
CONFLICT RESOLUTION OF RULES ASSIGNING VALUES 
TO VIRTUALATTRIBUTES 

Yannis E. Ioannidis 1 
Computer Sciences Department 

University of Wisconsin 
Madison, WI 53706 

Timos K. Sellis 2 
Computer Science Department 

University of Maryland 
College Park, MD 20742 

Abstract 

In the majority of research work done on logic program- 
ming and deductive databases, it is assumed that the set of 
rules defined by the user is consistent, i.e., that no con- 
tradictory facts can be inferred by the rules. In this paper, 
we address the problem of resolving conflicts of rules that 
assign values to virtual attributes. We devise a general 
framework for the study of the problem, and we propose 
an approach that subsumes all previously suggested solu- 
tions. Moreover, it suggests several additional solutions, 
which very often capture the semantics of the data more 
accurately than the known approaches. Finally, we ad- 
dress the issue of how to index rules so that conflicts are 
resolved efficiently, i.e., only one of the applicable rules 
is processed at query time. 

1. INTRODUCTION 

Recently, significant effort has been put into database 
research related to logic programming. The basic idea has been 
the use of logic in a database context, not only as a sound founda- 
tion for formalizing concepts, but as a query language as well. 
This has led to the study of Deductive Database Systems. A 
major assumption of most such studies is that .the set of rules 
defined by the user is consistent, i.e., that no contradictory facts 
can be inferred by the rules. For example. the following is a con- 
sistent set of rules. 

r 1: All Greek CS professors in the US work on databases. 
t2: All Polish CS professors in the US work on logic. 

’ Partially supported by NSF under Grant IRI-8703592 

2 Pan&ally supported by NSF under Grant IRI-8719458 and by the Univer- 
sity of Maryland Institute for Advanced Computer Studies (UMIACS). 

Permission to copy without fee all or part of this material is granted pmvidcd that 

the copies are not made or distributed for direct commercial advantage, the ACM 

copyright notice and the title of the publication and its date appear, and notice is 

given that copying is by permission of the Association for Computing Machinery. 

To copy otherwise, or to republish, requires a frr and/or specitic permission. 

8 1989 ACM e89791-317-5/89/0005/0205 St.50 

Since being Polish and being Greek are mutually exclusive, the 
above set of rules carmot lead to a contradiction. The same is true 
of the following rule set. 

rs: All Berkeley database PhD’s have worked on DJGRES. 
r4: Whoever has worked on INGRES works on databases. 
rs: R.K. is a Berkeley database PhD. 
r6: R.K. works on VLSI design. 

The above set of rules cannot lead to a contradiction either, 
because R.K. may well be working on both database systems and 
VLSI design. To the contrary, the set of rules shown next is not 
consistent 

r7: All Berkeley database PhD’s have worked on INGRES. 
t-8: Whoever has worked on INGRES works onfy on databases. 
rs: R.K. is a Berkeley database PhD. 
tlo: R.K. works tiy on VLSI design. 

In particular, the rules are inconsistent because the system is 
unable to decide what R.K. really works on. 

In this paper, we address the problem of resolving conflicts 
of inconsistent rules, which is rarely addressed in a database con- 
text. The paper is organized as follows. Section 2 formally intro- 
duces the inconsistency problem and describes current solutions. 
In Section 3, we devise a general framework for resolving 
conflicts, which is used in Section 4 to express several examples 
of conflict resolution schemes. Section 5 looks at some specific 
conflict resolution schemes and discusses the use of rule indexing 
to enhance the performance of queries. Section 6 discusses a few 
related issues, like recursion and more general forms of rules. 
Finally, Section 7 summarizes the basic contributions of this paper 
and discusses future directions. 

2. THE PROBLEM 

In this section, we elaborate on the problem of inconsisten- 
cies in rules stored in a database system. We define the types of 
rules considered and we analyze the situations where inconsisten- 
cies arise. Finally, we give a brief summary of the solutions used 
in existing systems. 

2.1. Rule Model 

Consider a fixed, possibly infinite, set C . A database D is 
a vector D = (Co ,Q r,...,Q,,), where Co CC is a (possibly infinite) 
set, and for each Xi In, Q i r;c,” is a reIdion of arity Ui. We 
allow infinite relations in D so that primitive relations (e.g., =. 2) 
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and functions (e.g., addition) can be included in our model. 
Clearly, such relations and functions are directly evaluable and 
they are not explicitly stored. Each element of Qi is called a 
tuple. Without loss of generality, we assume for simplicity that 
the constants in the database are typeless. Extending our ideas to 
a typed system is straightforward. 

We consider rules that are equivalent to Horn clauses, i.e., 
they are of the form 

Q @)) A . . . AQI(x(‘))+Qo(x(~) * (2.1) 

where for each i , xF) is a vector of variables, constants, and func- 
tions of such. We assume that the Horn clauses are range- 
restricted, i.e.. every variable that appears in the consequent 
appears in the antecedent also, under some nonprimitive (i.e., 
explicitly stored) relation. The following are two examples of 
Horn clauses. 

EMP (nume ,sal .age .dept ,tuun-kids) A (2.2) 
ml >5OK A age ~30 + WELL-PAID @me) 

EMP (nwne ,sal ,age .dept ,M-kids) A (2.3) 
dept = “toy “+nlun~kids=o 

The relation in the consequent of (2.3) is “=“. Formally. we 
should have written “=(num-kids ,O)“, but we use the inilx nota- 
tion for convenience. The same convention is used for the primi- 
tive literals in the antecedents. 

There are several semantics that can be used for a set of 
rules (ri ) with respect to the relations of a database D . One such 
smt~~tics, which is our starting point, assumes that the contents of 
all nonprimitive relations are explicitly stored in the database. 
Primitive relations are directly evaluable, so their full extent is 
known to the database system as well. With this semantics, rules 
are treated as integrity constraints, i.e., the database contents have 
to satisfy them at all times. Hence, assigning constants to the 
variables of a rule should either make the antecedent false or 
make the consequent true. 

The above is not a very useful semantics in deductive data- 
base systems. Explicitly storing the contents of all nonprimitive 
relations in the database is undesirable. A better semantics treats 
some of the rules as derivation rules. The contents of database 
relations, called intentional (virtual) relations, can be implicitly 
derived by rules having those relations in their consequents. In 
this case, the so called leastfurpoint semantics [VanE76,Aho79] 
is used, i.e., the derived contents of each relation constitute the 
minimum set (minimum with respect to r) that satisfies all the 
rules. The existence of such a minimum is guaranteed by the fact 
that only Horn clauses are considered [Tars55. Aho79]. 

