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ABSTRACT Database applications often require to 
evaluate queries containing quantifiers or disjunctions, 
e.g., for handling general integrity constraints. Existing 
eficient methods for processing quantifiers depart from the 
relational model as they rely on non-algebraic procedures. 
Looking at quantified query evaluation from a new angle, 
we propose an approach to process quantifiers that makes 
use of relational algebra operators only. Our approach 
performs in two phases. The first phase normalizes the 
queries producing a canonical form. This form permits to 
improve the translation into relational algebra performed 
during the second phase. The improved translation relies 
on a new operator - the complement-join - that generalizes 
the set difference, on algebraic expressions of universal 
quantifiers that avoid the expensive division operator in 
many cases, and on a special processing of disjunctions by 
means of constrained outer-joins. Our method achieves an 
eficiency at least comparable with that of previous 
proposals, better in most cases. Furthermore, it is con- 
siderably simpler to implement as it completely relies on 
relational data structures and operators. 

1. Introduction 

Evaluating expressions with quantified variables or dis- 
junctions is often needed for database applications, e.g., for 
processing queries involving refined relationships between 
data, or for evaluating sophisticated views, or for handling 
integrity constraints that are more complex than depen- 
dencies. Although defining quantified expressions is 
usually considered difficult, natural language interfaces to 
databases considerably help inexperienced users, for ex- 
ample by allowing various grammatical forms that are less 
stringent than explicit prefixed quantifications. Further- 
more with the advent of couplings between databases and 
artificial intelligence systems, one can expect from users 
more familiarity with logic - in particular with quantifica- 
tion. The capability of using quantified expressions with 
ease is often assumed from database users, for instance in 
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the special area of scientific and statistic applications (see, 
e.g., [CC0 861). The original definition of SQL [DAT 811 
includes both universal and existential quantifiers, but con- 
strains their use (explicit universal quantifications are 
strongly limited). Some high-level query languages, e.g., 
DAPLEX [SHI 811 and PASCAL/R [JS 821, permit explicit 
unrestricted quantifications. 

Most research on efficient query evaluation however has 
focused on quantifier-free conjunctive expressions. The im- 
plementations of the most popular relational calculus lan- 
guages do not permit general quantifications. Quel [ZOO 
771 for instance does not have quantifiers. A variable not 
occurring in the target list is implicitly considered to be 
existentially quantified. Universal quantification is ach- 
ieved in QueI by means of an aggregate function: In order 
to check if all tuples qualified by an expression Q also 
satisfy a property P, one has to pose a query comparing the 
numbers of tuples satisfying Q and P, respectively. In 
QBE [ZLO 771 and SQL [DAT 811, general universal 
quantifications are in addition expressable by means of set 
inclusions. These solutions can be criticized for two 
reasons. First, they are often inefficient because they im- 
pose to compute intermediate results - aggregates or rela- 
tions - that are in principle not needed for answering the 
universally quantified query. Second, they compromise the 
declarative character of the query languages and many 
users consider them mom complicated than explicit quan- 
tifications. 

Since relational calculus is complete with respect to rela- 
tional algebra [COD 721, any kind of quantified query can 
in principle be translated into relational algebra. Codd’s 
completeness proof of the calculus defines a reduction al- 
gorithm for translating quantified calculus queries into rela- 
tional algebra expressions. Quantified queries are processed 
by considering first their prenex disjunctive normal form 
and the cartesian product of the ranges of all variables oc- 
curring in the query. Existential quantifications are then 
expressed by means of projections; universal quantifica- 
tions by means of divisions. Despite of its theoretical inter- 
est, this approach - even improved as proposed in [PAL 
72, JS 82, CG 851 - turns out to be unreasonable for prac- 
tical use. Because of the initial Cartesian product of all 
ranges and the systematic use of divisions, the relational 
algebra expressions it generates are extremely inefficient. 
As shown in [DAY 831, this Cartesian product usually 
retains much more tuples than needed and these tuples are 
eliminated too late, when divisions are finally performed. 
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evaluate(exists x in R: F(x), value): 
value := false 
for each x in R while value + true 
do evaluate(F(x), v) 

if v = true then value := true 
end 

@J Closed (i.e., yeslno) existential queries 

evaluate(forall x in R: F(x), value): 
value := true 
for each x in R while value + false 
do evaluate@(x), v) 

ifv = false then value := false 
end 

(bJ Closed (i.e., yeslno) universal queries 

evaluate(x1 in Rr: [quantifier 3 in s: F(xt,x&, rel): 
rel := 0 
for each x1 in R, 
do evaluate(quantifier 3 in R2: F(xy,x2), value) 

ifvalue = true then rel := relu(xt) 
end 

u Open quantified queries 

Fin. 1 Loop algorithms for evaluating 

quantified queries 

A rather immediate alternative to Codd’s processing of 
quantifiers is to process them by means of the loop al- 
gorithms of Figure 1, where R represents a range relation 
for the variable x - this concept is formally defined in Sec- 
tion 2.1 - and F(x) and F(xl,x2) represent subqueries with 
free variables x and x1, x2, respectively. 

It is important to note the symmetry of the procedures 
given in Fig. la and lb. Both consist of very similar while 
loops in which the same subexpressions are evaluated. The 
algorithms differ in two points only: In the loop halting 
conditions and in the value finally returned The truth (the 
falsity, respectively) of the evaluated subexpression stops 
the loop in the first procedure (the second procedure, 
respectively) and establishes the truth (the falsity, 
respectively) of the existential query (of the universal 
query, respectively). A logical formalization of this remark 
(Section 2.1: rewriting rules 4 and 5), and the definition of 
an operator that generalizes the set difference (Section 3.1: 
Definition 6) give rise to evaluating universal quantifica- 
tions similarly to existential ones (Section 3.2: Proposition 
4) - up to the above-mentionned symmetry. The efficient 
methods proposed in [DAY 83, DAY 871, as opposed, rely 
on special techniques for evaluating universal quantifica- 
tions. 

The algorithms of Fig. 1 process multiple quantifications 

with nested loop programs, the loop nesting reflecting the 
quantifier nesting. All operations are pipelined [SC 
75, YAO 791 and performed one tuple at a time. Although 
avoiding temporary storage, this approach is in general in- 
efficient. This is in particular the case when not all relations 
involved in the query can be simultaneously opened. Since 
algebraic operations are amenable to pipelining without im- 
posing this technique, nor requiring to perform it on the 
whole of the query, an efficient quantifier processing 
method based on relational algebra operations is desirable. 

In spite of their drawbacks, the loop algorithms of Fig. 1 
have two noticeable properties: Each range relation is 
searched only once, and no more tuples are accessed than 
necessary. The main result achieved in this article is the 
description of a quantifier processing method based on 
relational algebra operators that has these two attractive 
properties. The method retains the ‘logic’ of the nested 
loop approach without keeping its one-tuple-at-a-time 
‘control’ - in the sense of Kowalski’s equation ‘algorithm = 
logic + control’ [KOW 793. Our method can handle all 
types of quantified queries. 

