
METHODOLOGY FOR COMPARATIVE SELECTION O F
INTERACTIVE DATABASE INTERFACE TYPES

LENYA K. CRISTIANO

ABSTRACT
On-line database applications are becoming the mos t
common new software tasks. Their use is becomin g
increasingly popular in all areas of information
management. In many environments these on-line
applications are made available to a large, diverse user
population . The majority of these users do not have
training in database or software areas. For this reason, the
interface between the user and the database is vital . It
serves to protect the integrity of the database by governin g
user access and it provides an understandable medium
through which the untrained user can obtain or update the
desired data.

The appropriateness of the interface can affect the success
or failure of the database application . The wrong type of
interface can result in inefficient data access and a
reluctance on the part of users to utilize the tool. Most
interactive database interfaces fall into two genera l
categories, menu-driven or command- driven . These two
interface types are dissimilar in appearance, usage, an d
often in performance. This article will provide a set of
generalized criteria to assist the database manager or
designer in selecting which interface type is better suite d
for a given application . The same criteria can also be used
by managers in selecting a commercial database product fo r
purchase . Factors such as the logical structure of the data ,
characteristics of the user community, and cost are
considered. A worksheet is provided to allow for a
quantitative analysis of the criteria in order to establish a
foundation for the decision-making process .

Introductio n

On-line database applications make up a significant part of
today's business and information processing environments .
These applications often represent a sizeable investment,
whether in terms of development or purchase costs . Unlike
the steady decrease in hardware costs relative to total

system cost, the associated people costs have become one
of the most significant system cost factors . While early
computer users were largely dedicated users with a
technical background, modern day users include grocer y
clerks, bank tellers, secretaries, and managers . These two
trends - the comparatively high personnel costs and the
broadening of the user population - have combined to plac e
a much greater importance on the ease with whic h
computer systems can be learned [Thomas(l)] and th e
efficiency with which they can be incorporated into a user' s
existing work environment .

It is vital that the product provide the maximum level o f
productivity possible, both for the software personnel who
must build and maintain the system and for the end users
who must utilize it to perform their jobs. To accomplish
this goal the database components, such as the physical
data file structure, I/O processing technique, and user
interface must each be carefully selected to best fit th e
specific needs of a given application.

1 .0 Interface Rol e
The design of the user interface provides the greates t
opportunity for flexibility in generating a customize d
product. The user interface serves a critical and varied rol e
in the modern database environment. The basic technical
task of the interface is to serve as a buffer between th e
human user and the database management system (DBMS)
which controls the stored data files. For this discussion, the
term interface will be used to indicate the total softwar e
package surrounding the DBMS, including embedded
DBMS commands, data translation required between
DBMS and user formats, input data validation, and the
interactive terminal package or visual screen displays .

The interface provides the user with a way to acces s
information contained in the database . It then serves as a
translator between the user and the DBMS to control inpu t
and output of data in formats that are understandable b y

SIGCHI Bulletin July 1989

	

29

	

Volume 21, Number 1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F67880.67883&domain=pdf&date_stamp=1989-08-01

each. The interface also serves to guide the user through
tasks by providing operating instructions, self-hel p
information and error messages .

The interface screen displays make up the visible portion of
the application. It is the most recognizable component and
serves to identify the application to the user. The
appearance or "style" of the interface can be important i n
itself. The interface design establishes an image for the
product . The amount and format of displayed data as wel l
as the presence of non-data features such as logos or other
graphics and user instructions serve to alert the user to th e
nature of the application .

It may be said, in general, that the primary purpose of th e
interface is to serve the needs of the user while the needs o f
the data are handled by the DBMS . However, the logical
structure of the data should also serve to influence som e
aspects of the interface . The format and amount of space
required to display a single logical, coherent unit of data
should be considered. For example, an interface designe d
to display small, independent data items (such as numeric
data) would be ill-suited to work with data organized i n
block or page format (such as text) .

Users should be able to access specific data quickly an d
easily . The interface design should strive to eliminate th e
display of any extraneous data which is not of immediate
relevance to the user's query . The query syntax should b e
simple and straight-forward and should be consisten t
throughout the application .

A poorly designed or incorrectly selected interface can
prove to be a serious deterrent to the success of an
application . An interface which is installed and presente d
to the end users without review or consideration of their
unique requirements is likely to result in inefficient data
access and productivity levels well below expectations, at
best. At worst, users may become frustrated with the
system and so avoid using it. The adverse effects of such a
poor decision can linger long after the initial error as users
may tend to view later projects with preconceived attitude s
or predictions of failure, regardless of the merits of those
projects .