Treating a rule as an integrity constraint or a derivation rule 
is not an inherent property of the rule. Some general guidelines 
on what the natural role of a rule is state that rules with a user- 
defined (nonprimitive) relation in their consequent serve better as 
derivation rules, whereas those with a primitive relation in their 
consequent serve better as integrity constraints [Nico78]. Accord- 
ing to those guidelines (2.2) should be used as a derivation rule 
and (2.3) should be used as an integrity constraint, This, however, 
is more restrictive than necessary, since storing the contents of all 
attributes in a nonprimitive relation is often undesirable. By treat- 
ing a rule whose consequent is of the form “variable = expres- 
sion” as a derivation rule (like (2.3)). we are able to implicitly 
assign values to the attribute of the relation whose position is 
occupied by “variable” in the antecedent of the rule. (lf “vari- 
able” appears in multiple relations, the rule assigns values to the 

corresponding attributes of all of them.) Such attributes are called 
intentional (virtual) attributes. 

The least fixpoint semantics are applicable in this case as 
well, although in a degenerate way. Since rules are assumed to be 
range-restricted, for every tuple in the relation where “variable” 
appears, the bindings in the antecedent of the rule determine the 
value of “expression”. For = to be satisfied, the fixpoint seman- 
tics dictate that this is the value of the appropriate attribute of the 
given tuple in the relation. lf a tuple in the relation where “vari- 
able” appears is associated with multiple bindings in the 
antecedent of the rule generating different values for “variable”. 
then inconsistency arises and must be resolved. 

2.2 Inconsistent Sets of Rules 

Consider a set of derivation rules (ri ) . We say that (ri ) is 
inconsistent. if there exists a database D such that for some fact a, 
one CRU derive both a and not (a) from D and (ri ). We shall 
investigate the situations that produce inconsistencies. As long as 
no negative information is contained in the database, i.e., there is 
no tuple known not to exist in a relation, inconsistency cannot 
arise: only positive information is stored explicitly, and only posi- 
tive information can be derived by Horn clauses. This may lead 
to the false conclusion that, by only &lining Horn clauses as 
derivation rules, no inconsistency can arise. This is not correct 
though, as the following classical example by Stonebraker 
[Ston86b] shows two Horn clauses that are clearly inconsistenu 

EMP (rune fitle ,&Sk) -B desk=‘Stteel ‘I, 
EMP(name,“‘chuirman”,desk) + desk=“wood”. 

The two rules offer two contradicting types for the desk of the 
chairman of the company. Our previous reasoning about when 
inconsistencies arise is still correct though. The inconsistency 
arises, because of the implicit negative information in the database 
that not(u?el “=“wood’*). Negative facts on primitive rela- 
tions are always implicitly part of the database, and inconsisten- 
cies are possible among derivation rules with such relations in 
their consequent. To the contrary, assuming that no explicit nega- 
tive information is stored in the database, 

no incotuistency can arise 0nong derivation rules 
with user-de#ned relatiotu in their consequent. 

Equivalently, the two types of rules (with primitive and 
nonprimitive relations in their consequents) can be distinguished 
as follows. Let x and y be appropriately defined mples. q(D) be 
the set of tuples in D of the same arity as u.y > (the tuple formed 
by the concatenation of x and y ) that satisfy some qualification q , 
Q be a userdeflned relation, x.att be the attribute atr of the tuple 
x , and g be a function from the set of tuples with the same arity as 
u .y > (domain) to the set of legal values for attribute att (range). 
A derivation rule with auser-detinedrelation in its consequent 
defines elements of that relation and has the general form 

<x,y>Eq(D)jxEQ. (2.4) 

Since the database contains only positive facts. multiple rules that 
declare members of Q can never present a problem. To the con- 
trary, a derivation rule that has in its consequent equality (=) 
defines elements of a function, i.e., values of the function on 
specific members of its domain, and has the general form 

ur.y>Eq(D)-,x.utr=g(x,y). + (2.5) 

A function is constrained to return a unique value for every 
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member of its domain. When multiple rules give values to X.UU 
in their cmsequents. they effectively define a function in a piece- 
wise fashion. Inconsistency arises when a tuple x satisfies the 
antecedents of multiple rules, and the g functions used by the 
rules give different values on x. It can also arise within a single 
rule when a tuple x satisfies the rule’s antecedent in association 
with multiple y ‘s, and the g function used by the rule gives dii- 
ferent values for different y ‘s. For every such tuple x , the system 
must choose a single rule among the qualifying ones and a single 
y to use for the value of x.utl . There are several criteria that can 
be used to guide this choice. In the next subsection, we give a 
brief overview of the criteria used by some existing systems. In 
the section after that, we develop a framework that subsumes all 
currently used criteria and also introduces some new ones that 
capture the rule semantics in cases where the known solutions fail. 

2.3. Current Solutions 

To the best of our knowledge, the specific problem of 
resolving conflicts between rules deriving values for a virtual 
attribute has not been directly addressed in the context of deduc- 
tive database systems. A similar problem, however, arises in sys- 
tems supporting production rules (which can be used to imitate 
functional derivation rules). when from a set of qualifying rules. 
precisely one has to tie. Solutions to this problem could be used 
for the problem we address in this paper also. We are aware of 
two solutions currently in use, one in which the system is assumed 
responsible to resolve the conflict, and another in which the user is 
assumed responsible. The first is best exemplified by OPS5 
[Forg79] and the second by POSTGRES [Ston88]. OPS5 uses an 
elaborate criterion to resolve conflicts, which takes into account 
structural properties of the mles and other properties of the data 
involved. These include the complexity of the antecedents of the 
rules, the recency of the rules in conflict, and the recency of the 
tuples satisfying the rules (Section 4). In case that no criterion 
resolves the conflict, a rule is chosen randomly. POSTGRES, 
which is a database system supporting production rules, uses a 
very simple criterion at the expense of making the rule &sign 
more complicated. Each rule is assigned a priority. When rules 
are in conflict, the one with the highest priority is chosen. 

The semantics of inconsistent logic programs have been 
investigated by Kifer and Lozinskii [Kife89] and Blair and 
Subrahmanian [Blai88]. Both efforts present nontraditional logics 
that handle inconsistent beliefs. Although they deal with the 
semantics of such (multi-valued) logics. they do not give any 
insight on how a program would choose a unique value to be 
assigned to a virtual attribute. 

Finally, similar problems arise in resolving mutliple inheri- 
tance in generalization hierarchies. Borgida addresses the prob- 
lem in the form of exception handling, and defines semantics for a 
language that explicitly captures contradictions in an inheritance 
hierarchy [Borg85. Borg881. 