A particularity of our approach is to process queries in two 
phases. The first phase is a logical normalization of queries 
into a canonical form. The canonical form is based on con- 
cepts - such as the miniscope form - that are unusual in 
query optimization, though rather classical in logic. The 
canonical form is important because it gives rise to improv- 
ing the algebraic translation performed during the second 
phase. The algebraic translation we describe improves over 
the classical ones [COD 72, PAL 72, JS 82, CG 851 since it 
avoids the initial cartesian product, and in most cases the 
expensive division operator for expressing universal quan- 
tifications. Instead, it relies on a new difference operator, 
that we call complement-join, on a special processing of 
quantified expressions, and on an improved processing of 
disjunctions by means of outer-joins. 

Other efficient approaches [DAY 83, DAY 871, as op- 
posed, depart from the relational model and rely on non- 
algebraic procedures. Dayal’s first method [DAY 831 re- 
quires a considerable machinery and uses unnormalized 
data structures. Although having the two noticeable 
properties of the nested loop approach, it imposes to 
process a quantified query as a whole. Dayal’s second 
method [DAY 871 is significantly simpler than the first 
one, as it is based on normalized data structures and uses 
algebraic operators. However, it handles universal quan- 
tification with special algorithms. The special translation 
into relational algebra we describe improves over the ef- 
ficient processing of Dayal’s methods. Furthermore, it is 
considerably simpler to implement as it completely relies 
on relational data structures and operators, especially for 
handling universal quantifications. 

Logic based normalizations of quantified queries have al- 
ready been proposed in [JK 831. However, the normaliza- 
tions described there are not related to any improved uans- 
lation into relational algebra. Instead, a restriction to a spe- 
cial class of queries - called ‘perfect queries’ - is proposed, 
in order to ensure acceptable evaluation costs under con- 
ventional translations, e.g., [COD 72, PAL 72, JS 82, CG 
851. Although well motivated from an implementation 
viewpoint, this restriction is unnatural for database users. 
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Moreover, ‘perfect queries’ are in our opinion much too 
restricted for practical use. As opposed, the canonical form 
we propose combined with the algebraic translation we 
describe achieve an efficient processing of unrestricted 
queries. 

The article is organized as follows. After this introduction, 
we define and motivate in Section 2 the canonical form of 
queries. Section 3 describes the improved translation of 
canonical form queries into relational algebra. In Section 
4, we summarize the main points of the paper. In the 
remainder of this introductory section, we introduce a few 
definitions and notations. 

Definitions and Notations 

We assume that queries are expressed in a relational cal- 
culus with domain variables. A selection over an nary rela- 
tion R is therefore represented in a query by means of an 
atom R(t,,...,tJ, where the terms $ are constants or vari- 
ables. The choice of a formal calculus intends to make the 
description of the method independent from any actual 
query language. Domain variables are chosen instead of 
tuple variables for making easier the reference to logic 
properties that are traditionally expressed in this manner. 
Although some of the logical concepts and properties we 
use are rarely mentioned in query optimization, they am 
classical in logic (see, e.g., the tutorial lMEN 791). 

Query languages usually have typed variables. We recall 
that typed quantifications ‘3x in R: F(x)’ and 
‘Vx in R: F(x)’ correspond to ‘3x R(x) A F(x)’ and ‘Vx 
R(x) => F(x)‘, respectively, in untyped logic. In order to 
treat all parts of a query uniformly, we adopt the untyped 
formalism. In an existential subquery ‘3x R(x) A F(x)’ the 
outermost conjunction therefore distinguishes the variable 
range ‘R(x)’ from the rest of the subquery. Similarly, the 
implication distinguishes the range ‘R(x)’ in a universal 
subquery ‘Vx R(x) => F(x)‘. For simplifying the descrip- 
tion of the method, the connective => will be used only for 
expressing ranges. In other contexts an expression ‘F, => 
F2’ is supposed to be written as ‘7 F, v F2’, and an expres- 
sion ‘F, <=> F2’ as ‘(- F, v F2) A (7F2 v F1)‘. 

Since ‘3x,3x, F’ and ‘3x23x1 F’ are logically equivalent 
whatever formula is F, we allow the shorthand notation 
‘3x1x2...% F’ - in which the order of the 3’s is irrelevant - 
in lieu of ‘3x,3x,...%,, F’. Similarly ‘Vx1x2...x, F’ will 
denote ‘Vx,Vx,...V,‘x, F’. Remember however that com- 
muting distinct quantifiers in general does not preserve 
logical equivalence. 

A subformula A has positive polarity in a formula F if A is 
embedded in zero or in an even number of negations in F 
(the left hand side of an implication being considered as an 
implicit negation). Similarly A has negative polarity in F if 
it is embedded in an odd number of - explicit or implicit - 
negations in F. 

The governing relationship between variables is important 
for optimizing quantified queries (Section 2.2). We there- 
fore recall its definition. Given a quantification [Qx Sl 
where Q denotes either 3 or V, the subformula S is called 
the scope of x. A quantified variable x directly governs a 
variable y if the following conditions are satisfied: 

1. y is quantified within the scope of x 
2. the quantification of y ‘follows immediately* that 

of x (formally: y is not quantified within the scope 
of a variable quantified in the scope of x) 

3. S contains an atom in which both x and y or a 
variable governed by y occur 

4. x and y have distinct quantifiers 
The governing relationship is the transitive closure of the 
above-defined relationship: A quantified variable x governs 
a quantified variable y either if x directly governs y, or if x 
directly governs a variable z that governs y. Intuitively, x 
governs y iff moving the quantification of y out of the 
scope of x could compromise logical equivalence. For ex- 
ample, x governs y but none of the zi’s in the formula: 

3x (student(x) A [Vy lecture(y,db) => attends(x,y)] A 

[V z1 student(zt) => 3% attends(zr,z$]) 
(there is a student attending all database lectures and 
each student attends at least one lecture) 

2. The Canonical Form of Quantified Queries 

This section defines a standardization of queries with quan- 
tifiers into a ‘canonical form’. This form is motivated by 
efficiency reasons. The translation into canonical form 
preserves logical equivalence and produces calculus ex- 
pressions. It is defined by means of 14 rewriting rules. This 
technique, stemming from Artificial Intelligence, is par- 
ticularly well-suited for formalizing standardization 
processes. Rule defined rewriting systems can easily be 
compiled into deterministic procedures that are more amen- 
able to practical use. However, the rule formalism is more 
convenient to simple descriptions. 

Section 2.1 defines some concepts of ‘range’, ‘restricted 
quantification’, and ‘restricted variables’ corresponding to 
variable declarations in procedural languages. In Section 
2.2, we show how to improve evaluations of quantified 
queries with a ‘miniscope form’. In Section 2.3 we argue 
for keeping disjunctive subqueries in certain cases. Finally, 
we show in Section 2.4 that the rewriting system defining 
the canonical form is correctly defined, i.e., in formal 
terms, it is noetherian and has the Church-Rosser property. 