2 .0 Interface Types
Interfaces are as varied as the applications they are buil t
for . Most are based on one of two fundamental designs ,
command-driven or menu-driven . The visual differences
between the two types makes them easy to distinguish .
Other significant differences equip each interface type t o
best serve a given data file structure and user community.

Menu-driven interface systems consist of a number of
individual, full-screen displays (refer to Fig. 1) . The
displays are commonly organized in a hierarchical manner .
The user may choose to follow any of a number o f
prescribed paths or branches emanating from the primary or
root screen, often referred to as the primary menu . The
user moves from one screen or page to another by selectin g
from the options available on the current screen. The
lay-out or format of each screen is constant, only the data
used to fill the screen display fields varies . In more
advanced systems, windowing may be used to combine
screens for simultaneous viewing .

Command-driven interfaces utilize a less structured format .
User commands and database responses follow a
straight-line, scrolling pattern (refer to Fig. 2) . This type of
interface is best suited for less complex input and outpu t
forms. In its true form, the attraction of this interface

Figure 1 . Menu Driven Interface

** *
* ACME MAIL-ORDER, INC . *
*

*
*

*
*

*
*
*
*
** *
* 99 - Help 0 - Exit *
** *

** *

* ACME MAIL-ORDER, INC. *
* *
* *
* Customer # : J00803 *
* *
* Name : MARTIN, JAMES M. *
* *
* Address : 503 QUAIL RUN LANE *
* *
* City, State, Zip : BOSTON, MA 20387 *
* *
* Phone : {451) 665-7301 *
* *
** *

* 1-Add Item 3-Modify Item 7 aDelete Item 0-Exit *
** *

* ACME MAIL-ORDER, INC . *
*

	

*
* Customer #: C40023 *
* *
* Select Date Item # Qty Unit Price *
* *
* * 3/25/88 100-1A 12 $ 39 .95 *
* * 3/25/88 200-2A 5 $ 12.50 *
* * 3/25/88 K1011 2 $ 120 .00 *
* * 5/10/88 3046-B 1 $ 29 .95 *
* * **/**/** ******** **** $****** .** *
* * **/**/** ******** **** $****** .** *

* 1-Add Items 3-Modify Selected Items 0-Exit *
* 2-Next Page 7-Delete Selected Items *
** *

** *
* ACME MAIL-ORDER, INC . *
* *
* Customer # : K00917 *
* *

* PAYMENT 1 cash *
* 2 chck *
* Date : **/**/** Amt : $****** .** Code : * 3 visa *
* 4 mstc *
** *
* Curt Amt Date Account *
* Balance Due Due Status *
* *
* $ 635 .12 $ 20 .00 9/15/88 current *
** *
* 1-Record Payment 3-Modify Record 0-Exit *
** *

** *

* ACME MAIL-ORDER, INC . *
* *
* Inventory Listing *
* *
* Select Item# Descrip Unit Price In Stock *
* *
* * 100-1A Crystal Vase $ 39 .95 32 *
* * 200-2A Frame, 5x7 $ 12 .50 53 *
* * 23684 Fire Screen $ 55 .00 12 *
* * 3046-5 E1ec Skillet $ 29 .95 44 *
* * H776-3 TV, 19" BW $ 89 .95 21 *
* * K1011 Luggage, 3pc $ 120 .00 8 *
** *
* 1-Add Items 3-Modify Selected Items 0-Exit *
* 2-Next Page 7-Delete Selected Items *
** *

MAIN MENU

1 - Customer s

2 - Order Forms

*
*
*

3. - Customer Account s

4 - Inventory

SIGCHI Bulletin July 1989

	

30

	

Volume 21, Number 1

format lies in its simplicity . Care must be taken when
adding features or it may lose some of its appeal . Unlike
the typical menu-driven system, users may enter commands
or interdependent command groups in random order
without following a prescribed pathway .

C> RUN ACCT-SYS
Initializing Acct-Sys. ..
==> DIRECTORY
customers {cust#,name,street,city,phone}
items {item#,descrip,price,stock level}
orders {cust#,date ord,item#,qty }
acct_bal {cust#,curr bal,amt_due,date_due,status }
payments {cust#,amt paid,date_paid,pay_type }
__> LIST CUSTOMERS{CUST#,NAME} WHERE SORT={NAME }
c40023

	

bennett, carrie r .
c10009 cameron, michael w .
s78110

	

davidson, john q .
h98374

	

fuller, mark I .
f00485

	

garrett, david m .
k00917

	

larson, margaret c .
j00101

	

masterson, andrew h .
j00310

	

thompson, Jane j.
j18375

	

williams, bill d .
__> ADD CUSTOMERS ITE M
cust # : J00803
name: MARTIN, JAMES M .
street: 503 QUAIL RUN LAN E
city,state,zip : BOSTON, MA 2038 7
phone : (451) 665-730 1
__> LIST ORDERS{ALL} WHERE {CUST#}=F0048 5
cust#