3. A GENERAL FRAMEWORK FOR RESOLVING CON- 
FLICTS 

For the remainder of this paper, we shall use the general 
form of (2.5) for functional derivation rules. Consider the follow- 
ing set of functional derivation rules assigning values to the same 

’ We employ the convention that the virtual attribute is always on 
the left-hand side of = in the consequent of functional derivation rules. 

attribute of a tuple (relation): 

r1: <X,Yl>E41(D) ~x.att=fdxsl). 

rz: <x,yz>eq2(D) +x.att=f2(x.y2). 

. . . 

r,,,: <x,y,,,>~q,,,(D) -+x.~=f,,,(x.y,). 

In each rule, x represents a tuple from the relation whose virtual 
attribute is defined by the rule, whereas each yi represents a tuple 
from the combination of the remaining nonprimitive relations that 
appear~qi. 

Every attribute of a relation can be thought of as a function 
from the tuples in the relation (domain) to the legal values of the 
attribute (range). Given a tuple as input, the function returns the 
value of the attribute as output. Assume that the function 
corresponding to attribute a~ is f . Given a tuple x, f(x) has to 
be chosen among the f;(x.y )‘s for which cx,y >Eqi(D ). Each 
candidate value is associated with a specific rule and a specific y 
tuple. In the sequel, quite often we need to treat a rule with a 
specific y tuple as a single entity that provides a unique value for 
the virtual attribute. This is accomplished by partially instantiat- 
ing the rule, i.e., giving specific values (from the specific y tuple) 
to all variables in the rule except the ones of the relation of the 
virtual attribute. For example, consider the rule 

EMP (mme ,dary .&pt ) A DEPT (dept &wr ,mgr ) 
+ salary =poOr * 1 OK. 

Instantiating the rule with the tuple <“toy “,4,“Mike”> from 
DEPT (which corresponds to the y portion of the rule) results in 
the following rule: 

EMP (mme ,sdary ,dept ) A DEPT (dept Joor ,mgr ) 
~&pr=“roy”~floOr=4~mgr=“Mike” +salary=floor*lOK. 

Clearly, for instantiated rules, the antecedent ~r,y >Eqi(D ) is 
satisfied by a unique y only, which has already been incorporated 
into qi. In what follows, unless otherwise specified, we assume 
that each rule provides a unique value for the virtual attribute it 
defines, which therefore implies that the rules may be instantiated 
if necessary. Our formulation of the conflict resolution problem, 
however, does not depend on whether rules are instantiated or not, 
and we manipulate both kinds of rules similarly. 

The choice of a unique value for a virtual attribute among 
the values returned by all qualifying rules has to be based on pro- 
perties of some elements of these rules, which are the following: 

(a) the rules themselves, 

(b) the antecedents of the rules, i.e., the sets of tuples that 
satisfy the qualifications (qi (D )). and 

(c) the consquents of the rules, i.e., the values returned by the 
functions fi (X .y ). 

Although for every type of elements (a), (b), and (c) there exist 
applications requiring the use of that type as the basis of a conflict 
resolution criterion. we believe that their desirability increases 
from (a) to (c). This claim is based on the following grounds: 

Resolution granulari~: When using (a) or (b) to resolve 
conflicts, the smallest granule of resolution is the rule: rules 
are compared and one is chosen independent of the indivi- 
dual tuple x. When (c) is used, the smallest granule of 
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resolution is the tuple cx ,y >: the choice is based on the final 
values produced for the virtual attribute, which in turn 
depend on the specilic tuples x and y . Hence, (c) provides a 
finer distinction among conflicting values. 

Use of declarative semantics: The mere appearance of the 
problem of conflict implies that the declarative semantics of 
a set of rules are jeopardized. This forces the use of a resolu- 
tion scheme outside of the rule set, i.e., the use of a meta- 
rule. Nevertheless, criteria based on elements of type (a) 
tend to be much more procedural than those based on ele- 
ments of type (b) and (c). Especially with compile-time pro- 
perties of NkS, criteria on elements of type (a) in effect 
impose a specific order of execution of rules. which is in 
direct opposition to the essence of declarativeness. 

Amount of responsibility left to the user: Criteria based on 
compile-time properties of any type of elements leave much 
of the responsibility of resolving conflicts to the user. This in 
turn allows more room for errors to enter the system. Mov- 
ing from elements of type (a) to elements of type (c) 
decreases the number of compile-time properties that one can 
use to resolve conflicts, and thus decreases the amount of 
responsibility left to the user, making the resolution strategy 
more robust. 

Time when decision is made: The issue here is whether the 
decision of which rule to use in case of conflict is made at 
compile-time or at run-time. Elements of type (c) usually 
have no compile-time properties: the values given by the 
rules depend on the specific mple c1c ,y > and the state of the 
database. To the contrary, elements of type (b) and espc- 
cially ones of type (a) have several such properties. Conflict 
resolution decisions made at compile time tend to be 
inflexible and sometimes not absolutely in accord with the 
desirable semantics of the ales. 

For all the above reasons, we believe that criteria based on proper- 
ties of the values returned by the rules for the virtual attribute are 
the most desirable ones. There are several examples of applica- 
tions in the rest of the paper where the desirability of such criteria 
is demonstrated. Strangely enough, to the best of our knowledge, 
this is the first study that considers resolving contlicts based on 
the candidate values for the virtual attribute. 

3.1. Resolution Algorithm 

For every virtual attribute arr in the system, there is a func- 
tion I( (u for unique) that selects a unique value for alt based on 
the values returned by all qualifying rules. In general, thii is a 
user-defined function, based on the semantics of dr. It is 
specified in the database schema, and it is independent of the 
number of rules assigning values to urr. The system can have a 
default function u , which is applied when nothing is specified by 
the user. 

Given a tuple x and a query on f(x), i.e., x.arr , if conflict 
arises, the appropriate rule elements (a), (b), and (c) are given as 
input to u. The relevant properties for these elements are exam- 
ined, and a value is chosen for f (x). That value is the output of u 
and the answer to the query. 

The following general formula can be used for the evalua- 
tion off(x): 

f(x) = u(Iril, Iqi(D))v Ifi(xJ (3.1) 

One can imagine any arbitrary function u being used, possibly 
taking into account all its inputs, i.e., all three types of elements 

(a), (b), and (c). Moreover, u may not necessarily choose one of 
the values returned by the qualifying rules, but one that combines 
all of them. We expect, however, that in most cases, the seman- 
tics of the data will be such that only one type of elements is used 
as input to u and the output value is selected among the ones 
returned by the qualifying rules. Also, the element properties con- 
sidered by u may be dynamic or static, i.e., they may depend on 
the current database state or not. In the former case, u may have 
to access the database or some @istics about the database kept in 
the catalogs. In the latter case, conflicts can be resolved during a 
preprocessing phase, so that no access to the data is needed at 
query time. 