2.1. Formulas with Restricted Variables 

In a database, negations are interpreted by failure: Facts not 
known to be true are assumed to be false. Under this as- 
sumption - the Closed World Assumption - the evaluation 
of non-ground queries with negative polarities is only pos- 
sible if domains of values are specified for all variables. In 
order to provide general queries with non-ambiguous 
semantics, it is assumed that there are no other values than 
those in the database. By this postulate - the Domain 
Closure Assumption - the set of all values in the database, 
called the database domain, can be assigned to all vari- 
ables. A query -p(x l ,...,xJ is in consequence equivalent to 
dom(xi) A . . . A domb,J A 7 P(xi ,...,a) where the view 
‘dom’ describes the database domain. If variables in the 
query language are typed, the type relations can be used 
instead of ‘dom’. 

Since negation is interpreted by failure, logically equivalent 
open queries can be evaluated differently: p(x) for instance 
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can be used for producing values for x, the evaluation of its 
logically equivalent form 7 7 p(x) however does not 
return values for x. In order to permit a correct evaluation 
of queries involving nested negations, we use the following 
classical rewriting rules: 

Rulel: 77F + F 
Rule 2: 1 &“F,) + TF, v -+ 
Rule 3: 1 (F1vF2) -j --IF, A ‘F, 

Rules 1, 2 and 3 preserve logical equivalence. Note that 
they do not transform negated quantifications. 

Explicit calls to the database domain or types can be 
avoided by declaring for each variable the attribute of a 
relation or of a view as range. The following definition 
formalizes this notion. 

Definition 1 
A range R[xt,... ,xJ for variables x1,...& is 
recursively defined as follows: 
1. P(xacl 

is a re r’ 
,..., x0& is a range for x1, . . . . s if P 
ation or a view and if o is a permutation 

of (1 ,...,nl 
2. R, A R, is a range for x1,..., s if R, is a 

range for yl,..., yk, if R, is a range for 
z1 ,..., % and if (yl ,..., yk)u(zI ,..., zh) = 
b+..JJ 

3. R, v R2 is a range for x1,...,% if R, and R, 
are both ranges for xl,...& 

4. RAFisarangeforxt,...,~ifRisarange 
for xl,...,% and F is a (possibly quantified) 
formula with free variables in (x,,...,xJ 

5. 3yI...y Risarangeforxt ,..., x,ifRisa 
range P or xl,...+yl ,... , yp 

Existential quantifications in ranges correspond to projec- 
tions: A range 3yz p(x,y,z) for a variable x expresses that x 
takes its values from the first projection of p. Classical 
ranges are those defined only by Conditions 1 and 5, i.e., 
corresponding to projections of a single relation or view. 
The more general definition given here may be seen as 
allowing view definitions local to a query. 

Closed formulas with restricted quantifications are the 
counterparts in logic to yes/no queries in conventional 
query languages: 

Definition 2 
A formula is a closed formula with restricted 
qua~lifications if all its- quantified subformulas 
SF have one of the forms 3x,...% R[xt ,..., xJ, 
3x1...% R[xt ,..., x&F, Vxt...x,, lR[xl ,..., x,,l, or 
Vxl...~ R[xt ,..., xJ => F where R[xt ,..., x,.J is a 
range for x1, . . . . s, and if variables free in SF are 
quantified outside SF. 

Queries like F1: 35x2 [f(q) v s(x&lP(xl,x2) am 

rejected by Definition 2. F, is unacceptable since certain 
evaluations of [r(xl) v s(x2)] - such as xl = a, if r(a) holds - 
leads to unbound variables occurring in the negated sub- 
query 7p(xt,x2): The expression [r(xt) v s(x.J] is not a 
range for x1 and x2. 

Consider a closed existential formula Ql: 
3x1...% R[xl ,..., x&Fi. An evaluation of Ql that min- 
imizes the number of tuples accessed and the number of 
tuple comparisons performed can be informally described 
as follows. First, the open formula R[x~,...,x,] is evaluated 
and for each returned binding Q of x1,...,%, the closed ex- 
pression F,a is in turn evaluated. This evaluation can ter- 
minate as soon as a binding o is found such that F,o 
evaluates to true, Qi is known to be true. If no such binding 
is found, Qt is false. In the rest of the paper, an evaluation 
method is described that follows this evaluation scheme but 
permits other controls than the one-tuple-at-a-time strategy 
of the loop algorithms mentioned in the introduction. 

The evaluation of a closed universal formula with restricted 
quantifications Q2: Vx,...x, R[xl,...,x,,] => F2 is very 
similar. First, the range R[xt,...,xJ is evaluated. For each 
returned variable binding o, F20 is evaluated. Q2 is known 
to be false if and only if there is a binding o such that F2a 
evaluates to false. Up to the truth value finally returned, 
this evaluation process is identical with that of 
3x1.4 R[xl ,..., xJ A 7 FZ. In other words, the logically 
equivalent formulas Q2 and 7 @x1..+, R[x~,..,,x,] A 7 

F2) are evaluated in the same manner. Based on this obser- 
vation, we introduce two rewriting rules that reduce the 
evaluation of universal expressions to that of existential 
ones: 

Rule 4: Vxl...x, R[xt ,..., xJ => F + 
7 (3x l...xn R[xi ,..., xnl A 7 F> 

Rules: Vxl...xn 7 R[xt ,..., xnl + 
1 (3x1-.x, Nxl,...,x,l) 

Rules 4 and 5 preserve logical equivalence. This reduction 
of universal expressions to existential ones requires to be 
capable to evaluate existential formulas in which negations 
occur. An efficient translation of such formulas into rela- 
tional algebra is proposed in Section 3. 

If the existential closure of an open query is a formula with 
restricted quantifications, then the query can be evaluated 
similarly to existential formulas. Let Qs: R[xl...xJ A Fs be 
an open query such that its existential closure 3x,..+., Qs is 
a closed formula with restricted quantifications. The 
evaluation of the range R[xl...xJ returns bindings for the 
s’s. For each such binding cr, the expression F3a is 
evaluated. If it evaluates to true, the o defines an answer to 
Qs. As opposed to closed formulas, all solutions to 
N.x I,...,xJ have to be computed, in order to determine all 
answers to Qs. Definition 3 formalizes the concept of open 
query. 