	

date_ord

	

item#

	

qty
c40023

	

3/25/88

	

100-1a

	

1 2
c40023

	

3/25/88

	

200-2a

	

5
c40023

	

3/25/88

	

k1011

	

2
c40023

	

5/10/88

	

3046-b

	

1
__> LIST ACCT BAL{ALL} WHERE {CUST#}=K0091 7

cust#

	

curr bal

	

amt due

	

date due

	

statu s
k00917 635 .12

	

20.00

	

9/15/88

	

current
__> LIST ITEMS{ALL}
item#

	

descrip

	

price

	

stock
–

leve l
100-1a

	

crystal vase

	

39 .95

	

32
200-2a

	

frame, 5x7

	

12 .50

	

53
23684

	

fire screen

	

55 .00

	

1 2
3046-b

	

dose skillet

	

29 .95

	

4 4
h776-3

	

TV, 19" bw

	

89 .95

	

21
k1011

	

luggage, 3pc

	

120 .00

	

8

Figure 2 . Command-Driven Interface

It should be noted that these descriptions reference only th e
fundamental design characteristics. These designs may b e
expanded to include additional features or visual displa y
techniques . In many cases, the variety of data types and
structures utilized within a single application warrant th e
formation of an interface which combines attributes fro m
both basic interface types .

3 .0 Selection Criteri a

What specific factors should be evaluated to determine bes t
fit for an interface? Which interface type best correspond s
to each factor? A checklist of the major factors to be
considered and a discussion of their relevance to either
menu-driven or command-driven systems follows . A
discussion of the classifications of user/DBMS interactions
as presented by [Goldstein(2)] provides a similar
framework in several areas . It should be kept in mind that
such a discussion must be conducted in a generic sense .
The wide range of manipulative techniques used in
interactive interface design prohibits any rules from being

designated as absolutes . In addition, factors should be
evaluated in relation to each other and the overall best fit
should be sought.

Comparison
Factor

Menu-Driven
Interface

Command-Driven
Interface

1) Cost /
Schedule

Relatively more
expensive due to
increased lines of code
needed to handle I/O
from interactive
screens ; screen
formatter may have to
be purchased

Less expensive for
opposed reason

2) User
Profile

Well suited for users
who access syste m
infrequently ; screen s
often include text
giving options or help

Best suited for user
groups who use
system often enough
to familiarize
themselves with
system commands

3) User
Training

Users can often follow
menus and screens in a
self-guided atmosphere

May require direct
training and/or a
well-prepared user
manual to provide
documentation o f
commands and syntax

4) Visual
Image

Formatted screens are
more visually
expressive, menus
allow system functions
to be viewed clearly

May lack visual
impact

5) Flexibility
/ Complexity
of Data
Access
Requests

Screen I/O and access
paths are set in design;
complex data I/O
functions can be set up
in advance

User may devise any
combination of vali d
commands to
formulate ad-hoc data
requests

6) Data Entry
Requirements

Preferable if a variety
of data types must be
entered simultaneously ;
error detection done
screen by screen

Data may be entere d
in streams ; very
efficient for singular
data types ; erro r
detection usually
performed on grou p
basis

7) Structure
of Data

Well suited to data that
is logically oriented as
single records

Allows display of
large amounts of data
at a time, preferable
for data grouped in
blocks/files

8) Security /
Informatio n
Hiding

Screen formats allow
only specific dat a
values to be viewed

Access is les s
restrictive in general ,
data access requests
are usually generic

Table 1 . Checklist of Factors

In many instances, diverse user needs will be inconsisten t
with each other . The desire for easy access to the databas e
for update purposes may conflict with data securit y
requirements, for example . A difficult process o f
compromise, tradeoff, and refinement of requirements is
needed to insure that the design or acquisition process has
taken into account all significant user needs . [Stieger(3)]

3 .1 Cost and Schedul e

In very restrictive cases, this factor may tend to determine a
great deal about the application in addition to the interfac e
type. Limitations in cost and schedule realistically result i n
a scaling down of the proposed database functions an d
features . Consequently, the database I/O requirements ar e
likely to be similarly reduced in scale and complexity. I t

SIGCHI Bulletin July 1989

	

31

	

Volume 21, Number 1

should be noted that the physical size of the database, i n
terms of the number of elements it contains or its physica l
storage requirements, is not a significant cost factor
[Boehm(4)] . It is the complexity of the design, not physical
size, that must be reduced.