In the following subsections, we examine each type of ele- 
ments (a), (b), and (c) separately, giving some insights into how u 
may operate in each case, together with some examples intuitively 
falling into the specific case. For ease of presentation, we shall 
always assume that precisely two rules are inconsistent. General- 
izing the discussion to more than two conflicting rules is straight- 
forward. Prior to that, one more definition is necessary. Consider 
an indexed family of functions (hi ). We define the function 
index as one that, given a function from (hi) ss input, it returns 
its index, i.e., 

index(hj)= j. 

3.2. Resolution Criteria 

3.2.1. Resolution Criteria Based on Properties of the Rules 

The first type of elements whose properties can be used to 
resolve conflicts are the rules themselves. In thii case, formula 
(3.1) takes on the simplified form 

f (x)=u((ril). (3.2) 

This criterion is already being used by existing systems [Ston88], 
and in our opinion, it is the least desirable. The reason is that, in 
addition to specifying a function u for every virtual attribute, the 
rule designer has to deal with properties of each rule individually, 
which with few exceptions would otherwise be unnecessary. 
Moreover, this criterion requires a good latowledge of the results 
of the rules in advance, at rule design time, so that their properties 
can be specified accordingly. 

The most straightforward (and most manual) example is 
assigning priorities to rules, which is the hard-wired conflict reso- 
lution scheme in POSTGRES [Ston88]. Among the qualifying 
rules, the one with the highest priority is chosen. Formula (3.2) 
takes on the form 

f (x)=u((ri))=fj(x,y)where (3.3) 

j=index(~((priorQ(ri) I CXJ>W(D)))). 

Another rule property that might sometimes be useful in 
resolving conflicts is certainty factor. Several expert systems, 
e.g., MYCIN [Shor76]. do not trust all rules alike, but they assign 
certainty factors to them. A reasonable way to resolve conflicts is 
to use the value returned by the most trustworthy rule. For sys- 
tems that do assign certainty factors to rules and want to use the 
one with the highest certainty factor in case of conflict, formula 
(3.2) becomes 

f(x)=u((r;))=fj(x,y)where (3.4) 

j=index(m+(cerraintyfactor(ri) 1 <x,y>~qi(D)))). 
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3.2.2. Resolution Criteria Based on Properties of the 
Antecedents of Rules 

In this case, (3.1) takes on the more simplified form 

f 6) = u((Si(D)))* (3.5) 

Function u takes as input the sets of tuples that qualify under each 
rule satisfied by x, and based on some properties of the sets, 
chooses to apply one of these rules. Some intuitive choice ftmc- 
tions are discussed below. 

Antecedent inclusion 

Suppose that for all databases D , q l(D ) E q2(D ). i.e., the 
antecedent of r 1 is strictly less general than that of r a. This inclu- 
sion holds at the expression level, and it does not depend on the 
database contents. We believe that the intuition behind the two 
rules is that the more general one applies only when the less gen- 
eral one does not. Schematically, r2 actually applies in the region 
between the borders of q t and 42. i.e., in the region of 42-41 (Fig- 
ure 3.1). 

Figure 3.1: Qualification Inclusion. 

One could define the two rules in a nonconflicting way by using 
“q2A mt(ql)” as the antecedent of ra, Jn the case of a chain of 
rules, each one of which is less general than the other, the size of 
the antecedent of each rule increases by a factor of two. In addi- 
tion to the task of the rule &signer becoming more tedious, the 
possibility of errors increases as well. For all these reasons, it is 
preferable to define the rules in a conflicting way and resolve the 
conflicts at a higher level. 

The least general rule being the rule of choice is captured 
by the following u function: 

f (x)=u((qi(D)))=fj(x.Y)where 

j=i~~(m~((qi(D) I G*Y >Eqi(D)))). 

(3.6) 

In (3.6), tin is with respect to E. 

Alternatively, one can approach this criterion by intcrpret- 
ing the less general rules as exceptions to the more general ones. 
Normally, fa is used, with an exception of when q1 holds, in 
which case f 1 is used. As an example, consider a rule that 
specifies that “all professors teach 3 semester courses per year” 
and another one that specifies that “the chairman teaches 1 course 
per year”. Intuitively, the second rule is interpreted as an implicit 
exception to the first one, so that the chairman, who is also a pro- 
fessor, only teaches one course. Thii exception mechanism is 
captured by f if it is defined by (3.6). 

Size minimization 

Unfortunately, the above criterion cannot be applied 
always, since contlicts may arise between rules whose antecedents 
are incommensurate. A similar criterion, based on the same intui- 
tion about exceptions, uses the sizes of the qualifying sets of the 
two rules. The less restrictive rule, i.e., the one satisfied by more 
tuples in the database, applies only when the more restrictive one 
does not. As in the antecedent inclusion case, schematically. ra 
applies in the region of q2-q1 (Figure 3.2). 

Ffgura 3.2: Size minimization. 

Again, the main reason to deiine rules so that they conflict is con- 
venience. The more restrictive rule is interpreted as an exception 
to the less restrictive one, and it is used whenever it is applicable. 
This criterion is captured by the following u function: 

f (X)=u((qi(D)))=fj(x,y)where (3.7) 

j=index(~N(size(qi(DN I <xvY>Eqi(D)l))- 

In (3.7). min is with respect to integer inequality 1. 

As an example, taken from the Greek military conscription 
law, consider a rule that specifies that “all married males with one 
child serve in the army for 1 year” and another one that specifies 
that “all males who are Jehovah’s witnesses serve for 4 years” 
(without ever carrying a gun). There are many more people with 
one child than there are Jehovah’s witnesses in Greece. Jntui- 
tively. the second rule is interpreted as an implicit exception to the 
first one, so that a Jehovah’s wimess that has one child is required 
to serve for four years. This exception mechanism is captured by 
f if it is defined by (3.7). 

Clearly, if antecedent inclusion is satisfied, then size 
minimization is as well. The former is a stronger requirement 
than the latter. In some sense, size minimization is more desir- 
able, since it is more likely to produce a resolution to the conflict, 
and simultaneously less desirable, since it may fail to capture the 
intuition behind the rules, if the two sizes are about the same. 
This may be avoided if one requires that there is a substantial 
difference between the two sizes, by defining u appropriately. 