Definition 3 
Open formulas with restricted variables xl,...,xn 
are recursively defined as follows: 
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1. F is an open formula with restricted variables 
xl,...~ifevery~isfreeinF,ifFhasno 
other free variables and if 3x1..+, F(xt ,..., a) 
is a closed formula with restricted quantifi- 
cations 

2. F, v F2 is an open formula with restricted 
variables x1,...,% if both F, and F, are open 
formulas with restricted variables xI,...,xn 

Formulas with restricted variables and quantifications are 
definite [KUH 671 and domain independent [FAG 801, two 
equivalent properties characterizing the formulas whose 
valuations remain unchanged under updates on relations 
not occurring in the formulas. As opposed to domain in- 
dependence, the restricted variable and quantification 
properties are defined syntactically. Other syntactical 
classes of domain independent formulas that have been 
proposed are, e.g., the range-restricted formulas l?lD 831 
and the various classes of allowed formulas [LT 86, VGT 
87, SHE 881. For each expression in one of these classes, it 
is possible to construct an equivalent formula with 
restricted variables and quantifications [BRY 891. 

Well-formed formulas may contain ‘useless’ quantifica- 
tions, i.e. quantifications applying to variables that do not 
occur in the rest of the formula. This is for example the 
case of the first quantification in the formula F: 3x [t/y p(y) 
=> q(y)]. There are no chances to find ranges for variables 
with such quantifications! We therefore introduce two 
rewriting rules for avoiding these cases: 

Rule 6: 3x1...x,, + F 
ifnoneofthe~‘soccurinF 

Rule 7: 3x1...% + 3x,,...% F 
if the xi)s distinct from Xip..~~ do not occur in F 

Rule 6 preserves logical equivalence. Rule 7 also preserves 
logical equivalence since 3xt...x, F is logically equivalent 

to %7(1)-%(n) F, for all permutations CT of (l,...,n) (we 
recall that 3x1..+, F denotes 3x,3x,...3x, F). 

2.2. The Miniscope Form 

The methods proposed in the literature for evaluating quan- 
tified queries usually first compute their prenex form - ob- 
tained by moving the quantifiers in front of queries [COD 
72, PAL 72, JS 82, DAY 83, CG 85, DAY. 871. Here we 
plead for a different syntactical form of queries, the min- 
iscope form. Informally, this form is obtained by pushing 
all quantifiers inwards, reducing variable scopes as much as 
possible. 

We first motivate the miniscope form with an example. 
Consider the query 

Qt: 3x student(x) A t/y [cs-lecture(y) =a attends(x,y) 
A 7 enrolled(x,cs)] 

asking if one may find a student attending all lectures in 
computer science without being enrolled in this depart- 
ment. If Qt is evaluated as described above, for a given 
student ‘a’ the subquery -1 enrolled(a,cs) is evaluated as 

many times as there are computer science lectures. This is 
of course neither necessary nor desirable. It has been 
proposed in [JK 831 to rely on more sophisticated query 
evaluation procedures for avoiding these redundant evalu- 
tions. A much simpler - and cheaper - solution consists in 
first transforming Qt into the equivalent formula 

Q2: 3x student(x) A [Vy cs-lecture(y) => attends(x,y)l 
A -, enrolled(x,cs) 

and then to process Q2 as described in the previous section. 
During the evaluation of Q2, the subquery 7 enrolled(x,cs) 
is evaluated only once for each possible student x because 
the variable x is no more in the scope of the universal 
variable y. Definition 4 formalizes this remark. 

Definition 4 
A formula is in miniscope form if and only if 
none of its quantified subformulas F contains an 
atom in which only variables quantified outside F 
occur. 

A miniscope form is often obtained by simply moving sub- 
formulas out of the scopes of quantifiers according to the 
following rules, where 8 denotes A or v. 

Rule 8: 3x1...xn F1 8 F21 + F, 8 [3x1...x2 Fz] 
if none of the variables x1 ,...,x, occur in F, 

Rule 9: 3x1...x,., l-F1 8 F2] -+ [3x 1...~n Ft] 8 Fz 
if none of the variables xt,...,xn occur in F2 

These rules preserve logical equivalence. In certain cases 
Rules 8 and 9 are not sufficient for reaching a formula in 
miniscope form. Consider for example the formula: 

F,: 3x P(x) A (q(Y) v r(x)) 
In order to move the atomic subformula q(y) out of the 
scope of the existential quantifier, one has first to move it 
out of the disjunction. This is done by first putting the 
matrix of F, in disjunctive normal form: 

F2: 3x [P(X)f&‘)l v [PP(x)&)I 
Then, since existential quantifiers distribute over disjunc- 
tions, Fz is transformed into: 

F3: 0x1 [P(xt) A q(Y)]) v (3x2 [P(xz) A r(x2)l) 
Finally, applying Rule 5 results in: 

F4: ([3x1 Al A q(Y)) v (3x2 [P(x~) A r(x&]) 
Both disjuncts D,: [3x1 p(xt)] A q(y) and D,: 3x2 [p(x,) A 
r(x2)] of F4 share a common subexpression, namely C: 3x 
p(x). It is therefore desirable that both evaluations of D, 
and D2 use the evaluation of C as a sharable resource. To 
this aim, it is tempting to look for a rewriting of F4 in 
which C occurs only once. Unfortunately, this results in a 
non-miniscope expression similar to the initial query F,! 

It is worth noting that the two requirements, miniscope 
form and sharing of common subexpressions, cannot al- 
ways be reached by a unique syntactical form of the 
queries. However, answers to common subexpressions that 
are not syntactically shared in the query can be shared 
procedurally by refined evaluation procedures. Such 
methods have been investigated, e.g., in [SEL 861. The 
following rules together with Rules 8 and 9 yield formulas 
in miniscope form. 
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Rule IO: 3x1...x, (F1 v F2) A Fs + 
Pq...x,, PI A F3)1 v D+..x, C-Q A F3)1 
if(t) F, or F2 contains an atomic subformula 
in which none of the 3’s and none of the 
variables governed by some xi occur 

Rule 11: 3x1...% F, A (F2 v Fs) + 
[3+x, (Ft A F2)1 v [3+x, (F1 A F3)1 
if (7) holds 

Rules 10 and 11 preserve logical equivalence. They cannot 
be applied if Ft or F2 simply contains an atomic subfor- 
mula in which none of the xi’s occur. The governing 
relationships between variables must be taken into account. 
Consider for example F5: 3x p(x) A vy 7 q(y) v r(x,y)]. 
Moving q(y) out of the universal quantification would not 
preserve logical equivalence. In fact, Fs is in miniscope 
form. 

2.3. Producers and Filters 

It is generally considered beneficial to break queries into 
conjunctive subqueries in order to avoid - or to postpone as 
long as possible - the computation of unions. Such an ap- 
proach permits indeed to delay the creation of intermediate 
results of larger size. The disjunctive normal form is in 
consequence usually considered as the most appropriate 
syntactical form of queries for an efficient evaluation. We 
propose to distribute conjunctions over disjunctions only in 
certain cases, namely when the superexpressions containing 
the disjunctions are all ‘producers’. However, we advocate 
to keep those disjunctions that occurr in subexpressions we 
call ‘filters’. As we show in Section 3.3, this approach per- 
mits to improve over the traditional ones, especially for 
evaluating range expressions. 