The use of a command-driven interface would fit well into
such an environment, since a key attribute of this interfac e
type is its simplicity . Such an interface system can be
operated with a relatively small amount of software, with a
corresponding savings in effort and cost .

Many database management systems include a resident
screen formatting package . Independent screen formatting
packages may also be used. Such pre-packaged program s
provide for quick and easy generation and manipulation of
menu-driven screen images. Built-in features do most of
the work needed for the basic tasks of defining a screen
format, reading and writing data from the fields, an d
performing simple data validation. If the desired database
design calls for simple, easily effected data access then
such tools allow for a basic menu-driven system to be
constructed quickly and efficiently . However, unless suc h
a tool is already available in-shop, the cost of the scree n
formatting package must also be considered .

Menu-driven systems are also capable of handling the more
complex I/O requirements allowed within a less restrictive
environment . It follows that the code required to
manipulate the interface must in turn be more advanced. A
limited survey of several menu-driven systems revealed a
rough order of magnitude estimate of the number of lines o f
code required to control a given number of interactive
screens . An approximate average of 500 to 800 lines of
code per screen was observed in the construction of a
complete interface for the applications surveyed . It should
be noted that the systems examined were fairly complex in
terms of input and output formats, data validation
requirements were extensive, and screen formats an d
features were moderately advanced .

It should not be assumed that the selection of a command -
driven or simple menu-driven interface will sufficientl y
meet the cost restrictions on its own and thus eliminate the
need for a trimming of any other database features . Such
an assumption would be self-defeating . If the complexity
of the database I/O is retained, the effectiveness or fit o f
either of these interfaces would be negated. To best meet
cost and schedule restrictions and still generate an effective
database tool both decisions must be made in tandem .

3.2 User Profile
An interface's effectiveness is dependent on its ability t o
satisfy the needs of the people who use it. The ease with
which the user can communicate with the interface is an
important consideration in the overall application design .
How well this goal is met is often determined on a
subjective basis by the users themselves . To assure a
successful outcome, the designer or manager must be abl e
to examine the application from the viewpoint of th e
customer.

User experience in data processing must be considered . If
the majority of users are not data processing professionals ,
special emphasis should be placed on the need for clarity ,
straight- forwardness of operation, and especially on th e
detection and interception of errors. Conversely, if the
users are knowledgeable about data processing, they will be
better able to cope with greater system complexity with less
explicit or elaborate error messages . [Stieger(5)]

An application which will be used in an intensive manner
deserves an extra measure of care in the selection or desig n
of the interface . Examples of this type of environmen t
might include data entry applications for an accounting
department or an order placement system for a mail-order
firm. A primary concern of a typical user in thi s
environment is efficient use of their time . Rapid
completion of the most frequently performed tasks i s
essential. A command-driven system provides the user s
with the ability to rapidly access and execute an y
command. The familiarity gained from constant exposure
to the interface allows users to operate the system from
memory, without the need for on- line directions .

User populations which will associate with the database on
a casual basis can be expected to require additiona l
guidance in the operation of the database . Users who work
with the interface on a limited scale will not have th e
benefit of repetition to keep their skills honed .
[Goldstein(6)] A computerized card catalog system for a
public library or an executive's monthly budget status
inquiry system are typical examples . The average user ma y
access the system only occasionally or may be completel y
unfamiliar with it. Systems of this nature must place more
emphasis on tutorial aspects rather than speed. A
menu-driven system's screen displays assist the user b y
providing him with a list of his available options and the n
guiding him through the task in a structured manner . The
screen images clearly display the data values to be entered
and may include helpful or descriptive text.

An experimental case study conducted in a real-world
office environment revealed some interesting facts
concerning user preferences relating to database interfaces .
Although some trends were apparent, it was also found tha t
there is a great deal of individual variation in terms o f
interface preferences and patterns of use . Although the
menu-driven interface was the preferred interface for ne w
users and became less frequently used the more experienc e
a person had, its use never stopped completely . According
to survey results of the users involved in the test, they
turned to the menu-driven type of interface when the y
attempted to use new or unfamiliar parts of the system o r
when they needed to refresh their memories after a n
absence from the system . After experience was gained, the
command-driven interface became the most frequentl y
used . [Hiltz(7)]

Although it would not be practical to provide system s
which include both types of interfaces, as was done for th e
experiment, the insights gained from the responses of users
who were given the opportunity to use either as they chose
can be very beneficial . The target user population should
be evaluated in terms of their relative level of experience
over the expected lifespan of the proposed system. If the
database is expected to be used fairly consistently over a
long period of time, users would be more likely to b e
satisfied with a command-driven interface - even though i t
may be more difficult to work with initially . While a
menu-driven system might work very well for the first few
weeks as users get acquainted with the system, they may
soon outgrow it and spend the next several years wishing
for a more concise interface . The opposite reasoning ca n
be used to justify the selection of a menu-driven interfac e
in instances where the database has a relatively short life
expectancy or the users' exposure to the system will b e
limited or sporadic .