Arbitrary 

The moral one can draw from the above discussion is that 
there is no universal criterion that can be assumed as the default, 
which systems can apply without any user-provided knowledge 
about the semantics of the data. The qualification inclusion cri- 
terion is not always applicable, but whenever it is, it seems to be 
the right choice. The size minimization criterion (even in the res- 
tricted sense of signiticant difference in size) is neither always 
applicable nor always the right choice. The need for a user- 
defined criterion based on a general function is apparent. Any 
desirable semantics for the conflict resolution can be captured by 
such a function. Note that, for criteria on the antecedents of the 
rules that choose one of the f i ‘s as the value off , the form of the 
u function is 

f(x)=u((qi(D)))=fj(X,y)Where 

i=ih(T((h(qi@)) I ~sY>eqi(D))))* 

where h is a function on sets of tuples, and c is a choice function 
based on the output of h. For qualification inclusion, c is min 
with respect to E;, and h is the identity function. For size minimi- 
zation, c is min with respect to integer inequality, and h is the 
cardmality function. 
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3.2.3. Resolution Criteria Based on Properties of the Conse- 
quents of Rules 

Currently, conflicts are never resolved according to the 
values given to the virtual attribute by the roles. There are several 
applications, however, where the values returned by the rules are 
the decisive factor on which rule to apply. For example, optimi- 
zation problems can be formulated as a function f (the value of 
the virtual attribute) being optimized according to some criterion, 
e.g. minimized, maximized. The rule to be used should be the one 
that achieves the optimal value for f . No other resolution scheme 
can achieve the same semantics. 

For a criterion based on the values returned by the func- 
tions in the consequents of the rules, formula (3.1) takes on the 
simplified form 

f (x)=U((fi(xJ)))* (3.8) 

As a concrete example, consider a car dealership that uses 
a rule that specifies that “all cars under 1 year old are 100% war- 
ranted” and another rule that specifies that “all cars that have 
been driven more than 5000 miles are 50% warranted,‘. For a car 
that is less than one year old but has been driven 8000 miles, the 
dealer uses clauses like “whichever comes first’,, which can be 
translated to “whichever produces the least coverage”. That is, 
conflicts are resolved based on the value of coverage percentage, 
and in particular by using the rule that provides the least coverage. 
For this example, u is min, i.e., (3.8) is instantiated into 

coverage (x ) = m/n( (COveragei (x )) ). 

Note, that a customer-chosen conflict resolution scheme would 
choose the rule providing the maximum coverage! This further 
supports our claim that only the semantics of the virtual attribute 
determines the correct conllict resolution scheme. 

3.3. Comments 

The three types of criteria specified are independent of 
each other. In general, it is not possible to express a choice func- 
tion based on properties of some type of rule elements with a 
choice function based on properties of another type of elements. 
For example, a system that assigns priorities to rules and uses 
(3.3) to resolve conflicts cannot always capture the semantics of 
resolving conflicts by choosing the rule that gives the minimum 
value. In the car dealership example used in Section 3.2.3, one 
may argue that if one assigns higher priority to the rule that pro- 
vides only 50% coverage than to the one that provides 100% cov- 
erage, conflicts are resolved by choosing the first rule as desired. 
If, however, the ales were of the form “all cars lose 10% of their 
warranty per year as they age” and “all cars lose 10% of their 
warranty per 5000 miles they make”, it would be impossible to 
achieve the same conflict resolution by using priorities, simply 
because the rule results depend on the specific values of age and 
mileage of the car. 

A second comment is that the previous analysis assumed 
that f (x ) is always chosen among the appropriate f i (X .y )‘s. This 
can be seen in formulas (3.3). (3.4). (3.6) and (3.7). which all have 
the form 

f (x>=u((ei))=fj(x,y)where 

i=i~~(~(pC%) I urJ>~qi(~))))t 

where p is the property of the elements ei (qi (D ). f i (X J ), OT ri) 
based on which the choice is made. Function c is the choice 

function, which returns one of its inputs, whose index is then 
returned by index. Thus, in some sense, in the previous analysis, 
one of the rules is considered to be the one that fires. Although 
we believe this is the most common case, the general form of u 
does not impose any such restrictions. For example, distributed 
consensus problems can be formulated with several rules assign- 
ing a value to an attribute, whose final value is determined from 
the proposed values according to some arbitrary criterion (e.g., 
taking the average of all values except the greatest and the smal- 
lest). In this case, no rule can be declared as the one that fires; in 
some sense, all do. 

4. EXAMPLES 

In this section, we present several examples where incon- 
sistencies arise and show how they are handled by previous pro- 
posals as well as our approach. 

Example 1 [StonSS] 

Let EMP (name ,uge ,sul) be a relation, where sal is a par- 
tial virtual attribute. Assume that the following two rules, rl and 
r 2, derive Mike’s salary: 

rl: EMP(nam?.uge.suf)AEMP(~l,~gel,s~1) 
h~=r’~i~“h~l=“Biff” +sal=sall 

r 2: EMP (mme ,uge ,sul ) A EMP (none 1 ,q?e 1 .sd 1) 
A m=“Mike ” A name l=“Fred” + sal=sai 1 

We look first at the solution PGSTGRES offers for these two 
conflicting rules. Rules are augmented with priorities, and in the 
case of a conflict, the rule with the highest priority is chosen to 
tire. To avoid inconsistencies, r 1 is given a priority of 5, while r2 
is given a priority of 7 [StonSS]. Asking for Mike’s salary returns 
Fred’s salary. 

Under our framework, both rules represent distinct points 
in the EMP x EMP data space, and any conflict resolution based 
on the size of the qualifymg sets is useless. Assuming also that 
the salaries produced by the rules do not affect the decision of 
which rule is chosen, a criterion based on priorities is reasonable. 
Hence, the saZury attribute is associated with the function of for- 
mula (3.3): 

f(x)=u((qi(D)))=fj(x.y)where 

i=i~(ydpr~M(ri 1 I U,Y > E qi@)l))* 

The effect of such an assignment is exactly the same as with the 
PGSTGRES rules. 

Example 2 [Ston86b] 

Let EMP (name ,age,sulary *desk) be a relation, where 
desk is a virtual attribute de&ted as follows: 

rs: EMP(turme,age,desk) A age<40 + desk=“steel” 
r4: EMP (r&ztne ,age ,desk) A age 240 + desk=“wood” 
r5: EMP (name,age,desk) A mme=“horshor” + desk=“wood” 
r6: EMP(nume,age,&sk) A name=“bigshot” + desk=“‘sreel” 

Assuming that “hotshot” is 32 years old, there is an incon- 
sistency in the above rules (r s and r 3). 