Let us first informally introduce in an example the concepts 
of producer and filter. Consider a query: 

Qt: 3x [(student(x) A makes(X,PhD)) v prOf(X)] 

A [speaks(x,french) v speaks(x,german)] 
asking if there is a PhD student or a professor that speaks 
french or german. Evaluating the range R: 
[(student(x) A makes(x,PhD)) v prof(x)] ‘produces’ bind- 
ings for the variable x. These bindings are then tested with 
the subexpression E: speaks(x,fiench) v speaks(x,german). 
All variables occurring in E also occur in R: E therefore 
does not ‘produce’ variable bindings but ‘filters’ the values 
returned by the evaluation of R. The ranges in a query with 
constrained variables are producers. The expressions out- 
side ranges are filters. As shown at the end of this 
paragraph, it is beneficial not to identify the concepts of 
range and of producer. 

Definition 5 
Given a conjunctive expression (p A F) (F A P, 
resp.) with -free variables x1, . . . . a; P is a 
producer and F is a fslter if P is a range for the 
%‘s. A filter which is a disjunction of subfor- 
mulas is called a disjunctivefilter. 

In certain cases, both arguments of a conjunction may be 
considered as producers or as filters, respectively. Decid- 
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ing which argument will be considered first is a major con- 
cern in query optimization. This is usually done by compar- 
ing the (estimated) costs of the various solutions. In order 
to estimate these costs or performances, one first has to 
know how a given ordering is processed. Such a processing 
is proposed below. However, no choice strategy is 
described here: Such a strategy requires the definition of a 
cost model - an issue out of the scope of this article. 

Consider again the query Q1 defined at the beginning of 
this section. Distributing the quantification and the range 
of Q1 over the disjunction occurring in the filter 
(speaks(x,french) v speaks(x,german)) yields the following 
disjunctive query: 
Q2: @x1 [(studem. A makes(xtPhD)) v prof(xt)] 

A speaks(xl ,french)) v 
(3 x2 [(student(x,) A makes(x$hD)) v prof(x2)] 

A speaks(x2,ge~@). 
A direct evaluation of Q2 would independently search on 
the one hand for a PhD student or professor speaking 
french, on the other hand for a PhD student or professor 
speaking german. The set of individuals qualified by the 
range is therefore searched twice. Keeping the disjunction 
in the filter subexpression might permit a more efficient 
evaluation. It is shown in Section 3 how disjunctions occur- 
ring in filters can be expressed by means of outer-joins 
instead of unions. Intuitively, disjunctions occurring in fil- 
ters do not require to store intermediate relations, since 
filters do not produce new tuples. 

In the general case of a query 3 x1...% R[xt ,,.., XJ A F, F 
may contain quantified subformulas. This however does 
not prevent from keeping disjunctions in the filter F. A 
quantified formula, such as for example [Vy roman- 
lwwageW => speaks(x,y)] (x speaks all roman 
languages) expresses a property of the individual x rather 
similar to the quantifier-free property speaks(x,french). 

Distributing the existential quantifier and the filter 
(speaks(x,french) v speaks(x,german)) over the disjunction 
occurring in the producer R of Q2 yields the equivalent 
query: 
Qs: 3 x1 (student(xt) A makes(xt,PhD)) 

A (speaks(xt,french) v speaks(xr,german)) v 
3 x2 prOfeSSOr(X2) A (speaks(x2,french) v 

speaks(x2,ge=d) 
Evaluating Qs consists in independently searching on the 
one hand for a PhD student, on the other hand for a profes- 
sor that speaks trench or german. The form Q3 of the 
query appears to be preferable as it permits not to compute 
the union of the relations of professors and of PhD stu- 
dents. 

It is in certain cases preferable to keep disjunctions occur- 
ring in ranges. Consider, e.g., a query 
Q4: 3~ [prOfeSSOr(X)~(member(X,CS)v Skill(X,IIMh))] 

A speaks(x,french) 
asking if there is a professor who speaks french, in the 
computer science department or with a skill in math- 
ematics. Moving the disjunction out of the range gives the 
formuhX 
Q5: 3x, [professors membCr(Xl,CS)] 

A speaks(xt,french) v 
3 x2 [pR3feSSOr(X2) A skill(~,math)l 



A speaks(x#rench) 
A direct evaluation of Qs would require to search the 
professor relation twice. Sharing the search of this relation 
for the evaluation of both subqueries is a rather natural 
optimization. Such a sharing is precisely expressed in the 
compacted original form Q4 of the query. This sharing is 
possible by considering professor(x) as a producer and 
[member(x,cs) v skill(x,math)] as a filter in the range 
[professor(x) A (member(x,cs) v skill(x,math))]. 

The desirable transformation consists therefore in ‘moving 
out’ disjunctions that are not contained in filter subexpres- 
sions, and only those disjunctions. It is defined by the 
following rules: 

Rulel2: (P,vP~)AF + (F’,AF)v(PZAF) 

if(P1vPz)AFoccursinarangeandif 
(Pt v P2) is not a filter 

Rule 13: FA(PlvP2) --) 6’ppl)“@+‘p~) 
ifF~(PtvP.&occursinarangeandif 
(Pt v P2> is not a filter 

Rule 14: 3xt...xn (Rl v R2) + 
(3Xj;.. xa RI) v @xkl...xkq Q) 
if the 3’s (xk’s, resp.) are the 3’s 
occurrmg in Rt (Rz, resp.) 

Rules 12 and 13 express classical equivalence preserving 
transformations. Rule 14 preserves logical equivalence be- 
cause logical quantifers distribute over disjunctions and for 
reasons similar to the motivation of Rule 7. 

2.4. Correctness of the Rewriting System 

In the previous paragraph, we have proposed to normalize 
queries into a canonical form. We have defined this nor- 
malization by 14 rewriting rules. We establish in the 
present paragraph the correctness of the rewriting system. 
We then show that the canonical form of a query is unique, 
up to the choice of the producers. More formally, we prove 
that the translation process defined by the rule system stops 
in all cases - the rewriting system is noetherian - and we 
show that the final result of a translation does not depend 
on the application order of rules - the rewriting system is 
confluent or has the Church-Rosser property. 

Proposition 1 The rewriting system consisting 
of Rules 1 to 14 is noetherian. 

[Proof: It is sufficient to remark that the number of times a 
given rule migth be applied during a translation process is 
bounded by a parameter that depends only on the con- 
sidered rule and on the formula to translate. Rules 4 and 5, 
for example, are applicable at most as many times as there 
are universal quantifiers in the formula.] 

ProDosition 2 The rewriting system S consist- 
ing of Rules 1 to 14 is confluent. 