SIGCHI Bulletin July 1989

	

32

	

Volume 21, Number 1

3.3 User Training Required
As indicated in the previous section, a comprehensive
menu- driven interface allows the user to follow the menu s
and screens in a self-guided atmosphere. The user is not
required to have any previous knowledge of valid
commands or syntax . Options are generally indicated b y
the entry of a function key or numeric value whose purpose
is identified on the screen . The use of menus has th e
cognitive effect of helping the user to develop a mental
map of the structure of the system and the relationship
among components [Hiltz(8)] .

For many applications intended to serve the "general
public", the use of a well-planned menu-driven system ca n
enable a user with no computer literacy to accomplish the
desired task the very first time he encounters the system .
Millions of people each day do a significant part of thei r
banking through computerized transactions on automated
teller machines without having had any trainin g
whatsoever.

For more complex applications or those whose users can b e
expected to have had some exposure to the system, a brief
initial explanation of the system and/or a concise
supplemental users manual can be all that is required to
make the users comfortable with the system . In these
cases, the user is often reasonably familiar with the system
and only needs help while performing the least familiar
tasks or may need only a reminder or refresher when
entering the system after a long absence. This allows th e
interface to become more streamlined by eliminating the
need to instruct the user on each and every keystroke, while
still providing a reasonable amount of guidance .

In a typical command-driven system the user may be
provided with little more than a command prompt on th e
screen . To be able to provide the system with a usable
directive, the user must have previous knowledge of th e
system commands . To acquire such information, users
generally require direct hands-on training under th e
guidance of an instructor or, at a minimum, the availabilit y
of a comprehensive users manual . Although the initial
investment of effort and time required to conduct th e
training and to generate the manual may seem to
accomplish little in terms of actual production, it must be
weighed against the long-term benefits of the increased
efficiency of the trained user.

3.4 Visual Impac t

Although it may be argued that the visual attributes of a
system do not have a direct effect on its productivity, i t
cannot be denied that user perceptions and acceptance ar e
affected. This is of particular importance in th e
development of a commercial system whose visua l
attractiveness may be directly related to its marketability .
The same applies to an unsolicited system develope d
internally which may have to be demonstrated to a number
of management or user groups for their approval . The
primary goal of such a presentation is to demonstrate th e
greatest amount of system capability within a very short
time frame .

A menu-driven system is perfectly suited to this particular
situation . The use of the menus allows a user to clearly see
before him a list of the functions provided by the system .
The data screen formats instantly provide an overview of
the data input and output values . A primitive
demonstration prototype of the system can be constructed
by simply formatting the proposed screens and linkin g
them together. Another advantage gained by the use of

fixed format, full-page screens is the ability to add artisti c
touches to the screen by the use of graphics, logos, borders
and colors. An attractive, visually expressive interface ca n
be invaluable in making a good first impression .

Visual impact is not a strong point for mos t
command-driven interfaces. However, if the driving
concern is functionality and the users are not influenced
greatly by aesthetics or a "pretty" appearance then a
command-driven system will not be adversely affected by
this factor.

3.5 Data Access Requests

Applications may differ in the nature of the data acces s
requests they must process . As in the case of a
command-driven system interface, users may formulate
ad-hoc data requests by combining any of a number of
valid command words and formats. The interface is
designed to recognize a list of defined key words and to
interpret them when used in an established command
language syntax. Although the command syntax is know n
when the interface is built, the actual commands
themselves are not defined until the end user enters them .
Command-driven interfaces thus allow for a great deal o f
flexibility in the user's manipulation of the database . Such
flexibility would be a major advantage in a personal data
management tool or the executive status query applicatio n
mentioned earlier. Caution should be exercised, however ,
not to attempt implementation of an overly complex
command syntax . The amount of code required to translate
increasingly advanced commands rises on a progressively
steep scale and user learning curves are extended.

Menu-driven interfaces are typically more structured in
terms of the data manipulations. Such a structure can help
a user who is not familiar with the internals of the databas e
to be more comfortable in their use of the system. For
those instances in which all required input and output
values are known in advance a menu-driven system can b e
built to meet those specifications exactly . Complex
operations can then be built into the screen hierarchy and
performed by the user without undue effort . Code
supporting the interface can be used to gather data values
from several data files for display on the same screen or to
display temporary, calculated values such as running
column totals . By following the established access paths
inherent in the menus a user who is not trained in database
or information processing skills can still perform advance d
data manipulation tasks .