For this example, Stonebraker et al. suggest to give priority 
1 to rs and t-4. and priority 2 to r5 and re [Ston86b]. Hence, 
“hotshot” is assigned a wood desk, since rs has higher priority 
that r3. 
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It is clear, however, that the information about “hotshot” 
corresponds to a fact known to the rule designer. In the EMP data 
space, the quali&Zions of the above rules are shown in Figure 
4.1 (for simplicity, we only show the age and nume coordinates). 

name 

horshor 

big&or 

wLrs 

40 age 

Figure 4.1: Qualifications of rules r3 - re 

One can see that rule rs corresponds to a line while rule rs defines 
a much larger area. Hence, use of priorities is urmecessary; the 
semantics of the rules imply that conflicts can be resolved by size 
minimiiation of the qualifying sets of tuples. The I( function 
associated with the attribute desk is given by formula (3.7) 

f (X>=u((qi(D)J)=fj(x.Y)where 

i=index(m~((size(qi(D)) I ar,y>eqi(D)))), 

where fi (X ,y ) and qi (D ). 3Si16. are defined according to the 
consequents and antecedents of rules rg - r6 respectively. 

Examples 1 and 2 show that the priorities used in POSTGRES can 
be modeled under our framework. Moreover, there are cases 
where priorities are not needed (Example 2); a conflict resolution 
strategy based on the sizes of qualifying sets can handle such 
cases. Next we present a more complicated example, where a 
combination of various conflict resolution schemes is used. 

Example 3 [Forg79] 

OPS5 is a production system and uses rules of the follow- 
ing form: 

xeq(D) +ucrion(x). 

Function acrion depends on the qualifying tuple x, and it can be 
an insertion, deletion, modification, or execution of a general pro- 
cedure. Tuple insertions, deletions, and modifications make rules 
to fire (by satisfying their antecedent), which in turn can create a 
cascade of rules becoming applicable to fire. The problem of 
conflict resolution arises in OPS5 when multiple rules are applica- 
ble to fire. The set of rules that is applicable to fire at any one 
time is called the conpict set; a rule is in the conflict set, if there is 
some x in the database that makes the antecedent of the rule true. 
Note that the problem faced by OPS5 is not precisely one of 
choosing among multiple values for a virtual attribute, which is 
the main problem addressed in this paper. Solutions to the former 
problem, however, could very well serve as solutions to the latter. 
Thus, it is important to show that those solutions can be expressed 
in the general framework of Section 3 as well. 

An abstraction of the conflict resolution scheme used in 
OPS5 uses the following criteria in the order they are given below 

until all but one rules are eliminated. The exact algorithm is not 
presented here because it makes use of details of the system that 
are of no interest to this paper [Forg79]. 

(1) choose the rule with the most recent tuples in q (D ) 
(2) choose the rule with the highest number of literals 
(3) choose the rule with the highest number of constants 
(4) choose the rule introduced in the conflict set most recently 
(5) choose an arbitrary rule 

We see that OPS5 uses a mix of time-based and size-based cri- 
teria. Rules (1) and (4) depend on the time the tuples were pro- 
duced and the time the rules were put in the conflict set respec- 
tively. Rules (2) and (3) are essentially based on the sizes of the 
qualifying sets. 

Assume that tuples are assigned timestamps when they are 
inserted into the database, while rules are assigned timestamps 
when they are put in the conflict set. The above criteria can then 
be. modeled in our general framework as follows (for brevity we 
give only the criterion function, not the whole u function): 

(1) : m (rime (qi CD 1)) 
(2) and (3) : ti (sizei (qi (D ))) 

(4) : muz (rime (ri )) 

(5) : random (ri) 

For a set of tuples, function rime determines its recency from 
timestamps assigned to the individual tuples. For a rule, function 
rime determines its recency from a timestamp assigned to the rule. 
Criteria (2) and (3) compare syntactic characteristics of the rules 
(i.e., number of literals and constants) to approximate a com- 
parison of the sizes of the qualifying sets qi (D ). Maximizing the 
number of literals or constants is an approximation of minimizing 
the size of the sets qi (D ). 

We can conclude that the rather complex criteria used in OPS5 for 
conflict resolution can be easily captured by the general frame- 
work we have suggested, thus showing the power of the mechan- 
ism. The last example that follows, is a case where the conse- 
quents of rules are used to resolve conflicts. 

Example 4 [Kung86] 

Some implementations of heuristic search of large graphs 
stored in a database have to rely on non-functional updates of vir- 
tual attributes, where user-defined semantics must be used for 
conflict resolution [Krmg86]. Suppose we are given a map in the 
form of nodes and arcs between them, recorded in a relation 
MAP(source,dest.cosf ). Attribute coti represents the cost of 
going from source to d&r. The problem is to find the least expen- 
sive path between two no&s “start” and “finish”. This is done 
with the help of a relation STATES (desr .cost ). which records the 
least cost of going from “start” to every node desr in the graph. 
The algorithm repeatedly updates the cost of reaching a node desr 
with the cost of reaching a neighbor node sdesr plus the cost of 
going from s&r to desr. This is achieved by repeatedly using 
the single rule 

STATES (sdesr ,scost ) A MAP (msource ,mdesr ,mcosr ) 
A STATES (desr .cosr ) A sdesr =tmource A mdesr =desr 

+ cost =scosr wncosr . 

Clearly, the basic step of the algorithm introduces non-functional 
updates. If the node &sr can be reached through multiple paths, 
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the rule tries to assign conflicting values to the cost of this node. 
The semantics of the update are such that the minimum cost is 
chosen [Kung86]. Note that in this example priorities do not 
work, since all cost derivation rules have the same priority. In our 
framework, this criterion is simply expressed by associating with 
the virtual attribute cost of STATES the function 

f (X)=m~((fi(X.Y))), 

where each fi(x,y ) is in our case the value mcosr+scosr gen- 
erated from one of the various sdesr nodes. The above method 
can be actually used in any kind of search algorithm, such as A* 
and Branch & Bound, since it allows the user to specify in a 
rigorous way what the choice criterion is. 