[Proof: (sketched) Let us informally recall some concepts 
and refer to [SCH 87, HUE 801 for formal definitions. Two 
subformulas SF, and SF2 form a ‘critical pair’ if there is a 
formula F and two distinct rewriting rules both applicable 
on F trough the subformulas SF, and SF2, respectively. A 
normal form of a formula F is a final translation of F. Since 
the system S is noetherian, each formula has at least one 
normal form. Since S is noetherian, as shown in [HUE 801 
it suffices to prove that for all critical pairs (SFI,SF2) and 
for the corresponding normal forms NF,, NFz of a formula 
F we have NF, = NF2 in order to establish Proposition 2. S 
being finite, there are finitely many critical pairs (SF,,SF,), 
that can be successively checked for the required property. 
Consider for example the pair (3x1...% F, 8 F,, F, 8 Fz), 
where F, does not contain any xi, and where a variable “i, 
does not occur in F,. Applying Rule 7 first (for removing 
the useIess variable x+ from the quantification) results in 

3XI...Xi,-IXi+I... x, F, 8 Fp Applying Rule 5 on this expres- 
sion (for moving F, out of the scope of the quantifier) 
yields F, I3 Elxt...~~-tx~+t... x, F2. Applying Rule 5 first 

gives F, 8 3x1...xn F2. The same normal form as before, 
namely F, 8 3x t...x$-tx6+t...xr, F2, is obtained by apply- 
ing now Rule 4. The reasoning is similar for the other criti- 
cal pairs.] 

3. Translation into Relational Algebra 

Since queries in canonical form have restricted variables, 
the translation of canonical queries could be done in a con- 
ventional manner - existential quantifiers being processed 
by projections, universal quantifier by divisions, disjunc- 
tions by unions, conjunctions by joins and differences - as 
proposed in [COD 72, PAL 72, JS 82, CG 851. In this sec- 
tion, we describe a more efficient translation. 

We define in Section 3.1 a new operator, the complement- 
join, that generalizes the set difference. We show that the 
complement-join improves significantly the processing of 
certain conjunctions. In Section 3.2, we propose to add an 
emptiness test to relational algebra. This test permits a 
more faithful translation - and therefore a better processing 
- of closed existential queries. We then describe a trans- 
lation of quantified queries into relational algebra that con- 
siderably restricts the use of the expensive division 
operator. Furthermore, this new translation does not sys- 
tematically rely on the cartesian product of all variable 
ranges for expressing nested quantifications. We then 
propose in Section 3.3 a special processing of disjunctive 
filters by means of outer-joins. This processing of disjunc- 
tions is especially useful for quantified queries. It is of 
course also applicable to quantifier-free expressions. 

3.1. The Complement-Join Operator 

Certain conjunctions are inefficiently processed under the 
classical translations into relational algebra. In order to 
remedy to this undesirable situation, we propose to extend 
the relational algebra with a new operator, the complement- 
join. We first introduce informally the complement-join on 
an example. 
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Consider an open query Qt qualifying the members of 
some departments that have no skill in databases: 

Qt: 3z member(x,z) A 4cill(x,db) 
The usual translation of Qt into relational algebra is 
nl(member) - sc,[o,.~t,,@oll)]. In order to also get the 
names of the departments, one has to modify Qt into: 

Q2: member(x,z) A 4cill(x,db) 
Though Qt and Q2 are very similar, the conventional trans- 
lation of QZ into relational algebra differs significantly 
from that of Qt. Indeed, since the variable z does not occur 
in the second conjunct of Q2, Q2 cannot be directly trans- 
lated with a difference. A conventional translation of QZ is: 

member I? @(member) - r~~[o~~(skill)]) 

This algebraic expression is more expensive to evaluate 
than that associated with Qt because it requires to compute 
not only a difference, but also a join. 

The conjunction in Q2 could however be evaluated 
similarly to a semi-join. For each tuple (m,d.J in 
‘member’, the relation ‘shill’ could be searched for a tuple 
(mi,“db”). If such a tuple is found - i.e., if (mi,di) E member 
yl ~~~[o~=,,~,,Jskill)] - then (mi,dJ is not an answer to QZ. 
Otherwise, it is an answer to Qp In other terms, QZ cor- 
responds to the complement of the relation 
‘member i:i ~l[o~d&kill)]’ in the relation ‘member’. 
Like a semi-join, the complement-join of two relations is a 
subset of its first argument. 

The following definition of the complement-join operator is 
based on the preceding observation. 

Definition 6 
Let P and Q be two relations with arities p and q, 
respectively. Let ‘conj’ be a conjunction of 
equalities i=j where 1 I i 4 p and 1 I j 5 q. 

The complement-join P o( Q is the p-ary relation 
defined as: 

conj 

I(Cl,..., Cd 1 (Cl ,..., cd E P - z1...p 2 Q)) 

Using the complement-join, the example query QZ 
sidered above is expressed as: 

member itKi 7cl [02=“db”(skill)l 

The complement-join is easily implemented by modifying 
any semi-join algorithm, thus permitting an algebraic 

con- 

processing of queries like Q2 much more efficient than the 
conventional one. 

The following proposition motivates the name 
‘complement-join’ and shows that this new operator 
generalizes the set difference. 

Proposition 3 
Let P and Q be two relations with arities p and q, 
respectively. Let ‘conj’ be a conjunction of 
equalities i=j, where 1 I i I p and 1 I j I q. 

The following equalities hold: 

p = ‘y+(P w Q) u P 6-T Ql ti conj 

If p = q, then the following equality holds: 

P-Q =P t? Q 
l=h...Ap=q 

[Proof: The equalities are immediate consequences of 
Definition 6.3 

The similarity as well the difference between the semi-join 
and the complement-join can also be illustrated by the fol- 
lowing equalities, that are directly implied by the defini- 
tions: 

RK S 1=1 = (x 1 R(x) A 3Y sky)) 

Ri? S = (x 1 R(x) A-I3ys(X,y)} 
1x1 

where R and S denote a unary and a binary relation, respec- 
tively. 

3.2. Processing Quantifiers 

The query standardization described in Section 2 reduces 
universal quantifications to existential ones. It is therefore 
sufficient to describe how existential expressions are trans- 
lated into relational algebra. 

A closed existential query Q: 3xt...x,, F(xr,...,x,) is equiv- 
alent to the equation (2 I F(xt ,...,xJ) # 0. Provided the 
quantification in Q is restricted, i.e., F(xt ,..., x,,) = 
R[xt ,..., x,] A G where R[xt ,..., xJ is a range for the xi’s, the 
set S: (2 I F(xt,...,xJ) is definable by an algebraic expres- 
sion. It is indeed not necessary to compute the whole set S 
for evaluating Q. It is therefore desirable to extend the rela- 
tional algebra with a non-emptiness test. Allowing tests in 
algebraic expressions leads to allow boolean connectives as 
well. This is indeed needed for queries consisting of con- 
junctions or disjunctions of closed formulas. Consider for 
example the query: 

3x (student(x) A Ny lecture(y,db) => attends(x,y)l) 
A [V zt student(z,) => 32, attends(zt ,z$l 

asking if there is a student attending all database lectures 
and if each student attends at least one lecture. It cor- 
responds to the boolean expression: 
(x I student(x) A [vy lecture(y,db) => attends(x,y)]) # 0 

A (zt I student(z,) A 3% attends(zt,zJ) = 0 

Pipelined evaluations [SC 75, YAO 791 are particularly 
convenient for performing such tests. Consider the query: 

Q: 3xy [enrokd(x,y) A y # cs A makes(x,PhD) 
A 32 (lecture(z,cs) A attends(x,z))] 

asking if there is a PhD student who is enrolled in another 
department than the computer science department and at- 
tends a lecture in computer science. A conventional evalua- 
tion of Q consists for instance in computing both sets: 

sl: “&#wcs” (enrolled) l; cr2,~fi~(makes)l 

S2: n2[crwC~.(lecture) Iz attends] 
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and in performing the join St I: S,. Such a processing in 
general performs much more tuple comparisons than a 
pipelined evaluation of Q. 