3.6 Data Entry Requirements

In many instances, the primary function of an interface is to
provide a means of loading data into the database .
Occasionally large volumes of data may be added
mechanically, such as a direct file load from disk or tape by
a software package. More likely is the interactive entry o f
data by a person. The rate or volume of data entry
expected, the variability of data types, and error detectio n
requirements can each vary widely and should be reviewed
in terms of the interface selected . As the volume of data
which must be entered increases, so does the need to
optimize the interface to best fit the characteristics of th e
data .

A command-driven format lends itself easily to th e
streaming of input values . That is, the input of a variable
length, continuous list of values. If large numbers o f
homogeneous values are typically entered together ,
streaming can improve data throughput for entry intensiv e
tasks .

SIGCHI Bulletin July 1989

	

33

	

Volume 21, Number 1

Non-homogeneous data profiles are generally mor e
adaptable to a menu-driven interface. Such profiles can
include a diverse group of data types and formats
(characters, text, integers, reals) that are logically groupe d
together or an entry format which is very restrictive (exac t
spacing or location of data fields) . The data entry task can
be clarified by the physical placement and dimensions of
the fields on the menu-driven screen.

In keeping with the ability of command-driven interfaces to
process large groups of data as a unit, error detection may
also tend to be performed at less frequent intervals. Rather
than interrupt the input of a stream of data the designer ma y
prefer to do an integrity check after the entire data block
has been entered and to notify the user of any errors foun d
so that corrections can then be made. Given the physica l
groupings of data values that occur on a menu-drive n
screen, error detection is most efficient if handled on a
screen by screen basis. It would not be practical to detec t
errors after a user has exited from a particular screen sinc e
it may be difficult to enforce his return to the same screen
at a later time .

3 .7 Structure of Data
As indicated in the previous section, data that is logically
oriented in a block or group format is well suited for
display by a command-driven system. Variable amounts of
data may be displayed in a flexible, open-ended manner by
the use of the scrolling features common in a
command-driven environment . Large volumes of data may
be reviewed rapidly . The user may freeze the scroll at
chosen intervals to examine certain data more closely and
then continue scrolling when desired .

Data which is comprised of a large number of smaller ,
independent records or units can most easily be maintained
through a menu-driven interface . The screen displays
allow the user to select and view a particular record or ite m
quickly, without being distracted by the display of a series
of non- selected items . If transactions such as deletions or
modifications are performed at random or scattered
intervals, the record which is currently being acted upon i s
always very clearly displayed .

3.8 Security l Information Hiding

The database administrator may wish to limit the access
provided to the user community, particularly if it is a larg e
and diverse group. As the size and complexity of th e
database itself grows, so does its utilization by various use r
groups . Both of these occurrences increase the need fo r
data security . The database interface is the first line of
defense against improper access .

Menu-driven interfaces by their very nature provide a
simple access control . Data I/O is strictly governed by the
designer through the format or fields that are included o n
each screen . Access paths are controlled by the menus
provided. The structure of the interface prevents the end
user from deviating away from the established acces s
patterns.

Command-driven interfaces, on the other hand, allow a
good deal more freedom in the way the end user accesse s
the data. By allowing the user a greater degree of control
over the command sequences to be performed, data acces s
is less restrictive . In addition, the data request results are
typically more generic, allowing for the display of a greate r
volume of data. While this may tend to simplify th e
command language, it does not lend itself well t o
information hiding .

4.0 Reconciling Factor s
As discussed, several different characteristics can have a n
impact on the fit of a database interface . While they may
seem to be very different from each other, in most cases the
factors are interrelated and tend to support one another.
For example, the data security and information hiding
concerns described relate quite closely to the correspondin g
user profiles. Just as command-driven users are typically
more knowledgeable about the structure of the database
they are working with, often using the database as a
personal management tool, so the need for tightened
security is diminished. A menu-driven system's capacity
for more secure operation is useful when it is mad e
available to a broad group of users who may not be too
familiar with the system . Other supporting relationships
can be found between the data entry characteristics and th e
physical structure of the data .

In evaluating or planning the proposed databas e
environment, the database manager or designer wil l
frequently discover that while some aspects of the
environment may tend to indicate the use of one interfac e
type, other aspects will indicate use of the opposing
interface type. To resolve these apparent contradictions the
designer must employ creativity to develop a hybrid
interface which meshes the desired characteristics of bot h
interface types . In practical, real-world applications there
is often some degree of variance in the alignment of th e
factors, particularly for those applications whose functiona l
scope is relatively broad. In other words, most
environments do not fit perfectly into either a menu-driven
or command-driven category . While the use of a
commercial off-the-shelf package will limit the amount o f
customization that can be achieved, a database which is
built in-house or under contract should be able to meet
almost any combination of needs.