5. RULE INDEXING FOR SPECIAL CASES 

In thii section, we address the issue of efficiency in identi- 
fying the applicable rules producing values for a virtual attribute 
of a given tuple. and in resolving conflicts among multiple such 
rules. Given a large set of rules and a query asking for the value 
of a virtual attribute, identifying the relevant rules is time consum- 
ing. Several proposals have been suggested that speed up this 
process; some are based on putting special types of locks on the 
relevant attributes, tuples, and/or relations and using the locking 
mechanism to avoid looking at irrelevant rules [StonSS]; others 
are based on indexing the antecedents of rules using multidiien- 
sional data structures [Ston86a]. 

In this paper, we assume that some form of multidimen- 
sional index is used to index the antecedents of the rules, like sn 
R+-tree [Se1187]. Consider a set of rules assigning values to the 
same virtual attribute. The antecedents of the rules define a mul- 
tidimensional space, whose dimensions are the various attributes 
of the relations in the antecedents. This can be further specialized 
into forming a space from the attributes that participate in some 
form of restriction in some antecedent. In this space, each 
antecedent specifies a region, within which the corresponding rule 
is applicable, like in Figures 3.1 and 3.2. Conflicts arise when two 
such regions from different rules overlap. Given a tuple. having 
an index on the antecedents allows the quick identification of the 
rules satisfied by the tuple. One may apply each rule, receive a 
value for the virtual attribute, and then choose a unique value 
based on a conflict resolution function u . 

It is desirable that one does not try all applicable rules and 
then make a final choice for the attribute value, but that the index 
takes into account the conflict resolution scheme also, so that only 
one rule is processed. Unfortunately, thii is not always easy or 
even possible, especially when u applies some nontrivial function 
to perform its task. There are, however, some quite common, we 
believe, instances of u ‘s where indexing can help to directly iden- 
tify the single rule that should be used. We specifically refer to 
the cases where u is of the form 

f (x)=u((fi(x.Y )))=Oft(Lfi(X,Y ))h (5.1) 

where opt is either min or mar. In what follows, we shall restrict 
our attention to min. Similar things apply to muz . 

Recall that each antecedent defines a region in the muhidi- 
mensional space, and that conflicts arise when these regions over- 
lap. Taking into account (5.1) requires the following. Introduce 
some new dimensions in the space, corresponding to the attributes 
used as input to the functions in the consequents of the rules. At 
compile time, analyze these functions and identify the hyper- 
planes where the functions cross over each other. Intersecting 

these hyperplanes with the regions defined by the antecedents 
generates new regions that have no overlap among them. Every 
point in the space, i.e., every tuple, belongs to exactly one region, 
and therefore only one rule is necessary to be used to produce a 
value for its virtual attribute. As an example, consider the follow- 
ing three rules: 

r 1: EMP @me .uge ,sufary ,yeurs) 
A 3olyears 160 + salary = 3K *age +20K 

r a: EMP (nume ‘age .salary ,years ) 
A 2&years 150 + salary = 4K *age -20K 

r3: EMP (name ,age .saIary ,years) 
A l&years 140 + salary = 5K *age -4OK 

The antecedents define a l-diiensional space (on years ), and the 
regions de&d by them are shown in Figure 5.1. The three func- 
tions in the consequents of the rules are plotted in Figure 5.2. The 
values of age where they cross over each other are: for f I,f 2 is 
caged, for f I$, is age=30, and for f 2.f 3 is age=20. Adding 
age as a dimension in the space of Figure 5.1, and taking into 
account the cross over points of the three functions, we have three 
new nonoverlapping regions, which are shown in Figure 5.3. 
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Figure 5.1: Regions of rules before conflict resolution. 
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Figure 5.2: Plots of functions. 
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Figure 5.3: Regions of rules after conflict resolution. 
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Given any tuple, i.e., any specific values of years and age, there 
is a unique region that it falls in, i.e., there is a unique rule associ- 
ated with it. Thii rule can be identified very fast by using an 
index on the nonoverlapping regions of Figure 5.3. This results in 
avoiding any extra work associated with trying all applicable rules 
and applying the conflict resolution scheme. 

Note that the work of identifying the cross-over points is 
rather time-consuming. both because each pair of functions has to 
be analyzed in isolation (hence, this is quadratic in the sire of the 
rule set) and because of the potential complexity of the functions 
themselves (in our example they were simple linear functions, but 
this is not necessarily so). The key observation, however, is that 
this analysis is done only once, at compile time, when the rules 
are defined. There is no overhead paid at query time. We expect 
that the amortized savings at query time make the one time cost of 
the analysis beneficial. 

6. OTHER ISSUES 

In this section, we look at several issues relevant to the 
basic mechanism we have suggested, like the effect of recursion 
and the extension to more general consequents for rules. 

6.1. Recursion 

Recursion in the sense that appears in nonfunctional 
derivation rules, i.e., the relation in the consequent appearing in 
the antecedent as well, is not an issue in functional derivation 
ntles. Nevertheless, there are two different types of recursion that 
can arise in such rules, on which we want to elaborate. The tlrst 
type, which is very unliiely to appear in any real application, 
arises when the function used in the rule consequent that assigns 
values to a virtual attribute takes the value of the virtual attribute 
as input. For example. the following rule gives rise to the first 
form of recursion: 

EMP (nume ,age .salary ) A age 130 

-a salary = 5*safary-120K. 

In general, several rules can be involved. Their consequents have 
the following general form (we ignore the tuples (relations) where 
each attribute belongs): 

attl= f I(attl,att2, * . * ,att,) 

att2= f 2(attl,att2. * * * ,att#) 

. . . 

att, = f.(att I,attz, * * * ,atr,) 

The values assigned to the virtual attributes are the solutions to 
the above system. Assuming no interference from other rules, if 
the system has a unique solution, e.g., if the f; ‘s are multilinear in 
their arguments, there is no conflict to be resolved. Otherwise, the 
attributes’ values have to be decided based on some function u . It 
is apparent that u must depend on properties of the rules’ conse- 
quents. i.e., on the system’s solution, since both the rules and the 
set of tuples satisfying the rules is precisely the same for each 
solution. 

The second type of recursion arises when the virtual attri- 
bute in the consequent of a rule also appears in the antecedent of a 
rule in a primitive relation. i.e., constrained in some form. For 
example, the following rule gives rise to the second form of recur- 
sion: 

EMP (name .age .salary mm-kids ) A salary 14OK 

3 salary = 2*age -20K. 

The difficulty with this type of rules is that, until the rule produces 
a value for the virtual attribute. it is unknown if the rule is applica- 
ble. Moreover, the issue is further complicated in the case when 
other rules are applicable also, and a meta-rule is used to resolve 
conflicts. For example, assume that in addition to the previous 
rule, the following rule is also in effect: 

EMP (rkune ,age ,salary ,nnum-ids ) A age 140 

+ salary = 20K *num~kids. 