Pipelining the evaluation of Q consists in fact in applying 
the loop algorithms of Fig. 1 (Section 1). With this ap- 
proach, the relation ‘enrolled’ is first searched for a tuple 
(x,y) such that y # “cs”. As soon as such a tuple is found, it 
is checked if makes(x,PhD) holds or not. If it does hold, the 
relation ‘lecture’ is searched for a tuple (z,cs). As soon as 
such a tuple is found, it is checked if the tuple (x,z) is in the 
relation ‘attends’. In case of failure, the next tuple of the 
last relation is considered. When convenient values for x, y 
and z are found, Q is known to be true: There is no need to 
pursue the search for other values. This one-tuple-at-a-time 
evaluation therefore minimizes the number of tuple com- 
parisons. It is however often inefficient, in particular when 
the relations mentioned in the query cannot be altogether 
simultaneously opened. It is generally preferable not to 
pipeline the evaluation of a query as a whole, but to 
pipeline the evaluation of subexpressions only. A faithful 
translation of closed existential queries with non-emptiness 
equations gives rise to save useless computations. 

The following proposition shows how to translate open cal- 
culus expressions with nested quantifications into relational 
algebra. It is worth noting that, among four syntactical 
forms, only one case makes use of the expensive division 
operator. Translations according to Proposition 4 are there- 
fore more efficient than the conventional ones described, 
e.g., in [COD 72, PAL 72, JS 82, CG 851. 

Proposition 4 
Let R and T be two binary relations, and let S and 
G be two ternary relations. Q, = Q, denotes that 
the calculus query Q, is equivalent to the al- 
gebraic query Q,. 

1. 3~’ W,y) A 32 [S(x,y,z) A G(x,y,z)l 
= “P 1=I&z ?2@ w ldG?dA3=3 

(31 

2a.3y R&9 A 32 KWv,z) A 1 G(x,y,z)l 

2b.3y R(x,y) A 32 [T(y,z) A 1 W,y,z)l 

3. 3~ R(w) A 1 @z [S(x,y~z) A G(x,y,z)l) 

4. 3y R(x,y) A ~(32 [S(X,Y,Z) A 1 G(x,y,z)l) 

5. 3~ R(w) A ~(32 [T(Y,z) A 1 G(x,y,z)l) 

[Proof: The first five equivalences are immediate con- 
sequences of the definitions of the join and complement- 
join operators. The last one holds as well since: 

a. T (32 [T(y,z) A T G(x,y,z)]) is logically equivalent to 
(Vz [T(Y,z) => G(x,y,z)l) 

b. G 2 x2(T) = ((x,Y) 1 (x,Y) E 752G) A v’z [z E %(T) 

=> (x,Y,z) E Gl) 
by definition of the division operator.] 

In the fifth case, the division operator cannot be avoided, 
except rewritten in terms of difference or complement- 
join. Since the variable x does not occur in T(y,z), but only 
in G(x,y,z), a translation similar to that of case 4 is impos- 
sible. The impossibility to translate all quantified calculus 
expressions into relational algebra without using either 
division or difference was observed by Codd [COD 721. It 
has motivated the introduction of the division operator into 
relational algebra. 

Proposition 4 extends easily to more general expressions, 
e.g. with more than one free variable, or such that R, S, T 
or G denote complex expressions, or such that x or y does 
not occur in both S and G. 

It is worth noting that this is because of the miniscope 
form, that Cartesian products and divisions can be avoided. 
Instead of the miniscope form, the classical methods [COD 
72, PAL 72, JS 82, CG 851 consider calculus queries in 
prenex form: An initial Cartesian product of all variable 
ranges and a systematic translation of universal quantifica- 
tions - or negated existential quantifications - into divisions 
are in consequence necessary. The methods [DAY 
83, DAY 871 also consider queries in prenex form. Al- 
though not explicitly performing Cartesian products and 
divisions, the method [DAY 831 rely on non-relational 
procedures that perform similary to these operators. The 
method [DAY 871 relies on cartesian products. It handles 
quantifiers in ways similar to that of [DAY 831. 

3.3. Processing Disjunctive Filters with Outer-Joins 

Let us first consider how a disjunctive filter is evaluated 
under a pipelining strategy. Consider for example the open 
query Q1: P(x) A [T(x) v U(x)]. According to Definition 5, 
P(x) can be considered as a producer and [T(x) v U(x)] as a 
filter. In this case, the evaluation of P(x) produces values 
for x that are filtered through the expression [T(x) v U(x)]. 
A pipelined evaluation of Qt consists in successively 
checking for each P-tuple, first if it occurs in T, second if it 
occurs in U. 

This evaluation strategy presents three main advantages 
over conventional algebraic approaches. First, the set 
T u U is not constructed. Second, the relation P is 
searched only once. Third, it is possible not to search U for 
those tuples that are in T (or conversely). However, a major 
drawback of the approach is that interleaved access to all 
relations occurring in a disjunction are needed. This may 
introduce a considerable overhead in secondary storage ac- 
cess. In this paragraph, it is shown how a special process- 
ing of disjunctive filters with outer-joins retains the three 
above-mentioned advantages without imposing to simul- 
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taneously access all considered relations. In order to il- 
lustrate the approach on an example consider the relations 
P, T, and U of Fig. 2. 

The unidirectional outer-join lLP 761 R1: P ii? T (Fig. 2) 
permits to recognize the P-tuples - like (a) - &at are in T, 
without losing the P-tuples - like (c) - that are not in T. The 
former tuples correspond to R1-tuples with non-null second 
attribute, the latter to R,-tuples with null second attribute. 
The null symbol 0 serves only internal purposes: It is not 
available in the user language. 

E I _v 

i t 
a 

i 
e F 

R1:Plw T 
la1 

Fin. 2 

Since the outer-join R, ‘preserves’ its left operand - 
P = zl(R1) - the relation R2: Rt lly U (Fig. 3) permits to 
distinguish the P-tuples occurring in U. A R2-tuple with 
non-null third argument corresponds to a tuple in both P 
and U. The P-tuples occurring in at least one of T and U are 
the R2-tuples with at most one null attribute. In other terms, 
the query: 

Q1: P(x) A fl(x> v U(x)> 
can be translated into the algebraic expression: 

“l(02#0v3#0(~ ;y 1 ;tl u) 

Fia. 