In order to aid in the reconciliation of the various factor s
presented and to provide a quantitative tool to assist in th e
selection process a worksheet has been provided . The
worksheet is intended to simplify the task of categorizin g
the particular aspects of the designers' environment and to
arrive at a composite characterization . A brief analysis and
recommendation are provided based on the numerical
results of the survey . The results can provide a valuable
tool in the decision making process .

Interface Environment Survey

Below is a worksheet designed to help you identify the
application environment within which the interface you
choose must perform. To use the worksheet, you will
assign a numeric value to each of a series of project
descriptions based on the degree to which they accuratel y
reflect your environment .

Each factor is assigned a value and two differing project
descriptions are given . If your project very closely matches
one of those descriptions, the total value for that facto r
should be recorded beside the description . In some cases ,
however, certain aspects of both descriptions may apply .
You should then distribute the total value across both of the
descriptions proportional to the degree that each reflect s
your particular situation . The relative weighting values
assigned to each factor were subjectively derived and may
be subject to refinement as further field data becomes
available. The total value assigned to each pair o f
descriptions should always equal the weighted value
indicated beneath the factor name.

SIGCHI Bulletin July 1989

	

34

	

Volume 21, Number 1

The survey has been applied as a postmortem exercis e
against a limited number of database systems, includin g
those systems which provided the basis for the data used to
initially calibrate the survey . These preliminary validation
tests have yielded favorable results, producing a reasonable
and relatively stable correspondence between the attributes
of the database systems as they were implemented and the
survey's forecast. Currently, it is too early to have
collected any data regarding the performance or fit of
systems for which the survey was used as an input to the
design process . Such data will be evaluated and
incorporated as it becomes available.

A

	

IPts. B

	

IPts .

Cost /
Schedule

20

- Scope of project is
small or has been
limited by budget /
time restrictions
- No screen format
package is available
in-house

- Scope of project i s
relatively
advanced and budge t
is sufficient
- Project scale i s
small and a screen
formatter is already
available

User Profile

30

- Users will acces s
system on an
infrequent or casual
basis

- Users work with
system on a daily
basi s

User Training
Requirements

10

- User community
can be identified and
gathered
together for formal
training sessions
- User manuals can
be distributed to
users or to all
workstations

- Formal trainin g
sessions are
impractica l
- Users may not have
any computer
background at all ,
lack of compute r
literacy

Visual Image

10

- System
functionality is more
important than it s
appearance

- System i s
unsolicited and so it s
marketability is a
concern
- During demos ,
system functions
must be easily
illustrated
- Rapid system
prototype is needed
as design tool and to
get project go-ahea d

Data Acces s
Request s

20

- Exact I/O is not
known at time of
system design
- User needs to
control I/O as in a
personal data
management tool
- Ability to generat e
ad-hoc data requests
quickly is very
desirable

- All I/O
requirements are
known in detail a t
design time
- Very complex data
manipulations are
required and must be
closely controlled to
ensure accuracy

Data Entry
Requirements

20

- Large volumes of
data of a single type
are common
- Error detection can
be performed on
large blocks of data
at once

- Data contains a mix
of several data type s
or formats
- Spacing or location
of data values i s
important
- Data must be
monitored closely for
errors and they must
be corrected quickly

Data Structure

30

- Data is logically
organized into block s
or files such as text

- Data can be divided
into small
independent units or
record s

Security /
Information
Hidin g

10

- User community is
small and i s
knowledgeable abou t
the system ; chances
of corruption are
reduce d
- Users require
unrestricted access to
data to do their job
most efficiently

- System needs to be
protected from
possible corruption
or error introduction
by unskilled users
- Database is used by
a wide range of users
whose access may
need to be
selectively limited to
certain sections of
the database

Totals _

Analysis Of Result s
The column totals computed in the survey will be used to
determine the best fit of an interface type to th e
environment described . The totals provide a standardized ,
quantitative way to identify the selection factors present. A
total of 150 points is available for distribution between the
two columns. Of course, a total of 150 in either colum n
would indicate a perfect fit and would make the selection
process automatic . However, this can seldom be expected
to occur . More likely are cases which include some aspects
of both the interface descriptions . This means that in mos t
situations some compromises must be made .

To standardize the selection process and make it more
reflective of the real world, a certain delta value away from
a "perfect" fit must still be accepted . Therefore, a 70 %
proportion of fit for either interface will be considered as a
suitable environment for the successful implementation o f
the indicated interface type. This implies that if one of the
column totals generated above represents at least 70% (10 5
points) of the 150 points available then that interface type
will be selected. If neither column totals 70% of th e
available points, then a special situation exists which is bes t
resolved by a combination of both interface types .

