manual.
University of California, Berkley, 1977.

204