Assume also that conflicts are resolved by choosing the minimum 
value assigned to salary. For an EMP tuple with age=25 and 
num_kids=2, the second rule produces salary =4OK. With this 
value, the first rule is applicable and produces salary=30K. The 
conflict is resolved by choosing 30K as the value of salary, but 
the rule semantics is violated, since neither of the rules is satisfied 
with age&I, nwn_Rid=2, and sahy=3OK. It is unclear what 
the appropriate strategy is to avoid/break such race conditions. In 
the previous example, a sensible approach is to only consider the 
value produced by the recursive rule if its antecedent is satisfied 
by that value. Formaliig our intuition behind this requires 
fuxther work. If we exclude such race conditions, however, such 
rules can be used without any problems, e.g., they can take advan- 
tage of indexing schemes like the one discussed in Section 5. 

6.2 More General Forms of Rules 

Finally, a natural extension of our rule model is to allow 
for more general wnsequents. In particular, we are interested in 
cases where ranges of values instead of single values are assigned 
to fields. For example, the following rules assign to a virtual field 
rank some ‘permissible” intervals instead of a single value 

EMP (tumz ,age ,salary ,rank) A age I 30 + rank < 5 
EMP (name ,age ,salary .rank) A salary 15OK + rank > 6 

Consistency problems arise here for employees less than 30 years 
old but with a salary more than 50K. The framework of Section 3 
can easily cover such rules. The only complication is that conflict 
resolution schemes based on properties of the rule wnsequents 
manipulate sets of ranges of valuea. Examples of functions that 
can be used for that are union of ranges, intersection of ranges, 
maximum size range, and maximum sire range on a particular 
dimension. The rest of the mechanism remains unchanged, 
including the use of indices as described in Section 5. 

7. CONCLUSIONS 

In this paper, the problem of modeling conflict resolution 
schemes for inconsistent sets of virtual attribute rules has been 
addressed. We have presented a general framework that captures 
all previously suggested solutions as well as some new ones we 
have proposed, thus proving its utility in a database context. We 
have also argued that simple solutions. such as hard-wired priori- 
ties, are not always useful, and often user-defined schemes must 
be specified for successful conflict resolution according to the vir- 
tual attribute semantics. 

We believe that this is a lirst step towards a better under- 
standiig of the wnflict resolution problem and the derivation of 
better techniques for it. As future interesting problems we view 
the following: 
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(1) The complete study of storage structures that will allow us 
to speed up the process of conflict resolution, based on the 
discussion of Section 5. 

(2) The investigation of implementation techniques for user- 
detined conflict resolution schemes, specified on each vir- 
tual attribute at schema definition and triggered when 
needed. 

(3) The application of these ideas to the general conflict reso- 
lution problem. For example, conflicting integrity wn- 
straints must not exist in the system. Based on our frame- 
work. one could possibly define wnflicting integrity wn- 
straints, allowing only one of them to be enforced in case 
of conflicts. 

8. REFERENCES 

[Ah0791 
Aho. A. and J. Ullman. “Universality of Data Retrieval 
Languages”, in Proc. of the 6th ACM Symposium on Prin- 
ciples of Programming L,anguages, San Antonio, TX, Janu- 
ary 1979, pp. 110-l 17. 

[BlaiSS] 
Blair, H. A., A. L. Brown. and V. S. Subrahmanian, “A 
L.ogic Programming Semantics Scheme, Part I”, Tech. 
Report, LPRG-TR-88-S. School of Computer and Informa- 
tion Science, Syracuse University, April 1988. 

[Borg851 
Borgida. A., ‘Language Features for Flexible Handling of 
Exceptions in Information Systems”, ACM TODS 10. 4 
(December 1985), pp. 107-131. 

[Borg881 
Borgida, A., “Modeling Class Hierarchies with Contradic- 
tions”, in Proc. of the 1988 ACM-SIGMOD Conference on 
the Management of Data, Chicago, IL. June 1988, pp. 
434-443. 

[Forg79] 
Forgy, C. L., On the Effiient Implementation of Produc- 
tion Systems, Carnegie-Mellon University, Department of 
Computer Science, Pittsburgh, PA, PhD. dissertation, Febr. 
1979. 

[Kife89] 
Kifer, M. and E. Lozinskii, “RI: A Logic for Reasoning 
with Inconsistency”, Proc. of Logic in Computer Science 
1989 (to appear), 1989. 

[Niw78] 
Nicolas, I. M. and H. Gallaire, “Data Base: Theory vs. 
Interpretation”, in Logic and Data Bares, edited by H. Gal- 
laire and J. Minker, Plenum Press, New York, N.Y., 1978, 
pp. 33-54. 

[Se11871 
Sellis. T.. N. Roussopoulos, and C. Faloutsos, ‘The R+- 
Tree: A Dynamic Index for Multi-Dimensional Objects”, 
Proc. 13th International VLDB Conference, Brighton, Eng- 
land, September 1987, pp. 507-518. 

[Shor76] 
Shortliffe, E. H.. Computer-based Medical Consultations: 
MYCIN, Elsevier. New York, NY, 1976. 

[Ston86a] 
Stonebraker. M.. T. Sellis, and E. Hanson, “An Analysis of 
Rule Indexing Implementations in Data Base Systems”, in 
Proc. of the 1st International Conference on Expert Data- 
base System, Charleston, SC, April 1986, pp. 353-364. 

[Ston86b] 
Stonebraker, M. and L. Rowe, “The Design of 
POSTGRES”, in Proc. of the I986 ACM-SIGMOD Confer- 
ence on the Management of Data, Washington, DC, June 
1986, pp. 340-355. 

[StonSS] 
Stonebraker, M.. E. Hanson, and S. Potamianos, “The 
POSTGRES Rule Manager”, IEEE Transactions on 
Sofnvare Engineering 14.7 (July 1988), pp. 897-907. 

[Tars551 
Tarski. A., “A Lattice Theoretical Fixpoint Theorem and its 
Applications”, Pacific Journal of Mathematics 5 (1955) 
pp. 285-309. 

[VanE76] 
VanEmden, M. H. and R. A. Kowalski, “The Semantics of 
Predicate Logic as a Programming Language”, JACM 23,4 
(January 1976), pp. 733-742. 

Kung, R. et al., “Heuristic Search in Data Base Systems”, 
in Expert Database Systems, Proc. from the First Interna- 
tional Workshop, edited by L. Kerschberg. 
Benjamin/Cummings, Inc., Menlo Park, CA, 1986, pp. 
537-548. 

214 