Column A > 105
Based on the environment description given for th e
application, the best fit will be achieved using a
command-driven interface .

Column B > 105
Based on the environment description given for the
application, the best fit will be achieved using a
menu-driven interface.

SIGCHI Bulletin July 1989

	

35

	

Volume 21, Number 1

In both of these cases, those factors which were applicabl e
in the column with the lower total should be kept in mind
during the design of the system and its interface . In many
cases, the concerns described which seem to indicate th e
use of a different approach can be handled by making some
minor design concessions, modifying the projec t
requirements or, in some instances, by modifying th e
environment itself. On the whole, though, the basic
interface type indicated should meet the overall needs o f
the project quite well .

ColumnA&B < 105
In this case, the best interface fit for the applicatio n
described is a combination of the features found in both
command-driven and menu-driven systems. Although such
design tasks may require an extra measure of creativity an d
skill, the result will provide an effective and productiv e
database management tool .

Some typical examples of combined interface feature s
include :

The addition of extra user help messages or instruction s
as a part of the normal command-driven display .
Modification of some menu-driven screens to allo w
them to accept entries or display data in a streaming or
scrolling fashion .
Construction of the command-driven system to include
a greater degree of control over the commands allowed
at a certain time. Commands which are valid may also
be dependent on the identity of the user .
Greater flexibility may be built into a menu-drive n
system by providing a mechanism, such as a keyword
or command field on the screen, which will allow a user
to call up the next desired screen directly rather tha n
progressing through the menu hierarchy .
For a menu-driven system which must be able t o
process certain complex data transactions, those
transactions can be coded to the greatest degre e
possible as a part of the interface software . The coded
or automated process can then be made available to the
user through the use of a specialized command simila r
to the other user formulated commands .

These are only a few of the many ways in which the base
type of the interface can be expanded to meet the needs of
almost any project .

5 .0 Summary

When designing an interactive database application, the
user interface deserves particular attention. The interface is
the link between the information contained in the database
and the people who must use that information . The
physical database itself may be no more than an abstract,
nebulous cloud of data to the users. The interface provides
a way for them to associate a meaningful, visible structure
with that data. The primary purpose of the interface is to
provide a way for the user to efficiently access a selective

subset of data while protecting the integrity of the entire
database .

In general, two fundamental types of interfaces are
common. A command-driven interface provides a flexible
interface which can provide efficient data access for a
well-trained user. A menu- driven interface offers a
structured, easily understandable way for even casual users
to perform a wide range of database operations . Many
applications are best served by a hybrid interface which
incorporates aspects of both basic interface types.

To determine the interface type which will best fit the
needs of a given application environment, several factor s
must be considered . The major areas to be examined
include the primary purpose the database will serve ,
characteristics of the typical user, and the physical and
logical structure of the data. These can be specificall y
defined as follows : cost and schedule restrictions, user
population profile, user training requirements, visual
impact of the interface image, complexity of data acces s
requests, volume and variability of data entry requirements ,
physical structure of the database files, and the robustness
of the security measures required .

This article and survey are intended to serve as a baselin e
for further exploration of the unique circumstances an d
needs found in your particular office or application. In
addition, input from other sources and further research
should be included in order to reach a concensus decision
which can be acted upon with confidence .

BIBLIOGRAPHY
1. J.C. Thomas, "Organizing for Human Factors", Human

Factors and Interactive Computer Systems ,
Proceedings of the NYU Symposium on Computer
Interfaces, May 1984, New York, NY, pp. 29-45 .

2. R .C . Goldstein, Database Technology and
Management, John Wiley & Sons, Inc ., New York,
NY, 1985, pp . 217-234 .

3. "Selection and Acquisition of Data Base Management
Systems", Codasyl Systems Committee, W.H. Stieger,
Chairman, March, 1976, p . 34 .

4. B.W. Boehm, Software Engineering Economics ,
Prentice Hall, New Jersey, 1981, pp. 386-389, 642 .

5. "Selection and Acquisition of Data Base Managemen t
Systems", Codasyl Systems Committee, W.H. Stieger,
Chairman, March, 1976, p . 37.

6. R.C . Goldstein, Database Technology and
Management, John Wiley & Sons, Inc ., New York ,
NY, 1985, pp. 217-234.

7. S .R . Hiltz, Online Communities : A Case Study of the
Office of the Future, Ablex Publishing Corp., New
Jersey, 1984, pp . 121-122 .

8. Ibid.

SIGCHI Bulletin July 1989

	

36

	

Volume 21, Number 1