This translation presents the first two attractive properties 
of a pipelined evaluation: The union P u T is not con- 
structed and P is searched only once. However, it does not 
satisfy the third property: For computing q the relation U 

is also searched for tuples occurring in T - as reflected by 
the presence of (a,a,a) in R,. The useless search can be 
avoided by constraining the second outer-join with the con- 
dition 2 = 0. Under this constraint, a tuple of R, with 
non-null second argument - like (ala) - is not compared 
with U-tuples, but yields an R,-tuple with null third at- 
tribute. 

Fig. 3 shows an undesirable redundancy: Since P is a 
producer and T participates to a filter, there is no need to 
register the value ‘b’ as second argument in the outer-join 
P IW T. Instead, it would be sufficient to ‘mark’ with a 

14 
special symbol, say I, that ‘b’ has been found in T. The 
symbol I is somehow a counterpart to 0. Like 0, I is not 
available in the user language. 

Definition 7 formalizes the concept of constrained outer- 
join. 

Definition 7 
Let P and 0 be two relations with arities D and a. 
respectively. Let ‘camp’ be a boolean combin& 
tion of P- and Q-attribute comparisons. Let 

const = Ai; (h, Em 0) 

be a constraint on attributes of P, where an E, 
denotes ‘=’ or ‘#‘. 

The constrained outer-join P r Q is the rela- 
tion with arity p+l defined as: -’ 

((c p...FpJ) 1 (Cl ,...,c,> E JC~...,(P -Fcm Q)l 

u {(cl,...,cp,O) I (c lv...cp)~P - “l...pP w Q)1 
wmp 

u m, I..., cp,O) 1 (c,,...$.l E ~TconspN 

The constrained outer-join operator is easily implemented 
by modifying any join - or outer-join - procedure. Accord- 
ing to Definition 7, the example query Q1: P(x) A (T(x) v 
U(x)) corresponds to: 

It is worth noting that, by definition of a constrained outer- 
join, the projection in the expression E cannot induce dupli- 
cate tuples. Manipulation rules for outer-joins, that apply 
to constrained outer-joins as well, are given in [RR 841. 

Disjunctive filters containing negated subexpressions can 
also be evaluated by means of constrained outer-joins. Con- 
sider the relations P, T and U of Fig. 2 and the query Q2: 
P(x) A [- T(x) v U(x)]. By definition, a tuple (c) is in the 
difference relation P - T if the outer-join R1: [p ;yr T] (Fig. 

2) contains the tuple (c,0). 

Conversely, (cl) is not in P - T if R2 contains a tuple 
(c1,c2) such that CL f 0. For computing the constrained 

outer-join R3: lP IK T] %? U (Fig. 4) it is sufficient to 
l=l I=1 
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search U only for the P-tuples that are not in P - T. The 
tuples of R, relevant to Q2 have a null second attribute or 
have a non-null third attribute. Q2 is therefore described by 
the algebraic expression: 

R3: PlK T$$I 
14 

E 
I I 

i 
ib 

0 
0 

0 0 

FiR. 4 

The following proposition summarizes the processing of 
disjunctive filters with constrained outer-joins. 

Proposition 5 
Let P and T,, . . . . T, be unary relations. Assume 
that a symbol Ai denotes either ‘7’ or the empty 
symbol ‘ ’ (AiF denotes 7F if I\i = ‘7’) it 
denotes F if 4 =‘ ‘). 

The calculus query 

p(x) A [AtTl(x) v . . . v A,T,(x)] 
is equivalent to the algebraic expression 

K~[~E(...~ all T1) ~11’ Tz)...~ Ti+t ... ~~-” T,))] 

where E denotes the expression: 
At(2#0) v... v Ai(i+l#O) v . . . v A,(n+l#lZ) 
and where, for i = 1, ..,, n-l: 

const(i) = ~~~~ k=i+l A,-,& = 0) 

The initial projection does not induce duplicate 
tuples. 

[Proof: From Definition 7, by induction on n.] 

Proposition 5 extends easily to more complex producer- 
filter expressions involving, e.g., nary relations or general 
attribute comparisons. 

4. Conclusion 

Looking at query optimization from a logical viewpoint, we 
have proposed a new evaluation method for quantified and 
disjunctive queries. The method proceeds in two phases. 
The first phase consists in a logical standardization of the 
queries into a canonical form. In the second phase, canoni- 
cal expressions are translated into relational algebra. The 

translation we propose is unconventional and improves 
over the usual ones. It relies on a new operator, the 
complement-join, that generalizes the set difference, on 
special translations of quantified expressions, and on an 
improved processing of certain disjunctions by means of 
constrained outer-joins. 

The standardization into canonical form has been defined 
by a rewriting system. This system preserve logical equiv- 
alence, hence the semantics of queries. We have shown that 
the system is noetherian and confluent. The canonical form 
permits to considerably improve the translation into rela- 
tional algebra. 

Unlike the rather efficient methods described by Dayal 
in [DAY 83, DAY 871, our method process quantifiers by 
means of relational algebra operators only. Thanks to the 
canonical form, no special procedure is needed for handling 
universal quantifications, as opposed to these approaches. 
An advantage of our approach over that proposed by Dayal 
is its simplicity: Neither special data structures, nor par- 
ticular procedures are needed. However, this simplicity is 
not obtained to the cost of efficiency. Instead, the method 
proposed in this article significantly improves over the pre- 
vious proposals. Another advantage of the approach ad- 
vocated in this article is that, unlike both methods of Dayal, 
quantified queries can be evaluated subexpression by sub- 
expression. In other words, the method does not impose to 
simultaneously access all relations occurring in the scope 
of a quantifier, as opposed to the approaches [DAY 
83, DAY 871. 

The canonical form of queries we have defined permits to 
avoid the systematic Cartesian products induced by the con- 
ventional translation into relational algebra [COD 72, PAL 
72, JS 82, CG 851. Furthermore, it permits in most cases to 
translate quantified queries without calling for the expen- 
sive division operator. Finally, the complement-join 
operator we have defined and the special processing of dis- 
junctions by means of outer-joins improve considerably 
over the usual algebraic processings. 

The techniques we have described for processing quan- 
tifiers and disjunctions rely mostly on variants of a same 
operator, namely the join operator. This is an additional 
interesting feature of our approach, apart from its efficiency 
and simplicity. Indeed, an algebraic translation basically 
relying on a unique operator give rise to simplifying the 
cost estimation model. Further research should be devoted 
to investigating this issue. 

This research has been motivated by an on-going project at 
ECRC - the building of a knowledge base management 
system. It is complementary to previous work on integrity 
constraint processing [BDM 881. 
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